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ABSTRACT 17 

Bacterial chromosome duplication is initiated at a single origin (oriC). Two forks are assembled 18 

and proceed in opposite directions with high speed and processivity until they fuse and terminate 19 

in a specialised area opposite to oriC. Proceeding forks are often blocked by tightly-bound 20 

protein-DNA complexes, topological strain or various DNA lesions. In Escherichia coli the 21 

RecBCD protein complex is a key player in the processing of double-stranded DNA (dsDNA) ends. 22 

It has important roles in the repair of dsDNA breaks and the restart of forks stalled at sites of 23 

replication-transcription conflicts. In addition, ΔrecB cells show substantial amounts of DNA 24 

degradation in the termination area. In this study we show that head-on encounters of replication 25 

and transcription at a highly-transcribed rrn operon expose fork structures to degradation by 26 

nucleases such as SbcCD. SbcCD is also mostly responsible for the degradation in the termination 27 

area of ΔrecB cells. However, additional processes exacerbate degradation specifically in this 28 

location. Replication profiles from ΔrecB cells in which the chromosome is linearized at two 29 

different locations highlight that the location of replication termination can have some impact on 30 

the degradation observed. Our data improve our understanding of the role of RecBCD at sites of 31 

replication-transcription conflicts as well as the final stages of chromosome duplication. 32 

However, they also highlight that current models are insufficient and cannot explain all the 33 

molecular details in cells lacking RecBCD. 34 

INTRODUCTION 35 

All organisms require the accurate duplication of their genome and the faithful transmission of 36 

all resulting copies into the daughter cells [1]. Any impairment of these processes can potentially 37 

be fatal for cells or result in mutations and genomic instability, an important driver for the 38 

development of cancer and the cause of several human syndromes [2]. In the bacterium 39 

Escherichia coli DNA replication of the single circular chromosome initiates at a single origin 40 

(oriC). The initiator protein DnaA facilitates the assembly of two replication fork complexes 41 

(replisomes), which move away from oriC in opposite directions with high speed and accuracy 42 

[3]. Replication is completed when converging forks fuse opposite oriC in an area that contains a 43 

specialised termination region flanked by polar ter sequences (terA–J) [4,5]. If bound by Tus 44 

terminator protein, the resulting ter/Tus complexes form a strong replication fork pause site 45 

[4,6]. The polar ter sites are oriented such that they allow forks to enter but not to leave the 46 

termination area. The chromosome is therefore divided into two approximately equal halves 47 

called replichores, each replicated by a single replication fork complex coming from oriC [7]. 48 

But progression of the replisomes from oriC to the termination area is not always smooth, as 49 

they will encounter a variety of barriers [8–10]. Besides various forms of spontaneous DNA 50 

damage, both topological strain and tightly-bound protein-DNA complexes are likely to interfere 51 

with the duplication process. Replication and transcription use the same template, and tran-52 

scribing RNA polymerase complexes provide not only substantial nucleoprotein barriers to fork 53 

movement due to their very high affinity [8], but also topological challenges due to the positive 54 

supercoiling ahead of and negative supercoiling behind the transcription bubble [11,12]. Head-on 55 



3 
 

encounters of DNA replication and transcribing RNA polymerase complexes have been identified 56 

as particularly problematic [5,13–17]. However, especially high levels of transcription are likely to 57 

interfere with replication even if both processes are proceeding co-directionally [13,18]. 58 

Several mechanisms aid the progression of DNA replication through tightly bound protein-59 

DNA complexes. In E. coli helicases such as Rep, UvrD and DinG promote fork progression 60 

through nucleoprotein complexes [17,19,20]. Rep physically associates with the replicative 61 

helicase DnaB and for this reason is considered an accessory replicative helicase [21,22]. In the 62 

absence of Rep, chromosome duplication takes almost twice as long as in wild type cells 63 

[19,20,23]. In addition, enzymes involved in homologous recombination can assist replication 64 

fork movement through highly transcribed areas [9,24,25]. In E. coli RecBCD was shown to be 65 

essential for viability under fast growth conditions in strains in which an rrn operon was inverted 66 

to force head-on encounters of replication and transcription, [14]. RecBCD is a protein complex 67 

which possesses both nuclease and helicase activities [24]. It binds to double-stranded DNA 68 

(dsDNA) that is blunt or near blunt [24]. The RecB and RecD subunits are helicases with opposite 69 

polarities: RecB translocates in a 3’ to 5’ direction while RecD translocates in a 5’ to 3’ direction 70 

[24]. Upon binding of a dsDNA end RecBCD unwinds and degrades DNA with high speed and 71 

processivity, both in vitro and in vivo [24,26] until a chi site, an asymmetric octamer sequence, 72 

is recognised [27]. Recognition of a chi site triggers the inhibition of the degradation of the 3’ end, 73 

which causes the RecBCD complex to produce a 3’ ssDNA overhang suitable for the loading of 74 

RecA recombinase [28]. 75 

While accessory helicases are thought to target active but paused replisomes, recombination 76 

enzymes are likely to process blocked fork structures where the replisome is not active any more 77 

[29]. Thus, a situation where an accessory helicase is required is likely to differ significantly from 78 

a situation where recombination proteins such as RecBCD are necessary. In line with this idea, E. 79 

coli cells lacking either RecBCD or Rep are viable but Δrep ΔrecB cells were shown to be 80 

synthetically lethal [30,31]. 81 

More recently an additional phenotype of cells lacking RecBCD became apparent. The 82 

analysis of replication profiles of ΔrecBCD ΔthyA cells undergoing thymine starvation revealed a 83 

substantial depletion of marker frequency within the terminus region of the chromosome, leading 84 

to the suggestion that progression of the replication forks towards the terminus region might be 85 

severely inhibited [32]. Replication profiles generated via high resolution marker frequency 86 

analysis from Deep Sequencing showed that this depletion of sequences in the termination area 87 

is also observed in ΔrecBCD cells under fast growth conditions [33] and can be modulated by the 88 

inactivation of the nucleases SbcCD and ExoI (encoded by xonA) [34,35]. In addition, septum 89 

closure was shown to play an important role in triggering the depletion of sequences, suggesting 90 

that degradation of DNA, rather than the inability of replication forks to reach the termination 91 

area, is mainly responsible for the depletion observed [34,36]. The tracking of a fluorescently 92 

tagged region within the termination area revealed that, following an initiating event specific to 93 

cells lacking RecBCD, one daughter cell is generated that loses sequences of the terminus region 94 

and will not generate a viable daughter cell again, while the second cell retains a complete 95 

terminus region. This process is “inherited”, as the latter cell will generate once again one cell in 96 
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which sequences of the terminus region is lost and a second cell retaining the terminus region 97 

[34,36], suggesting that surviving cells retain a defect despite the termination area being intact. 98 

The data have led to a model in which one broken replication fork near the terminus region 99 

triggers formation of a chromosome with one linear dsDNA end, while the structure of the second 100 

replication fork remains intact. If not repaired this leads to a situation which is reminiscent of 101 

rolling-circle replication, retaining one circular chromosome in one cell and generating yet again 102 

a linear chromosome. Segregation problems of this linear chromosome then lead to guillotining 103 

of the damaged chromosome [25,34,36]. This model is able to explain in particular why after an 104 

initiating event one cell is generated in which degradation of the terminus region is observed and 105 

which is inviable, whereas the second cell is viable but retains a defect that triggers the same 106 

aberrant pattern in the next generation [25,34,36]. 107 

In this study we have further analysed replication dynamics and DNA degradation in cells 108 

lacking RecBCD. We show that in oriC+ oriZ+ ΔrecB cells in which replication is initiated at oriC 109 

as well as an additional ectopic replication origin, forks traversing in a direction opposite to 110 

normal are not able to proceed after encountering an rrn operon head-on, with little indication of 111 

forks being arrested elsewhere. Forks arrested trigger degradation by nucleases such as SbcCD, 112 

which is persistent enough to significantly interfere with firing of the ectopic origin more than 113 

100 kb away. No such degradation is seen in cells lacking Rep helicase, in which DNA replication 114 

is also severely blocked after encountering an rrn operon head-on. Our data show that SbcCD is 115 

also the nuclease that is responsible for the majority of the degradation in the terminus region of 116 

ΔrecB cells. However, in contrast to the situation at rrn operons, inactivation of SbcCD only 117 

reduces the extent of degradation, but does not abolish it, in line with the idea that a different 118 

process, such as septum formation, contributes to the DNA degradation observed [25,34,36]. 119 

Replication profiles from ΔrecB cells in which the chromosome is linearized at two different 120 

locations highlight that the termination point of forks can have some impact degradation. The 121 

data presented enhance our understanding of the role of RecBCD, both at replication-122 

transcription conflicts and at the final stages of chromosome duplication, but they also highlight 123 

that current models are not yet capable of fully explaining the events in cells lacking RecBCD.  124 

MATERIALS & METHODS 125 

Bacterial strains, growth media and general methods  126 

For Escherichia coli K12 strains see Supplementary Table 1. Strains were constructed via P1vir 127 

transductions [37] or by single-step gene disruptions [38]. For details of growth media see 128 

Supplementary Methods.  129 

Synthetic lethality assay 130 

The synthetic lethality assay was performed as described [39,40]. In essence, a wild type copy of 131 

a gene of interest (recB, rep) under its native promoter was cloned into pRC7, a lac+ mini-F 132 

plasmid that is rapidly lost, and used to cover the deletion of the same gene in the chromosome 133 

in a Δlac– background. Additional mutations can then be introduced to test for synthetic lethality 134 
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with the deleted allele. If synthetically lethal, cells that lose the plasmid will fail to grow and only 135 

lac+ colonies formed by cells retaining the plasmid will be observed. When viability is reduced but 136 

not eliminated, colonies formed by cells retaining the plasmid are noticeably larger than white 137 

colonies formed by plasmid-free cells. Cultures of strains carrying the relevant pRC7 derivatives 138 

were grown overnight in LB broth containing ampicillin to maintain plasmid selection, diluted 139 

100-fold in LB broth and grown without ampicillin selection to an A600 of 0.4 before spreading 140 

dilutions on LB agar or M9 glucose minimal salts agar supplemented with X-gal and IPTG. Plates 141 

were photographed and scored after 48 h (LB agar) or 72 h (M9 agar) at 37°C. At least two 142 

independent experiments were performed for each construct investigated. 143 

Marker frequency analysis by deep sequencing  144 

Marker frequency analysis by deep sequencing was performed as described before [13]. See the 145 

Supplementary Methods section for a detailed description. Replication profiles of all key 146 

constructs were confirmed by two independent experiments. 147 

Linearization of the E. coli chromosome 148 

Linearization of the E. coli chromosome was performed as described before [33,41]. See 149 

Supplementary Methods and Suppl. Figure 1 for further details. 150 

RESULTS 151 

Escherichia coli cells lacking RecBCD show a marked underrepresentation of sequences in the 152 

terminus region of the chromosome [33,42]. A recent analysis of this effect strongly suggests that 153 

the underrepresentation is caused by the degradation of chromosomal DNA, rather than an 154 

inability of forks to complete chromosome duplication [34,36]. The analysis of replication profiles 155 

in strains deficient for both RecBCD and the 3’ exonucleases ExoI and SbcCD has demonstrated 156 

that the extent of degradation observed in ΔrecB cells is much reduced if both ExoI and SbcCD 157 

are missing [35,36], in line with the observation that the combined inactivation of ExoI and 158 

SbcCD is able to suppress the defects in DNA recombination, repair, and viability of ΔrecBC cells 159 

[43,44]. However, both recent studies only show replication profiles of ΔrecB cells in which both 160 

ExoI and SbcCD are inactivated [35,36]. 161 

The extent of DNA degradation in the terminus area of recB cells mostly 162 

depends on SbcCD 163 

Cells lacking both ExoI (encoded by xonA) and SbcCD [45], but in particular cells lacking ExoI, 164 

SbcCD and ExoVII (encoded by xseA) showed dramatic over-replication of the termination area 165 

[33]. To investigate the effects of the inactivation of these exonucleases on the degradation in 166 

ΔrecB cells more systematically, we analysed the replication profiles of ΔrecB ΔxonA, ΔrecB 167 

ΔxseA and ΔrecB ΔsbcCD double mutants. We found that while the inactivation of both ExoI and 168 

ExoVII had little effect on the degradation of the terminus region in recB cells (Figure 1 ii & iii), 169 

deletion of sbcCD showed a marked effect (Figure 1 iv). The “valley” caused by the degradation is 170 

extremely narrow in ΔrecB ΔsbcCD cells. The addition of a ΔxonA mutation does not change the 171 
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replication profile of ΔrecB ΔsbcCD cells significantly (Figure 1 v). The valley appears slightly 172 

wider than in ΔrecB ΔsbcCD cells, but given that replication profiles suffer from some variability 173 

(see Suppl. Methods) we are currently not able to determine whether the degradation observed in 174 

ΔrecB ΔsbcCD and ΔrecB ΔsbcCD ΔxonA cells is significantly different.  Nevertheless, as observed 175 

before [35,36], the loss of sequences in the area around the dif site is as extreme in ΔrecB ΔsbcCD 176 

(ΔxonA) cells as it is in ΔrecB single mutants (cf. Figures 1 i & 1 iv). This strongly suggests that 177 

SbcCD, while mainly responsible for the extent of the degradation of DNA in the termination 178 

region of ΔrecB cells, is not responsible for the event that initiates the degradation. As a genetic 179 

interaction between recB and recJ was reported before [14], we also wanted to investigate the 180 

effect of a recJ deletion on the degradation in the termination area in ΔrecB cells. As shown in 181 

Figure 1 vi the replication profile of ΔrecB ΔrecJ cells suggests that RecJ might be responsible for 182 

some degradation, but the effect observed is mild in comparison to the deletion of sbcCD. 183 

Effect of rpo* and chromosome linearization on the degradation in the 184 

termination area of recB cells 185 

What might initiate degradation in the termination area? Using an approach similar to that 186 

described by Sinha and colleagues [36] we investigated whether the fusion of the two replisomes 187 

might be responsible for the initiation of DNA degradation in ΔrecB cells. To prevent replication 188 

forks from fusing, we linearized the E. coli chromosome near the dif site [41], an approach 189 

successfully used before to show that the over-replication of the termination area in cells lacking 190 

RecG is much reduced if the fusion of replisomes is prevented [33,46]. To achieve linearization 191 

the linearization site tos from bacteriophage N15 was integrated into the E. coli chromosome near 192 

dif. Upon lysogenic infection of these cells with N15, expression of the phage telomerase TelN 193 

cleaves and processes tos, thereby generating a linear chromosome with two hairpin ends (Suppl. 194 

Figure 1). Chromosome linearization of our ΔrecB construct resulted in the same striking 195 

asymmetry (Figure 2 v) as observed by Sinha and co-workers [36]. While degradation of the left-196 

hand replichore is prominently visible, degradation of the right-hand replichore is much reduced. 197 

It is noteworthy that the dif dimer resolution site is located in the non-degraded chromosomal 198 

end, demonstrating that recombination at dif is not responsible for triggering the DNA 199 

degradation observed, as reported [34].  200 

The asymmetry of degradation observed upon linearization of the chromosome could fit with 201 

a defined location where degradation is started. Linearization would then restrict degradation to 202 

the chromosome end that contains the location where degradation is started, while it would 203 

prevent degradation of the other end. A closer analysis of the replication profile of ΔrecB cells 204 

showed that the low point is located in a chromosomal area with genes that have little to do with 205 

DNA replication and repair or which are not fully characterised. The only obvious candidate genes 206 

were the hipA and hipB genes. The hipBA system is a toxin/antitoxin module. Expression of hipA 207 

was shown to activate ppGpp synthesis by RelA [47], which in turn leads to growth arrest due to 208 

inhibition of protein, RNA, and DNA synthesis [48]. DNA loss observed in the termination area 209 

of ΔhipA ΔrecB and especially in ΔhipB ΔrecB cells was larger than in ΔrecB single mutants 210 
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(Figure 3 iii & iv) as reported [34]. Thus, neither the hipAB gene products nor their coding 211 

sequences are responsible for initiation of the DNA degradation observed in recB cells.  212 

One of the effects of ppGpp is the modulation of RNA polymerase (RNAP). ppGpp binds next 213 

to the active site of RNAP and destabilises the open complexes [49,50]. The toxicity of HipA is 214 

normally counteracted by its binding partner HipB, a transcriptional repressor [51,52]. Thus, the 215 

particularly pronounced degradation observed in ΔhipB ΔrecB cells could be caused by RNA 216 

polymerase being less stably bound due to increased ppGpp levels, thereby allowing more 217 

processive DNA degradation by SbcCD. If so then introduction of a subclass of stringent RNAP 218 

mutations called rpo* should result in a similar widening of the degradation of the termination 219 

area, as rpo* mutations mimic the effect of ppGpp [53,54]. This was precisely what we observed. 220 

DNA degradation of the termination area in ΔrecB rpo* cells was significantly wider, very 221 

reminiscent of the degradation observed in ΔhipB ΔrecB cells (Figure 3 v). Thus, our data are in 222 

line with the idea that widening of the DNA degradation observed in ΔhipB cells is at least in part 223 

caused by the destabilisation of RNA polymerase via ppGpp. Because little effect of an rpo* 224 

mutation on the degradation in the termination area is seen in ΔrecB ΔsbcCD cells (Figure 3 vi) 225 

it seems that tight protein-DNA complexes might interfere specifically with SbcCD-dependent 226 

degradation of DNA. 227 

To further investigate whether degradation might be caused by a defined initiation point we 228 

used a strain in which the linearization site is moved to a different location. If the DNA 229 

degradation observed is caused by a defined initiation point, shifting the linearization point 230 

further into the non-degraded arm of the chromosome should cause no major change of the 231 

replication profile, as linearization should still protect the left-hand replichore from being 232 

degraded. To test this we used a construct in which the linearization site is shifted 200 kb away 233 

from dif into the left-hand replichore [41]. Because replication coming from oriC will have to 234 

proceed through both terC and terB in this construct to reach the end of the chromosome, the 235 

experiment required us to also delete tus, as described [41]. Strikingly, the replication profile of 236 

this construct revealed significant degradation of both chromosomal ends (Figure 2 vi). 237 

Linearization of the chromosome was confirmed both via PCR and pulsed-field gel electrophoretic 238 

analysis of high molecular weight chromosomal DNA (Suppl. Figure 1). In addition, the 239 

replication profile shows a very clear shift of the low-point from near dif in non-linearized 240 

constructs to the location of the +200 kb linearization site (Figure 2 vi), providing additional 241 

confirmation of the successful linearization of the chromosome. 242 

The fact that a shift of the linearization point restores a symmetrical degradation pattern 243 

strongly argues that DNA degradation is not triggered at a defined location. Instead, it appears 244 

that in ΔrecB cells with the chromosome linearized near dif, degradation is prevented by some 245 

feature of the left-hand replichore. Both the hipAB and rpo* results are in line with the idea that 246 

degradation might be modulated by protein-DNA complexes and a significant difference between 247 

linearization near dif and at the +200 kb site in the presence and absence of Tus protein, 248 

respectively. To investigate whether the relatively close proximity of the linearization point to 249 

ter/Tus complexes at terC/B might interfere with DNA degradation, we analysed the replication 250 

profile in a ΔrecB Δtus background in which the chromosome was linearized near the dif site. We 251 
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expected that the absence of ter/Tus complexes in close proximity of the linearization site would 252 

re-establish degradation in both chromosome ends. However, the replication profile remained 253 

asymmetric, despite the inactivation of the replication fork trap (Figure 2 viii). Thus, we currently 254 

do not know what factor might be protecting the left-hand replichore from degradation in recB 255 

cells in which the chromosome is linearized near dif. 256 

Replication dynamics in recB cells with an additional ectopic replication 257 

origin 258 

In order to investigate whether the degradation might be triggered by the processing of replication 259 

forks as they terminate we used cells in which a second ectopic origin, oriZ, was integrated into 260 

the chromosome [13,55]. One big difference between wild type and oriC+ oriZ+ cells is that 261 

replication forks coming from oriZ travelling clockwise will reach the replication fork trap much 262 

earlier than forks coming from oriC travelling counter clockwise. Upon deletion of tus the forks 263 

coming from oriZ will escape the termination area and proceed into the opposite replichore, 264 

forming a termination point roughly equidistant from both oriC and oriZ (Figures 4 i & 4 ii) [13]. 265 

Thus, if degradation in the absence of RecBCD is triggered by fusing forks, the area of degradation 266 

should be shifted together with the fork fusion point in oriC+ oriZ+ Δtus ΔrecB cells. In addition, 267 

introduction of a second ectopic replication origin also establishes a second and ectopic 268 

termination area between oriC and oriZ, with forks fusing between the rrn operons E and H 269 

(Figure 4 i) [13]. If fusing forks in general cause degradation in the absence of RecBCD this should 270 

be visible in the ectopic termination area.  271 

While both origins fire with similar frequency in oriC+ oriZ+ cells (Figure 4 i), the peak height 272 

of the ectopic oriZ is markedly decreased in oriC+ oriZ+ ΔrecB cells (Figure 4 iii), suggesting that 273 

it fires with a much reduced frequency in comparison to oriC, at least on a population basis. In 274 

addition, the ectopic fork fusion location is significantly skewed. Forks coming from oriZ appear 275 

to be unable to proceed past rrnH (Figure 4 iii). However, the low point of the replication profile 276 

in the native termination region of the chromosome proved to be precisely in the same location, 277 

regardless of the presence or absence of Tus (Figure 4 iv), and the extent of DNA degradation was 278 

identical (Figure 4 ivb).  279 

The lack of change of the location of the fork fusion point is most likely explained by the 280 

reduced firing of the ectopic oriZ. If the frequency of oriZ firing is low then forks will mostly 281 

initiate at the native oriC, which means the majority of fork fusion events will take place opposite 282 

in the native termination area, regardless of the presence or absence of Tus [5]. Any mild 283 

distortion of the replication profile by a small number of forks coming from oriZ is likely to be 284 

obscured by the DNA degradation in the termination area.   285 

The shift of the termination point in the ectopic fork fusion location is more informative. The 286 

termination point forms a defined valley with the low-point at rrnH, with little indication that any 287 

fork fusion events are taking place at the original fork fusion site at ~4.45 Mbp (cf. Figures 4 i & 288 

4 iii). RecBCD has been implicated in the processing of replication forks stalled at sites of 289 

replication-transcription conflicts [10,14]. If rrnH permanently blocks progression of replication 290 

forks coming from oriZ going in a direction opposite to normal in the absence of RecBCD, this 291 
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might explain the reduced oriZ peak height, because the permanent arrest of forks in relative 292 

proximity to oriZ will limit its capacity for firing.  293 

To investigate whether rrnH constitutes a strong block to DNA replication in the absence of 294 

RecB we tried to delete the native oriC in oriC+ oriZ+ ∆recB cells. If forks coming from oriZ are 295 

permanently blocked at or near rrnH, ΔoriC oriZ+ ∆recB cells should be inviable, as the second 296 

fork would be arrested in the native termination area. This is indeed what we observed (Figure 5). 297 

We found that oriC could only be deleted if recB was expressed in trans from a pRC7 plasmid 298 

carrying the wild-type recB gene. pRC7 is an unstable plasmid that contains a copy of the lac 299 

operon. It is rapidly lost if selection is not maintained. In a strain deleted for the chromosomal 300 

lac operon, the presence or absence of the plasmid can be detected on agar plates containing the 301 

beta-galactosidase indicator X-gal. Blue colonies show the presence of the plasmid (lac+), while 302 

white colonies show the absence of the plasmid. White sectors within blue colonies can be 303 

observed if plasmid loss occurs after plating [39,40]. This assay revealed that plasmid-free ΔoriC 304 

oriZ+ ΔrecB cells were unable to form colonies (Figure 5 xi). This observation demonstrates that 305 

when the chromosome is replicated exclusively from the ectopic replication origin oriZ, the 306 

RecBCD complex becomes essential for viability, in line with previous results [14]. 307 

Previous studies revealed that deletion of oriC from wild type cells carrying an ectopic origin 308 

(oriZ) compromises viability, leading to a much slower doubling time and the rapid accumulation 309 

of suppressor mutations [5,13]. This slow growth of ΔoriC oriZ+ cells is partially suppressed by a) 310 

the inactivation of the replication fork trap or b) an rpoB*35 point mutation, which reduces the 311 

stability of RNA polymerase-DNA complexes, thereby alleviating conflicts between replication 312 

and transcription [13]. To investigate whether the block of a replisome in the termination area at 313 

ter/Tus complexes creates a problem in cells lacking RecBCD we investigated whether oriC could 314 

be deleted from oriC+ oriZ+ ΔrecB cells if tus was deleted. This was not the case. As shown in 315 

Figure 5 xv, the deletion of the native origin in oriC+ oriZ+ Δtus ΔrecB cells did not result in viable 316 

colonies. Instead, the blue colonies observed showed noticeable size variations indicative of the 317 

presence of spontaneous suppressor mutations. This suggests that, rather than improving  318 

viability, the deletion of tus might make ΔoriC oriZ+ ΔrecB cells more sick, despite the fact that 319 

the recB deletion is covered by a recB+ plasmid.  320 

If replication-transcription clashes are responsible for the fork block at rrnH then an rpo* 321 

point mutation should partially suppress the lethality, as observed for ΔoriC oriZ+ cells [13]. 322 

However, the synthetic lethality assay showed only subtle effects. On LB broth ΔoriC oriZ+ ΔrecB 323 

rpo* cells remained inviable (Figure 5 xiii). If grown on minimal salts medium the white colonies 324 

observed grew more robustly (cf. Figures 5 xii & 5 xiv), indicating that under slow growth 325 

conditions an rpo* mutation somewhat improves the viability of ΔoriC oriZ+ ΔrecB cells.  326 

A mild positive effect of an rpo* point mutation was also noticeable when we analysed the 327 

replication profiles of oriC+ oriZ+ ΔrecB rpo* cells. As already observed in ΔrecB single origin 328 

cells (Figure 3 v) the rpo* mutation led to a significant widening of the DNA degradation in the 329 

termination area (Figure 4 v). In addition we observed that the ectopic oriZ showed a significantly 330 

increased peak height. While DNA synthesis is still strongly blocked at rrnH, the almost 331 

horizontal marker frequency between rrn operons H and E suggests that replication can proceed 332 
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through rrnH, albeit at a low frequency and/or with a slow speed, in line with the mild 333 

improvement observed in our synthetic lethality assay (Figure 5).  334 

The right-hand replichore of the E. coli chromosome contains 5 of the 7 highly transcribed 335 

rrn operons. We therefore repeated the experiments with a strain in which an ectopic replication 336 

origin called oriX was integrated into the left-hand replichore. Replication forks initiated at oriX 337 

and traversing counter clockwise will proceed through the termination area before being blocked 338 

at the first ter/Tus complex encountered in blocking orientation, which results in the clearly 339 

visible step of the replication profile at terA (Suppl. Figure 2 i). Upon deletion of recB we once 340 

again observed a substantial reduction of the oriX peak height, an effect that is also suppressed if 341 

an rpo* mutation is introduced (Suppl. Figures 2 ii & 1 iii).  342 

DNA degradation in recB cells at sites of replication-transcription conflicts 343 

If the reduction of the peak height of the ectopic origin is caused by the arrest or collapse of forks 344 

in relatively close proximity to the origin then we should observe a similar reduction in peak 345 

height in other mutants known to struggle with replication-transcription conflicts. To test this we 346 

generated replication profiles of oriC+ oriZ+ cells lacking Rep helicase, a protein important for 347 

aiding the progression of replisomes through transcribed regions of the chromosome [19,20,23]. 348 

The mean speed of replication fork movement in Δrep cells is significantly reduced in comparison 349 

to wild-type cells [19,23]. This is reflected in the increased origin/terminus ratio observed in the 350 

replication profile of Δrep single mutants (cf. Figures 6A i & 6A ii). As expected, the native origin 351 

could not be deleted in oriC+ oriZ+ Δrep cells unless an rpo* point mutation was introduced 352 

(Figures 6B vii & 6B ix); ΔoriC oriZ+ Δrep rpo* cells grew robustly, both on LB broth and minimal 353 

salts media. The replication profiles of oriC+ oriZ+ Δrep cells confirmed that the majority of forks 354 

arrested at rrnH (Figure 6A iv). Some forks were able to proceed, but either the speed of these 355 

forks is very slow or the fraction of forks being able to proceed is low or both. However, in contrast 356 

to our prediction we noticed that the peak height of the ectopic oriZ is almost as high as the peak 357 

height of oriC (Figure 6A iv). Upon introduction of an rpo* point mutation, replication appears 358 

to be able to proceed with relative ease beyond rrnH and peak heights of oriC and oriZ were 359 

almost identical (Figure 6A v).  360 

Why then is peak height of the ectopic origins in the absence of RecBCD so much reduced? 361 

RecBCD has not been implicated in origin activity and if the majority of forks coming from oriZ 362 

are stopped at rrnH in both ΔrecB and Δrep cells, both should exhibit a similar activity of oriZ. 363 

So what is causing the difference between ΔrecB and Δrep cells? Given the observation that SbcCD 364 

degrades DNA extensively in the absence of RecBCD in the termination area, we contemplated 365 

whether a similar type of degradation might be responsible for the reduced peak height. If forks 366 

stalled at rrnH are degraded by exonucleases towards oriZ in the absence of RecBCD this would 367 

limit the capacity of oriZ to fire. If so, peak heights of oriC and oriZ should be similar in oriC+ 368 

oriZ+ ΔrecB ΔsbcCD cells. This is precisely what we observed. Peak heights of oriC and oriZ were 369 

identical, with a dramatic drop of marker frequency towards rrnH (Figure 7 iii). Thus, it appears 370 

that, despite the presence of the accessory helicase Rep, head-on replication-transcription 371 

encounters at highly-transcribed genes require processing by RecBCD, as suggested [10,14]. In 372 
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the absence of RecBCD, fork structures become accessible to nucleolytic degradation and the data 373 

presented suggest that SbcCD is a key player for this degradation. However, it will require a more 374 

extensive analysis to verify whether and how much other exonucleases contribute.  375 

DISCUSSION 376 

In this study we show that the absence of RecBCD causes degradation of DNA by exonucleases 377 

such as SbcCD and RecJ in at least two different situations, namely in the termination area of the 378 

chromosome and at sites of severe replication-transcription conflicts. A variety of proteins have 379 

been suggested to facilitate progression of replication forks through areas with persistent protein-380 

DNA complexes, including the helicases Rep, UvrD and DinG and RecBCD helicase/exonuclease 381 

[14,17,19,20,29]. Rep helicase, which was shown to promote fork movement through 382 

nucleoprotein complexes, appears to have a prominent role, as its absence results in at least a 383 

two-fold increase in the time needed to duplicate a chromosome [17,19,20,23]. In cells carrying 384 

inverted rrn operons RecBCD helicase/exonuclease was required for viability [14,17] and a 385 

combination of rep and recBC mutations was shown to be synthetically lethal [30], highlighting 386 

the interaction between Rep and RecBCD. However, in contrast to Δrep, ΔrecB cells do not show 387 

an extensive delay of chromosome duplication [29].  388 

In line with these observations, our analysis of the replication profiles of Δrep and ΔrecB cells 389 

suggests very different replication issues. Cells lacking Rep helicase showed an overall increase of 390 

the origin/terminus ratio, without much indication of specific areas causing particular problems 391 

(Figure 6A). rrn operons encountered by replication in an orientation opposite to normal block 392 

the progression of synthesis and oriZ+ Δrep cells cannot survive in the absence of the native origin 393 

(Figure 6B). However, some replisomes are able to proceed, and robust viability is restored if 394 

replication-transcription conflicts are lessened by an rpo* point mutation (Figure 6B).  395 

rrn operons encountered in an orientation opposite to normal in cells lacking RecBCD appear 396 

to be a hard block to replication, with no indication of replisomes proceeding past the rrn operon 397 

(Figure 4). Introduction of an rpo* point mutation causes some alleviation, as viability of ΔoriC 398 

oriZ+ ΔrecB is improved if grown in minimal salts medium (Figure 5), but ΔoriC oriZ+ ΔrecB rpo* 399 

cells remain inviable on LB broth (Figure 5) and the replication profiles confirm that forks proceed 400 

past rrnH with a low frequency, low speed or both (Figure 4).  401 

On first glance these observations seem contradictory. The extreme block of replication at 402 

rrnH in oriC+ oriZ+ ΔrecB cells suggests that the role of RecBCD is extremely important, while in 403 

the absence of Rep at least some forks are able to proceed. On the other hand, ΔrecB cells do not 404 

show an extension of the time taken to duplicate the chromosome [29], in contrast to cells lacking 405 

Rep helicase [19,23,29], suggesting that the maintenance of rapid genome duplication is far more 406 

dependent on Rep helicase than RecBCD, as suggested [29]. Our data support the idea that the 407 

key may be the state of the replisome at sites of conflict, as suggested [29]. Replication appears to 408 

be able to proceed without much difficulty in ΔrecB cells until very highly-transcribed regions are 409 

reached in an orientation opposite to normal. As the overall co-directionality of replication and 410 

transcription is only just over 50% in E. coli [56], replication forks both coming from oriC and the 411 



12 
 

ectopic origins oriZ and oriX will encounter several genes in an orientation opposite to normal 412 

and there is no indication that these conflicts stop progression of replication. It seems that the 413 

presence of Rep helicase is fully sufficient to facilitate progression of replisomes through these 414 

areas. Forks encountering an rrn operon in an orientation opposite to normal apparently trigger 415 

a very different situation. It was shown before that in ΔuvrD Δrep rpo* cells both RecBCD and 416 

RecA are essential for survival, suggesting that not only the degradation of DNA by RecBCD but 417 

also the loading of RecA is required for the continuation of DNA replication [29]. Our data suggest 418 

that the reason for this is at least twofold. The replication profiles reveal that at such replication-419 

transcription conflicts an intermediate is generated that is accessible to degradation by SbcCD 420 

(Figure 7) and other nucleases such as RecJ [14]. Thus, one reason for the inability to restart 421 

replication in the absence of RecBCD appears to be that replication fork structures are extensively 422 

resected. There are few signs of degradation in Δrep cells, suggesting that it either does not take 423 

place or is much more limited (Figure 6). However, even in the absence of SbcCD the rrnH operon 424 

still forms a hard stop to DNA replication in ΔrecB cells, in line with the idea that without the 425 

ability to load RecA via RecBCD replication cannot continue [29].  426 

Our data are in line with the idea that RecBCD is required at sites where the block to 427 

replication forks is severe. A brief pause of replisome progression without the disassembly of the 428 

components is unlikely to require processing by RecBCD, and with the replisome intact it is 429 

unlikely that RecBCD will be able to access replication fork structures [29,57]. The action of 430 

accessory helicases such as Rep and UvrD is likely to be sufficient to allow replication to proceed. 431 

In contrast, a prolonged block to the progression of synthesis increases the likelihood of 432 

replisomes being inactivated and eventually disassembled [58–60]. Once the fork is disassembled 433 

the mere action of accessory helicases will be insufficient to restart synthesis. In addition, the 434 

disassembly of the replisome will also make the replication fork intermediates accessible for other 435 

enzymes such as nucleases. Indeed we have reported before that nascent DNA is extensively 436 

degraded via RecJ and RecBCD at sites where replication was stalled at UV-induced lesions if 437 

restart of synthesis is artificially prevented [61]. Thus, in the absence of RecBCD replication will 438 

be able to proceed at most sites where replication-transcription conflicts occur, but if the clashes 439 

cause a prolonged delay of replication with a partial or full disassembly of replisomes, cells 440 

struggle rather significantly with the restart of replication, thereby exposing replication 441 

intermediates to the action of exonucleases such as SbcCD and RecJ over extended periods of time 442 

(Figure 7) [14,61]. 443 

But what is causing the degradation in the termination area of ΔrecB cells? The involvement 444 

of SbcCD, which has been shown to cleave hairpin secondary structures in DNA close to the 445 

unpaired tip [62,63], has led to the suggestion that as part of termination replisomes move past 446 

each other, thereby transiently over-replicating a section of the chromosome. The over-replicated 447 

stretch might be incised by SbcCD, which would explain the degradation observed [35]. However, 448 

this hypothesis is unable to explain the existing data. Our replication profiles show that even in 449 

the absence of SbcCD degradation is still taking place, but the extent is much more limited (Figure 450 

1), in line with the replication profiles of ΔrecB ΔxonA ΔsbcCD cells (Figure 1) [35,36]. Thus, it 451 

appears that the event that enables degradation via SbcCD in ΔrecB cells is not prevented in the 452 
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absence of ExoI or by SbcCD, but the degradation following this event is far less extensive. 453 

Furthermore, the replication profiles of ΔrecB cells with the chromosome linearized in the +200 454 

kb position demonstrate that extensive amounts of degradation are still taking place despite the 455 

fact that the two replisomes can never move past each other (Figure 2).  456 

In two recent studies Sinha and colleagues thoroughly analysed the degradation in the 457 

termination area [34,36]. Their results suggest that the degradation is at least in part triggered by 458 

septum closure. Furthermore, it was shown that, following the initiating event, one daughter cell 459 

is generated that had lost sequences of the terminus region and will not generate a viable daughter 460 

cell again, while the second daughter cell had retained what appeared to be a complete terminus 461 

region. The latter cell generated again one cell in which sequences of the terminus region are lost 462 

and a second cell retaining the terminus region [34,36], suggesting that the initiating event results 463 

in a defect that is retained in the surviving cell. They proposed a model in which a broken 464 

replication fork near the terminus region triggers a broken, linear copy of a chromosome to be 465 

segregated into one daughter cell. The broken fork leads to a form of replication that has some 466 

similarity to rolling-circle replication, retaining one circular chromosome in one cell and 467 

generating again a linear chromosome which is segregated into the daughter cell [34,36]. Their 468 

model not only explains the pattern of one non-viable and one viable cell, the latter of which 469 

generates again a non-viable and a viable cell, but it also predicts that linearization of the 470 

chromosome should result in the degradation of one end, while the other end should be protected, 471 

as observed in cells where the chromosome is linearized near dif [34,36] (Figure 2). 472 

In contrast to the model proposed by Wendel and co-workers, the model proposed by Sinha 473 

and colleagues predicts that the initiating event in ΔrecB cells is independent of SbcCD, which fits 474 

well with our own observation that the loss of marker frequency near dif in ΔrecB ΔsbcCD cells is 475 

essentially as extreme as in ΔrecB cells while only the extent of degradation is reduced (Figure 1). 476 

Both a broken replication fork and the subsequent guillotining of the chromosome by septation 477 

would lead to marker loss, but the lack of degradation would cause the resulting valley of the 478 

replication profile to be much narrower. In principle this idea fits well with our data. While in 479 

double origin cells degradation is observed both in the termination area and at sites of replication-480 

transcription conflicts (Figure 4), degradation in both areas appears to be of a different nature. 481 

The degradation at sites of replication-transcription conflicts is less extreme than the degradation 482 

in the termination area, where a substantial depletion of terminus area sequences takes place. The 483 

data are in line with the idea that at sites of replication-transcription conflicts nascent DNA is 484 

resected by nucleases such as SbcCD and RecJ (Figure 7)  [14], similar to a situation where the 485 

restart of forks at small DNA lesions blocking progression of the replicative polymerase is 486 

prevented [61]. As in this case the parental strands are retained, degradation is only moderate, 487 

but if it proceeds far enough it can still interfere with the activity of the ectopic replication origin, 488 

explaining why origin firing of the ectopic origins is so much reduced as long as SbcCD is present 489 

(Figure 4). However, chromosome breakage by a broken replication fork or guillotining of the 490 

chromosome will cause more degradation due to the loss of the parental strands, as demonstrated 491 

by the disappearance of the fluorescence signal in the termination area [34,36]. As origin-492 



14 
 

proximal areas are segregated early, breakage would be unlikely to occur here, as they would have 493 

been moved out of the area where septation occurs. 494 

The data presented by Sinha and colleagues suggest that the degradation in the termination 495 

area is not directly linked to the fusion of replication forks [34,36]. Indeed, all of our replication 496 

profiles of ΔrecB cells show a remarkable consistency of the location of the low point in the 497 

termination area, even though the replichore arrangements are quite seriously distorted in oriC+ 498 

oriX+ and oriC+ oriZ+ cells (cf. Figure 4 and Suppl. Figure 2). In addition, if degradation was 499 

purely related to the fusion of forks, degradation both in the native and the ectopic termination 500 

areas should be similar, which, as just discussed, they are not. So has the fusion of two forks got 501 

nothing to do with the degradation? One argument against this notion is our observation that 502 

degradation in cells in which the chromosome is linearized 200 kb from dif is not only present in 503 

both chromosomal ends, but the low point is also significantly shifted. In fact, the model proposed 504 

by Sinha and colleagues would predict that degradation of one chromosome end should be 505 

protected, identical to the situation in cells where the chromosome is linearized near dif. So what 506 

causes this distinct difference? We cannot rule out that the symmetrical degradation is triggered 507 

by a secondary event that only happens if the chromosome is linearized within the +200 kb region. 508 

However, given that degradation is symmetrical in all ΔrecB constructs with the exception of cells 509 

where the chromosome linearized near dif, we prefer the explanation that the initiation of 510 

degradation is similar in all cells. Cells in which the chromosome is linearized near dif are an 511 

exception in which one chromosome end is protected from degradation. The fact that an rpo* 512 

mutation allowed more SbcCD-dependent degradation to occur but did not alter the extent of 513 

degradation in ΔrecB ΔsbcCD cells (Figure 3) supports the idea that stable protein-DNA 514 

complexes will slow degradation. However, we do not know what is responsible for this 515 

protection. It is not caused by proximity of a ter/Tus complex to the linearization site, as the 516 

deletion of tus had no impact on the protection of the non-degraded chromosome arm (Figure 2).  517 

But if the mechanism of degradation in ΔrecB cells in which the chromosome is linearized at 518 

+200 kb is the same as in ΔrecB single mutants, what is causing the degradation? Our data 519 

support the idea that forks stalled for prolonged periods at sites of replication-transcription 520 

conflicts might get disassembled, thereby allowing nucleases to gain access and start resection of 521 

nascent DNA (Figure 7). However, the model by Sinha and colleagues [34,36] suggests a second 522 

and completely independent event, a broken replication fork, to trigger degradation, which is also 523 

mediated by SbcCD (Figure 1). This then is exacerbated by guillotining of the chromosome. This 524 

model not only struggles to explain the symmetrical degradation in our ΔrecB cells where the 525 

chromosome is linearized at +200 kb, but it also struggles to explain why over-replication of the 526 

termination area is observed in ΔrecD single mutants [45]. Since two-ended dsDNA breaks are 527 

not repaired efficiently in the absence of RecD [64], the absence of RecD should still result in at 528 

least some depletion of sequences at break sites. Instead, over-replication is observed in the 529 

termination area of ΔrecD cells [45]. 530 

Could there be a different scenario? If disassembled replisomes require RecBCD for the 531 

efficient restart of replication and otherwise trigger degradation via nucleases such as SbcCD, 532 

could it not be that in an analogous way replisomes disassemble in the termination area, thereby 533 
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triggering nuclease degradation in the absence of RecBCD? Forks certainly will disassemble as 534 

part of the normal termination process, which might lead to intermediates accessible to nucleases 535 

in a fraction of cells [34,36], but other factors, such as the accumulation of torsional stress, could 536 

lead to some pausing of synthesis as replication is close to being completed [65]. The resulting 537 

degradation would initially be a resection similar to that observed at rrnH in oriC+ oriZ+ ΔrecB 538 

cells, which would be relatively mild. This is in line with the observation that degradation in ΔrecB 539 

ftsA(ts) cells, in which septum closure is inhibited, is mild at restrictive temperature [34]. 540 

However, any degradation will interfere with successful chromosome segregation, as degradation 541 

would interfere with completion of chromosome duplication. The inability to fully segregate the 542 

chromosomes would then easily explain why guillotining is taking place, as suggested [34,36]. As 543 

the initiating event is not a dsDNA break, lack of RecD would not have as much of an impact. 544 

Given that ΔrecD cells show a hyper-recombination phenotype [66], stalled forks might trigger 545 

more recombination events which would potentially allow completion of DNA replication. This 546 

would prevent any guillotining, while the elevated recombination frequency would explain the 547 

observed over-replication [45]. In addition, this scenario has fewer difficulties explaining why 548 

degradation is taking place at both chromosome ends in ΔrecB cells in which the chromosome is 549 

linearized at +200 kb. It would predict that some degradation would indeed be dependent on the 550 

location of fork fusion, but that the excessive loss of sequences of the termination area is triggered 551 

by septum closure. Indeed, a connection is formed between the FtsZ-ring and the Ter 552 

macrodomain [67], which might explain why the location of the low point of the replication 553 

profiles in ΔrecB cells is so similar in a variety of different backgrounds (cf. Figures 1, 4 and Suppl. 554 

Figure 2) unless chromosome positioning is disturbed in cells lacking FtsK translocase [34].  555 

While the above order of events might be better suited to explain some of the experimental 556 

data, they struggle to explain the persistent degradation observed by Sinha and colleagues. The 557 

pattern observed suggests that one chromosomal copy is degraded and produces a cell that is not 558 

viable, while the second copy remains intact enough to continue a full replication cycle. However, 559 

some sort of defect must remain, as the same cycle is repeated. The more or less stochastic 560 

guillotining of the chromosome, despite any positioning effects that might take place, is unlikely 561 

to affect only one chromosomal copy with such specificity. In addition, the inability to segregate 562 

chromosomes efficiently, either due to a broken replication fork or a partially under-replicated 563 

chromosome, would be expected to prevent formation of the Z-ring. Multiple proteins, including 564 

SulA, SlmA and MinC, are involved in preventing Z-ring formation over the nucleoid in E. coli 565 

[67] However, when we compared cell length in wild type and ΔrecB cells grown in LB broth, cells 566 

lacking RecB show a reduction of cell size with little indication of filamentation (Suppl. Figure 3). 567 

Thus, we believe the precise nature of the molecular events leading to the degradation of DNA in 568 

cells lacking RecB still remains to be determined. 569 
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 741 

FIGURE LEGENDS 742 

Figure 1. The absence of nucleases modulates the extent of the marker frequency loss in the 743 

terminus area of ΔrecB cells. Exonucleases I, VII, SbcCD and RecJ are encoded by xonA, xseA, 744 

sbcCD and recJ, respectively. The replication profiles are generated by plotting the number of 745 

sequence reads (normalised against reads for a stationary phase wild type control) against their 746 

chromosomal location. The schematic representation of the E. coli chromosome above each panel 747 

shows the positions of oriC and ter sites (above) as well as the dif chromosome dimer resolution 748 

site and rrn operons A–E, G and H (below). The strains used were JD1269 (ΔrecB), JD1148 749 

(ΔrecB ΔxonA), JD1150 (ΔrecB ΔxseA), JD1146 (ΔrecB ΔsbcCD), JD1147 (ΔrecB ΔxonA ΔsbcCD) 750 

and JD1139 (ΔrecB ΔrecJ). 751 

Figure 2. The effect of chromosome linearization on the marker frequency loss in the terminus 752 

area of ΔrecB cells is dependent on the precise linearization location. The replication profiles are 753 

generated by plotting the number of sequence reads (normalised against reads for a stationary 754 

phase wild type control) against their chromosomal location. The schematic representation of the 755 

E. coli chromosome above each panel shows the positions of oriC and ter sites (above) as well as 756 

the dif chromosome dimer resolution site and rrn operons A–E, G and H (below). The 757 

linearization locations are shown in orange. The strains used were MG1655, JD1269 (ΔrecB), 758 

SLM1093 (ΔrecB tos), SLM1103 (ΔrecB N15 lysogen), SLM1100 (ΔrecB tos N15 lysogen), JD1306 759 

(ΔrecB Δtus tos +200 kb N15 lysogen), JD1367 (ΔrecB Δtus tos) and JD1371 (ΔrecB Δtus tos N15 760 

lysogen). 761 

Figure 3. Modulation of RNA polymerase increases marker frequency loss in the terminus area 762 

of ΔrecB cells. The replication profiles are generated by plotting the number of sequence reads 763 

(normalised against reads for a stationary phase wild type control) against their chromosomal 764 

location. The schematic representation of the E. coli chromosome above each panel shows the 765 

positions of oriC and ter sites (above) as well as the dif chromosome dimer resolution site and rrn 766 

operons A–E, G and H (below). The strains used were MG1655, JD1269 (ΔrecB), JD1301 (ΔhipA 767 

ΔrecB), JD1294 (ΔhipB ΔrecB), JD1143 (ΔrecB rpoB*35) and JD1422 (ΔrecB rpoB*35 ΔsbcCD). 768 
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Figure 4. Activity of an ectopic replication origin is reduced in the absence of RecBCD due to 769 

replication-transcription conflicts. The replication profiles are generated by plotting the number 770 

of sequence reads (normalised against reads for a stationary phase wild type control) against their 771 

chromosomal location. The schematic representation of the E. coli chromosome above each panel 772 

shows the positions of the two origins, oriC and oriZ, and ter sites (above) as well as the dif 773 

chromosome dimer resolution site and rrn operons A–E, G and H (below). The strains used were 774 

RCe504 (oriC+ oriZ+), RCe567 (oriC+ oriZ+ Δtus), JD1144 (oriC+ oriZ+ ΔrecB), JD1140 (oriC+ 775 

oriZ+ Δtus ΔrecB) and JD1145 (oriC+ oriZ+ ΔrecB rpoB*35). 776 

Figure 5. Maintenance of viability of oriC+ oriZ+ and ΔoriC oriZ+ cells in the absence of RecBCD. 777 

The plate photographs shown are of synthetic lethality assays, as described in Materials and 778 

Methods. The relevant genotype of the construct used is shown above each photograph, with the 779 

strain number in parentheses. The fraction of white colonies is shown below, with the number of 780 

white colonies/total colonies analysed in parentheses. The plasmid used was pAM375 (recB+) (see 781 

Supplementary Information).  782 

Figure 6. Replication dynamics and cell viability in cells with one or two active replication origins 783 

lacking Rep helicase. A) Replication fork progression is blocked at highly transcribed regions 784 

replicated in a direction opposite to normal in oriC+ oriZ+ cells lacking Rep helicase. The 785 

replication profiles are generated by plotting the number of sequence reads (normalised against 786 

reads for a stationary phase wild type control) against their chromosomal location. The schematic 787 

representation of the E. coli chromosome above each panel shows the positions of the two origins, 788 

oriC and oriZ, and ter sites (above) as well as the dif chromosome dimer resolution site and rrn 789 

operons A–E, G and H (below). The strains used were MG1655, JD1123 (Δrep), RCe504 (oriC+ 790 

oriZ+), JD1141 (oriC+ oriZ+ Δrep) and JD1142 (oriC+ oriZ+ Δrep rpoB*35). B) Maintenance of 791 

viability of oriC+ oriZ+ and ΔoriC oriZ+ cells in the absence of Rep helicase. The plate photographs 792 

shown are of synthetic lethality assays, as described in Materials and Methods. The relevant 793 

genotype of the construct used is shown above each photograph, with the strain number in 794 

parentheses. The fraction of white colonies is shown below, with the number of white 795 

colonies/total colonies analysed in parentheses. The plasmid used was pAM403 (rep+) (see 796 

Supplementary Information). 797 

Figure 7. The reduced activity of an ectopic replication origin in the absence of RecBCD is caused 798 

by SbcCD. The replication profiles are generated by plotting the number of sequence reads 799 

(normalised against reads for a stationary phase wild type control) against their chromosomal 800 

location. The schematic representation of the E. coli chromosome above each panel shows the 801 

positions of the two origins, oriC and oriZ, and ter sites (above) as well as the dif chromosome 802 

dimer resolution site and rrn operons A–E, G and H (below). The strains used were JD1428 (oriC+ 803 

oriZ+ ΔsbcCD), JD1144 (oriC+ oriZ+ ΔrecB) and JD1429 (oriC+ oriZ+ ΔrecB ΔsbcCD). 804 
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SUPPLEMENTARY METHODS 824 

Growth media  825 

Luria broth (LB) and agar was modified from Luria and Burrous [1] as follows: 1% tryptone 826 

(Bacto™, BD Biosciences), 0.5% yeast extract (Bacto™, BD Biosciences) and 0.05% NaCl (Sigma 827 

Aldrich). The pH was adjusted to 7.4. Mu broth for bacteriophage P1 and N15 work contained 1% 828 

tryptone (Bacto™, BD Biosciences), 0.5% yeast extract (Bacto™, BD Biosciences) and 1% NaCl 829 

(Sigma Aldrich). The pH was adjusted to 7.4. M9 minimal medium (Sigma-Aldrich) contained 15 830 

g/L KH2PO4, 64 g/L Na2HPO4, 2.5 g/l NaCl and 5.0 g/L NH4Cl. Before use, MgSO4, CaCl2 and 831 

glucose were added from sterile-filtered stock solutions to final concentrations of 2 mM, 0.1 mM 832 

and 0.2%, respectively, according to the manufacturer’s recommendation. Doubling times of 833 

MG1655 in our growth media were 19.3 ± 1.7 min in LB and 68.8 ± 6.2 min in M9 glucose. 834 

Marker frequency analysis by deep sequencing 835 

Marker frequency analysis by Deep Sequencing was performed as described previously [2–4] with 836 

only minor modifications. Samples from cultures of a strain grown over night in LB broth were 837 

diluted 100-fold in fresh LB broth and incubated with vigorous aeration until an A600 reached 838 

0.48 at 37°C to ensure they were in exponential growth conditions. Cultures were then diluted a 839 

second time 100-fold in pre-warmed fresh broth and grown again until an A600 of 0.48 was 840 

reached. Samples from these exponential phase cultures were flash-frozen in liquid nitrogen at 841 

this point for subsequent DNA extraction. For wild type, incubation of the remaining culture was 842 

continued until several hours after the culture had saturated and showed no further increase in 843 

the A600. A further sample (stationary phase) was frozen at this point. DNA was then extracted 844 

using the GenElute Bacterial Genomic DNA Kit (Sigma-Aldrich). Marker frequency analysis was 845 

performed using Illumina HiSeq 2500 sequencing (fast run) to measure sequence copy number. 846 

FastQC was used for a basic metric of quality control in the raw data. Bowtie2 was used to align 847 

the sequence reads to the reference. Samtools was used to calculate the enrichment of uniquely 848 

mapped sequence tags in 1 kb windows.  849 

For presentation of the data as a marker frequency replication profile the raw read counts for 850 

each construct were divided by the average of all read counts across the entire genome to correct 851 

for the somewhat different absolute numbers of aligned reads in the various samples. The 852 

normalised read count values for each exponentially growing sample were then divided by the 853 

corresponding normalised read count value from a stationary (non-replicating) sample. This 854 

division “cleans” the raw data significantly, because data points which are outliers caused by 855 

technical aspects (precise sequence environment interfering with library preparation or similar 856 

issues) will be similarly distorted both in the exponential and the stationary samples. However, 857 

while true in principle, we have observed that there can be variations specifically in these noisy 858 

data points even within a single batch of samples processed in parallel. If the absolute sequence 859 

reads of the genome fragments causing the noisy data points in a sample are underrepresented in 860 

comparison to the same fragments in the stationary phase sample, then the division process 861 

described above causes all of these data points to skew below the position of the neighbouring 862 
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data points. In contrast, if the absolute sequence reads of the fragments are higher than the 863 

sequence reads in the stationary control, then the same division process causes all of these data 864 

points to skew above the position of the neighbouring data points. An example of this effect can 865 

be seen in Figure 1. While the sample in panel i shows no skew, indicating that noise both in the 866 

exponential sample and the stationary sample are comparable, the samples in panels iii and iv 867 

show a clear skew of all noisy data points below the level of neighbouring data points. We do not 868 

currently know what is causing such variations even though we have run extensive tests to try to 869 

identify their cause. From our tests we suspect that a combination of factors including quality of 870 

genomic DNA preparation and library generation contributes to this effect. Whatever the reason, 871 

these problems affect mostly the noise and do not obscure the general trend of the bulk of the data 872 

points.  873 

Bacteriophage N15 infection and lysogen preparation  874 

For preparation of a phage N15 plate lysate, cells from an overnight culture grown in Mu were 875 

spun down and resuspended in 10 mM MgSO4. Phage N15 was diluted in M9 minimal medium 876 

without glucose, 105–106 phage particles mixed with 100 µl of the prepared cells and the mixture 877 

incubated 5 min at room temperature. 2.5 ml Mu were added, followed by 2.5 ml molten Mu top 878 

agar (45°C), mixed and poured on top of a fresh Mu plate. Plates were incubated upright at 37°C 879 

for 7 h. 2 ml of M9 minimal medium without glucose were pipetted onto the plate and the top agar 880 

overlay was scraped off and transferred into a centrifugation tube. 0.5 ml chloroform was added 881 

and cell debris and top agar removed by centrifugation (10,000 rpm, 4°C). For determination of 882 

the phage N15 titer as well as infection of target strains, N15 was diluted in M9 minimal medium 883 

without glucose. 100 µl of the target or tester strain was mixed with 2.5 ml molten Mu top agar 884 

(45°C) and poured on top of a fresh Mu plate. 20 µl drops of appropriate dilutions of a lysate were 885 

placed on the top agar and incubated at room temperature until dry. The plate were then 886 

incubated over night at 37°C. For infection and lysogen preparations, 10 µl drops containing ~104 887 

phage particles were used. 888 

Plasmids used in this study 889 

Plasmids pAM374 (priA+), pAM375 (recB+) and pAM403 (rep+) have been described elsewhere 890 

[5]. All carry lac+. pAM374 (priA+) and pAM375 (recB+) require IPTG for expression, as the genes 891 

are under control of the vector plac promoter. pAM403 carries rep under control of its native 892 

promoter [5].  893 

  894 



24 
 

TABLES 895 

Table 1: Escherichia coli K-12 strains 896 

Strain number Relevant Genotypea Source 

General P1 donors 

DL729 ΔsbcCD::kan recD1009 supE supF David Leach 

JW1500-2 BW25113 ΔhipA728::<kan> CGSC c 

JW1501 BW25113 ΔhipB729::<kan> CGSC c 

RUC1593 DY330 pheA::oriX-cat Ole Skovgaard 

STL2694 xonAΔ300::cat thr-1 leuB6 proA2 supE44 kdg51 
rfbD1 araC14 lacY1 galK2 xyl-5 mtl-1tsx-33 
rpsL31 rac– 

Susan Lovett 

MG1655 derivatives 

MG1655 F– rph-1 [6] 
AM1580 ΔlacIZYA recB268::Tn10 pAM375 [5] 

AM1675 ΔrecB::dhfr A.A. Mahdi and R.G. Lloyd, 
unpublished 

AM1775 Δtus::cat [7] 

AM1969 Δrep::dhfr A.A. Mahdi and R.G. Lloyd, 
unpublished 

BW66 tos+200kb-kan [8] 

JD1101 ΔlacIZYA oriZ-<cat> ΔrecB::dhfr ΔoriC::kanb 
pAM375 

RCe601  A× P1.RCe395 to Kmr 

JD1123 Δrep::kan MG1655 × P1.N5960 to Kmr 

JD1126 ΔlacIZYA recJ284::Tn10 TB28 × N4934 to Tcr 

JD1127 ΔlacIZYA recJ284::Tn10 pAM375 JD1126 × pAM375 to Apr 

JD1129 ΔlacIZYA oriZ-<cat> pAM403 RCe544 × pAM403 to Apr 

JD1130 rpoB*35 ΔlacIZYA oriZ-<cat> pAM403 RCe585 × pAM403 to Apr 

JD1133 ΔlacIZYA recJ284::Tn10 ΔrecB::dhfr pAM375 JD1127 × P1.AM1675 to Tmr Apr 

JD1134 ΔlacIZYA oriZ-<cat> ΔrecB::dhfr Δtus::kan 
pAM375 

RCe601 × P1.RCe203 to Kmr 

JD1137 ΔlacIZYA oriZ-<cat> Δrep::dhfr pAM403 JD1129 × P1.RCe371 to Apr Tmr 

JD1138 rpoB*35 ΔlacIZYA oriZ-<cat> Δrep::dhfr 
pAM403 

JD1130 × P1.RCe371 to Tmr Apr 

JD1139 ΔlacIZYA recJ284::Tn10 ΔrecB::dhfr plasmid-free derivative of 
JD1133 

JD1140 ΔlacIZYA oriZ-<cat> ΔrecB::dhfr Δtus::kan plasmid-free derivative of 
JD1134 

JD1141 ΔlacIZYA oriZ-<cat> Δrep::dhfr plasmid-free derivative of 
JD1137 

JD1142 rpoB*35 ΔlacIZYA oriZ-<cat> Δrep::dhfr plasmid-free derivative of 
JD1138 

JD1143 rpoB*35 ΔlacIZYA recB268::Tn10 plasmid-free derivative of N7592 

JD1144 ΔlacIZYA oriZ-<cat> ΔrecB::dhfr plasmid-free derivative of 
RCe601 



25 
 

JD1145 rpoB*35 ΔlacIZYA oriZ-<cat> ΔrecB::dhfr plasmid-free derivative of 
RCe603 

JD1146 ΔsbcCD::kan ΔrecB::dhfr RCe562 × P1.AM1675 to Tmr 

JD1147 ΔxonA::apra ΔsbcCD::kan ΔrecB::dhfr RCe569 × P1.AM1675 to Tmr 

JD1148 ΔxonA::apra ΔrecB::dhfr RCe563 × P1.AM1675 to Tmr 

JD1150 ΔxseA::dhfr recB268::Tn10 RCe564 × P1.N7592 to Tcr 

JD1181 ΔlacIZYA pheA::oriX-cat TB28 × P1.RUC1593 to Cmr 

JD1185 ΔlacIZYA pheA::oriX-cat pAM375 JD1181 × pAM375 to Apr 

JD1190 rpoB*35 ΔlacIZYA pheA::oriX-cat N5925 × P1.RUC1593 to Cmr 

JD1191 ΔlacIZYA pheA::oriX-cat ΔrecB::dhfr pAM375 JD1185 × P1.AM1675 to Tmr Apr 

JD1195 rpoB*35 ΔlacIZYA pheA::oriX-cat pAM375 JD1190 × pAM375 to Apr 

JD1199 rpoB*35 ΔlacIZYA pheA::oriX-cat ΔrecB::dhfr 
pAM375 

JD1195 × P1.AM1675 to Tmr Apr 

JD1252 ΔhipA728::<kan> MG1655 × P1.JW1500-2 to Kmr 

JD1269 ΔlacIZYA ΔrecB::dhfr TB28 × P1.AM1675 to Tmr 

JD1270 ΔhipB729::<kan> MG1655 × P1.JW1501 to Kmr 

JD1286 tos+200kb-kan ΔrecB::dhfr BW66 × P1.AM1675 to Tmr 

JD1294 ΔhipB729::<kan> ΔrecB::dhfr JD1270 × P1.AM1675 to Tmr 

JD1297 tos+200kb-kan ΔrecB::dhfr Δtus::cat JD1286 × P1.AM1775 to Cmr 

JD1301 ΔhipA728::<kan> ΔrecB::dhfr JD1252 × P1.AM1675 to Tmr 

JD1306 tos+200kb-kan ΔrecB::dhfr Δtus::cat N15 
lysogen 

JD1297 × N15 to N15r 

JD1318 rpoB*35 ΔlacIZYA oriZ-<cat> recB268::Tn10 
pAM375 

RCe598 × P1.N4278 to Tcr Apr 

JD1321 ΔlacIZYA oriZ-<cat> recB268::Tn10 pAM375 RCe597 × P1.N4278 to Tcr Apr 

JD1322 rpoB*35 ΔlacIZYA oriZ-<cat> recB268::Tn10 
tus1::dhfr pAM375 

JD1318 × P1.N6798 to Tmr Apr 

JD1325 rpoB*35 ΔlacIZYA oriZ-<cat> Δrep::dhfr 
ΔoriC::kanb  pAM403 

JD1138 × P1.RCe576 to Kmr Apr 

JD1326 ΔlacIZYA oriZ-<cat> recB268::Tn10 tus1::dhfr 
pAM375 

JD1321 × P1.N6798 to Tmr Apr 

JD1330 rpoB*35 ΔlacIZYA oriZ-<cat> recB268::Tn10 
tus1::dhfr ΔoriC::kanb pAM375 

JD1322 × P1.RCe576 to Kmr Apr 

JD1331 ΔlacIZYA oriZ-<cat> recB268::Tn10 tus1::dhfr 
ΔoriC::kanb pAM375 

JD1326 × P1.RCe576 to Kmr Apr 

JD1337 ΔlacIZYA oriZ-<cat> Δrep::dhfr ΔoriC::kanb 
pAM403 

JD1137 × P1.JD1325 to Kmr Apr 

JD1344 ΔlacIZYA pheA::oriX-cat ΔrecB::dhfr Plasmid-free derivative of JD1191 

JD1345 rpoB*35 ΔlacIZYA pheA::oriX-cat ΔrecB::dhfr Plasmid-free derivative of 
JD1199 

JD1359 tos-kan Δtus::cat RCe427 × P1.AM1775 to Cmr 

JD1367 tos-kan Δtus::cat ΔrecB::dhfr JD1359 × P1.AM1675 to Tmr 

JD1371 tos-kan Δtus::cat ΔrecB::dhfr N15 lysogen JD1367 × N15 to N15r 

JD1412 rpoB*35 ΔlacIZYA ΔsbcCD::kan N5925 × P1.RCe562 to Kmr 

JD1422 rpoB*35 ΔlacIZYA ΔsbcCD::kan recB268::Tn10 JD1412 × P1.N4278 to Tcr 

JD1428 oriZ-<cat> ΔsbcCD::kan RCe504 × P1.RCe562 to Kmr 

JD1429 oriZ-<cat> ΔsbcCD::kan recB268::Tn10 JD1428 × P1.N4278 to Tcr 
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JJ1359 ΔlacIZYA dam1::kan ΔrecG::apra tus1::dhfr [7] 

N4278 recB268::Tn10 [9] 

N4560 ΔrecG265::cat [9] 

N4934 recJ284::Tn10 [10] 

N5286 xonAΔ300::cat MG1655 × P1.STL2694 to Cmr 

N5296 xonAΔ300::cat ΔsbcCD::kan N5286 × P1.DL729 to Kmr 

N5925 rpoB*35 ΔlacIZYA [11] 

N5960 priA300 ΔlacIZYA Δrep::kan pAM374 [5] 

N6539 ΔlacIZYA Δrep::kan pAM403 [11] 

N6798 ΔrecG265::cat tus1::dhfr N4560 × P1.JJ1359 to Tmr 

N7582 rpoB*35 ΔlacIZYA pAM375 N5925 × pAM375 to Apr 

N7592 rpoB*35 ΔlacIZYA recB268::Tn10 pAM375 N7582 × P1.TRM308 to Tcr Apr 

N7684 ΔlacIZYA ΔsbcCD::spc ΔxseA::dhfr 
ΔxonA::apra pAM401 

[12] 

RCe203 tnaA::Tn10 dnaA46 Δtus::kan [7] 

RCe371 Δrep::dhfr pDIM113 AM1969 × pDIM113 to Apr 

RCe395 rpoB*35 tnaA::Tn10 dnaA46 ΔrnhA::cat 
tus1::dhfr ΔoriC::kanb 

[7] 

RCe427 tos-kan [7] 

RCe504 oriZ-<cat> [2] 

RCe544 ΔlacIZYA oriZ-<cat> [2] 

RCe562 ΔsbcCD::kan MG1655 × P1.N5296 to Kmr 

RCe563 ΔxonA::apra MG1655 × P1.N7684 to Aprar 

RCe567 oriZ-<cat> tus1::dhfr [2] 

RCe569 ΔxonA::apra ΔsbcCD::kan RCe563 × P1.N5296 to Kmr 

RCe576 rpoB*35 oriZ-<cat> tus1::dhfr ΔoriC::kanb [2] 

RCe585 rpoB*35 ΔlacIZYA oriZ-<cat> N5925 × P1.RCe544 to Cmr 

RCe597 ΔlacIZYA oriZ-<cat> pAM375 RCe544 × pAM375 to Apr 

RCe598 rpoB*35 ΔlacIZYA oriZ-<cat> pAM375 RCe585 × pAM375 to Apr 

RCe601 ΔlacIZYA oriZ-<cat> ΔrecB::dhfr pAM375 RCe597 × P1.AM1675 to Tmr 

RCe603 rpoB*35 ΔlacIZYA oriZ-<cat> ΔrecB::dhfr 
pAM375 

RCe598 × P1.AM1675 to Tmr 

RCe613 rpoB*35 ΔlacIZYA oriZ-<cat> ΔrecB::dhfr 
ΔoriC::kanb  pAM375 

RCe603 × RCe395 to Kmr 

SLM1092 tos-kan MG1655 × P1.RCe427 to Kmr 

SLM1093 tos-kan ΔrecB::dhfr SLM1092 × P1.AM1675 to Tmr 

SLM1100 tos-kan ΔrecB::dhfr N15 lysogen SLM1093 × N15 to N15r 

SLM1103 ΔrecB::dhfr N15 lysogen AM1675 × N15 to N15r 

TRM308 ΔargE::I-SceIcs recB268::Tn10 sbcA [5] 

TB28 ΔlacIZYA [13] 

a – Only the relevant additional genotype of the derivatives is shown. The abbreviations apra, kan, cat and dhfr refer to 897 

insertions conferring resistance to apramycin (Aprar), kanamycin (Kmr), chloramphenicol (Cmr) and trimethoprim 898 

(Tmr), respectively. Tn10 indicates the presence of a transposon 10 integration, which confers resistance to tetracyclin 899 

(Tcr). ‘<>’ indicates the use of frt sites, where frt stands for the 34 bp recognition site of the FLP/frt site-directed 900 

recombination system. Thus, <kan> refers to a kanamycin marker flanked by an frt site either side. tos refers to the 901 

telomerase occupancy site from the bacteriophage N15 genome followed by a kanamycin resistance cassette [8]. The 902 
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term “× N15 to N15r” refers to isolation of E. coli cells lysogenized with bacteriophage N15. These cells can be identified 903 

by their resistance to re-infection with N15 (see Supplementary Methods). All plasmids are described and cited in 904 

Supplementary Methods. 905 

b – ΔoriC refers to a replacement of the entire origin region (754 bp) including DnaA boxes and 13mers as well as the 906 

entire mioC gene by a kanamycin resistance cassette [7]. 907 

c – Coli Genetic Stock Center, Yale University. 908 

SUPPLEMENTARY FIGURE LEGENDS 909 

Suppl. Figure 1. Linearisation of the Escherichia coli chromosome. A) Schematic 910 

representation of the tosRL processing by the bacteriophage N15 telomerase TelN. B) 911 

Schematic representation of the area around the aroH gene, 200 kb from the dif dimer 912 

resolution site, with and without integrated tosRL-kan site. The linearisation verification 913 

primers are shown in green (for primer sequences see [8]) and the PCR product sizes in wild 914 

type cells und integrants are indicated. C) PCR products generated with the linearisation 915 

verification primers for wild type cells lysogenized with phage N15 (lane 1), tos+200kb-kan 916 

cells (lane 2) and two tos+200kb-kan constructs lysogenized with phage N15 (lanes 3 & 4). 917 

The shift of the PCR product size in lane 2 indicates the presence of the tos+200kb-kan 918 

cassette. Linearisation of the chromosome (lanes 3 & 4) prevents formation of a PCR product 919 

since the chromosome is interrupted between the primer binding sites. The absence of a 920 

detectable PCR product confirms that the amount of circular chromosomes unprocessed by 921 

TelN in the population is very low, as reported [8]. D–G) Verification of chromosome 922 

linearisation by pulse field gel electrophoresis. Processing of the tos+200kb-kan cassette by 923 

TelN splits the 250.16 kb NotI fragment between positions 1,611,219 and 1,861,382 into a 924 

175.16 and a 75 kb fragment (G). This can be easily detected via pulse field gel electrophoresis 925 

(D–F). Both the 175.16 kb and the 75 kb fragment are absent in cells containing only the 926 

tos+200kb-kan cassette (lane 1), but become detectable in two separate constructs upon 927 

phage N15 lysogenic infection (lanes 2 & 3).  928 

Suppl. Figure 2. Activity of an ectopic replication origin in the left-hand replichore is 929 

reduced in the absence of RecBCD due to replication-transcription conflicts. The replication 930 

profiles are generated by plotting the number of sequence reads (normalised against reads 931 

for a stationary phase wild type control) against their chromosomal location. The schematic 932 

representation of the E. coli chromosome above each panel shows positions of the two 933 

origins, oriC and oriX, and ter sites (above) as well as the dif chromosome dimer resolution 934 

site and rrn operons A–E, G and H (below). The strains used were JD1181 (oriC+ oriX+), 935 

JD1344 (oriC+ oriX+ ΔrecB) and JD1345 (oriC+ oriX+ ΔrecB rpoB*35).  936 

Suppl. Figure 3. Cell sizes of wild type and ΔrecB cells grown in LB broth. For all strains 937 

samples from fresh overnight cultures grown in LB broth were diluted 100-fold in fresh LB 938 

broth and incubated with vigorous aeration until an A600 reached 0.48 at 37°C to ensure they 939 
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were in exponential growth conditions. Cells were transferred onto a slide covered with an 940 

agarose pad and the slides examined using a Nikon Ti-U inverted microscope equipped with 941 

a DS-Qi2 camera (Nikon). Images were taken and cell lengths of 150 cells per strain analysed 942 

via Nikon NIS-Elements Br software 4.3 (Nikon). 943 
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