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Nomenclature 

h stress triaxiality 

2c crack length 

α dimensionless constant in Ramberg-Osgood model 

∆an crack extension 

∆eL strain extent of Lüders plateau, known as Lüders strain 

δ crack tip opening displacement 

∆s difference between sU and sL 

ρ0 initial radius of the blunt crack tip 

σ true stress 

σ0 reference stress in Ramberg-Osgood model 

σ0.2 0.2% proof stress on the true stress-true strain curve 

σℎ hydrostatic stress 

σij stress components of the stress field at crack tip 

θ angular position ahead of crack tip 

σij function of strain hardening exponent n and angular position θ at crack tip 

ε true strain 
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ε0 reference strain in Ramberg-Osgood model 

εeq
p  equivalent plastic strain 

a crack depth 

a0 initial crack depth 

E Young’s modulus 

e engineering strain 

EL softening modulus of the softening segment in UDU stress-strain model 

E�L normalised softening modulus 

e0,avg average overall strain 

In constant depending on n 

J the J-integral 

L half-length of the pipe, also the length of the quarter FE pipe model 

m J-δ constant that depends on the strain hardening exponent and the geometry of 

cracked component  

N coefficient of the power-law strain rate-dependence law 

r radial distance from crack tip 
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ReL lower yield stress or the plateau stress of the measured engineering stress-strain 

curve 

s engineering stress or gross stress of the flawed pipe 

sly lower yield stress of the UDU stress-strain model in the engineering stress-

strain form 

suy upper yield stress of the UDU stress-strain model in the engineering stress-

strain form 

t pipe wall thickness 

API American Petroleum Association 

BS British Standard 

CRES Center for Reliable Energy Systems 

CTOD crack tip opening displacement 

DIC digital image correlation 

DNV Det Norske Veritas 

ECA engineering critical assessment 

EDM electric discharge machining 

FE finite element 

HRR Hutchinson-Rice-Rosengren 
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LVDT linear variable differential transducer 

OD outer diameter of the pipe 

RO Ramberg-Osgood 

SB-ECA strain-based engineering critical assessment 

SBD strain-based design 

SINTEF Stiftelsen for industriell og teknisk forskning, meaning The Foundation for 

Scientific and Industrial Research 

UDU up-down-up 
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Abstract 1 

A yield discontinuity or Lüders plateau can be observed in tensile tests conducted on seamless 2 

pipe manufactured to API 5L X65 strength grade steel. Such material behaviour is associated 3 

with strain localisation which can significantly affect the fracture behaviour of X65 steel pipe 4 

subjected to plastic strain. This study considers the Lüders plateau, using the so-called “up-5 

down-up” (UDU) constitutive model, in finite element (FE) analyses of seamless X65 pipes 6 

containing circumferential surface-breaking cracks and subjected to axial plastic straining. The 7 

softening modulus of UDU model was found to significantly affect the simulated evolution of 8 

plasticity, crack driving force and crack-tip fields of the cracked pipe. The FE analysis results 9 

were validated against the full-scale pipe test data. It was found that by correctly selecting the 10 

softening modulus, a suitable level of accuracy and conservatism was obtained by using an 11 

UDU model in FE analyses for assessing fracture response of flawed pipes which show Lüders 12 

plateau behaviour. In contrast, the existing stress- and strain-based fracture assessment 13 

solutions generally underestimate the crack driving force in the Lüders plateau phase.   14 

 15 

Keywords: fracture, Lüders plateau, localised band, finite element analysis, strain-based 16 
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Highlights  

• The UDU models are demonstrated to be able to capture Lüders plateau propagation 

along the pipe axis in the FE modelling of a cracked pipe.  

• The softening moduli of the UDU models are found to significantly affect the simulated 

Lüders plateau propagation, crack-tip field, and thus the crack driving force of a cracked 

pipe.  

• The conventional treatment of a material stress-strain curve with Lüders plateau is 

unable to realistically capture the Lüders plateau propagation along the pipe and may 

result in non-conservatism in a fracture assessment of cracked pipes.  

• The crack driving force estimated using the correct UDU model, with consideration of 

ductile tearing, is demonstrated to best represent that measured in the large-scale tests 

of an X65 cracked pipe with Lüders plateau and subjected to axial plastic straining.  
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1. Introduction  1 

Pipelines are cost-effective and efficient tools for transporting oil and gas. Because of ever-2 

increasing energy demands, more pipelines are being designed and constructed to operate in 3 

harsh and remote environments, which include seismically-active and permafrost regions. The 4 

pipelines operating in these environments are potentially subjected to large plastic 5 

deformations, posing threats to the pipeline integrity. Furthermore, pipeline installation 6 

methods, such reeling, will impose plastic straining during installation. Strain-based design 7 

(SBD) techniques allow the pipelines to withstand a certain amount of plastic deformation 8 

during installation and operation conditions. The significance of crack-like flaws that might be 9 

present in the pipeline girth welds   subjected to plastic straining are assessed using strain-10 

based engineering critical assessment (SB-ECA) methods. These methods are based on fracture 11 

mechanics principles. Seamless steel pipe to API 5L X65 strength grade is often hot-finished 12 

during fabrication, which may result in yield discontinuity known as Lüders plateau. In a uni-13 

axial tensile test, a pronounced yield point followed by a stress drop and then a nearly constant 14 

stress plateau followed by a rising stress-strain curve is usually observed.    15 

Lüders plateau, first reported by Piobert et al. (1842) and Lüders (1860), is a material instability 16 

frequently encountered in mild steels. This material characteristic was shown to be the result 17 

of dislocation pinning (Cottrell and Bilby, 1949) accounting for the upper yield stress, and 18 

dislocation release and multiplication (Johnston and Gilman, 1959) leading to the subsequent 19 

stress drop. The Lüders plateau is manifest by the propagation of localised deformation bands 20 

(Lüders bands) during uni-axial tensile tests. Fig. 1 shows a typical stress-strain curve of an 21 

API X65 steel displaying Lüders plateau with a Lüders strain ∆𝑒𝑒𝐿𝐿 of about 2% (Wang et al., 22 

2017). The numbered bullet points correspond to the in-plane deformation contours measured 23 
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by digital image correlation (DIC). The localisation band usually initiates at stress 24 

concentrators (e.g. in this case the shoulder of a tensile specimen).and then propagates at an 25 

inclination angle of approximately 55°. Previous studies (e.g. Aguirre et al., 2004; Kyriakides 26 

et al., 2008; Hallai and Kyriakides, 2011; Liu et al., 2015) have shown that the Lüders plateau 27 

has significant effect on the structural behaviour and deformation capacity of steel. Thus, a 28 

consideration of the effect of Lüders plateau in engineering applications is required.    29 

In current codified engineering critical assessment (ECA) procedures such as BS7910 (2015), 30 

DNV-RP-F108 (2006) and R6 Rev.4 (2001), the behaviour of materials exhibiting Lüders is 31 

treated as a stress-strain curve containing a flat stress plateau (i.e. straining at constant stress) 32 

which bridges the linear-elastic and the strain hardening branches; the upper yield stress is 33 

ignored. This type of stress-strain curve has been used in other studies (Tang et al., 2014; 34 

Tkaczyk et al., 2009; Pisarski et al., 2014) in which the steel exhibits a Lüders plateau. Wang 35 

et al. (2017) showed that this type of stress-strain curve failed to reproduce the macroscopic 36 

features of the Lüders band observed in experiments on tensile specimens and full-scale pipe 37 

tests. They found that finite element (FE) analysis using this stress-strain curve predicted a 38 

non-conservative CTOD crack driving force in comparison with the full-scale test results. In 39 

the present study, we investigated the influence of the constitutive models on the crack driving 40 

force and the structural behaviour of the cracked pipes. We have demonstrated that the effect 41 

of Lüders plateau in fracture analysis of cracked pipes can be appropriately evaluated by the 42 

correct “up-down-up” (UDU) constitutive model.    43 

2. Finite element model of pipes containing flaws    44 

FE models were created in accordance with the geometry and configuration of the full-scale 45 
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tests carried out at TWI and reported by Pisarski et al. (2014). Both uni-axially and bi-axially 46 

loaded pipe tests were conducted in the full-scale test programme. In this paper, we focus on 47 

the analysis of the uni-axially loaded pipe test. The seamless steel pipe had a length (2L) of 48 

2000 mm, an outer diameter (OD) of 273.3 mm and an average wall thickness (t) of 18.4 mm. 49 

The pipe contained four canoe-shaped notches that were manufactured using electric discharge 50 

machining (EDM). Each notch has a finite radius of 0.12 mm at the notch tip. The four notches 51 

were at the cardinal points around the pipe circumference, namely the 0, 3, 6 and 12 o’clock 52 

positions. The notches at the opposite positions had identical in sizes. We report the simulation 53 

of both the notches at 3 and 9 o’clock each with a nominal size of 6×50 mm, and that at 6 and 54 

12 o’clock each with a nominal size of 5×100 mm. In favour of brevity, the detailed analysis 55 

of the Lüders banding behaviour and the crack-tip field was reported for the 6×50 mm notch 56 

only since the effect of the material model on these features exhibit similar trend.  57 

To accurately simulate the crack behaviour, we used the actual notch sizes in the FE analyses; 58 

these had average sizes of 5.68×50 mm (a/t = 0.31, ∅ 𝜋𝜋⁄  = 0.058), and 4.41×100 mm (a/t = 59 

0.24, ∅ 𝜋𝜋⁄  = 0.116), respectively. Fig. 2 shows the crack configuration and pipe geometry.    60 

2.1 Constitutive model    61 

The constitutive model used in this study is the so-called UDU stress-strain response. The 62 

model is an isotropic, J2 type, elastic-plastic material law assuming incremental plasticity, and 63 

contains a segment of strain softening followed by conventional strain hardening. To the best 64 

knowledge of the authors, Kyriakides and Miller (2000) were among the first to use the UDU 65 

model to simulate strain localisation due to Lüders phenomenon in FE analysis. The UDU is a 66 

simplified approach used to fit to the experimentally determined engineering stress-strain curve 67 

that contains a Lüders plateau. Fig. 3 illustrates how the UDU fit is constructed. The fit consists 68 
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of four branches, namely the linear-elastic, linear softening, linear hardening and the measured 69 

strain hardening branches. The fit is constructed such that the so-called Maxwell stress is equal 70 

to plateau stress (ReL). Artificial upper and lower yield strengths are then created. A straight 71 

line joining these points creates two triangles above and below the Maxwell stress, as shown 72 

in Fig. 3. According to the Maxwell equal area rule, the area of the two triangles are made 73 

equal. This requirement is to ensure that the dissipated energy remains unchanged during the 74 

Lüders phase. Accordingly, the upper yield stress (suy) and the lower yield stress (sly) can be 75 

determined as: 76 

𝑠𝑠uy − 𝑅𝑅𝑒𝑒𝐿𝐿 = 𝑅𝑅𝑒𝑒𝐿𝐿 − 𝑠𝑠ly =
∆𝑠𝑠
2

                                                       (1) 77 

where ∆𝑠𝑠 is the difference between suy and sly. ∆𝑠𝑠 is related to the softening modulus (EL) 78 

by: 79 

𝐸𝐸𝐿𝐿 = −
∆𝑠𝑠
∆𝑒𝑒𝐿𝐿

= −
𝑠𝑠uy − 𝑠𝑠ly

∆𝑒𝑒𝐿𝐿
                                                        (2) 80 

where ∆𝑒𝑒𝐿𝐿  is the length of Lüders plateau in terms of engineering strain. The material 81 

properties of the cracked pipe analysed in this work refer to those presented in Pisarski et al. 82 

(2014). The pipe is seamless to API 5L Grade X65 steel that exhibited a marked Lüders plateau 83 

with strain extent (∆𝑒𝑒𝐿𝐿) of about 2%. Fig. 4 shows the average engineering stress-strain curve 84 

of the X65 pipe, which ignored the upper yield strength that was observed in the tensile tests 85 

(Pisarski et al., 2014), with the UDU fit with different normalised softening modulus (𝐸𝐸�𝐿𝐿 ≡86 

|𝐸𝐸𝐿𝐿 𝐸𝐸⁄ |). The parameters of the constitutive models are shown in detail in Table 1. 87 

2.2 FE model configuration    88 

The FE pipe model was generated using the commercial FE software Abaqus 6.14. Only a 89 
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quarter of the pipe (L=1000 mm) was simulated because of the application of symmetry 90 

boundary conditions. The model was discretized by the 20-node brick element with reduced 91 

integration (type C3D20R). Fig. 5 shows the typical mesh configuration used in this study, 92 

together with the associated boundary conditions. Nodal displacements were prescribed at the 93 

uncracked end such that an average overall strain eo,avg  of about 0.06 was obtained. A bottom 94 

node was constrained to avoid the possible rigid body motion. The spider-web focused mesh 95 

using non-singular elements was applied to the crack tip. The mesh had 16 elements in a row 96 

along the half circumference. The bulk of the pipe was discretized with different mesh density 97 

for different constitutive models. The stress-strain curve (in its engineering form) containing a 98 

flat stress plateau (denoted as FLAT in this paper) is expected to produce generally uniform 99 

deformation in the FE analysis because the corresponding true stress-true strain response of the 100 

FLAT model has a monotonically increasing trend over the whole strain range. Therefore, a 101 

coarser mesh was used with a smooth mesh transition in which the longitudinal element length 102 

ranges from 10 to 200 mm. As for the   UDU stress-strain response, a refined mesh was 103 

applied to the bulk of the pipe to capture the strain localisations due to Lüders plateau. The 104 

elements were applied through the pipe wall thickness with dimensions in other orientations 105 

(circumferential and longitudinal) being equal to those in the thickness direction. Such an 106 

isotropic mesh pattern was chosen to avoid potential directional bias of element arrangement. 107 

The mesh was derived from a mesh sensitivity study, which reproduced the Lüders banding 108 

pattern similar to that reported in literature (Aguirre et al., 2004; Kyriakides et al., 2008; Hallai 109 

and Kyriakides, 2011; Liu et al., 2015).  110 

It is well-known that strain softening (or a negative tangent stiffness 𝜕𝜕∆𝜎𝜎/𝜕𝜕∆𝜀𝜀 ) in the 111 

constitutive model can result in spurious mesh sensitivity of FE results. The reason is that strain 112 

softening renders the governing partial differential equations (PDEs) ill-defined and the 113 
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ellipticity of the PDEs lost, leading to non-uniqueness of the solution. To remove the induced 114 

mesh sensitivity, a mild strain rate dependence was applied (Needleman, 1988). A simple 115 

power-law rate-dependence (Hallai and Kyriakides, 2011; Liu et al., 2015) was used, which 116 

takes the following form: 117 

�
𝜀𝜀̇𝑝𝑝

𝜀𝜀0̇
𝑝𝑝�

𝑁𝑁

=
𝜎𝜎

𝜎𝜎0(𝜀𝜀𝑝𝑝)                                              (3) 118 

Where 𝜀𝜀̇𝑝𝑝 is the actual plastic strain rate, 𝜀𝜀0̇
𝑝𝑝 is the reference equivalent strain rate (assumed to 119 

be 10-4s-1 in this work), 𝜎𝜎0(𝜀𝜀𝑝𝑝) is stress corresponding to the applied plastic strain at the 120 

reference plastic strain rate, 𝜎𝜎 is the stress corresponding to the applied plastic strain at the 121 

actual plastic strain rate, and 𝑁𝑁 is the exponent describing the strain rate dependence. In this 122 

work, 𝑁𝑁 is taken as 0.001, which is deemed sufficient to reduce the mesh sensitivity while 123 

having marginal effect on the simulated behaviour. The strain rate-dependence was applied in 124 

Abaqus 6.14 via the yield ratio option. 125 

A series of pipe models was generated to account for the effect of ductile tearing from the 126 

notches. This is described in section 2.3. Similar mesh strategy was used for other pipe models. 127 

The total element number of the refined mesh for analyses using UDU material model ranged 128 

from 69872 (326867 nodes) to 77764 (359850 nodes) depending on the specific crack 129 

dimensions. 130 

The FE models were computed using an implicit time integration scheme and Newton-Raphson 131 

iteration. Geometric nonlinearity and finite strain formulation were incorporated. Crack tip 132 

opening displacement (CTOD), load-displacement response and average overall strain were 133 

extracted. The average overall strain (𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = (𝑒𝑒𝑜𝑜,1 + 𝑒𝑒𝑜𝑜,2) 2⁄ ) is defined as the mean value of 134 

the strain measured from virtual LVDT1 (𝑒𝑒𝑜𝑜,1) and LVDT2 (𝑒𝑒𝑜𝑜,2) located at the upper and 135 
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lower edges of the pipe in Fig. 5, respectively. The CTOD was calculated by using the 90° 136 

intercept definition proposed by Rice (1968). It is known that in finite strain analysis, J-integral 137 

often exhibits noticeable path-dependence, invalidating its use as a fracture parameter. Brocks 138 

and Scheider (2001) demonstrated the J-integral at the outermost contours tend to converge 139 

and approach to the far-field J, and recommended to extract the J from the furthest contour 140 

which is not in contact with the model boundary. However, in the present study the J-integral 141 

was not adopted as crack driving force due to the spurious path-dependence even for the 142 

outermost contours. Fig. 6 shows the locations of the contours from which the J-integral were 143 

extracted. In total, 30 contours were defined such that the innermost contour (contour 1) being 144 

along the notch and the outmost contour (contour 30) being closest to but not in contact with 145 

the boundary of the model. Only a few contours were marked in Fig. 6 for illustration purpose. 146 

It can be noticed in Fig. 7 that the J curves from the outermost contours are initially well 147 

converged, and then start to diverge in the strain range eo,avg = 0.01-0.025. A pronounced 148 

decreasing trend in the J is also observed, which is expected to be due to the strain softening. 149 

Strain softening is believed to invalidate the use of J as the fundamental assumption of J was 150 

violated (Brocks and Scheider, 2001).  151 

2.3 Consideration of ductile tearing    152 

In the pipe tests reported in Pisarski et al. (2014), ductile tearing occurred during the test. 153 

Ductile tearing increases crack depth which leads to a higher crack driving force than that with 154 

the initial crack depth. However, this effect cannot be explicitly captured in the FE analysis of 155 

a stationary crack. In order to incorporate the effect of ductile tearing the driving force mapping 156 

approach (Hertelé Ghent et al., 2012, 2014) was adopted. The mapping approach requires a 157 

series of FE simulations to be conducted with crack depths ranging from the initial depth 𝑎𝑎0 to 158 

a prescribed final depth 𝑎𝑎0 + ∆𝑎𝑎𝑛𝑛 . The predicted CTOD and crack extension can then be 159 
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interpreted from the intersections of the crack growth resistance curve (R-curve) and a series 160 

of iso-strain CTOD curves. The iso-strain CTOD curves refer to a series of CTOD curves as a 161 

function of crack growth at a specified strain. The mapping approach has also been commonly 162 

used by researchers to predict crack extension and the strain capacity of pipeline girth welds 163 

(Fairchild et al., 2011, Pisarski et al., 2014). 164 

In the present study, simulations of crack depth 𝑎𝑎 = 5.68, 6, 7, 8, 9 for 6×50 mm notch mm 165 

were performed to incorporate the effect of ductile tearing.. Iso-strain CTOD curves were 166 

constructed for an average overall strain eo,avg increasing from 0 with an increment of 0.0005 167 

until a tangency with the R-curve was reached. The CTOD R-curve (obtained from SENT tests) 168 

of the parent material was reported in Pisarski et al. (2014) as 𝛿𝛿 = 1.917∆𝑎𝑎0.704. The iso-strain 169 

CTOD curves were established by applying fourth order curve fitting to the points (CTODi, 170 

ai) for the discrete crack depths. For instance, two iso-strain CTOD curves for eo,avg = 0.03 171 

and eo,avg = 0.0435 for 6×50 mm notch are shown in Fig. 8. The iso-strain CTOD curve for 172 

eo,avg = 0.03 intersects the SENT R-curve at the point (6.528, 1.708), indicating the crack 173 

depth of 6.528 mm and the corresponding CTOD of 1.708 mm. The ductile instability was 174 

deemed to occur when the tangency between the iso-strain CTOD curve (when eo,avg = 175 

0.0435) and the R-curve was reached. Using the mapping approach, we have obtained a CTOD 176 

versus the average overall strain (eo,avg) curve with the actual CTOD values incorporating the 177 

effect of ductile tearing, as shown in Fig. 8 (b).  178 

3. Results 179 

3.1 Global deformation response    180 

The load-displacement or the gross stress-average overall strain (s-eo,avg) response is a key 181 
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indicator of the global behaviour of a deforming structure. The gross stress is defined as the 182 

remote stress applied at the end of the pipe, which is expressed as 𝑠𝑠 = 𝐹𝐹 𝐴𝐴⁄  where F is the 183 

applied force and 𝐴𝐴 is the cross-section area of the uncracked end. Fig. 9 shows the gross stress 184 

versus average overall strain response (s-eo,avg). The s-eo,avg response was defined as the 185 

average of the overall strains eo,1 (from virtual LVDT 1) and eo,2 (from virtual LVDT 2). The 186 

s-eo,avg responses produced using different stress-strain models indicate similar trends and 187 

show a stress plateau followed by strain hardening. The FE model with FLAT stress-strain 188 

curve produced the lowest stress plateau of 512 MPa, which is 4.12% lower than the tested 189 

value. The height and length of the stress plateau is observed to increase with the increasing 190 

𝐸𝐸�𝐿𝐿 . This behaviour was also noted on pipes loaded in bending but without flaws by other 191 

researchers (Hallai and Kyriakides, 2011). All global stress versus strain curves converge in 192 

the strain hardening regime following the Lüders plateau phase.  193 

 194 

Apart from the stress plateau, the 𝐸𝐸�𝐿𝐿 ratio additionally affects the yield point. As expected, the 195 

s-eo,avg curve calculated with the FLAT stress-strain model shows neither an upper yield point 196 

nor the subsequent stress drop. Similar behaviour is found for s-eo,avg response calculated 197 

with 𝐸𝐸�𝐿𝐿 = 0.005 except that the stress slightly drops at about eo,avg = 0.008. On the other 198 

hand, the s-eo,avg responses for 𝐸𝐸�𝐿𝐿 = 0.015  and 𝐸𝐸�𝐿𝐿 = 0.025, have noticeable upper yield 199 

stresses of 531 MPa and 548 MPa, respectively    200 

 201 
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3.2 Evolution of plasticity    202 

From the gross stress versus average overall strain (s-eo,avg) curves, six configurations were 203 

selected for each stress-strain model to show the progression of plastic deformation. Fig. 10 204 

shows the equivalent plastic strain (𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 ) distributions on the deformed pipe for different overall 205 

strain levels.    206 

Initially, when eo,avg = 0.002, the simulated pipe is globally elastic; shown in white colour 207 

covering the whole pipe. Limited plasticity is found to accumulate at the crack tip. At the onset 208 

of the elastic-plastic transition on the s-eo,avg curves, localised shear bands emanate from the 209 

crack tip in all models. The width of the localised band tends to be narrower for the UDU model 210 

with a higher EL. This indicates that higher EL leads to stronger strain localisation. Beyond 211 

eo,avg = 0.003, the plasticity starts to spread to the elastically strained parts of the pipe. When 212 

eo,avg = 0.01, which is about one third of the stress plateau extent, prominent differences in 213 

the band patterns are observed. In the case using FLAT stress-strain curve, uniform plasticity 214 

is observed to spread over the pipe, indicating homogeneous deformation. In contrast, the FE 215 

models using UDU stress-strain curves exhibit inhomogeneous deformation, featuring 216 

propagating localised plastic band(s). It is worth noting that FE model using 𝐸𝐸�𝐿𝐿 = 0.005 yields 217 

more complex bands initiating at different locations of the pipe simultaneously. When 𝐸𝐸�𝐿𝐿 =218 

0.015 and 0.025, localised bands are formed near the cracked region and propagate to the 219 

remaining parts of the pipe. When eo,avg = 0.02, the pipe model using the FLAT stress-strain 220 

curve continues to deform homogeneously. The models using UDU stress-strain curves still 221 

experience propagation of localised plastic bands towards the elastically strained parts of the 222 

pipes except in the model using 𝐸𝐸�𝐿𝐿 = 0.005 where the band has covered the whole pipe. When 223 
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eo,avg = 0.027, the pipes simulated with 𝐸𝐸�𝐿𝐿 = 0.005 and 0.015 have entered the globally strain 224 

hardening regime in which the pipes deform uniformly. In the model simulated with 𝐸𝐸�𝐿𝐿 =225 

0.025 , the Lüders band propagates through a majority of the pipe, and starts to deform 226 

uniformly after eo,avg = 0.035. This indicates that the increase of 𝐸𝐸�𝐿𝐿 in UDU model will result 227 

in the increase of stress plateau extent which is shown in Fig. 9.  228 

To examine in further detail the evolution of plasticity in the pipe, the equivalent plastic strain 229 

(𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 ) profiles along two paths (path AB and A’B’ as shown in Fig. 11) are plotted against the 230 

normalised distance (x/L) along the pipe axis in Fig. 12 and Fig. 13, respectively. Paths AB and 231 

A’B’ represent the upper and lower edges of the pipe, respectively. Both paths are on the inner 232 

surface of the pipe. Fig. 12 and Fig. 13 show the respective 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝

 profiles on the path AB and 233 

path A’B’ for different eo,avg. levels. When eo,avg =0.002, little plasticity is observed as the 234 

pipe is globally elastic. When eo,avg = 0.003, prominent strain localisation associated with net 235 

section yielding occurring at the cracked end are observed in Fig. 12 and Fig. 13. More 236 

localised plasticity is produced with a greater 𝐸𝐸�𝐿𝐿, which is reflected by the narrower width of 237 

the strain peak (bump) produced along path AB and A’B’ (Fig. 12 and Fig. 13) using greater 238 

𝐸𝐸�𝐿𝐿 when eo,avg = 0.003. It is also shown that the greater the 𝐸𝐸�𝐿𝐿, the higher the peak value of 239 

𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  except that using 𝐸𝐸�𝐿𝐿 = 0.025  because the plasticity of model using this 𝐸𝐸�𝐿𝐿  value just 240 

reaches the bottom edge. 241 

For eo,avg between 0.01 and 0.035, 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝

 for the FLAT stress-strain model remains nearly 242 

constant with the distance along both path AB and A’B’. For cases using the UDU models, the 243 

𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝

 profiles exhibit noticeable heterogeneity. Apart from the observation that 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝

 for a greater 244 

𝐸𝐸�𝐿𝐿 has a higher peak value in the localised shear band emanating from the crack, it is also 245 

noticed that the peak values of 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  in the cases using the UDU models are significantly above 246 
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those obtained using the FLAT model. Thus, we can infer that a larger 𝐸𝐸�𝐿𝐿 promotes strains and 247 

strain localisation in the near-tip region, and as a result will increase the CTOD crack driving 248 

force. When eo,avg = 0.035, all pipe models are all well into the globally strain hardening 249 

regime, exhibiting nearly constant 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  in the locations away from cracked end.  250 

3.3 Crack driving force    251 

The calculated CTOD as a function of average overall strain (eo,avg) in  the cracked pipe with 252 

an average flaw size 5.68×50 mm and 4.41×100 mm is plotted in Fig. 14 and Fig. 15, 253 

respectively. The calculated CTOD obtained from the FLAT model and the UDU model with 254 

various softening parameters are compared with that measured in the full-scale tests. Clearly, 255 

using the FLAT model in the FE analyses for the stationary crack under-predicts the CTOD for 256 

eo,avg of above around 0.005. The FE analyses using the UDU models, on the other hand, start 257 

to predict a conservative CTOD driving force for strains greater than 0.005. With the UDU 258 

models, CTOD increases rapidly initially and reaches a plateau at eo,avg = 0.005. It is evident 259 

that increasing 𝐸𝐸�𝐿𝐿 leads to a higher CTOD plateau with a longer length. The CTOD plateau 260 

terminates at different eo,avg levels, depending on the 𝐸𝐸�𝐿𝐿 ratios used. The CTOD plateau for 261 

each 𝐸𝐸�𝐿𝐿 value (0.005, 0.015 and 0.025) terminates at an overall average strain eo,avg of 0.0288, 262 

0.0346 and 0.0376, respectively. For the predicted CTOD for flaw size 4.41×100 mm as shown 263 

in Fig. 15, significant improvement is observed with the use of UDU material model. In 264 

comparison, the Flat model largely under-predicts the CTOD. An increasing gap between the 265 

FE and the test results is noticed when eo,avg is above 0.0325. This deviation is due to the 266 

assumption in the FE analyses of a stationary crack which neglects crack extension by ductile 267 

tearing.  268 



20 
 

By incorporation of the ductile tearing into the FE model using the mapping approach, the 269 

agreement between the FE analyses and the test in the post CTOD plateau regime is 270 

significantly improved, as shown in Fig. 15. In the post plateau phase, CTOD obtained using 271 

the FLAT model is greater than that calculated using the UDU models. This is because the 272 

CTOD predicted using the FLAT model has the shortest plateau, and accordingly the effect of 273 

the tearing starts to accumulate earlier than those using the UDU material models. For the cases 274 

using the UDU models, the magnitude of the CTOD plateau increases with the increase in 𝐸𝐸�𝐿𝐿. 275 

3.4 Crack tip plastic zone   276 

To understand the differences in the calculated CTOD with different material models, the 277 

plasticity and the stress field near the crack tip were examined. Fig. 18 to Fig. 21 show the 278 

contours of the equivalent plastic strain (𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 ) ahead of the crack tip at the symmetric plane. For 279 

eo,avg = 0.002 at which the pipe is globally elastic, a small plastic zone is formed near the 280 

crack tip. It is clear that the plastic zone of the FE models simulated with a larger 𝐸𝐸�𝐿𝐿 exhibits 281 

a more localised plastic zone. It is worth noting that 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝   contours of FE models with 𝐸𝐸�𝐿𝐿 =282 

0.015 and 𝐸𝐸�𝐿𝐿 = 0.025 are slenderer and more concentrated and branched In Fig. 19 where the 283 

plasticity has spread to the bottom of the pipes, no pronounced difference is noticed in the 284 

shape of 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  contours near the crack tip among all models. It can be noticed that the spread of 285 

higher plasticity regime (𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 ≥ 0.02) is greater using higher 𝐸𝐸�𝐿𝐿 values. On the other hand, the 286 

sizes of 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝

 contours in models using the UDU stress-strain curves remain nearly unchanged. 287 

This is because the plastic bands are still propagating and the crack behaviour remains 288 

unchanged. However, the crack will start to open further again after the bands have spread 289 

throughout the model.    290 
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3.5 Crack tip fields 291 

To investigate the crack tip conditions during deformation for different material models, we 292 

examined the stress and strain fields near the crack tip. Stress and strain components in the 293 

near-tip region were extracted based on a local polar coordinate system originating at the crack 294 

tip. Fig. 17 illustrates the position and the stresses/strains orientations defined in the local 295 

coordinate system. 296 

Fig. 22 and Fig. 23 show the crack-tip field for strain levels 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.002 and 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.01, 297 

respectively. Only these two strain levels were selected for brevity, as the crack-tip fields for 298 

𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.002  and 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.003 , and ones for 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.01  and 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.02  exhibit 299 

similar trends.  300 

For strain 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.002, the increase in 𝐸𝐸�𝐿𝐿 is shown to reduce the nominalised crack opening 301 

stress 𝜎𝜎𝜃𝜃𝜃𝜃 ( Fig. 22 (A) ) and the radial stress component 𝜎𝜎𝑟𝑟𝑟𝑟 ( Fig. 22 (C) ) along the crack 302 

ligament nearer the crack tip. Similar effect of the 𝐸𝐸�𝐿𝐿 on the angular distribution of the stress 303 

fields ( Fig. 22 (B) and Fig. 22 (D) ) in the forward sector ahead of the crack tip. The radial 304 

distribution of von Mises stress 𝜎𝜎𝑒𝑒 ( Fig. 22 (E) ) along the crack ligament also shows a decline 305 

nearer the crack tip. A dip is observed at 𝑟𝑟 𝛿𝛿⁄  around 5, especially for UDU model with higher 306 

𝐸𝐸�𝐿𝐿. This indicates that the Gauss point at that location is undergoing strain softening and Lüders 307 

instability. The angular distribution of 𝜎𝜎𝑒𝑒 ( Fig. 22 (F) ), on the other hand, exhibit a slight 308 

increase in the 𝜋𝜋 4⁄  to 𝜋𝜋 2⁄  section of the forward sector ahead of the crack tip. Similar trend 309 

is observed for the angular distribution of the equivalent plastic strain 𝜀𝜀𝑒𝑒𝑒𝑒
𝑒𝑒  ( Fig. 22 (G) ). As 310 

for the radial distribution of 𝜀𝜀𝑒𝑒𝑒𝑒
𝑒𝑒  along the crack ligament, the values for all material models 311 

show nearly no difference.  312 

 313 
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For strain 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.01, the radial distribution of 𝜎𝜎𝜃𝜃𝜃𝜃 ( Fig. 23 (A) ) also show a decrese for 314 

higher 𝐸𝐸�𝐿𝐿, which appears more pronounced in comparison with the Flat model further from the 315 

crack tip.  Similar trend is observed for the radial distribution of 𝜎𝜎𝑟𝑟𝑟𝑟 ( Fig. 23(B) ). As for the 316 

radial distribution of 𝜎𝜎𝑒𝑒 and 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  along the crack ligament, little differences are observed among 317 

those for different material models. This is may be due to that the Lüders instability has 318 

propagate to far regions from the near-tip region and the stress state of the near-tip region has 319 

been well into the strain hardening regime in which all the stress-strain curves converge. 320 

To understand the effect of the stress-strain model on the stress triaxiality level relevant to 321 

ductile fracture, the hydrostatic stress as well as the triaxiality parameter ahead of the crack tip 322 

is plotted in Fig. 24 and Fig. 25 for strain levels 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.002 and 0.01, respectively. The 323 

triaxiality parameter ℎ parameter is defined as: 324 

ℎ =
𝜎𝜎ℎ
𝜎𝜎𝑒𝑒

                                                (4) 325 

where 𝜎𝜎ℎ = 𝜎𝜎𝑘𝑘𝑘𝑘 3⁄  is hydrostatic or mean stress.  326 

Fig. 24 (A) and Fig. 25 (A) show that in the case using a higher 𝐸𝐸�𝐿𝐿 value, the hydrostatic near 327 

the crack tip is lower. This becomes more prominent when the at a higher global strain (𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎) 328 

level. The stress triaxiality parameter ℎ, however, shows slight increase with increasing 𝐸𝐸�𝐿𝐿, as 329 

shown in Fig. 24 (C) at normalised radial distance around 5. As for the angular distribution, on 330 

the other hand, both hydrostatic stress and triaxiality parameters decrease with increasing 𝐸𝐸�𝐿𝐿 331 

for both strain level 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.002  and 0.01. For larger strain ( 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.01 ), both 332 

hydrostatic stress and triaxiality decrease with increasing 𝐸𝐸�𝐿𝐿 at normalised radial distance 𝑟𝑟 𝛿𝛿⁄  333 

over 2.  334 

  335 
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4. Discussion    336 

4.1 Effect of softening modulus on deformation behaviour of cracks in pipes    337 

It is evident from Fig. 14 - Fig. 16 and Fig. 18 - Fig. 21 that the softening modulus (EL and 𝐸𝐸�𝐿𝐿) 338 

has a pronounced effect on the evolution of plasticity and the crack-tip stress field in the FE 339 

model of a cracked pipe, as well as the calculated crack driving force. Softening behaviour, or 340 

a negative tangent stiffness (𝜕𝜕𝑠𝑠 𝜕𝜕𝑒𝑒⁄ ) in engineering stress-strain curve, is shown to be necessary 341 

to generate Lüders-type strain localisation. Shaw and Kyriakides (1997) also noted this when 342 

they were simulating the localisation in NiTi strips loaded in tension. Clearly, the softening 343 

modulus (𝐸𝐸�𝐿𝐿) plays an important role in the production of Lüders band pattern of the pipe 344 

model. To further illustrate the effect of material model on the simulated band pattern, we have 345 

captured the images of simulated bands at a certain level of average overall strain (eo,avg = 346 

0.015), as shown in Fig. 26. It can be noticed that with the increase in 𝐸𝐸�𝐿𝐿, the newly generated 347 

strain localisation bands appear sharper and the band width tends to be narrower. The 348 

propagating bands at the top edge of the pipe using material models of 𝐸𝐸�𝐿𝐿 = 0.015,  and 𝐸𝐸�𝐿𝐿 =349 

0.025, are of criss-cross or “fish-bone” pattern as reported in literature (Kyriakides et al., 2008; 350 

Aguirre et al., 2004; Hallai and Kyriakides, 2011). Using 𝐸𝐸�𝐿𝐿 = 0.005,  a diffuse band front can 351 

be noticed and is found to propagate from the uncracked end towards the cracked end.    352 

In the studies of bent pipes with Lüders plateau (Aguirre et al., 2004; Kyriakides et al., 2008; 353 

Hallai and Kyriakides, 2011), the 𝐸𝐸�𝐿𝐿 ratio seemed to have marginal influence on the global 354 

behaviour (moment-rotation response) when the selected 𝐸𝐸�𝐿𝐿  sufficed to produce the strain 355 

localisation. However, as for the global behaviour of the uni-axial tensile strips, a noticeable 356 

difference in the Lüders plateau phase was observed with various 𝐸𝐸�𝐿𝐿 ratios by others (Wang et 357 
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al., 2017). It was found that a larger 𝐸𝐸�𝐿𝐿 led to a higher magnitude of the stress plateau. This 358 

finding supports the crack driving force obtained in the present work of a cracked pipe. As a 359 

higher stress is predicted at a given strain, the dissipated strain energy is increased, thus leading 360 

to higher strain energy release rate and crack driving force at a specified strain. The effect of 361 

𝐸𝐸�𝐿𝐿 on the crack driving force (in terms of CTOD versus global strain response) seems more 362 

prominent than on the global response (force versus global strain response)    363 

Wang et al. (2017) observed noticeable differences in the global behaviour (force-elongation 364 

response) in the Lüders plateau phase of uni-axial tensile strips calculated with various 𝐸𝐸�𝐿𝐿 365 

ratios. They found that larger 𝐸𝐸�𝐿𝐿 led to higher magnitude of the calculated stress plateau. As 366 

for the FE analysis of cracked pipes reported in (Wang et al., 2017) and the present work, the 367 

effect of 𝐸𝐸�𝐿𝐿 on the crack driving force (in terms of CTOD) seems more prominent than on the 368 

global response. The influence of the softening modulus on the calculated CTOD is arising 369 

from the strain localisation associated with Lüders phenomenon. A larger 𝐸𝐸�𝐿𝐿   produces a 370 

stronger strain localisation   which in turn contributes to the crack opening. Besides, a larger 371 

softening modulus used in FE analysis predicts a greater decrease in the crack opening stress, 372 

and thus implies a larger constraint loss ahead of the crack tip. Therefore, the parameters of 373 

UDU stress-strain model, namely the softening modulus (EL) and ∆𝑠𝑠, should be carefully 374 

selected based on tensile testing programmes to produce suitably conservative results in 375 

fracture assessment of cracked components.    376 

4.2 Comparison with existing crack driving force solutions    377 

To assess the state of the art of fracture assessment of cracked pipelines with Lüders plateau 378 

and the advantage of using an UDU model in fracture analysis, it is worth performing 379 
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comparisons between the analysis described in the present study with the existing analytical 380 

method for fracture assessment. 381 

Many studies have been conducted to develop methods for strain-based fracture assessment of 382 

cracked pipelines. Most of these methods were derived from extensive FE calculations (e.g. 383 

Liu et al., 2012; Nourpanah and Taheri, 2010; Chiodo and Ruggieri, 2010; Parise et al., 2015; 384 

Østby, 2005)). Others were derived analytically from the original form of reference stress 385 

method proposed by Ainsworth (1984) with limited FE validations (e.g Budden, 2006;  386 

Budden and Ainsworth, 2012; Smith, 2012; Pisarski et al., 2014; Jia et al., 2016)). Some of 387 

these solutions predict the J-integral only, thus the CTOD was calculated by the following 388 

relationship: 389 

𝐽𝐽 = 𝑚𝑚𝜎𝜎0𝛿𝛿                                              (10) 390 

where m is a constant that depends on the strain hardening exponent and the configuration of 391 

cracked component. Pisarski et al. (2014) reported the value of m (equals 1.34) from FE 392 

analyses with the rearranged form of Eq.10: 393 

𝑚𝑚 =
𝐽𝐽FE

𝜎𝜎0𝛿𝛿FE
                                       (11) 394 

As most of the methods mentioned above are strictly applicable to Ramberg-Osgood (RO) 395 

stress-strain models, the RO fit was performed to the measured stress-strain curve that contains 396 

Lüders plateau. Two RO fits were obtained, i.e. upper bound and lower bound, depending on 397 

which part of the measured curve was used for a best fit, as shown in Fig. 27.  398 

Fig. 28 compares the CTOD versus eo,avg measured from the full-scale test with that 399 

calculated by FE using UDU material model with 𝐸𝐸�𝐿𝐿 = 0.015 and that predicted using various 400 
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existing analytical solutions. All the driving force predictive solutions used in Fig. 28 were 401 

originally derived from either FE analyses or theoretical equations that exclusively accounted 402 

for stationary cracks. In the range of eo,avg above 0.04, all the predicted CTOD values except 403 

that from Smith (2012) are below that measured from the test. This is due to the neglect of 404 

crack ductile tearing in these CTOD estimates. The CTOD estimated by using Smith (2012) 405 

starts to be above the test result from eo,avg = 0.025. Consequently, it is fair to expect that with 406 

the solution by Smith (2012), CTOD would be excessively over-predicted if ductile tearing 407 

were included in the analysis. During the CTOD plateau phase, all the analytical solutions 408 

under-estimate the CTOD in comparison with the full-scale test. Although the methods from 409 

Smith (2012) and DNV-RP-F108 (2006) are based on reference stress concept, the solution by 410 

Smith (2012) increases CTOD predicted by DNV-RP-F108 (2006) by about a factor of two, 411 

making the CTOD estimate closer to the full-scale test result during the Lüders plateau phase.  412 

The estimates calculated by solutions from Nourpanah and Tehari, Jia, SINTEF, CRES, Parise 413 

and Chiodo failed to reproduce the trend of the CTOD as measured in the full-scale test which 414 

exhibits a CTOD plateau. Instead, these solutions predict a nearly linearly-rising CTOD with 415 

increasing eo,avg. The reason for the predicted trend is that these equations were originally 416 

derived from FE solutions that used continuously yielding materials, such as Ramberg-Osgood 417 

model and simple power-law hardening model, and ignored the Lüders plateau. The solutions 418 

by DNV, Smith (2012) and Budden and Ainsworth (2012) capture the trend of the CTOD 419 

plateau because these methods allow the use of the actual measured stress-strain curves used 420 

in the crack driving force calculations. 421 

In comparison with the analytical solutions, the FE using UDU material model (𝐸𝐸�𝐿𝐿 = 0.015) 422 

predicts suitably conservative CTOD in the range 0.005 ≤ 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 0.03 . The FE over-423 

predicts the CTOD by 13% - 47% over the CTOD plateau regime. Because the FE simulated 424 
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the stationary crack and did not explicitly consider the ductile crack extension (as in Fig. 28), 425 

non-conservative CTOD starts to be predicted when eo,avg is above 0.03. Moreover, the 426 

gradient of CTOD (𝜕𝜕CTOD 𝜕𝜕𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎⁄ ) calculated by FE remains almost constant at eo,avg 427 

above 0.035, whereas that measured in the test rose exponentially. The exponential rise in the 428 

measured CTOD from the pipe test was caused by the ductile crack extension and strain 429 

hardening. 430 

Fig. 29 shows the comparisons of CTOD predicted by various approaches when ductile tearing 431 

is incorporated. All predicted the CTOD driving force curves are increased. This increase 432 

makes the CTOD predicted using Smith (2012) and Budden and Ainsworth (2012) solutions 433 

comparable with the test results in the plateau phase. Excessively over-predicted CTOD can be 434 

noticed for most of the solutions at higher strains. 435 

4.3 Use of the UDU material model in fracture assessment of pipes containing 436 

crack-like flaws    437 

In the present study, we demonstrated the effectiveness of the UDU material model in FE 438 

analysis of cracked pipes with Lüders plateau. The UDU approach requires a series of FE 439 

analyses of the uni-axial tensile test to be conducted, and then a comparison is made of the 440 

global stress-strain response derived from the FE analysis with the experimentally measured 441 

stress-strain curve to fine-tune the softening modulus (𝐸𝐸𝐿𝐿 and 𝐸𝐸�𝐿𝐿, and thus ∆𝑠𝑠). Subsequently, 442 

the calibrated UDU stress-strain curve is used in the FE analysis of a flawed structure. An 443 

alternative method is to use a sandwich specimen as described by Hallai and Kyriakides (2013). 444 

The application of the UDU model in numerical fracture analysis has been shown to effectively 445 

capture the strain heterogeneity of a Lüders deforming material and predict a suitably 446 
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conservative crack driving force is shown to improve the accuracy and reliability of flaw 447 

assessment methods. 448 

5. Conclusions    449 

In this study, we conducted a thorough analysis of the fracture responses of a seamless API 450 

X65 pipe containing a surface-breaking flaw in a steel which exhibited a Lüders plateau in the 451 

tensile stress-strain curve. In using the UDU model to simulate Lüders behaviour, we showed 452 

that the softening modulus has a marked effect on the global structural response, Lüders band 453 

formation and crack tip stress/strain fields in a cracked pipe. The following conclusions are 454 

drawn: 455 

• The stress-strain curves with a flat Lüders stress plateau cannot reproduce the strain 456 

localisation in the pipes containing crack-like flaws. On the other hand, the UDU model 457 

that includes strain softening is shown to simulate Lüders straining observed in a pipe 458 

containing a crack. 459 

 460 

• The inclusion of strain softening in the UDU model of the stress-strain curve in the FE 461 

analysis predicts a CTOD crack driving force that closely replicates that observed in a 462 

full-scale pipe test (when ductile tearing is included in the analysis). 463 

 464 

• The crack driving force (CTOD) is sensitive to the softening modulus (EL) used in FE 465 

analyses. Thus, the EL ratio should be carefully chosen and calibrated through tensile 466 

tests to make suitably conservative crack driving force estimates.  467 

 468 
• Most of the existing SB-ECA methods neglect the effect of Lüders plateau and thus 469 

under-predict the crack driving force.  470 
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Tables 

Table 1 Parameters of material models used in FE analyses of cracked pipes 

Material No. E (GPa) ReL (MPa) ∆eL% E�L ∆s ReL⁄  

FLAT 

210 512 2.0 

0 0 

UDU 1 0.005 0.041 

UDU 2 0.015 0.122 

UDU 3 0.025 0.203 
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Figures 

 

Fig. 1 Stress-strain response of a typical X65 strip exhibiting a Lüders plateau 
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Fig. 2 Schematic of the pipe containing a surface-braking flaw: (A) geometric features of the pipe in the longitudinal view; 
(B) geometric features of the pipe cross-section containing an external surface-breaking flaw 
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Fig. 3 Illustrative schematic of up-down-up (UDU) stress-strain model 
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Fig. 4 Constitutive models used in FE analyses 
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Fig. 5 Mesh configuration of the cracked pipe FE model 
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Fig. 6 Crack-tip and near-tip regions showing the contours from which J values were extracted 

  



44 
 

 

 

Fig. 7 Calculated J-integral of cracked pipes for UDU model with 𝐸𝐸�𝐿𝐿 = 0.005 
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Fig. 8 Incorporation of ductile tearing by driving force mapping and tangency approach 
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Fig. 9 Comparison of global response from FE analyses and TWI full-scale test 
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Fig. 10 Equivalent plastic strain (ε_eq^p) contours of the simulated cracked pipe with different material models at certain 
average overall strains 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 
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Fig. 11 Paths AB and A'B' selected to extract equivalent plastic strain 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  profiles 
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Fig. 12 Equivalent plastic strain 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  profile along path AB 
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Fig. 13 Equivalent plastic strain 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  profile along path A'B' 
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Fig. 14 Comparison of CTOD for average crack size 5.68 x 50 mm from test and FE analyses without consideration ductile 
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Fig. 15 Comparison of CTOD for average crack size 5.68×50 mm from test and FE analyses with consideration of ductile 
tearing 
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Fig. 16  Comparison of CTOD for average crack size 4.6×100 mm from test and FE analyses without consideration ductile 
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Fig. 17 Local coordinates defined ahead of the crack tip 
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Fig. 18 Equivalent plastic strain 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  contours in near-tip region at 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 ≈ 0.002 from FE analyses using different material 

models 
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Fig. 19 Equivalent plastic strain 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  contours in near-tip region at 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 ≈ 0.003 from FE analyses using different material 

models 
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Fig. 20 Equivalent plastic strain 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  contours in near-tip region at 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 ≈ 0.01 from FE analyses using different material 

models 
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Fig. 21 Equivalent plastic strain 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  contours in near-tip region at 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 ≈ 0.02 from FE analyses using different material 

models 
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Fig. 22 Crack-tip field at average overall strain level 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.002: radial distribution of tangential stress component 𝜎𝜎𝜃𝜃𝜃𝜃 
(A), radial stress component 𝜎𝜎𝑟𝑟𝑟𝑟 (C), von Mises effective stress 𝜎𝜎𝑒𝑒 (E) and hydrostatic stress (G) at angle 𝜃𝜃 = 0 ; angular 
distribution of tangential stress component 𝜎𝜎𝜃𝜃𝜃𝜃 (B), radial stress component 𝜎𝜎𝑟𝑟𝑟𝑟 (F), von Mises effective stress 𝜎𝜎𝑒𝑒 (F) and 
hydrostatic stress (H) at normalised radial distance 𝑟𝑟 𝛿𝛿⁄ = 2 
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Fig. 23 Crack-tip field at average overall strain level 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.01: radial distribution of tangential stress component 𝜎𝜎𝜃𝜃𝜃𝜃 
(A), radial stress component 𝜎𝜎𝑟𝑟𝑟𝑟 (C), von Mises effective stress 𝜎𝜎𝑒𝑒 (E) and hydrostatic stress (G) at angle 𝜃𝜃 = 0 ; angular 
distribution of tangential stress component 𝜎𝜎𝜃𝜃𝜃𝜃 (B), radial stress component 𝜎𝜎𝑟𝑟𝑟𝑟 (F), von Mises effective stress 𝜎𝜎𝑒𝑒 (F) and 
hydrostatic stress (H) at normalised radial distance 𝑟𝑟 𝛿𝛿⁄ = 2 
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Fig. 24 Crack-tip field at average overall strain level 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.002: radial distribution of hydrostatic stress (A), triaxiality 
parameter (C); angular distribution of hydrostatic stress (B), triaxiality parameter at normalised radial distance 𝑟𝑟 𝛿𝛿⁄ = 2 
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Fig. 25 Crack-tip field at average overall strain level 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.01: radial distribution of hydrostatic stress (A), triaxiality 
parameter (C); angular distribution of hydrostatic stress (B), triaxiality parameter at normalised radial distance 𝑟𝑟 𝛿𝛿⁄ = 2 
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Fig. 26 Lüders band pattern simulated with different material models at average overall strain 𝑒𝑒𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.015 
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Fig. 27 RO fit to the measured stress-strain (true stress-true strain neglecting the upper yield stress) curve of the pipe 
material 
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Fig. 28 Comparison of CTOD for nominal crack size 5×60 mm from full-scale test, FEA and analytical solutions (without 
consideration of ductile tearing) 
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Fig. 29 Comparison of CTOD from full-scale test, FEA and analytical solutions (with consideration of ductile tearing) 
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