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Abstract

Determine the value of kinetic constants for a metabolic system in the exact physiological conditions is an
extremely hard task. However, this kind of information is of pivotal relevance to effectively simulate a complex
biological phenomenon such as metabolism.

To overcome this issue, we propose to investigate emerging properties of ensembles of sets of kinetic
constants leading to a biological readout observed in different experimental conditions. To this aim, we exploit
information retrievable from constraint-based analyses (i.e. metabolic flux distributions at steady state) with
the goal to generate putative values for kinetic constants exploiting the mass action law. The sets retrieved
from the previous step will be used to parametrize a mechanistic model whose simulation will be performed to
reconstruct the dynamics of the system (till the reaching of the metabolic steady state) for each experimental
condition. Every parametrization that is in accordance with experimental data is collected in an ensemble
whose features are analyzed to determine the emergence of properties of a phenotype.

In a previous work, we fruitfully tested the devised procedure using a toy model of S. cerevisiae. In this work
we are extending the approach to identify kinetic parameters for a more complex metabolic system, analyzing
five different experimental conditions associated to the ECC2comp model recently published by Hädicke and
collaborators.
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Background
Systems Biology approaches in metabolic modeling
Advances in the understanding of biological processes
revealed that living organisms must be analyzed keep-
ing into account the complex network of interactions
among different entities such as genes, transcripts, pro-
teins and metabolites in order to decipher emergent
behaviors and regulatory processes. It is today evi-
dent that the complexity of biological systems can be
thoroughly investigated only exploiting mathematical
modeling and simulation. To deal with this need, at
the beginning of the present century, a new discipline,
called Systems Biology, started to propose an inte-
grated approach encompassing computational model-
ing and traditional “wet” experiments [3] to unravel
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the complexity of biological systems. In the context
of Systems Biology, the study of metabolic processes
(where usually metabolic networks are represented as
hypergraphs in which nodes represent metabolites and
edges indicate reactions [34]) has seen great interest
especially due to the fruitful applications in metabolic
engineering [29].

Omics data in metabolic modeling
Increased computational capabilities and technological
innovations opened the so called “omics revolution”,
a new era characterized by the availability of an un-
precedented amount of data. These high throughput
information allowed the generation of more and more
detailed genome-scale metabolic reconstructions, de-
fined ad hoc for different cell types (unicellular organ-
isms [2], healthy and diseased tissues in mammalian
[11]). Besides this, there are still technological hin-
drances preventing mechanistic simulation of genome-
scale metabolic model to be applied: currently, simu-
lated temporal dynamics of metabolic concentrations
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are available only for small models due to shortage of
parameters and computational costs [5].

Constraint-based methods
The points above raised, determine the current strat-
egy in metabolic modeling, namely the exploitation
of the so called constraint-based approaches [15], a
modeling framework making use of information on the
structure of the metabolic network and assuming that
internal metabolites reach a (pseudo) steady-state con-
centration. Even if these approaches neglect the tem-
poral evolution of the system, they can be consid-
ered a valid framework to describe metabolism be-
cause of experimental studies pointing out that in vivo
metabolism reaches the steady state in few seconds
[33]. The core of constraint-based modeling is the sto-
ichiometric information: it can be retrieved from the
structure of the metabolic network and defines the sto-
ichiometric matrix, i.e. the table illustrating changes in
metabolites quantities due to the firing of reactions.

Moreover constraint-based approaches define, the
mathematical space containing flux distributions (i.e.
flux values for each reaction in the model) that can
be reached by the system and representing different
functional states. This “feasible solution space”, can
be determined by imposing additional constraints such
as the mass balance and setting boundaries on fluxes
(e.g. to determine their reversibility). Once the stoi-
chiometric matrix and the boundaries are defined, it
is possible to assume that the system is optimal to-
ward a given task (an Objective Function – OF – to
be maximized or minimized), and subsequently an op-
timal flux distributions can be calculated by means of
optimization techniques such as flux balance analysis
(FBA) [25].

Choosing an appropriate formulation of the OF is of
paramount importance when conducting FBA, how-
ever often its exact formulation is not definable, and
because it is reasonable to assume that the system is
found in a sub-optimal state (see [14] for further infor-
mation).

Ensemble FBA
To analyze the potentiality of a cell to explore alter-
native metabolic behaviors by altering its fluxes, we
defined the Ensemble Evolutionary FBA (eeFBA) [8]
an extension of FBA with the goal to investigate pu-
tative flux distributions that can give rise to a specific
metabolic behavior. With eeFBA, analyses are per-
formed generating a set of random OFs that is sub-
sequently optimized by means of linear programming.
Following this, computed flux distributions are filtered
on the basis of one or more metabolic phenotypes def-
initions, retrieving ensembles of solutions that are in
agreement with the defined phenotypes.

Retrieving kinetic parameters form a mechanism-based
ensemble approach
Despite this extension of the traditional constraint-
based approaches, due to lack of information on kinetic
constants, either with FBA or eeFBA it is not possible
to determine metabolic concentrations at steady state.
In a recent paper [6], we proposed a strategy, where
ensembles of phenotypes are populated according to
fluxes properties, however steady states are there re-
trieved from mechanism based simulations whose pa-
rameters are determined using initial concentrations
from the literature (whenever possible) and kinetic
constants randomly sampled.

With the above described procedure we have been
able to determine steady state metabolic concentra-
tions that satisfy the definition of a given metabolic
phenotype. It is worth to underline that, this read-
out is obtained without defining an OF and avoiding
to assume that the cell is performing an optimization
towards a certain objective.

Moreover, under the assumption that kinetic con-
stants can assume different values under various en-
vironmental conditions due to enzymatic regulation,
with the same procedure it has also been possible to
associate, to each phenotype (and for every reaction in
the model), a set of rate constants. These kinetic con-
stants retrieved for each phenotype are parametriza-
tions of a mechanistic model that, when dynamically
simulated, is able to generate time courses in agree-
ment with the phenotype definition. Strikingly, our
method can be used to predict ensembles of rate con-
stants that are in agreement with a given condition
of interest only by providing its definition (metabolic
phenotype) and a flux distribution for the same con-
dition, obtained by means of FBA.

EColiCore2: a case study
In [6], we applied our procedure exploiting a toy
metabolic model of S. cerevisie metabolism and fil-
tering trajectories accordingly to a definition of the
Crabtree phenotype. In the present paper, we aim at
investigating a more realistic metabolic reconstruction
focusing on Escherichia coli, the prokaryotic model or-
ganism for which a number of core models have been
built in a bottom-up fashion and are currently retriev-
able from literature. A notable example, due to its wide
exploitation, is the E. coli core model illustrated in
Orth et al. [26]. However there is a relative scarcity
of genome scale reconstruction for this bacteria. Be-
longing to this second category is iAF1260 [13], from
which it was manually derived the EColiCore1 recon-
struction, a model that has mainly testing and train-
ing purposes but is not completely consistent with the
genome wide model from which it is derived.
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Starting from the genome wide model from iJO1366
[27], Hädicke et al. in [18] aimed at reconstructing
a metabolic model of the central metabolism of E.
coli called EColiCore2. This model, built with the fi-
nal goal to establish a reference core model for E.
coli constraint-based analyses, has been derived reduc-
ing redundancies in biosynthetic routes and maintain-
ing the degrees of freedom in the central metabolism,
moreover this core model is completely consistent with
its genome-wide counterpart. One key aspect of ECol-
iCore2 is its ability to reproduce pivotal aspects of
iJO1366, achieving a notable complexity reduction
without losing its ability to depict emerging behaviors
of E. coli metabolism.

Methods
The procedure defined in [6] and schematically repre-
sented in Figure 2, has been used here to setup the “ex-
periments” hereafter illustrated: for every tossed ran-
dom parametrization (i.e. a set of random kinetic con-
stants, one for each mass action reaction in the model,
whose value has been uniformly sampled in the interval
[0,100]) we perform a number (N ) of simulations using,
for each of them, constant concentrations of nutrients
(e.g., glucose) and ions. Every different combination of
nutrients and ions is here called metabolic phenotype.
Every set of random kinetic constants is exploited to
produce simulations using every metabolic phenotype
defined in the study.

Run Deterministic simulations

The procedure is executed running mechanism-based
simulations exploiting the deterministic framework
provided by ODEs and using the LSODA solver to
simulate the metabolic model until the achievement of
a steady state for internal metabolites concentrations
(A in Figure 2).

Calculate flux values

Afterwards, fluxes values vi are calculated for every
reaction (when the dynamic reaches the steady state)
by means of the relation expressed by the mass action
equation illustrated in Equation 1.

vi = ki

M∏
w=1

[χw]αwi (1)

where ki is the rate constant of reaction i, [χw] is the
concentration of species w and αwi the stoichiometric
coefficient with which species w participate to reaction
i (B in Figure 2).

Filter the experiments
Once flux values have been obtained, experiments are
filtered exploiting key metabolic fluxes in order to pop-
ulate ensembles of metabolic phenotypes that are in
agreement with the filter definition (C in Figure 2). In
particular, in this work, to filter the experiments we
defined 5 different phenotypes based on FBA simula-
tions presented in [18].

Analyze the experiments
Finally (D in Figure 2), it is possible to analyze the
experiments identifying properties shared by elements
of each ensemble (e.g. investigate the presence of puta-
tive subphenotypes or evaluate which reactions exhibit
kinetic constants whose value is different from the av-
erage).

Phenotypes selection
To test the procedure herein described we defined 5 dif-
ferent metabolic phenotypes (“protected phenotypes”
in [18]) built on the basis of the nutrient supplied and
the oxygenation state (Table 1): exp1 - aerobic growth
on glucose, exp2 - anaerobic growth on glucose, exp3
- aerobic growth on acetate, exp4 - aerobic growth on
succinate, exp5 - aerobic growth on glycerol.

To evaluate the effectiveness of the procedure in dis-
criminating the 5 phenotypes and in selecting corre-
sponding ensembles of kinetic constants and steady
state metabolic concentrations, we used the simplified
model of E. coli named ECC2comp presented in [18]
and illustrated in Figure 1. To generate ECC2comp,
authors exploited NetworkReducer [12] an algorithm
able to automatically compress metabolic models
lumping linear chains of reactions in a single cumu-
lative equation and removing elements (metabolites
and reactions) that are non essential to represent key
metabolic functions defined “protected functions”. An
adapted version of the compressed “core” model is
composed by 114 irreversible reactions and 93 metabo-
lites (of which 60 are internal metabolites, while 33 are
external metabolites). The final core model used in
this study is provided in Additional File 1.

To determine the initial concentrations of metabo-
lites involved in the E. coli model, we mined the lit-
erature and we set them accordingly to the average
values illustrated in the E. coli Metabolome Database
(ECMDB) [16], an expertly curated database contain-
ing extensive metabolomic data and metabolic path-
way diagrams about Escherichia coli (strain K12,
MG1655). The ECMDB contains 3755 entries for
metabolites and small molecules manually compiled in-
cluding identification, taxonomy, concentrations, spec-
tra, physical and biological properties. Information are
derived from “original” data and from metabolic re-
constructions, scientific articles, textbooks and other
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electronic databases. For metabolites not having a con-
centration in ECMDB, we used the average value cal-
culated over the retrieved values. The set of metabolic
concentrations for each phenotype is provided in Ad-
ditional File 2.

Phenotypes defined in this section need to be trans-
lated using a mathematical formalism in order to un-
equivocally establish metabolic response constraints
characterizing the phenotypes. To this end we eval-
uated fluxes that in the ECC2comp model are proxies
for the 5 phenotypes listed in Table 1.

Populating the ensembles
To perform the procedure illustrated in this section,
we implemented a set of scripts in plain vanilla Python
available on GitHub (see Additional File 3). Dynamic
simulations of the E. coli “core” metabolic model (step
A in Figure 2) have been performed till the reaching
of the steady state exploiting a set of ordinary differ-
ential equations (ODEs) determined under the mass
action kinetic assumption. The numerical integration
of the ODEs system has been realized exploiting the
software library LSODA (Livermore solver for ODEs
with automatic method) [30] efficiently implemented
in SciPy [19].

Due to large volume of data produced with simula-
tions (stored on GitHub, see Additional File 3), we de-
cided to separate data generation and analysis phases.
An efficient way to organize and access simulation out-
puts, is to store them in a database. In particular we
here exploited PyTables [1], a package for managing
hierarchical datasets designed to efficiently and easily
cope with extremely large amounts of data. PyTables
makes use of the NumPy package and of the HDF5
library under the Python language.

Ensembles of kinetic constants sustaining the 5 dif-
ferent metabolic phenotypes have been populated by
performing a large number of “experiments” con-
ducted first randomly defining, for each of them, the
set of kinetic constants and then executing a simu-
lation for each given experimental condition (i.e., set-
ting nutrients availability – glucose, acetate, succinate,
glycerol – and oxygenation state). To populate the en-
sembles of kinetic constants, we filtered the experimen-
tal data set implementing conditions on the basis of re-
actions illustrated on columns in Table 2. Here, values
indicate flux calculations obtained by simulating the
ECC2comp model under the 5 different experimental
conditions (see Table 1) with FBA.

In particular, to build filters we evaluated only
ECC2comp reactions: (A) having non zero flux value
in just one of the experimental conditions (Table 2,
in bold), (B) having non zero flux value for reactions
defining the experimental condition (i.e., nutrients and
oxygenation state) (Table 2, in italic).

An experimental set of kinetic constants is as-
signed to a given ensemble (metabolic phenotype)
only if, for a reaction, starting from mechanistic sim-
ulations, non zero fluxes can be calculated evaluat-
ing the last time point (assumed to be at steady
state, see section Results for the determination of the
steady state) and present in the filtering constraint
for the same reaction. Formally these constraints rel-
ative to the phenotypes are summarized by logical
expressions shown in Equations 2 to 6 where vi rep-
resent the metabolic flux through the i reaction.

exp1 :
(
vG6PDH2r > 0

)
∧
(
vO2Up > 0

)
∧
(
vGND > 0

)
∧
(
vPGL > 0

)
∧
(
vGLCptspp > 0

)
(2)

exp2 :
(
vAcEx > 0

)
∧
(
vALCD2x > 0

)
∧
(
vEthEx > 0

)
∧
(
vGLCptspp > 0

)
∧
(
vO2Up = 0

)
(3)

exp3 :
(
vO2Up > 0

)
∧
(
vMALS > 0

)
∧
(
vICL > 0

)
∧
(
vAcUp > 0

)
(4)

exp4 :
(
vO2Up > 0

)
∧
(
vSUCCt22pp > 0

)
∧
(
vME2 > 0

)
(5)

exp5 :
(
vO2Up > 0

)
∧
(
vGLYK > 0

)
∧
(
vF6PA > 0

)
∧
(
vGLY CDx > 0

)
(6)
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Results
To test the procedure on the simplified E. coli model,
we tossed multiple different random sets of kinetic
constants, keeping the concentration of ions and ex-
changed species constant throughout the simulation
(i.e., ac ex, ca2 ex, cl ex, co2 ex cobalt2 ex, cu2 ex,
fe2 ex, fe3 ex, for ex, glc DASH D c,
glc DASH D ex, glc DASH D p, h ex, h2 ex, h2o ex,
k ex, mg2 ex, mn2 ex, mobd ex, MTHTHF ex, nh4 ex,
ni2 ex, o2 ex, pi ex, so4 ex, succ ex and zn2 ex are “in
feed”) time of 100 seconds, defined accordingly to [33]
in order to allow the reaching of the metabolic steady
state after a perturbation (e.g. a pulse of nutrient).
Every simulation is considered at steady state if ev-

ery species standard’s deviation on concentrations (σ)
computed over the last 10% of the simulation time and
summed up (normalizing over the number of species
“not in feed”), is smaller than 0.1%. In a positive case,
the random parametrization is retained, otherwise is
dropped. To obtain a dataset of 104 random sets of
kinetic constants, we performed a total of 11520 sam-
plings, thereby discarding the 13.2% of performed sim-
ulations. The total computational time to produce the
data set has been 1d 2h 20min to run ODEs simula-
tions on a workstation (8 x CPU 3.8 GHz Intel Core
i7, RAM 32 GB) and producing 20.3 GB of data.

The input of the filtering procedure has been a
dataset composed of 5 · 104 simulations, i.e. 104 ran-
dom sets of kinetic constants tested over 5 experimen-
tal conditions (the 5 protected phenotypes). Imposing
a threshold considering fluxes having value less than
10−10 to be 0, from the dataset of 5·104 solutions 15267
has been assigned to exp1, 101 to exp2, 19616 to exp3,
22719 to exp4 and 16033 to exp5 (lower part of Figure
3 where we explore the cardinality of solutions, i.e. the
number of random parametrizations that are assigned
to one or more phenotypes at the same time). From
Figure 3 we have been able to retrieve kinetic con-
stants common to all the anaerobic phenotypes (1345
in Figure 3) but not for the anaerobic phenotype (exp2
– 2 in Figure 3). This reflects the consistent metabolic
differences that can be pointed out in vivo between
aerobic and anaerobic conditions.

In connection to this issue, we can notice that com-
binations exp2 - exp3 (23 in Figure 3) and exp2 - exp5
(25 in Figure 3) are empty sets due to the fact that in
phenotype exp2 (anaerobic) reactions sustaining res-
piration are blocked (e.g. in TCA cycle the flux for
reaction CS, leading to citrate is almost zero – see
Figure 4) while in exp3 and exp5 (aerobic conditions)
the same reactions are active.

To compare flux values at steady state for each re-
action in the system before and after the filtering, we

draw the heatmap of Figure 4 where rows list reac-
tions, columns list set of dynamics ensembles associ-
ated to each metabolic phenotype and the color repre-
sents the median value of that ensemble for that reac-
tion at steady state (range [1 ·10−13, 1 ·101]). We made
two distinct association of the dynamics to the pheno-
types, the columns labeled as sC# have the dynamics
assigned according to their initial condition, whereas
columns labeled as fC#, the filtered ones, are popu-
lated with the dynamics that satisfies phenotypes con-
straints at steady state, disregarding their initial con-
dition. Overall, it is possible to notice that flux values
in sC# and fC# for a given phenotype exhibit almost
always a comparable flux value, there with only few ex-
ceptions to this behavior (e.g. reactions: O2Up reverse
less active in the fC2; h2Ex, PGM, PGM reverse, PGK
less active in fC3, SUCCt2 2pp more active in fC3;
GlcUp and GLCt2pp more active in fC4). Moreover,
comparing the different phenotypes, it is possible to
notice that exp5 (sC and fC5) has fluxes values dis-
similar to the other 4 phenotypes.

To better characterize the ensembles we also plot-
ted the median and the standard deviation for ki-
netic constants values retrieved for each ensemble af-
ter the filtering. Results illustrated in Figure 5 show
that there are little but non negligible differences in
the median of kinetic constant values for all the re-
actions of the model (e.g. exp1 has different median
values for h2o Ex reverse, F6PA reverse, PGL, PGI,
GND, h2o Ex; exp5 has constant associated to ATPM
greater than the average). Furthermore, supporting
findings emerged analyzing cardinalities (Figure 3),
median values for the group of four aerobic phenotypes
are very similar, while the the medians for anaerobic
phenotype are different form the previous group.

Discussion
The analysis of average concentrations and relatives
standard deviations for molecular species during time
courses shed light on some relevant issues hereafter
discussed.

Overall, we underline that standard deviation values
(σ) are small and few parametrizations (only 13% of
the total) are discarded, suggesting that for the sam-
pled interval [0, 1 · 102] metabolism is robust towards
kinetic constant variation. This parameter insensitiv-
ity has been further investigated in [17] where authors
showed that many models in Systems Biology exhibit a
“sloppy” spectrum of parameter sensitivities, conclud-
ing that besides the mere estimation of the parameter
value, the community should focus on analyze models
in a predictive fashion.

Concerning biomass (Figure 6) it is possible to notice
that the concentration of this faux species is increasing
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over time for all the metabolic phenotypes. Interest-
ingly, when we tested a further experimental condition
(exp0 – not used as metabolic phenotype) representing
an enriched growth media (i.e., when all the nutrients
are simultaneously available), this turned out not to be
the condition leading to the maximal level of biomass
(this is for instance the aerobic growth on succinate,
exp4 – purple line).

Connected with the biomass accumulation, time
courses illustrate that key metabolic pathways are ac-
tive during simulation, indeed the E. coli is perform-
ing for example both alcoholic fermentation (Figure 7,
top) and TCA cycle considered here a proxy for respi-
ration (Figure 7, bottom).

Data supporting the actual activation of biochem-
ical pathways in the model are also the presence of
steady states for cofactors such as NAD/NADH and
NADP/NADP which appear to be dynamically inter-
converted (Figure 8) indicating that metabolic path-
ways are maintaining the system energetically active
and able to generate biomass.

Focusing on the set of kinetic constants assigned to
the different metabolic phenotypes, the procedure il-
lustrated in the present paper led to the population
of all the 5 phenotypes and to the identification of a
subset of kinetic constants assignable to the four aero-
bic conditions. Unfortunately, there is no single “uni-
versal” parametrization assignable to all the 5 phe-
notypes. This fact could be determined by different
causes such as an under sampling of random kinetic
constants, a too narrow sampling interval (2 orders
of magnitude here), or an excessively relaxed filter-
ing condition not allowing a complete discrimination
among the phenotypes.

Furthermore, the evaluation of median and standard
deviation for the kinetic constants belonging to the
5 ensembles suggest that there are only few reactions
that has to be finely tuned in order to direct the system
towards a specific metabolic phenotype, a fact that
suggests once more that metabolism is a system par-
ticularly robust towards perturbations. In this case a
global sensitivity analysis would help to more specifi-
cally investigate the issue of robustness.

Conclusions
Constraint-based models have been successfully imple-
mented to study metabolic fluxes at steady state, nev-
ertheless, information about the temporal evolution of
the system during the transient phase preceding the
steady state can not be derived from them. In addi-
tion, the metabolic concentrations at steady state can
not be deduced from constraint-based methods since
there is no information about kinetic constants. Com-
putational approaches developed in [6] and exploited in

the present work are an improvement designed to over-
ride limitations by exploiting mechanism-based simu-
lations. Here, initial conditions are partially retrieved
from literature (molecular concentrations) and kinetic
constants are randomly determined. Figure 3 sums up
the readout of the procedure: through a filtering proce-
dure based on a loose definition of the 5 experimental
conditions (metabolic phenotypes) involving some key
reactions, the developed method is able to assign ran-
dom sets of kinetic constants to one or more metabolic
phenotypes.

With the present contribution we aimed at improv-
ing and testing a computational framework capable to
retrieve ensembles of kinetic constants that can be as-
sociated to different metabolic phenotypes. It is worth
to be underlined that, in contrast with constraint-
base approaches, our method is not assuming that
metabolism is optimized to perform a specific task.
We underline that the methodology here used can be
exploited to retrieve ensembles of kinetic constants for
any metabolic phenotype providing only its formal def-
inition (in terms of nutrients supplied and oxygenation
state together with an estimation of initial concentra-
tions for modeled species) and a flux distribution ob-
tained by means of a constraint-based simulation (for
which no kinetic parameters are needed).

For what concerns perspectives, we plan to better
characterize the metabolic steady state by exploit-
ing more efficient strategies to calculate if the system
reaches a stationary condition. Among these strategies
a promising approach is the use of the NLEQ2 non-
linear root-finding algorithm [24]. Moreover, we are
considering to significantly expand the sampled set of
kinetic constants through a significant speed-up of sim-
ulations achieved by means of high performance and
parallel computing applied to Systems Biology model-
ing problems [21][22].
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Tables

Table 1 Protected phenotypes. Phenotypes and maximal growth
rate in the core model ECC2 obtained with FBA.

ID Description Reached µ (ECC2)

exp1 aerobic growth on glucose 0.982
exp2 anaerobic growth on glucose 0.289
exp3 aerobic growth on acetate 0.244
exp4 aerobic growth on succinate 0.492
exp5 aerobic growth on glycerol 0.563

Additional Files
Additional file 1 — ECC2C.xml

SBML file for the ECC2comp model of E. coli used for the analysis.

Additional file 2 — X0etc.xlsx

In tab “conc” are listed initial concentrations of metabolites for the 5

different phenotypes. In tab “FeedNoFilt” are listed metabolites provided

“in feed” and metabolites not evaluated to verify the steady state.

Additional file 3 — Github

The generated dataset (ECcoliExpsParam 10 Filter 0.001.h5) and python

scripts implemented for this study are deposited on a GitHub repository at

http://github.com/riccardocolombo/kineticensemble
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[width=16cm]Figure1.pdf

Figure 1 Wiring diagram of the EColiCore2 model. Metabolic network is modified (adding reverse reactions and cofactors) from
Hädicke et al. [18]. In the map, reaction names are labeled in blue and placed next to the corresponding edge. The external
environment is represented by a dashed contour, the cell is delimited by a solid contour.
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Figure 2 Schematic workflow illustrating the four main phases of the computational procedure. A. Run deterministic simulations;
B. Calculation of flux values; C. Filtering of experiments; D. Analysis of outcomes. See main text for a complete description of the
approach.
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Figure 3 Cardinality of solutions illustrating the intersection
among the different ensembles. Numbers on Y axis indicate
the ensemble(s) (e.g. 12, indicates the ensemble exp1 and
exp2) while the length of the bar indicates the number of
solutions belonging to the ensemble or group of ensembles.
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Figure 4 Heatmap. Figure illustrates median flux values
through model reactions (rows) at the steady state, when the
dynamic is labeled according to its initial conditions (columns
labeled with sC#) and when it is filtered according to
phenotypes (columns labeled with fC#). Red labels indicate
reactions used to implement the filtering conditions for the
metabolic phenotypes.
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Figure 5 Boxplot. Illustration represents model reactions
(rows), median (colored vertical bar), 1st and 4th quartiles
(shaded box) for kinetic constants associated to the 5
phenotypes.
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Figure 6 Time course for the species “biomass”. Figure
shows that the mass of the system is accumulating during the
simulation for every experimental condition, i.e., the system is
able to grow under the experimental conditions. Shaded areas
indicate the σ for every experiment, solid line represent a
trajectory averaged over a subset of 200 parametrizations due
to computational time limitations.
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Figure 7 Time course for the species ethanol and malate.
The time course for the species ethanol (top) shows that the
species (not evaluated for the determination of the steady
state) is accumulating during the simulation for every
experimental condition, i.e., the system is able to perform
alcoholic fermentation. Instead the time course for malate
(bottom), shows the reaching of the steady state indicating
that the system is also using the TCA cycle. Shaded areas
indicate the σ for every experiment, solid line represent a
trajectory averaged over a subset of 200 parametrizations due
to computational time limitations.

[width=7.5cm]Figure8.pdf

Figure 8 Time courses for the species NAD (top) and
(NADH) bottom . Figure illustrate that the species are
satisfying the steady state condition (i.e., are not varying more
than 1% in the last 10 seconds of simulation. Moreover,
NAD/NADH ratio is compatible with “sustained steady
states” in all experimental condition except experiment 5.
Similar time courses are obtained for NADP and NADPH.
Shaded areas indicate the σ for every experiment, solid line
represent a trajectory averaged over a subset of 200
parametrizations due to computational time limitations.

Table 2 Flux values used to set up filters in order to populate the
5 ensembles of kinetic constants corresponding to experimental
conditions. Target fluxes have been calculated by means of FBA
experiments. Reactions having non zero value in only one
experimental condition are in bold; reactions defining the
experimental condition (i.e., specific nutrients and oxygenation
state) are in italic.

exp1 exp2 exp3 exp4 exp5

G6PDH2r 4.142 0.000 0.000 0.000 0.000
O2Up 17.587 0.000 9.451 13.735 10.699
GlycUp 0.000 0.000 0.000 0.000 10.000
MALS 0.000 0.000 2.627 0.000 0.000
AcEx 0.000 7.835 0.000 0.000 0.000
GND 4.142 0.000 0.000 0.000 0.000
SUCCt2 2pp 0.000 0.000 0.000 10.000 0.000
PGL 4.142 0.000 0.000 0.000 0.000
F6PA 0.000 0.000 0.000 0.000 4.586
SuccUp 0.000 0.000 0.000 10.000 0.000
GLYCDx 0.000 0.000 0.000 0.000 4.586
ALCD2x 0.000 7.806 0.000 0.000 0.000
ICL 0.000 0.000 2.627 0.000 0.000
EthEx 0.000 7.806 0.000 0.000 0.000
GLCptspp 10.000 10.000 0.000 0.000 0.000
AcUp 0.000 0.000 10.000 0.000 0.000
GlcUp 10.000 10.000 0.000 0.000 0.000
ME2 0.000 0.000 0.000 3.488 0.000
GLYK 0.000 0.000 0.000 0.000 5.414
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