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Three-Stage Hybrid Fault Diagnosis for Rolling
Bearings With Compressively Sampled Data
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Abstract—To avoid the burden of much storage re-
quirements and processing time, this paper proposes a
three-stage hybrid method, compressive sampling with
correlated principal and discriminant components (CS-
CPDC), for bearing faults diagnosis based on compressed
measurements. In the first stage, CS is utilized to ob-
tain compressively sampled signals from raw vibration
data. In the second stage, an effective multistep feature
learning algorithm obtains fewer features from correlated
principal and discriminant attributes from the compres-
sively sampled signals, which are then concatenated to
increase the performance. In the third stage, with these
concatenated features, multiclass support vector machine
is used to train, validate, and classify bearing faults. Re-
sults show that the proposed method, CS-CPDC, offers high
classification accuracies, reduced computation time, and
storage requirement, with fewer measurements.

Index Terms—Bearing fault classification, canonical cor-
relation analysis (CCA), compressive sampling (CS), linear
discriminant analysis (LDA), machine condition monitoring
(MCM), principal component analysis (PCA).

I. INTRODUCTION

ROTATING machines are widely used in industry for vari-
ous tasks. Unforeseen machine failures may affect produc-

tion schedules, product quality, and production costs. Condition
monitoring of a rotating machine can play an important role
in machine availability. Rolling element (RE) bearings are the
critical components in a rotating machine and their failures may
lead to more major failures in machines. With the development
of sensing systems, various forms of signals can be collected for
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machine condition monitoring (MCM) [1]–[3]. The analysis of
vibration signals can focus on three main groups: time domain,
frequency domain, and time–frequency domain [4]–[8].

Techniques beyond bandlimited sampling [9] offer lower
sampling rates and reduced amount of data. To address the
challenges of analyzing a large amount of acquired vibration
data, various techniques have been used to reduce signals di-
mensionality. For example, principal component analysis (PCA)
[10], linear discriminant analysis (LDA) [11], independent com-
ponent analysis [12], and genetic algorithm (GA) [13] are among
the most commonly used methods. For instance, Malhi and
Gao [14] presented a PCA-based approach to select the most
representative features for bearing faults classification that has
shown to improve classification accuracy of feedforward neu-
ral network (NN) and radial basis function (RBF) network. Jin
et al. [15] introduced the trace ratio LDA method to reduce
dimension of high-dimension non-Gaussian data for fault clas-
sification. Ciabattoni et al. [16] introduced a novel LDA-based
algorithm to deal with fault data dimension reduction and fault
detection issues. Jack and Nandi [13] examined the use of a GA
to select the most significant input features from a large set of
possible features in MCM contexts.

In recent years, several publications have proposed new meth-
ods for bearing fault diagnosis. For example, Amar et al. [17]
suggested a novel bearing fault classification approach combin-
ing vibration spectrum imaging and artificial NN. Li et al. [18]
presented a semisupervised diagnosis method based on a
distance-preserving self-organizing map for classifying differ-
ent bearing faults. Soualhi et al. [19] examined the combination
of Hilbert–Huang transform, support vector machine (SVM),
and support vector regression, and showed its efficiency for
the monitoring of ball bearing. Chen and Li [20] proposed a
multisensory feature fusion method using Sparse AutoEncoder
(SAE) and deep belief network that outperform some other fea-
ture fusion methods. Zhang et al. [21] presented a hybrid intel-
ligent fault diagnosis method integrating permutation entropy,
ensemble empirical mode decomposition, and optimized SVM.
Recently, Lei et al. [22] proposed a two-stage learning method
based on sparse filtering to learn features from mechanical vi-
bration signals for machine fault diagnosis.

Compressive sampling (CS) [23] has been developed for sens-
ing and compression. The efficiency of CS in machine fault di-
agnosis has been validated in several studies. For instance, in
an analysis of the effects of CS on the classification of bearing
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faults, Wong et al. [24] found small performance degradation
using entropy-based features computed from CS-based recov-
ered signal. Zhang et al. [25] proposed a method based on
compressed vibration signal using several overcomplete dictio-
naries trained by a dictionary learning method. Each of these
dictionaries can be effective in sparse signal decomposition for
a specific bearing condition. Several studies have shown that
it is possible to learn directly from compressed measurements
without reconstructing the original signal. In [26], an intelligent
condition monitoring method for bearing faults based on CS
and sparse overcomplete feature learning algorithm using SAE
was proposed. In a recent paper by Ahmed et al. [27], three ap-
proaches to process compressed vibration measurements were
proposed for classification of bearing faults, including using the
compressed measurements directly as the input to the classifier,
and extracting features from these compressed measurements
using PCA and LDA.

Although the above investigations reported many interesting
results, to the best of authors’ knowledge, there is little work
in the literature on learning from compressively sampled sig-
nals. Also, no research exists on the combination of CS, PCA,
LDA, and canonical correlation analysis (CCA). Motivated by
the idea of CS and the advantages of PCA, LDA, and CCA, we
present a new method for intelligent fault diagnosis. PCA can be
applied to a compressively sampled vibration signal to extract
the components. However, by selecting only the larger compo-
nents of PCA, we may remove some useful features. On the
other hand, LDA works well with a larger number of samples.
Intuitively, these two different sets of features reflect different
characteristics of the original signals and may be complemen-
tary. Hence, we integrate them in a combined framework, by
forming a relationship between them via CCA and concatenat-
ing their resulting linear combinations into a feature vector. The
proposed method, CS with correlated principal and discriminant
components (CS-CPDC), needs fewer measurements, reduces
computation time, storage requirement and the bandwidth for
transmitting compressively sampled data. The contributions of
this paper are summarized as follows.

1) A new three-stage intelligent hybrid method, CS-CPDC,
for fault diagnosis is presented.

a) The aim is to reduce computations, to reduce trans-
mission costs, and to reduce demands on the envi-
ronment compared to other techniques. CS-CPDC
reduces the measured vibration data using CS that
linearly maps the original vibration data into a
lower dimension space of compressively sampled
data.

b) The aim is to obtain a set of features that achieves
superior classification. While an individual set of
features (e.g., either PCA or LDA) can be good
for representations, it may not be good for classi-
fications. Thus, we propose to combine PCA and
LDA features via CCA in a three-step process to
transform the characteristic space of compressively
sampled signal into a low-dimensional space of
correlated important and discriminant attributes,
which are then concatenated to form a vector of
useful features.

Fig. 1. Training of our proposed method. (a) First stage. (b) Second
stage. (c) Third stage.

c) For fault classification, multiclass SVM based on
error-correcting output codes (ECOC) is employed
to classify the bearing health condition using the
learned feature vector.

2) Two case studies of bearing datasets (real and not sim-
ulated) are used to validate the efficiency of CS-CPDC.
First, the CS model of CS-CPDC and the effect of the
amount of compressively sampled data are thoroughly
studied to verify that our CS model generates compres-
sively sampled signals that possess the quality of the orig-
inal signals. Second, various scenarios of the proposed
three-step learning algorithm of CS-CPDC are studied to
test the classification accuracy in each stage. In addition,
CS-CPDC is compared with related work. The compar-
ison results show that CS-CPDC is able to achieve high
levels of classification accuracy with fewer measurements
compared with existing methods.

3) We have studied the advantages of CS in our proposed
method. We demonstrate that CS reduced computational
time and yet provided high classification accuracy.

The rest of this paper is structured as follows. Section II is
devoted to descriptions of the proposed method. Sections III
and IV are dedicated to a description of the performed experi-
ments and datasets of the two faults classification case studies
of bearings datasets and the corresponding experimental results.
Finally, Section V draws some conclusions from this study.

II. PROPOSED METHOD

This section describes the CS-CPDC method for machine
fault detection and classification. In the first stage [see Fig. 1(a)],
CS is used to obtain compressively sampled raw vibration sig-
nals. In the second stage [see Fig. 1(b)], a proposed multistep
approach of PCA, LDA, and CCA is used to extract features
from the obtained compressively sampled signals. In the third
stage [see Fig. 1(c)], SVM is applied to classify bearing health
condition using the learned features from the previous stage.

A. First Stage: CS

In this stage, CS-CPDC acquires compressively sampled sig-
nals using CS framework [23], [28]. CS is an extension of sparse
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Fig. 2. CS framework.

representations and special case of it. The simple idea of CS
is that many real-world signals have sparse representations in
some domain, e.g., Fourier transform (FT), can be recovered
from fewer measurements under certain conditions. In fact, CS
is based on two principles: 1) sparsity of the signal of interest;
and 2) the measurements matrix that satisfies the data minimal
information loss, i.e., fulfill restricted isometry property (RIP).
Concisely, we describe the sparsity as follows:

Assume that x ∈ Rnx1 be an original time indexed signal.
Given a sparsifying transform matrix ψ ε Rnxn whose columns
are the basis elements {ψi}ni=1 . Based on this basis, x can be
represented as follows:

x =
n∑

i=1

ψisi. (1)

Or more efficiently

x = ψs. (2)

Here, s is n∗1 column vector of coefficients. If the basis ψ
produces q-sparse representations of x, then (1) can be rewritten
as follows:

x =
q∑

i=1

ψnisni (3)

where ni is the index of the basis elements and the coefficients
corresponding to the q nonzero elements. So, s ε Rnx1 is a
vector column with only q nonzero elements and represents the
sparse representation vector of x.

Based on CS framework, m << n projections of the vector
x with a group of measurement vectors {∅j}mj=1 and the sparse
representations s of x can be produced from

y = ∅ψs = θs. (4)

Here, y is m∗1 column vector of the compressed measure-
ments and θ = ∅ψ is the measurement matrix. To produce good
compressed measurements, the measurement matrix θ has to
satisfy the data minimal information loss, i.e., satisfy the RIP.

Definition 1.1: The measurement matrix θ satisfies the RIP
if there exists a parameter δ ∈ (0, 1) such that

(1 − δ) ‖s‖2
l2

≤ θ ‖s‖2
l2

≤ (1 + δ) ‖s‖2
l2
. (5)

The size of the measurement matrix (m∗n) depends on the
CS rate (α) (i.e.,m = α∗n). Fig. 2 shows an illustration of the
CS framework. The model described above is meant to be single
measurement vector CS that recovers one vector from its corre-
sponding compressed measurement vector. But, multiple mea-
surement vectors CS (MMV-CS) is considered for signals that

Algorithm 1: CS Stage.

Input: X ∈ Rn x L ,Θ ∈ Rmxn , α
Output: Y ∈ Rm x L

1: sparMethod(X) −−−−−� S ∈ RnxL

2: Project S into Θ with compressed sampling rate α to
obtain compressively-sampled signal Y ∈ RmxL

are represented as a matrix with a set of jointly sparse vectors
such that

Y = ΘS (6)

where Y ∈ RmxL , m is number of compressed measurements
and L is number of observations, Θ ∈ Rmxn is a dictionary,
and S ∈ RnxL is a sparse representation matrix. Several studies
have been conducted to reconstruct jointly sparse signals (S)
given multiple compressed measurement vector [29], [30]. In
our proposed method, MMV-CS has been used to obtain com-
pressively sampled signals since the dataset consists of a matrix
of multiple measurements. Also, since it is possible to recover
the original signal (X) from the compressed data (Y), this indi-
cates that (Y) possesses the quality of the original signal (X).
So, in this study, we use the compressed measurements directly.

As shown in Fig. 1(a), first the sparse representations (S ∈
RnxL ) that consists of only a small number of q � n of
nonzero coefficients are obtained from raw vibration signals
(X ∈ RnxL ) using an appropriate basis representation, e.g., FT,
wavelet transform, etc. Then, the obtained (S) is projected into
a suitable measurement matrix (Θ ∈ Rmxn ), e.g., random ma-
trix with i.i.d. Gaussian entries and Bernoulli (±1) matrix, with
the compressed sampling rate (α) to generate the compressively
sampled signals (Y ∈ RmxL ) where m is the number of com-
pressed signal elements (i.e., m = α∗n). These procedures are
summarized next in Algorithm 1 [28].

B. Second Stage: Feature Learning

While the CS projections obtained in the first stage help to
recover the original signal from low-dimensional features, they
may not be the best from a discriminant point of view. Fur-
thermore, the size of the CS projections may still represent
a large amount of data collected in real operating condition.
Consequently, techniques to extract fewer features of the CS
projections are required. Accordingly, PCA and LDA are com-
monly used. However, while an individual set of features (e.g.,
either PCA or LDA) can be good for representations, it may not
be good for classifications. Thus, the aim of the second stage is
to generate features for superior classification accuracy.

The second stage consists of three steps as shown in Fig. 1(b).
In the first step, CS-CPDC finds two feature representations
from the compressively sampled signals using PCA and LDA.
Hence, we transform the characteristic space of the compres-
sively sampled signal into a low-dimensional space defined by
those basis vectors corresponding to larger eigenvalue com-
ponents (PCA). Furthermore, we augment these basis vectors
with discriminant attributes learned through supervised learning
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(LDA). Let us consider a set of compressively sampled signals
Y ∈ RmxL ; here, Y can be presented as Y = [y1 , y2 , . . . , yl ]
where 1 ≤ l ≤ L, and let each of these signals fit in with one of
the c classes of machine conditions. To extract feature represen-
tations of these signals, CS-CPDC performs a linear transfor-
mation to map the m-dimensional space of the compressively
sampled vibration to a lower dimensional feature space, using
the following equation:

ŷr = WT yr . (7)

Here, r = 1, 2, . . . ,L, ŷr is the transformed feature vector
with reduced dimension, and W is a transformation matrix.

To find the larger attributes of the compressively sampled
vibration signals using (7), we used PCA to compute W projec-
tion matrix using the scatter matrix, i.e., the covariance matrix
C of the compressively sampled data, which can be computed
as follows:

C =
1
L

L∑

i=1

(yi − ȳ)(yi − ȳ)T . (8)

Here, ȳ is the mean of all samples. In the produced projection
matrix W, successive column vectors from left to right corre-
spond to decreasing eigenvalues. We select the m1 eigenvectors
corresponding to the m1 largest eigenvalues. Hence, a new m1-
dimensional space Ŷ 1 ∈ Rm1xL is produced from Y ∈ RmxL ,
where m1 << m.

Furthermore, we employed LDA to compute discriminant at-
tributes from the compressively sampled signals. LDA considers
maximizing the Fisher criterion function J (W), i.e., the ratio of
the between the class scatter (SB ) to the within class scatter
(Sw ) such that

J (W ) =
|WT SBW |
|WT SwW | (9)

where

SB =
1
L

c∑

i=1

li
(
μi − μ

) (
μi − μ

)T
(10)

Sw =
1
L

c∑

i=1

li∑

j=1

(yij − μi)
(
yij − μi

)T
(11)

where μi is the mean vector of class i, y ϵ R of size L∗m is
the training dataset, yi1 represents the dataset belong to the cth
class, ni is the number of measurements of the ith class, μi

is the mean vector of class i, and μ is the mean vector of all
training dataset. LDA projects the space of the compressively
sampled data onto a (c – 1)-dimension space by finding the
optimal projection matrix W by maximizing J (W). Now, W is
composed of the selected eigenvectors (ŵ1 , . . . , ŵm2) with the
first m2 largest eigenvalues (m2 = c− 1). Consequently, a new
m2-dimensional space of discriminant attributes Ŷ 2 ∈ Rm2xL

is produced from Y ∈ RmxL , where m2 << m.
These different feature representations extracted from the

same dataset always reflect different characteristics of the orig-
inal signals. The best combination of them retains the multiple

Fig. 3. Illustration of the training process of the first and second stages
of the proposed method.

features of the integration that can be used effectively for clas-
sification. We propose CCA [31] to combine PCA and LDA
features to obtain superior classification.

The second step of the multistep procedure of CS-CPDC
utilizes CCA to combine the different feature representations
Ŷ 1 and Ŷ 2 by forming the relationship between them, i.e.,
maximizing the overlapping variance between Ŷ 1 and Ŷ 2.
The main idea is to find linear combinations of Ŷ 1 and Ŷ 2
that can maximize the correlation between them based on the
following objective function:

(W1 ,W2) = arg max
W 1 ,W 2

Ẃ1CŶ 1Ŷ 2

s.t. Ẃ1CŶ 1Ŷ 1 W1 = 1, Ẃ2CŶ 2Ŷ 2 W2 = 1 (12)

where CŶ 1Ŷ 2 is the cross-covariance matrix of Ŷ 1 and Ŷ 2 that
can be computed using the following equation:

C
(
Ŷ 1, Ŷ 2

)
= Ê

[(
Ŷ 1

Ŷ 2

) (
Ŷ 1

Ŷ 2

)′]
=

[
CŶ 1Ŷ 1 CŶ 1Ŷ 2

CŶ 2Ŷ 1 CŶ 2Ŷ 2

]
.

(13)

The resulting linear combinations of Ŷ 1 (Ŷ 1CCA = W1 ∗
Ŷ 1) and the Ŷ 2 (Ŷ 2CCA = W2 ∗ Ŷ 2) will maximize their
correlation.

Finally, in the third step, the learned features Ŷ 1CCA and
Ŷ 2CCA are concatenated to obtain a vector (Ycorr - PC, DC ∈
RLx2k ) that comprises highly correlated representations of prin-
cipal and discriminative components wherek is equal to minimal
dimension size of m1 and m2. These procedures are summa-
rized in Algorithm 2. Fig. 3 shows an illustration of the training
process of the first and second stages of our proposed method.

C. Third Stage: Fault Detection and Classification

For our multiclass problem, we employed multiclass SVM
classifier. The simple idea of SVM is that it can find the best
hyperplane(s) to separate two classes. Based on the features
of the data, SVM can make linear or nonlinear classifications
by different kernel functions, e.g., RBF, polynomial function,
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Algorithm 2: Feature Learning Stage.

Input: Y ∈ RmxL , y ∈ R1xL: label information vector for
each data points, c: number of classes, m1: selected
number of principal components
Output: Ycorr - PC, DC ∈ RLx2k

1: PCA(Y ) −−� E1 ∈ Rmxm1

2: Ŷ 1 = Y T ∗ E1
3: LDA(Y, y) −−� E2 ∈ Rmxm2 ; m2 = c− 1.
4: Ŷ 2 = Y T ∗ E2
5: CCA(Ŷ 1, Ŷ 2) −−� w1 , w2 ∈ RLxk ;

k = min(m1,m2).
6: Ŷ 1CCA = w1 ∗ Ŷ 1, Ŷ 2CCA = w2 ∗ Ŷ 2
7: Ycorr - PC, LD = [Ŷ 1CCA Ŷ 2CCA]

and Sigmoid function [32]. Multiclass SVM includes multiple
two-class subproblems, i.e., SVM classifiers that can be eas-
ily combined together using one-versus-one and one-versus-all
coding design.

In our case, we applied “fitcecoc” function [33] on the learned
features from the second stage. It uses c(c – 1)/2 binary SVM
models using one-versus-one coding design, where c is the
number of unique class labels. This will return a fully trained
ECOC multiclass model that cross-validated using tenfold cross
validation.

III. FIRST CASE STUDY

A. Data Description

The vibration data used in this case were recorded from exper-
iments on a small test rig that mimics operating roller bearings’
environment. Six conditions of roller bearings health conditions
have been recorded. These contain, two normal conditions, that
is, a brand new condition (NO) and a worn but undamaged con-
dition (NW), as well as four fault conditions, including inner
race (IR) fault, an outer race (OR) fault, RE fault, and cage
(CA) fault.

The test rig used to collect the vibration data involves a dc
motor driving the shaft through a flexible coupling, with the
shaft supported by two Plummer bearing blocks. A series of
damaged bearing was inserted in one of the Plummer blocks,
and the resultant vibrations in the horizontal and vertical planes
were measured using two accelerometers. The output from the
accelerometers was fed back through a charge amplifier to a
Loughborough Sound Images DSP32 ADC card (using a low-
pass filter with a cutoff 18 kHz), and sampled at 48 kHz. The
machine was run at a series of 16 different speeds ranging be-
tween 25 and 75 r/s, and ten-time series were taken at each
speed. This gave a total of 160 examples of each condition, and
a total of 960 raw data files to work with.

To apply CS-CPDC in this case study, we started by acquir-
ing the compressively sampled vibration signal from the high-
dimensional data X with 6000 time samples for each of the 960
observations. First, we used FFT basis as sparse representations
of X . Then, we applied CS framework with different sampling
rates (α) using a random Gaussian matrix that satisfies the RIP.
The size of the Gaussian matrix ism by n, where n is the length

of the original vibration signal measurements andm is the num-
ber of compressed signal elements (i.e.,m = α∗n). Based on CS
framework, multiplying this matrix with our signal sparse repre-
sentations generates different sets of compressed measurements
of the vibration signal.

B. Experimental Results

First, 50% of the total observations were randomly selected
for training and the other 50% for testing. Then, we examined the
selection of the compressed sampling rate (α) using different
values (0.01, 0.02, 0.03, 0.04, 0.5, 0.1, and 0.2) to generate
compressively sampled vibration signals.

To ensure that our CS model generates enough samples for
the purpose of bearing fault classification, we used the generated
compressively sampled signals in the first stage to reconstruct
the original signal X by applying the compressive sampling
matching pursuit (CoSaMP) algorithm [34]. For example, with
α = 0.1, the average percentage reconstruction errors for the six
conditions of bearings are 1.8% (NO), 0.9% (NW), 3.3% (IR),
1.6% (OR), 0.7% (RE), and 2.6% (CA), which indicate good
signal reconstruction.

To learn features from the training set with compressed mea-
surements, we proposed a multistep approach, i.e., the second
stage of our proposed method described in Fig. 1(b) using
(c− 1) components for LDA and 40 principal components for
PCA for each of the α values described above. These learned
features from the second stage were used to train the multi-
class SVM. To achieve better evaluations of the trained ECOC
multiclass model, we applied tenfold cross validation in all our
experiments. The training dataset is randomly subdivided into
ten subsets. Each subset is validated on the classifier that is
trained using the other nine subsets. The process is repeated
20 times and the training classification accuracy is the average
taken from these 20 trials.

To evaluate the performance of the proposed method, we first
compressively sampled each testing signal using the same values
of α used to sample training set, and then the trained multistep
algorithm is used to obtain the learned features of the testing
set. Once the features were learned, the trained SVM is used
to classify the testing signals. The overall results are shown in
Table I, where the classification accuracy is the average of 20
trials for each experiment, and the time is obtained by averaging
the testing time of these 20 trials.

Table I shows that the value ofα affects not only the classifica-
tion accuracy results but also the time required by the CS-CPDC
method to complete the classification task. It can be clearly seen
that the larger the value of α, the better the classification ac-
curacy and the more time the method requires. However, high
levels of classification accuracy achieved with less than 25%
of the original data samples. In particular, accuracies from our
proposed method are 99.9%, 99.8%, and 99.3% for only 20%,
10%, and 5% of the whole data, respectively.

C. Effect of Numbers of Principal Components on
Classification Accuracy

To determine the effect of the number of PCs on
classification accuracy of CS-CPDC, we tested it with
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TABLE I
CLASSIFICATION RESULTS WITH THEIR CORRESPONDING RMSE AND

COMPUTATIONAL TIME USING VARIOUS COMPRESSED SAMPLING RATES

Fig. 4. Classification accuracies for different compressively sampled
signals versus the number of PCs.

α = 0.2, 0.1, 0.05, 0.04, 0.03, 0.02, and 0.01 using different
number of PCs in the range 10–50. Fig. 4 shows the classi-
fication accuracies versus the number of PCs for each value
of α. It is clear that most of the compressively sampled sig-
nals require no more than 40 PCs to achieve high classification
accuracy.

D. Comparison of Classification Performance Using
Individual and Combined Features

In the second stage of the proposed multistep features learning
approach, four groups of features were extracted individually be-
fore the features concatenation step. These include PCA-based
features ( Ŷ 1), LDA-based features ( Ŷ 2), and the linear com-
binations features Ŷ 1CCA and Ŷ 2CCA of Ŷ 1 and Ŷ 2; these
features will be referred as PCA’ and LDA’, respectively. Ex-
periments are conducted using these features based on PCA,
LDA, PCA’, LDA’, and concatenated features of PCA and LDA
(PCA+LDA) with CS-CPDC to classify bearing faults. The test
classification results are displayed in Fig. 5 and achieved by
averaging the results of 20 trials for each experiment. Closer in-
spection of Fig. 5 shows significant improvements in the classi-
fication accuracy achieved by PCA’ and LDA’ compared to PCA

Fig. 5. Comparison of classification performance using individual and
combined features.

TABLE II
CLASSIFICATION COMPARISON OF BEARING FAULTS

TABLE III
CLASSIFICATION COMPARISON OF BEARING FAULTS

and LDA, respectively. However, classification results from the
CS-CPDC method achieved the best classification results for
each value of α.

E. Comparison of Results

Different from the methods in [24] that recovered the origi-
nal signals from the compressively sampled signals, CS-CPDC
learns features directly from the compressed measurements. To
show the superiority of CS-CPDC over the methods in [24],
Table II shows classification results of bearing faults using the
same dataset used in the first case study of this work. It is clear
that all results from CS-CPDC are better than those in [24]. For
further verification of the efficiency of the CS-CPDC method,
Table III presents the comparisons with some recently published
results of CS-based methods [26], [27]. It is clear that results
from CS-CPDC remain very competitive with results reported
in [26]. Moreover, the classification accuracy obtained using
our proposed method with 10% of the original data is better
than the results reported in [27] and the improvement is statisti-
cally significant. In particular, results from [27] are 98.6, 98.5,
and 89.8 for CS, CS-PCA, and CS-LDA, while our proposed
method achieved 99.8%. Additionally, the root mean square
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TABLE IV
COMPARISON RESULTS TO EXAMINE THE SPEED AND ACCURACY

PERFORMANCE OF OUR PROPOSED METHOD WITH CS AND WITHOUT CS

error (RMSE) of this method (0.2%) is smaller than the reported
RMSEs in [27] (e.g., 0.3%, 0.4%, and 3.5%).

F. Need for CS

In CS-CPDC, CS is employed to obtain compressively sam-
pled signals in the first stage motivated by the following: 1)
reduced computations—we used CS to reduce a large amount
of the acquired vibration data. This reduction in the amount of
vibration data resulted in much reduced computation, i.e., less
than 15% of the computation load of not using CS; 2) reduced
transmission costs—in the cases of having to send vibration data
from remote places by wireless (e.g., in the case of offshore wind
turbines) or wired transmissions, the cost of transmission will be
less as CS reduces the amount of vibration data; and 3) benefits
to the environment—as the application of CS results in reduced
computations, it helps to reduce the amount of power needed for
both computations and transmission. In consequence, CS offers
much benefit to the environment.

Several experiments were conducted to classify bearing fault
using CS-CPDC without the compression in the first stage, i.e.,
with all the 6000 original samples from their sparse (FT) domain.
Table IV contains the results where the classification accuracy
is the average of 20 trials of testing accuracy. Two things are
clear from the results presented in Table IV. First, CS-CPDC
with CS is significantly faster than (or requires less than 15%
of the time of) the proposed method without CS. Second, CS-
CPDC achieved better classification results with small RMSE.
Of the remaining 0.6% (100%–99.4%) accuracy, our method can
make up 2/3 ( = (99.8 − 99.4)/(100 − 99.4)) of the missed
accuracy, and it does so with significantly lower RMSE, i.e., 0.2
compared to 0.5. Thus, the increase in accuracy of 0.4% with
RMSE of 0.2% is statistically significant.

IV. SECOND CASE STUDY

The bearing datasets [35] used in this case come from a motor
driving mechanical system where the faults were seeded into the
drive-end bearing of the motor. The bearing vibration signals
were collected under several conditions, grouped by fault width
(0.18, 0.36, and 0.53 mm) and four motor loads (0, 1, 2, and 3 hp)
with different shaft speeds (1797, 1772, 1750, and 1730 r/min).
The sampling rate used was 12 kHz [35], [36].

In this study, a motor bearing dataset composed of these
vibration signals with 10 bearing health conditions and 100
signal examples for each health condition per load. Thus, the

TABLE V
DESCRIPTION OF BEARING HEALTH CONDITIONS

TABLE VI
CLASSIFICATION RESULTS WITH THEIR CORRESPONDING RMSE AND

COMPUTATIONAL TIME USING VARIOUS COMPRESSED SAMPLING RATES

total dataset contains 400 examples for each health condition,
with 1200 data points for each signal example. The description
of this dataset is presented in Table V.

To classify the motor bearing health condition, the same steps
as in the first case study were followed to apply the CS-CPDC
method. Half of the signal examples are selected randomly for
training, and the rest of the signal examples are utilized for
testing performance. Different compressed samples with 0.03,
0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.1 sampling rates (α) of
the original signals and ten selected PCs are used for the overall
classification results and their related RMSEs of 20 trials as
shown in Table VI.

In Table VI, CS-CPDC delivers high classification accuracies
with small RMSEs. In particular, the classification accuracy for
α = 0.1 is 99.9%, and the testing time required by CS-CPDC is
only 1.62 s. In general, the computation time increased slightly
with the increase in α value. For example, the total time for
training and testing with the smallest value of α = 0.03 (5.35 s)
increased by less than 20% compared with the total time required
by the largest value of α = 0.1 (6.45 s).

For further evaluation of CS-CPDC method, experiments
were conducted for α = 0.1 with training size of 10% and 40%,
and 20 trials for each experiment with tenfold cross validation.
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TABLE VII
OUR RESULTS WITH TENFOLD CROSS VALIDATION AND RESULTS FROM

LITERATURE ON CASE WESTERN RESERVE UNIVERSITY VIBRATION
DATASETS OF ROLLER BEARINGS

TABLE VIII
COMPARISON RESULTS TO EXAMINE THE SPEED AND ACCURACY
PERFORMANCES OF OUR PROPOSED METHOD WITH TENFOLD

CROSS VALIDATION

The results are compared to some recently published results
[18], [21], [37]–[42] in Table VII. The first column refers to
the scenarios of the motor operation and load conditions (fixed
load and variable loads) in which the bearing samples collected.
The second column defines the methods used for classification.
The third column records the percentage of samples used to train
these methods. The fourth column defines the related load of the
data, and the fifth column records testing accuracies obtained
using these methods.

Compared with the methods presented in Table VII, CS-
CPDC with the smallest percentage (10%) of samples of the
original data achieved the highest accuracy in both motor oper-
ation condition, i.e., fixed load and variable load.

For additional comparison, several experiments were con-
ducted for α = 0.1, 0.09, and 0.08, using variable loads bearing
dataset (0, 1, 2, 3 loads) with ten classes to examine the speed
and accuracy of CS-CPDC compared to the method in [22] that
used the same data. To match the experimental setup in [22],
only 10% of signal examples are used for training with ten-
fold cross validation; the testing classification accuracies and
computation times were obtained by averaging 20 trials in each
experiment. The results, as shown in Table VIII, indicate that
the CS-CPDC method is significantly faster than the method in
[22] and yet our classification accuracies, for all values of α, are
better than the results reported in [22].

V. CONCLUSION

A three-stage hybrid method CS-CPDC for bearing fault di-
agnosis was proposed. In this method, CS model was used

to generate compressively sampled signals. Then, a multistep
feature learning algorithm was used to learn fewer features
from correlated principal and discriminant attributes from the
compressively sampled signals, which were then concatenated
to increase the performance. These concatenated features were
input to the multiclass SVM to train, validate, and classify bear-
ing health conditions. Our method offers the highest accuracy,
and requires least execution time and storage.

One of the more significant findings from this study is that
CS-CPDC outperforms other CS-based methods that used prin-
cipal and discriminant components individually as in [27]. As
well as achieving satisfactory high classification results using
the learned linear combinations of the principal and discrimi-
nant components in the second step of the second stage of the
proposed method, the concatenated features in the final step of
the second stage achieves even higher classification accuracies.
Moreover, compared to existing non-CS-based methods, the
proposed method offers superior performance in both increased
accuracy and reduced computation time.
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