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5.1  Introduction 

Critical infrastructure (CI) includes any systems and assets that are so vital that their destruction 

or disruption threatens lives, governments, economies, ecologies, or the social/political 

structure of nations (Moteff & Parfomak, 2004) (Luiijf & Klaver, 2004).  Thus, CI includes, 

but is not limited to, power grids, water and sewage, hospitals, and transportation systems 

(Luiijf & Klaver, 2004).  To enable monitoring and control of CI systems, industrial control 

networks are often used (Galloway & Hancke, 2013).  Industrial control networks, 

conceptualized in Figure 5.1, are systems that monitor and control physical devices. 

Conservatively, eighty percent of US electric power utilities employ industrial control 

networks for monitoring and control (Fernandez & Fernandez, 2005).  Of interest in industrial 

control networks is preventing unauthorized access to CI systems and overall reliability of the 

networks.   

 

Figure 5.1: Conceptualization of an Industrial Control Network (from (Goverment 
Accountability Office (GAO), 2008)) 
 

Increasingly, commercial network technologies are being used in industrial control networks; 

this increases internet pathways and cyber security risks.  In many ways, extending the Internet 
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of Things (IoT) to include CI components can be seen as logical since IoT enabled devices can 

be used to monitor all components in a system, e.g. wireless enabled structural health 

monitoring of bridges (Hu, Wang, & Ji, 2013).  However, to be useful, communication 

networks used for CI need to balance performance, security, reliability, availability, and 

survivability (Snow, Varshney, & Malloy, 2000) (Ellison, Fisher, Linger, Lipson, & Longstaff, 

1997).  Thus, beyond introducing vulnerabilities, security concerns can both limit user 

confidence in communications networks (Liao, Luo, Gurung, & Shi, 2015) and reduce their 

functionality (McMaster, 2003). 

Communication security is only as strong as the weakest link, e.g. one insecure device in a 

large and otherwise security network can compromise the entire network (Yang, Luo, Ye, Lu, 

& Zhang, 2004).  To secure networks, monitoring for anomalous behavior and vetting the 

identify of devices that aim to gain access to the network is critical. With the IoT expanding 

the volume and variety of devices connected to CI networks, the proliferation of 

communication devices and standards in CI applications thus presents security challenges. To 

understand how to vet the identity of communication devices, this chapter first reviews 

communications operations, then the types of devices used in industrial communication 

networks, the various threats to networks, and then the various security measures available.    

5.2  Effects of Successful Communication System Threats 

A variety of possible outcomes exists for successful CI communication system incidents.  To 

this end, risk analysis of the various threats can be conducted concerning a communication 

system and the possible consequences if the threat occurs (Peltier, 2005).  To evaluate what 

risks should be mitigated, security analysis can consider the likelihood of successful attack 

(LAS) as a function of the threat (T), vulnerabilities (V), and target attractiveness (AT) (Byres & 

Lowe, 2004).  In conjunction with LAS, of interest is also the consequence (C) of an attack 

(Byres & Lowe, 2004).  While each communication system has various specific threats and 
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possible consequences, the consequences can be generally binned as follows, where a 

malicious party could (Miller & Rowe, 2012): distort or modify files and information, disrupt 

access to the network, disclose information, destroy files or systems, or cause the death of 

humans. Additionally, some effects are unknown incidents, where the results and goals were 

not be discovered by investigators (Miller & Rowe, 2012).  With effective security analysis, 

the estimated financial, environmental and health consequences of attacks can be estimated and 

used to allocate security resources (Byres & Lowe, 2004). 

5.3  General Communication System Operations  

In operation, industrial control networks are used for communication, monitoring and 

controlling of devices and processes. For instance, instruments and operating equipment can 

record their states and transmit this as a message over the network.  Similarly, an operator 

monitoring the equipment could send a message to change a state, e.g. opening a valve.  

However, to function, industrial control networks need a software and protocol framework to 

enable communications and routing of messages.   

In general, to communicate over any network, first a software application (such as an operator 

clicking on a symbol for a valve he wishes to open) initiates the transmission of a data packet, 

which is the data or commands that are to be transmitted (Frenzel, 2013) (Couch, 1993).  This 

process is conceptualized in Figure 5.2 where the layers are conceptualized as the layers of the 

Open Systems Interconnection (OSI) model; consistent with (Frenzel, 2013) (Couch, 1993). 

Table 6.1 provides general descriptions of each OSI layer.  In general, all layers are software-

related and indicate how data is handled; the exception is the physical layer which involves the 

physical components to transmit/receive data.   

In Figure 5.2, as the packet proceeds through layers of software and hardware, more 

information is added to format the message, in the form of headers, addresses and etc. (Frenzel, 
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2013) (Couch, 1993). These are added to describe the properties of devices, bit-level 

identification characteristics, communication properties, details for appropriate packet data 

handling, and etc. (Frenzel, 2013) (Couch, 1993).  Once addresses, headers and other details 

are added as data is conceptually passed through the OSI layers, the final message is is 

transmitted over the communication medium (wired or wireless). Another device then receives 

the signal and the process is reversed to remove addresses and headers whereby it is determined 

how to handle and process the received data (Frenzel, 2013) (Couch, 1993).   

 
Figure 5.2: General digital communication operation. (From (Bihl T. J., 2015)) 
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Table 6.1: Communication Layers per the OSI Stack with Descriptions and Examples 
 Data Layer Description Example 
Host 
Layers 

Data Application Software to access network End User 
Presentation Applies formatting to data, 

encrypts data, facilitates 
application layer interaction. 

Syntax, data 
manipulation 

Session Interhost connections, session 
establishment 

Synching 

Segments Transport Connection protocols TCP, host-to-host 
Media 
Layers 

Packets Network Determines physical path for 
data routing 

Packets, routing 

Frames Data Link Transfer of signal between 
nodes via physical devices 

Frames, MAC 
Addresses 

Bits Physical Signals, transmission, 
communication, and 
reception over a medium; 
physical components/devices 

Cables, devices, 
physical mediums, 
transmission 
methods 

 

5.4  Industrial Control Networks and Operations 

Industrial control networks operate by linking devices to operators via an infrastructure (wired, 

wireless, or a combination) (US Government Accountability Office, 2004) (Slay & Miller, 

2007).  Human machine interfaces (HMI) feature prominently in industrial control networks 

and enable the presentation of interactive animations of devices and sensors, graphics of 

systems, and schematic diagrams to operators (Higgs, 2000) (Gomez Gomez, 2005). Oversight 

and management for data acquisition in industrial control networks are provided by software 

layers including Distributed Control Systems (DCSs), Supervisory Control And Data 

Acquisition (SCADA) systems, Process Control Systems (PCS), and Cyber-Physical Systems 

(CPS) (Galloway & Hancke, 2013) (Cárdenas, Amin, & Sastry, 2008).  Appropriate and 

effective design of SCADA and DCS is key since industrial control networks are connected to 

physical equipment, they differ from commercial networks, e.g. wifi and internet, by having 

high reliability requirements and the necessity of very short communication times but in small 

packets (Galloway & Hancke, 2013). 

5.4.1  Industrial Control Network Operations and Components 
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Broadly, the structure in an industrial control network has four layers, as seen in Figure 5.1 and 

described in Table 5.2: processes and field equipment, devices, the station/substation of interest 

and the enterprise (Slay & Miller, 2007) (Schneider Electric, 2012) (Dolezilek & Schweitzer, 

2000).  Processes include the industrial system itself and field equipment, such as sensors, 

instrumentation, and actuators (Schneider Electric, 2012).  Devices include both Remote 

Telemetry Units (RTUs) and Programmable Logic Controllers (PLCs) (Galloway & Hancke, 

2013) (Kang & Robles, 2009). PLCs serve to control processes, perform digital and analog 

input/output, and provide control logic (Galloway & Hancke, 2013) and RTUs serve as sensor 

data collection devices (Slay & Miller, 2007) (Galloway & Hancke, 2013). Due to ongoing 

developments in controllers, the function of RTUs and PLCs is frequently performed by an 

RTU/PLC device that can serve both functions as needed (Schneider Electric, 2012). The 

enterprise level includes the end user (Dolezilek & Schweitzer, 2000).  

Table 5.2: Integration and Control (I&C) System Levels, per (Dolezilek & Schweitzer, 2000) 
Level Description Example 
Enterprise Highest level, includes all end 

users who are inside or outside 
the substation.  

Workstation at the corporate 
office.   

Station/Substation 3rd level, performs data 
acquisition and local 
input/output for the entire 
station.   

Human machine interfaces, 
controller software, and 
decision support systems 
running on a local PC. 

Device 2nd level, contains PLCs and 
RTUs that collect and react to 
data. 

Protective relays, meters, fault 
recorders, load tap changers, 
VAR controllers, RTUs, PLCs 

Process Lowest level, connected to 
physical components for 
monitoring control. 

Current transformers, Voltage 
Transformers, Resistance 
thermal detectors, Transducers 

Bridging the gap between the station and enterprise level are the communication network and 

medium, host software, and the communication medium itself, as well as the protocols used to 

transmit data from RTUs and PLCs over the network (Galloway & Hancke, 2013).  Finally, 

the host software layer includes software components, such as SCADA, whereby information 

is routed and presented effectively between clients, servers and the field devices (Queiroz, 
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Mahmood, Hu, Tari, & Yu, 2009) (Galloway & Hancke, 2013). The client components refer 

to the end users, or operators, who monitor the system and the human-machine interface 

components (Daneels & Salter, 1999).  Additional components can include firewalls and 

intrusion detection systems to protect the network from unauthorized access.   

In practice, different RTU and PLC devices can be in use in a single installation and operate 

using different protocols; the languages used to exchange information (Schneider Electric, 

2012) (Daneels & Salter, 1999).  Varying ages of devices in use exist in industrial control 

networks because outdated yet useful devices are rarely discarded while they continue to 

function correctly (Dolezilek & Schweitzer, 2000).  Thus, one network could possibly contain 

many devices from many different manufacturers, and thus a variety of protocols can be found 

in use in any given industrial control network and stations.  Additionally, proprietary versions 

of protocols can exist, making integration a further challenge (Schneider Electric, 2012); 

however, digital forensics investigations can aid in understanding proprietary protocol 

operations (Badenhop, Ramsey, Mullins, & Mailloux, 2016). Before being able to transmit 

over a network, one must understand and integrate effectively with the protocol.  If proprietary 

protocols are used, this may require an operator to agree to a non-disclosure agreement 

(Badenhop, Ramsey, Mullins, & Mailloux, 2016), or to simply rely on the protocol to operate 

effectively.  To facilitate communication, servers that aggregate information at the station-level 

for communication over the network can generally handle multiple protocols (Daneels & 

Salter, 1999).  

5.4.2  Commercial Technology Inroads Into Industrial Control Networks  

Commercial technology has made inroads into industrial control networks via two vectors: 

increased numbers of internet pathways and increased use of Commercial Off the Shelf (COTS) 

communication devices in industrial control networks.  Industrial control networks saw 

widespread use decades before the internet (Robles & Choi, 2009).  Since there were no initial 
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pathways to commercial networks during this period, many industrial control networks 

regarded security as an afterthought (Cárdenas, Amin, & Sastry, 2008).  However, widespread 

internet connectivity has resulted in both indirect and direct pathways between it and industrial 

control networks (Patton, et al., 2014); take for instance proposed industrial control interaction 

via direct internet portals (Khatib, Dong, Qiu, & Liu, 2000) or cell phone applications (Ozdemir 

& Karacor, 2006).  Additionally, recent advances in communication networks, such as Wireless 

Networks and the Internet of Things (IoT), are increasingly finding use in CI systems (Jiang, 

et al., 2014).   

IoT advances and technologies, whereby communication abilities and links to everyday objects 

and devices (Wortmann & Flüchter, 2015), are increasingly finding use in CI systems to enable 

communication and monitoring of a wide number of devices.  For example, smart grids might 

contain commercial wireless devices and protocols to enable meter or substation monitoring 

(Jiang, et al., 2014).  Traditionally, CI security focused on SCADA systems and protocols, 

while the IoT has expanded the number and types of devices and standards CI communication 

networks must consider (Mo, et al., 2012). One type of IoT technology with increasing use in 

CI systems is the IEEE 802 standard subgroup (area networks) (IEEE, 2004).  For instance, 

area networks have been, or been proposed for, use in CI, including the smart grid (Güngör, et 

al., 2011), smart cities and e-government (Chang, Kannan, & Fellow, 2003) (Harmon, Castro-

Leon, & Bhide, 2015) and CI applications such as hospitals (Cao, Leung, Chow, & Chan, 

2009).  However, notable security deficiencies exist in many commercial communication 

standards, c.f. (Badenhop, Ramsey, Mullins, & Mailloux, 2016) (Melaragno, Bandara, 

Wijesekera, & Michael, 2012), thus including commercial communications devices introduces 

additional vectors for malicious agents to leverage.   

Additionally, and naturally, connecting more and more CI devices through IoT advances results 

in big data concerns due to expanding volume, variety and the velocity of signals transmitted. 
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Due to the expanding variety and volume of devices in IoT CI implementations, future CI 

networks themselves have characteristics seen in the 3 V’s (volume, variety, and velocity) of 

big data (Bihl, Young, & Weckman, 2016).  Thus, monitoring logs and transmissions of 

communication devices to find threats can involve big data analytics due the massive amount 

of events logged (Samuelson, 2016) (Gutierrez, Bauer, Boehmke, Saie, & Bihl, 2017). 

5.5  High Level Communication System Threats 

Understanding cyber security involves understanding key characteristics of communication 

system threats.  With an understanding of threats, one can develop and select appropriate 

security measures.   Although a wide variety of threats exist, these can be grouped loosely by 

the approach taken, as conceptualized in the general taxonomy presented in Figure 5.3.  In 

Figure 5.3, example threats include those related to the source (physical versus cyber), insider 

versus outsider (agent), and etc.; this representation was adapted from Nawir et al. (2016) by 

removing redundant groupings (information damage and access were synonymous) and 

introducing additional fields (e.g. supply chain related).  A robust security approach mitigates 

these threats through a combination of both technological and non-technological methods.   

 

Figure 5.3: General taxonomy of communication system threats. (Adapted and Extended 
From (Nawir, Amir, Yaakob, & Lynn, 2016)) 
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5.5.1  Actor-based Threats: Insider versus Outsider 

From a system perspective, threats emanate from inside or outside malicious actor(s), which 

dictate different courses of action to prevent and mitigate (Walton & Limited, 2006).  

Historically, most security breaches in corporations and industrial control networks threats 

were internal in nature; however, external (cyber) threats and breaches have become more 

common due to increasing internet pathways within industrial control networks (Byres & 

Lowe, 2004).   

Outsider threats are the work of hackers and malicious parties who wish to gain unauthorized 

access to a network and possibly disrupt its abilities (Walton & Limited, 2006). These threats 

inherently  require technical approaches to mitigate and resolve (Walton & Limited, 2006).  

Conversely, insider threats are related to employees (past and present) and knowledgeable 

associates whose work is associated with the CI and communication system in question 

(Walton & Limited, 2006).  Thus, insider threats are possibly immune to cyber security 

measures since malicious parties might know appropriate passwords, account details, etc. 

needed to achieve access.   

Disaffected employees, and employees under the sway of blackmail, bribery, or ideology, way 

wish to disrupt or damage the network (Walton & Limited, 2006).  Logically, one would desire 

to minimize insider threats completely and focus on outsider threats since insider threats are 

difficult to detect (Walton & Limited, 2006).  However, three general approaches exist to detect 

and deter insider threats (Walton & Limited, 2006): 1) mitigating possible damages by 

compartmentalization; 2) early detection via authentication and auditing, and 3) proper 

management and ownership to reduce disaffection.  Thus, a combination of proper security 

procedures, technology to find suspicious actions, and management all have roles in mitigating 

insider threats.   
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5.5.2  Device Property and Existential Related Issues  

Various properties of the communication devices related to proprietary and non-proprietary 

designs can be exploited.  If a communication network uses COTS devices, then any system 

using these devices inherits their known and unknown vulnerabilities (Cárdenas, Amin, & 

Sastry, 2008).  Prior to wide spread use of COTS devices in CI implementation, industrial 

control networks used mostly highly customized software and hardware components and thus 

had the advantage of “security by obscurity” (Stuttard, 2005). The open versus closed nature 

of protocol designs can also be related to vulnerabilities; closed/proprietary protocols have the 

advantage of “security by obscurity.”  Security by obscurity means that closed and proprietary 

protocols benefit from their obscurity, where malicious actors find difficulty learning the 

particulars to exploit. Open designs with public protocols do not benefit from security by 

obscurity, however, such networks are generally safer since security professionals can fix and 

augment security issues as they become known (Cárdenas, Amin, & Sastry, 2008).  

Vulnerabilities also exist due to existential issues related the expanding pool of skilled IT 

professionals throughout the world with the skills to attack communication systems (Cárdenas, 

Amin, & Sastry, 2008).  Additionally, the amount of freely available cybercrime tools is 

expanding and available for use by even less skilled malicious actors (Cárdenas, Amin, & 

Sastry, 2008).  However, it should be noted that while a certain pool of skilled IT professionals 

can be malicious, it is also advantageous to security to find flaws and develop solutions 

(Rescorla, 2005).  

5.5.3  Host-based Threats 

The host of the system can be compromised through various means as discussed by Nawir et 

al. (2016).  For instance, an authorized user might not effectively protect credentials and so a 

malicious actor could gain access to a network via those authentic credentials.  Alternatively, 
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an attacker could compromise software by overloading resource buffers or pushing devices to 

exhaustion.  Finally, hardware can become compromised if malicious code is injected into it; 

for example, contact with infected flash drives was sufficient for the Stuxnet worm to infect 

computers which were not directly connected to the internet (Chen & Abu-Nimeh, 2011).   

5.5.4  Physical versus Electronic Threats and Mitigation 

Outsider threats involve attacks on a communication network by parties who are remote and 

not directly connected to the organization that manages the network (Walton & Limited, 2006).  

Broadly, outsider threats can be physical, like the 2013 assault on PG&E’s Metcalf 

transmission station (Smith, 2014) for example; or electronic, like cyber attacks on CI (Miller 

& Rowe, 2012).  Electronic threats broadly include all other software and protocol exploitation 

methods. Here, the communication medium is used as a vector to infect, restrict access, or 

damage network operating conditions.  Physical attacks on CI systems can be seen in the form 

of terrorists and criminals who gain in-person access to a site to physically attack it (Smith, 

2014).  While these attacks might not aim specifically at the communication system, damages 

and reduced capabilities could result.  While a physical attack on infrastructure can be mitigated 

by site security, physical attacks via hardware trojans are stealthy in nature and could result 

from an insecure electronic supply chain.   

5.5.5  Supply Chain Related Threats and Mitigation 

While electronic/cyber is the primary security concern in communication systems, supply chain 

concerns also exist since CI communication systems interact with physical objects and have 

many components, possibly at long distances from monitors. Outsourcing electronic 

production has introduced weaknesses in supply chain security for electronics and introduced 

various issues (Jang-Jaccard & Nepal, 2014).  Physical threats exist in the form of counterfeit 

electronics, which can fail quicker (Guin U. , et al., 2014) (Tehranipoor, 2015), integrated 
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circuits which have hardware trojans, integrity circuits, or malignant logic can compromise the 

security of a network (Di & Smith, 2007) (Jang-Jaccard & Nepal, 2014), and compromised 

circuits can include backdoors to facilitate future attacks (Jang-Jaccard & Nepal, 2014).  

Collectively, robust physical security to limit unauthorized site access is necessary and includes 

secured integrated circuit supply chains (Karri, Rajendran, Rosenfeld, & Tehranipoor, 2010) 

(Guin U. , et al., 2014). 

5.5.6  Information Damage Related Threats 

In addition to the specific effects discussed in Section 5.2, data damage actions are possible, as 

discussed by Nawir et al. (2016).  Once an actor or virus/worm has gained access to a network, 

various possible actions could happen to the data being collected.  This data involves either the 

sensor readings from a substation and actions sent by an observer--so, data integrity is key to 

reliable operations.  Threats exist to data in the interception of communications, whereby data 

might be monitored passively (eavesdropping) or even modified before it reaches its indented 

recipient.  Data can also be fabricated to allow for situations where an attacker floods a system 

with data that shows normal conditions while the actual system is in an out of control state.  

Additionally, an attacker could interrupt data, which might cause the communication network 

to shut down or merely replay the last observations received.   

5.5.7  Stack-Based Exploitations  

Additional threats exist due to the exploitation of protocol characteristics and different 

functionalities of communication operations.  Knowledge of protocol specifics can lend itself 

to the exploitation of weaknesses in a given protocol.  Additionally, the operations and 

characteristics associated with each of the OSI 7-layers are associated with particular 

weaknesses.  From a security and device identification standpoint, different layers of the OSI 

stack also correspond to different information, e.g. Network-level encryption keys are 
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“something you know,” MAC-level MAC addresses are “something you have” and Physical-

layer characteristics are “something you are” (Ramsey, Temple, & Mullins, 2012).  With this 

understanding, one can further understand attacks and issues per layer and determine 

appropriate cyber security measures.  

5.6  Cyber Threats and Security 

Focusing primarily on the electronic/cyber threats found in the Stack-based Exploitation and 

Data Damage threats in Figure 5.3, requires understanding the specific threats employed and 

protection methods.  Table 5.3 presents various threats and protection measures in reference to 

the 7-layer OSI model of Table 6.1 with threats and protections per (Nawir, Amir, Yaakob, & 

Lynn, 2016).  Broadly, we will characterize these threats and security measures as:  

Component-Specific, e.g. PLC security issues, Physical Layer related, e.g. hardware threats, 

and then Software and Protocol-based, e.g. most of the issues found in Table 5.3.     

Table 5.3: OSI 7 Layer Model with Example Threats and Protections Available Per Layer  
Layer Threats Protection 
Application Clock Skewing, Selective Message 

Forwarding, Data Aggregation 
Distortion, Clone Attacks 

High-level firewalls 

Presentation SSL to tunnel HTTP attacks Applications delivery platform 
(ADP) 

Session Hijacking Packet analysis, encryption, limiting 
packets 

Transport Renegotiation, port scans, DoS, 
misdirection, Flooding, De-
synchronization 

Handshake protocol 

Network False Routing, Packet Replication, 
Blackhole, Wormhole, Sinkhole, Sybil, 
Selective Forwarding, HELLO flood, 
Acknowledgement spoofing 

Firewalls, encryption keys 

Data Link MAC Flooding, MAC spoofing, ARP 
Cache Poisoning, Traffic Manipulation, 
Identity Spook, Collision, Exhaustion, 
Unfairness 

Intrusion detection/prevention 
systems (IDPS) 

Physical Device Tampering, Eavesdropping, 
Jamming, Counterfeits RF Fingerprinting, PUFs, COAs 
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5.5.1  Component-Specific Related Threats and Mitigation 

Security threats can exist due to weaknesses in specific components.  Due to the large number 

of PLCs in an industrial control network, weaknesses found in these devices can be a critical 

vector for compromises to occur.  Since PLCs monitor and control physical devices, realized 

threats related to PLCs can result in devices being driven out of safety margins and possibly to 

system damaging outcomes, e.g. Stuxnet (Chen & Abu-Nimeh, 2011).  Threats to PLCs include 

worms that can infect and change memory values to arbitrary values resulting in a given PLC 

operating its control logic via incorrect values (Sandaruwan, Ranaweera, & Oleshchuk, 2013).   

Many PLCs also have forcing output functionalities which enable an operator to force an output 

to be a specific value; thus, any PLC with direct links to the internet could be compromised if 

an attacker gains direct access  (Sandaruwan, Ranaweera, & Oleshchuk, 2013).  Finally, 

protocol exploitations, e.g. the malformed packets (Ultes-Nitsche & Yoo, 2004), can be used 

as a further software vector to PLC attacks (Sandaruwan, Ranaweera, & Oleshchuk, 2013). 

5.5.2  Software and Communication Threats and Mitigation 

A wide variety of communication devices and standards exist in CI implementations, including 

a variety of SCADA protocols, e.g. Modbus®, RP-570, Profibus, Conitel,  IEC 61850, T101, 

IEC 60870-5-101 (104), DNP V3.0,  ISO-TSAP, and UCA (Utility Communications 

Architecture) (Robles, Choi, & Kim, 2009).  While not all of these protocols employ the 7 OSI 

layers as described in Table 6.1, the same broad operations are still performed per protocol 

operations and thus all are generally susceptible to the various attacks lists in Table 5.3.  All of 

these standards are associated with various advantages and weaknesses. For example, the ISO-

TSAP protocol used by many Siemens PLCs does not provide for data encryption 

(Sandaruwan, Ranaweera, & Oleshchuk, 2013).  Limitations in specific protocols have also led 

to the development of secured versions of protocols, e.g. “Secure MODBUS” (Fovino, 

Carcano, Masera, & Trombetta, 2009).   
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Incorporating intrusion detection and prevention systems (IDPS) into industrial control 

networks can mitigate MAC related attacks and provide a log of events which violate access 

rules (Zhu & Sastry, 2010)(Xing, Srinivasan, Jose, Li, & Cheng, 2010).  However, IDPS 

systems generally rely on coded rules, which are limited against new and novel attacks 

(Gutierrez, Bauer, Boehmke, Saie, & Bihl, 2017).  A variety of network based routing attacks 

exist and these can take the form of attackers flooding, or corrupting routing information or 

flooding the network with replicated packets to consume bandwidth and cause communication 

termination (Xing, Srinivasan, Jose, Li, & Cheng, 2010).  Network attacks can be mitigated by 

routing access restrictions and detection methods that watch for false routing and other types 

of attacks (Xing, Srinivasan, Jose, Li, & Cheng, 2010).  Higher level attacks can exist at the 

application level and influence the software used by the operator. For instance, clock skewing 

can desynchronize operations and cause communications to be unstable in protocols that 

require synchronization, e.g. wireless sensor networks operating under IEEE 802.11 (Xing, 

Srinivasan, Jose, Li, & Cheng, 2010).  Authentication methods and data integrity approaches 

can be adopted to mitigate against these risks (Xing, Srinivasan, Jose, Li, & Cheng, 2010). 

5.5.3  Physical Layer Threats and Security Measures 

At the physical layer, a variety of threats can exist.  For instance, devices can be tampered with, 

and counterfeit integrated circuits (IC) exist in the supply chain for many communication 

devices (Guajardo J. , Kumar, Schrijen, & Tuyls, 2008).  Subsequently, various economic, 

security and safety issues can exist; for example: counterfeit IC results in millions to billions 

of dollars in lost revenue to developers, security issues exist in that counterfeit ICs could be 

designed to learn operating keys, thereby allowing unauthorized access, and further issues exist 

for users since counterfeit ICs are more prone to failure (Guajardo J. , Kumar, Schrijen, & 

Tuyls, 2008).  While software-based security often receives the majority of the emphasis, all 

software-based security is hackable as seen in Table 5.3.  Thus, determining the authenticity of 
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devices or individual ICs is also of interest for CI protection.   

5.5.3.1  Biometric-like Security with Physical Layer Security Measures 

Biometric security involves selecting using discriminating qualities that are universal, distinct, 

permanent, and collectable (Cobb, Garcia, Temple, Baldwin, & Kim, 2010).  Biometric-like 

security for communication devices involves examining the intended and unintended 

communication and radiation are useful for device identification between disparate devices 

(Weng, et al., 2005) (Cobb, Laspe, Baldwin, Temple, & Kim, 2012).  When devices from the 

same production run are considered, communication signal fingerprinting approaches enable 

production-induced variations to be discriminable (Cobb, Laspe, Baldwin, Temple, & Kim, 

2012).  Physical layer features and identification methods can be employed as an additional 

level of security whereby claimed identities are vetted for device identity authentication (Cobb, 

Laspe, Baldwin, Temple, & Kim, 2012).  Physical layer features aim to characterize 

communication devices due to production variations whereby minute signal differences can be 

used to discriminate between individual devices (Cobb, Laspe, Baldwin, Temple, & Kim, 

2012).   

Because physical layer characteristics are associated with the intrinsic physics-based properties 

of devices, they provide inherent benefits in preventing spoofing attacks common with security 

at other OSI levels (Tomko, Rieser, & Buell, 2006).  Desirable Physical layer characteristics 

are those that are identifiable and possess biometric-like qualities, see  (Jain, Ross, & 

Prabhakar, 2004) (Ryer, Bihl, Bauer, & Rogers, 2012), of universality, distinctiveness, 

permanence, and collectability (Cobb, Garcia, Temple, Baldwin, & Kim, 2010).    Two general 

approaches of physical layer security exist for this purpose:  1) adding physically traceable 

objects to devices (Grau, Zeng, & Xiao, 2012) (Majzoobi, Koushanfar, & Potkonjak, 2009) 

(DeJean & Kirovski, 2007), and 2) the exploiting inherent features present in device signals, 

e.g. through RF Fingerprinting (Suski, Temple, Mendenhall, & Mills, 2008) (Cobb, Garcia, 
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Temple, Baldwin, & Kim, 2010) (Ellis & Serinken, 2001) (Scanlon, Kennedy, & Liu, 2010).   

5.5.3.2  Physically Traceable Objects 

Three identification methods have been proposed to verify the identity of communication 

devices using physically traceable objects: Radio Frequency Identification (RFID), Physical 

Unclonable Functions (PUFs), and RF Certificates of Authenticity (RF-COA).  While there are 

various benefits to each approach, all are limited in their ability to be applied to equipment 

already in use.   

 RFID is a tracking technology which involves placing an identifier antenna ‘tag’ on a 

device for tracking (Roberts, 2006) (Landt, 2005).  To identify devices, the RFID tag either 

actively emits (powered RFID tags), or emits only when scanned (unpowered RFID tags) 

(Grau, Zeng, & Xiao, 2012).  Due to the ability to remotely track objects, RFID has seen 

extensive use in commercial and warehouse applications for products tracking (Landt, 2005).  

RFID does have known issues, including: interference (Holland, Young, & Weckman, 2011), 

placement (RFID antennas must be located on each device), and type-level issues (multiple 

identical objects typically receive the same RFID tag).   

 Both PUFs and RF-COAs are an extension of the RFID process whereby uniquely 

identifiable components or antenna are added to an integrated circuit.  However, whereas RFID 

tags operate at a type-level, PUFs and RF-COAs operate at a serial-number level. PUFs include 

two techniques for authentication: 1) adding internal measurement circuitry to integrated circuit 

(IC), and 2) adding capacitive sensors on top of ICs in a grid form (Cobb, Laspe, Baldwin, 

Temple, & Kim, 2012).  PUFs work by incorporating a randomized component to these 

augmentations, to ensure uniqueness (Cobb, Laspe, Baldwin, Temple, & Kim, 2012).  

RF-COAs essentially take the RFID concept and make small, unique, and three-

dimension antennae using randomly shaped conductors and dielectric components which are 

placed onto ICs to create a uniquely identifiable RF signal (DeJean & Kirovski, 2007).  In 
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essence, RF-COAs combine PUFs and RFID into a single IC identification approach (Cobb, 

Laspe, Baldwin, Temple, & Kim, 2012).   

 Both PUFs and RF-COAs can be employed to ensure ICs are authentic in a similar way 

that product keys are used to ensure authorized installation of software (Guajardo J. , Kumar, 

Schrijen, & Tuyls, 2008). While PUFs can provide increased security, both PUF approaches 

require physical IC manipulations and thus are prohibitive for use with legacy devices. RF-

COAs have similar, and obvious, impediments to their use on legacy devices, in addition to 

extra design considerations needed in the manufacturing and design process.  Finally, RF-

COAs are further limited in utility due to the existence of spoofing mechanisms (DeJean & 

Kirovski, 2007).  

5.5.3.3  Communication Signal Exploitation 

RF Fingerprinting is the characterizing a communication device from minute differences in 

emanated signals to extract biometric-like features (Weber, Birkel, Collmann, & Engelbrecht, 

2010) (Candore, Kocabas, & Koushanfar, 2009).  RF Fingerprinting implies systematic signal 

collection, processing, sampling, statistical feature extraction methods, and classifier model 

development (Harmer, 2013).  When considering intentional emissions, RF Fingerprinting has 

been successful in discriminating inter-device variations, e.g. similar devices from different 

manufacturers (Klein, 2009), and intra-device variations, e.g. devices from the same 

manufacturer that differ only by serial number (Bihl, Bauer, & Temple, 2016).   

After collecting signals, a region of interest, e.g. the preamble which should be consistent for 

a protocol, is isolated (Bihl, Bauer, & Temple, 2016).  Instantaneous amplitude, phase, and 

frequency response are then computed for each region of interest (Bihl, Bauer, & Temple, 

2016).  These responses are then divided into bins, from which RF Fingerprinting features are 

then extracted.  The considered RF Fingerprinting features are generally the 2nd, 3rd, and 4th 
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mathematical moments (variance, skewness, and kurtosis), which are used to quantify 

distributional properties of the signal for identification (Cobb, 2011)(Thirukkonda, 2009) 

(Lohweg, et al., 2013).  Figure 5.4 presents a visualization of the RF-DNA fingerprints from 

sampled-time ZigBee preamble data. 

 

Figure 5.4: General RF Fingerprinting Process, Example Using with ZigBee Signal. (From 

(Bihl T. J., 2015)) 

Applicability of RF Fingerprinting methods includes wireless and wired communications, c.f. 

(Bihl, Bauer, & Temple, 2016) (Carbino, Temple, & Bihl, 2015).  Recent advancements in 

adapting RF Fingerprinting to wired communication include the works of (Lopez, Temple, & 

Mullins, 2014) (Ross, Carbino, & Stone, 2017), both of which explored CI related 

communication device discrimination.  Outside of laboratory research, commercial devices 

have begun to provide physical layer authentication ability, e.g. (PFP Cybersecurity, 2016). 

 

ZigBee SHR

(U)  Region of Interest 
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5.6  Conclusions  

To have a reliable industrial control network, one must consider effective security measures.  

Security primarily involves authenticating the identity of devices and operators and thus 

restricting unauthorized access to networks. Given the severity of intrusions in CI networks, 

preventing unauthorized access and limiting internet pathways are necessary.  However, the 

expansion of IoT into CI systems, e.g. the Smart Grid, precludes the ability to successfully rely 

on security through obscurity for industrial control networks and thus and effective cyber 

security strategy is necessary. Although much research and work exists in cyber security and 

authentication, these tend to be related to preventing certain types of attacks or focusing on one 

layer of the OSI stack.  In operation, one would desire to create a systematic security and 

authentication scheme whereby a claimed identity is vetted through physical layer 

authentication.   
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