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Summary. Fertility plans, measured by the number of planned children, have been found to
be affected by education and family background via complex tail dependences. This challenge
was previously met with the use of non-parametric jittering approaches. The paper shows how
a novel generalized additive model based on a discrete Weibull distribution provides partial
effects of the covariates on fertility plans which are comparable with jittering, without the inherent
drawback of conditional quantiles crossing. The model has some additional desirable features:
both overdispersed and underdispersed data can be modelled by this distribution, the conditional
quantiles have a simple analytic form and the likelihood is the same as that of a continuous
Weibull distribution with interval-censored data. Because the likelihood is like that of a continuous
Weibull distribution, efficient implementations are already available, in the R package gamlss,
for a range of models and inferential procedures, and at a fraction of the time compared with the
jittering and Conway—Maxwell—-Poisson approaches, showing potential for the wide applicability
of this approach to the modelling of count data.

Keywords: Count data; Discrete Weibull distribution; Generalized additive model; Planned
fertility

1. Introduction

Fertility plans measured by the number of planned children, or ideal fertility, have been pre-
viously found to be affected by education and family background (Knodel and Prachuabmoh,
1973; Pritchett, 1994). In a recent study in Mexico, Miranda (2008) showed how the dependence
of ideal fertility on education and family background is complex, with effects mostly at the tail
of the distribution, and how ideal fertility is typically underdispersed relative to a Poisson dis-
tribution. In this paper, using the latest data from the Mexican national survey of demographic
dynamics conducted by the Instituto Nacional de Estadistica y Geografia (Instituto Nacional
de Estadistica y Geografia, 2014), we propose a novel regression model to discover determinants
of planned fertility and to quantify this dependence.

Methods to address questions such as this fall in the general area of regression analysis of
count data, with many applications ranging from healthcare, biology, social science, marketing
and crime data analyses (Cameron and Trivedi, 2013; Hilbe, 2014). Among these methods, gen-
eralized linear models (Nelder and Wedderburn, 1972) are popular in the parametric literature.
Here, the conditional distribution of the response variable given the predictors is assumed to fol-
low a specified distribution, with the conditional mean linked to the predictors via a regression
model. For example, Poisson regression assumes that the conditional distribution is Poisson
with a conditional mean regressed on the covariates through the log-link function. Although
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Poisson regression is fundamental to the regression analysis of count data, it is often of lim-
ited use for real data, because of its property of equal mean and variance. Real data usually
present overdispersion relative to a Poisson distribution or the opposite case of underdispersion.
Negative binomial regression is widely considered as the default choice for data that are overdis-
persed relative to a Poisson distribution, although other options, such as the Poisson—inverse
Gaussian model (Willmot, 1987), are available. However, neither negative binomial regression
nor the Poisson—-inverse Gaussian model can deal with data that are underdispersed relative to
a Poisson distribution. These can arise in various applications, such as in cases where the data
are preprocessed for confidentiality (Kadane et al., 2006). There have been some attempts to
extend Poisson-based models to include also underdispersion, such as the generalized Poisson re-
gression model (Consul and Famoye, 1992), Conway—Maxwell-Poisson regression (Sellers and
Shmueli, 2010), extended Poisson process models (Smith and Faddy, 2016) or hyper-Poisson
regression models (Saez-Castillo and Conde-Sanchez, 2013). These models are all modifications
of a Poisson model and have been shown to be quite complex and computationally intensive in
practice (Chanialidis ef al., 2018).

At the other end of the spectrum of parametric approaches, quantile regression approaches
focus on modelling individual quantiles of the distribution and linking these to the predictors
via a regression model. Of particular note for discrete responses are the quantile regression
models for binary and multinomial responses of Manski (1985) and Horowitz (1992), and the
median regression approach with ordered response of Lee (1992). For a general discrete response,
the literature on quantile regression for counts is mainly dominated by the jittering approach of
Machado and Santos Silva (2005), which was also rephrased in a Bayesian framework by Lee and
Neocleous (2010) in the context of an environmental epidemiology study. In these approaches,
the fitted regression parameters are specific to the selected conditional quantile, thanks to the
use of quantile-specific loss functions. Performing inference across a range of quantiles provides
a global picture of the conditional distribution of the response variable, without having to
specify the parametric form of the conditional distribution. This has proven to be quite useful
in practice, particularly in cases where the relationship between the response and predictors is
complex. This was in fact found in the planned fertility data set of Miranda (2008), whereby a
jittering approach revealed effects mostly at the tails of the conditional distribution.

Quantile regression approaches, however, suffer from some drawbacks: inference must be
made for each individual quantile, separate quantiles may cross and, in the case of jittering,
the underlying uniform random sampling can generate instability in the estimation. The para-
metric literature, however, has addressed more complex dependences either by developing new
distributions with additional parameters, e.g. the generalized gamma approach of Noufaily and
Jones (2013) for continuous responses, or by adopting more flexible non-parametric functions
to link the parameters of the conditional distribution to the covariates, leading to semipara-
metric approaches. Among this second line of research, one of the most popular approaches is
the generalized additive model for location, scale and shape (Rigby and Stasinopoulos, 2005;
Stasinopoulos and Rigby, 2017). This paper fits within this literature. In particular, we introduce
a generalized additive discrete Weibull (DW) regression model. The DW distribution itself was
originally developed by Nakagawa and Osaki (1975) as a discretized form of the continuous
Weibull distribution, which is popular in survival analysis and failure time studies. Since then,
aside from some early work on parameter estimation (Khan et al, 1989; Kulasekera, 1994),
and some limited use in applied contexts (Englehardt and Li, 2011; Englehardt et al., 2012),
there are not many other contributions in the literature. Recently, we have introduced this
distribution in a simple linear regression context (Klakattawi ez al., 2018; Haselimashhadi
et al., 2018), showing several desirable features: it can model both overdispersed and underdis-
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persed data, without being restricted to either of the two, and the conditional quantiles have a
simple analytical form. Moreover, in this paper we show how the likelihood from a DW model
is the same as that of a continuous Weibull distribution with interval-censored data, so effi-
cient implementations of more complex models, such as non-linear models, mixed models and
mixture models, are already available in the R package gamlss (Rigby and Stasinopoulos,
2005).

We present the DW distribution in Section 2 and the novel generalized additive model in
Section 3. In Section 4, we assess the performance of the proposed model on a simulation study,
against that of the jittering approach and existing parametric approaches. Finally, in Section 5,
we show how the DW generalized additive model selected on the real data returns partial effects
of planned fertility similar to those of the jittering approach, without the inherent drawback of
quantile crossing, and is comparable with the fitting of a Conway—Maxwell-Poisson model, at
a fraction of the time.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679876/series-
c-datasets

2. Discrete Weibull distribution

In this section, we report some important results on the DW distribution which will be used
later in the paper.

2.1. The distribution
If Y follows a (type 1) DW distribution (Nakagawa and Osaki, 1975), then the cumulative
distribution function of Y is given by

Fog.p={1=a Rory=0123
0 otherwise
and its probability mass function by
8 1\
f(y;q,ﬁ):{qy —at fory=0,1,2,3..... )]
0 otherwise

with the parameters 0 < g <1 and 8> 0. Since f(0)=1— g, the parameter q is directly related
to the percentage of Os.

2.2. Moments and quantiles
It can be shown that for a DW distribution

Em=Y%¢", Q)
y:l
E(YY)= > 2y- g =2 > yg*' — E(Y),
y= y=

for which there are no closed form expressions, but numerical approximations can be obtained
on a truncated support (Barbiero, 2015).
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As for quantiles, the T-quanfgile of a DW distribution is given by the smallest integer y(;) for
which P(Y < i) =1—¢©*D" > 7. This gives

log(1-7) """

with [-] the ceiling function. From this
1 1
log(pesry +1) = 3 log{—log(1-7)} - 3 log{—1log(q)}. 4)

Given that Y is non-negative and that the cumulative density function is 1 — g at 0, the quantile
is defined only for 7 > 1 — g. As a special case, the median of a DW distribution is given by

In))/?
p=[{-E2"-].

Thus the quantiles of a DW distribution are given by simple analytical formulae.

2.8. Likelihood and link with continuous Weibull distribution

There is a natural link between the DW distribution and the continuous Weibull distribution
with interval-censored data. The DW distribution was in fact developed as a discretized form
of the continuous Weibull distribution (Chakraborty, 2015). In particular, let ¥ be a random
variable distributed as a continuous Weibull distribution, with probability density function and
cumulative density function given by

fw(:q, 3 = Blog(g)y’ exp{—y’log(q)} y=0,
Fw (4, 8)=1—exp{—ylog(¢q)}

respectively. Then one can show that
J)=Fw(y+1—Fw() y=0,1,...

where f(y) is the DW probability mass function of equation (1). From this
y+1
/ Sw®de= f(y).
y

Thus the likelihood of a continuous Weibull distribution with interval-censored data is equal to
that of a DW distribution, i.e.

n

f[l Fon=TT{FwGi+1) — FwOn}.

i=1

2.4. Discrete Weibull distribution accounts for overdispersion and underdispersion
Dispersion in count data is formally defined in relation to a specified model being fitted to the
data (Cameron and Trivedi, 2013). In particular, let

observed variance

" theoretical variance’

So VR is the ratio between the observed variance from the data and the theoretical variance from
the model. Then the data are said to be overdispersed, equidispersed or underdispersed relative
to the fitted model if the observed variance is larger than, equal to or smaller than the theoretical
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Fig. 1. Ratio of observed and theoretical variance from a Poisson model, calculated from data simulated
by a DW(q, (3) distribution

variance specified by the model respectively. It is common to refer to dispersion relative to a
Poisson distribution. In that case, the variance of the model is estimated by the sample mean.
Thus, overdispersion, equidispersion or underdispersion relative to a Poisson distribution refer
to cases where the sample variance is larger than, equal to or smaller than the sample mean
respectively. Since the theoretical variance of a negative binomial distribution is always greater
than its mean, the negative binomial regression model is the natural choice for data that are
overdispersed relative to a Poisson distribution. However, crucially, a negative binomial model
cannot handle underdispersed data.

In contrast with this, Klakattawi et al. (2018) show how a DW distribution can handle data
that are both overdispersed and underdispersed relative to a Poisson distribution. In particular,
Fig. 1 shows how the DW distribution can capture cases of underdispersion, equidispersion
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and overdispersion relative to a Poisson distribution. Specifically, the white area corresponds to
values of dispersion less than 1, i.e. underdispersed relative to a Poisson distribution, whereas
the black area corresponds to overdispersion. Moreover, the plot shows that

(a) 0 < B < 1isacase of overdispersion, regardless of the value of ¢,

(b) 8 > 3isacase of underdispersion, regardless of the value of ¢; in fact, the DW distribution
approaches the Bernoulli distribution with mean p and variance p(1 — p) for 8 — oo, and

(¢) 1 < B < 3 leads to both cases of overdispersion and underdispersion depending on the
value of g.

3. Discrete Weibull generalized additive model

3.1. Generalized additive model for location, scale and shape formulation

To capture complex dependences between the response and the covariates, such as those that
we expect in our real application on planned fertility, we propose generalized additive models
to link both parameters of the distribution to the covariates. In particular, we assume that
the response Y has a conditional DW distribution, with the parameters ¢ and 3 linked to the
covariates x by

P
log[—log{g(x)}]= Zl fo(xp),
p=

P
log{B(x)} = Zl 9p(xp),
p=

where x = (x1,...,xp) is the vector of covariates and the functions f, and g, can be specified
parametrically or non-parametrically. Using a basis spline representation (De Boor, 1972), the
model can be written as

log[—log{g(x)}]= Z Z 90pdx + E E Opi (xp — gpi) PP 10 p > g i),

, p;ld p=1k= (6)
log{A(x)}= Z Z Dopaxy+ Z Z Dk p = gpi) P 1y > gpi),
p=1k=1

where D and D’ denote the polynomial degrees, K and K’ are the number of knots for each
covariate X ,, with g, the corresponding knots, I(-) is the indicator function and (6, ) is the
vector of parameters to be estimated. The log—log-link in ¢ is motivated by the analytical
formula for the quantile (equation (4)), which facilitates the interpretation of the parameters as
discussed in the next subsection. Other link functions are possible, such as the logit link on g,
as explored by Haselimashhadi et al. (2018) for the simple regression case.

Thanks to the link with the continuous Weibull likelihood that was described in Section
2, inference for these models is available in the R package gamlss under the WEIic family
(Stasinopoulos and Rigby, 2007). Various model formulations and inference procedures are
available in that package, such as the function bs for unpenalized basis splines, cs for smoothing
cubic splines, where the coefficients are estimated under a penalty on the functions’ second
derivatives, and pb for penalized basis splines, where the differences in the coefficients of the
basis functions are penalized to guarantee sufficient smoothness (Eilers and Marx, 1996).

Adding a link to both parameters means that conditional quantiles of various shapes and
complexity can be captured. Considering one covariate x only, and dropping the indices p of
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the model for simplicity, we look closely at four cases to inspect the level of flexibility of a DW
model in approximating conditional distributions.

(a)

(b)

©

(d)

3.2.

DW linear regression model on q(x) with 3 constant: this model is specified as in equation
(6) with D=1, D’ =0 and no knots, i.e.

log[—log{q(x) }] =600 + bo1x,
log(3) =vp.

Fig. 2(a) shows the case 8pp = —5, Op; = —3 and Yoo = —1.5, and plots log(psr) + 1)
from equation (4). As expected by that equation, a linear model with § constant returns
log-quantiles which are linear and parallel.

DW linear regression model on q(x) and (3(x): this model is specified as in equation (6)
with D= D’'=1 and no knots, e.g.

log[—log{q(x) }] =000 + o1 x,
log{3(x)} = %00 + Y01,
for the case of a linear model on both ¢g(x) and ((x). Fig. 2(b) shows the case gy = —5,
0p1 = —3, Y90 =—1.5 and 9y; =2, and shows how a non-constant 3 enables us to obtain
log-quantiles that are not parallel.
DW non-linear model for q(x) with (3 constant: setting D=K =3 and D'=K'=0 in
equation (6) leads to a B-spline model for g(x) with three interior knots:

log[—log{q(x) }1= oo + fo1x + 0p2x” + Op3x” + 01 (x — 91)* (x> g1)
+02(x— g2 1(x> 92) +03(x — 93)° I(x > g3),
log () = Yoo-

Cubic splines are typically sufficiently complex for most real applications (Dierckx, 1995).
Fig. 2(c) shows the quantiles for the cubic spline model with gg = —5, 0y = —5, 0y = —6,
0o3 =—4, 6, =—8, 6, =-9, 83 =—8 and Y99 = —1. The cubic spline, together with the
assumption of a constant (3, leads to parallel and non-linear log-quantiles, as expected by
equation (4).

DW non-linear model for q(x) and 3(x): setting D= K = D' = K’ =3 in equation (6) leads
to a B-spline model for ¢(x) and 3(x) with three interior knots:

log[— log{q(x)}] =000 + Oo1.x + o2x” + Op3x” + 01 (x — g1)* I(x > g1)
+602(x = g2)° I(x > 2) +03(x — g3)* [(x > g3),
log{B(x)} = o0 + fo1.x + Vo2x” + Po3x” + 91 (x — g1)* [(x > g1)
+02(x— 92) (x> g2) +93(x — g3)° [(x > g3).
Fig. 2(d) shows the quantiles for the cubic spline model with 6y = —5, 6y; = —5, 0p» = —6,
903 = —4, 91 = —8, 92 =—-9and 03 = —8, and 1900 = 1, 1901 = —1.1, 1902 = —1.2, 19()3 = —0.5,
Y91 =—1.3, 9 =—1 and ¥3 = —1.2. The cubic spline on both parameters leads to non-
parallel and non-linear log-quantiles.

Interpretation of discrete Weibull regression coefficients and output

After a DW regression model has been estimated, the following results can be obtained:

(a) the fitted values for the central trend of the conditional distribution, namely
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(1) the mean (equation (2), as mentioned earlier, can be calculated numerically by using
the approximated moments of the DW distribution (Barbiero, 2015)) and
(i1) the median (equation (5) can be applied; owing to the skewness, which is common for
count data, the median is more appropriate than the mean);
(b) the conditional quantile for any 7 by using equation (3), i.e.

log(1 — 7)} 1/6x) -‘
— —1{.
log{q(x)}

The analytical expression of the quantiles, combined with the chosen link function, offers a

way of interpreting the parameters. Considering a simple regression model on ¢ (case (a) above;
Klakattawi et al. (2018)), equation (4) at the median leads to

() (X) = [phgaery (X) ] = { {

1 1
log{pso5(x)+1}= 5 log{log(2)} — Bx’@.

Thus, the regression parameters 8 can be interpreted in relation to the logarithm of the median,
by analogy with Poisson and negative binomial models where the parameters are linked to the
logarithm of the mean. In particular, [log{log(2)} —6y]/0 is related to the conditional median
when all covariates are set to 0, whereas —60,/3, p=1,..., P, can be related to the change in
the median of the response corresponding to a 1-unit change in X ,, keeping all other covariates
constant.

For more complex models, partial effects can be computed for each covariate and for each
quantile as in Machado and Santos Silva (2005). In particular, let x? denote the vector of predic-
tors, where each predictor is set to their sample mean & if continuous and to 0 if dummy. Then,
the effect for the regressor x,, on the T-quantile of the response is calculated as the difference

PE(xp, 7) = pigar) (X)) — pigar) (2°), @)

1

p is equal to xY for all entries with the exception of the pth entry which is increased by

where x
1 unit.

3.3. Model selection and diagnostic checks

Model selection, in terms of polynomial degree and the number of interior knots, is carried
out based on known model selection criteria. In this paper we shall use the Akaike information
criterion AIC. After fitting a DW regression model, the goodness of fit is checked on the basis
of the randomized quantile residuals, as developed by Dunn and Smyth (1996) and advised in
the case of non-Gaussian responses (Rigby and Stasinopoulos, 2005). In particular, let

Fi= @ (u)) i=1,...,n

where ®(-) is the standard normal distribution function and u; is a uniform random variable on
the interval

(ai, bi]= (ilgl F(y:d;, 8), Fizdin 57)]
~[F(yi — 1G5, 80, Fvis 4is B

These residuals are expected to follow the standard normal distribution if the model is correct.
Hence, the validity of a DW model can be assessed by using goodness-of-fit investigations of
the normality of the residuals, such as Q—Q-plots and normality tests.
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4. Assessing the performance of discrete Weibull regression models

This section performs a comparison of DW regression models with existing parametric ap-
proaches and with the jittering approach of Machado and Santos Silva (2005). As the jittering
approach fits each conditional quantile separately, we measure the performance of the models
for three selected quantiles, namely 7=0.25, 0.5,0.75. For each 7 and for each model, we evaluate
the accuracy in the estimation of the conditional quantile by calculating the root-mean-squared
error:

RMSE=/[__ZI{m<T) — it P2/ |, ®)

where n is the sample size, p;(-) is the true quantile at observation x; and fi; ;) is the correspond-
ing fitted quantile from the specified model. For DW distributions, this is calculated by using
equation (3).

We compare our approach with the following parametric approaches: Poisson, negative bino-
mial, Conway—Maxwell-Poisson, generalized Poisson and Poisson—inverse Gaussian. All dis-
tributions, and corresponding generalized additive models, are implemented in the R package
gamlss, with the exception of the Conway—Maxwell-Poisson model. We therefore opt for an
unpenalized basis spline formulation of the generalized additive models and implement this
also for the Conway—Maxwell-Poisson model by using the g1lm. cmp function in the R package
COMPoissonReqg (Sellers et al., 2010). Similarly, for the non-parametric jittering approach,
we implement a generalized additive model by using the rg. counts function in the Qtools
package (Geraci, 2017).

4.1. Simulation 1: simulating data from our discrete Weibull model
We first simulate data from our proposed model (equation (6)). We consider various sample
sizes, n =50, 100, 1000, a covariate X ~ N(0, 1) and a conditional DW distribution where we
link the parameters to the covariates by using a generalized additive model under two levels of
dispersion. In particular, we generate data by using a cubic B-spline model for ¢(x) and ((x)
with the parameters given by

log[—log{g(x)}]=—5—5x — 6x” —4x” — 8(x — g1)’ I(x > g1)

—9(x =) 1(x> g2) = 8(x — g3) I(x > g3),

(a) (overdispersed)

log{B(x)} =0.840.8x +0.9x> +0.8x> + 1.2(x — g1)* I(x > g1)
+ L1 — ) [(x > go) + (x — g3)* [(x > g3),
(b) (underdispersed)

log{B()} =124+ 1.3x+ LIx* + 1.2> + 1.5(x — g1)* 1(x > g1)
+ 13— )’ (x> g2) + (x — g3)* [(x > g3).

This generally corresponds to the fourth, more complex, case in Fig. 2(d). Setting the values as
above leads to overdispersion values between 1.3 and 3.2 and underdispersion values between
0.4 and 0.7.

Fig. 3 reports the errors in equation (8), averaged over 100 iterations and across the three dif-
ferent quantiles (7=0.25, 0.5, 0.75). For each model, we consider a B-spline generalized additive
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Fig. 3. Comparison of various models in terms of root-mean-squared error (equation (8)) on (a) overdis-
persed and (b) underdispersed data simulated from a DW model using a cubic B-spline on g(x) and 5(x),
with increasing sample sizes (n=50,100,1000) (the error is averaged over 100 iterations and across

three quantiles (7 = 0.25,0.5,0.75)): , DW (B-spline); , Poisson (B-spline); — — —, Conway—
Maxwell-Poisson (B-spline); - — -, negative binomial (B-spline); ------ , generalized Poisson (B-spline);
------ , jittering (B-spline); - — -, DW (linear)

Table 1. Simulated data from the negative binomial model of equation (9): comparison of jittering, DW with
linear link on g and 3, DW with linear link on g and constant 3, negative binomial model with linear link on p
and o

T Jittering DW{q(x).5; DW{q(x).5(x) } NB{u(x),0(x) }

n=>50 n=100 n=1000 n=50 n=100 n=1000 n=50 n=100 n=1000 n=50 n=100 n=1000

0.25 0.607 0.483 0269 0.782 0.493 0386 0.568 0422  0.252 0.526 0.421  0.208
0.50 0.668 0442 0.262 0.743 0.505 0.305 0.591 0444  0.250 0.580 0.439  0.219
0.75 0945 0.603 0.274 0928 0.618 0.269 0.858 0.576 0.266 0.782 0.543  0.244

+The RMSE is calculated at three different quantiles.

specification with the same complexity as the data-generating model (D= K = D’ = K’ =3) and
we place the inner knots at the quartiles of the covariate X. The same is done for the jittering
approach. Note, however, that the jittering approach contains many more parameters than the
parametric approaches since in this case the generalized additive models are fitted for each quan-
tile. To assess the real need for the generalized additive component, we also include in the simu-
lation a simpler DW regression model with a linear link on g and 8 (D=D'=1; K =K' =0). As
expected, the DW B-spline model fits better than the other models, whereas the DW linear model
cannot compete with the non-linear models. The jittering B-spline approach shows good flexi-
bility across the different scenarios, but some instability in parameter estimation was observed



12 A. Peluso, V. Vinciotti and K. Yu

at small sample sizes. The ranking of the parametric models is not always consistent. Across
various additional experiments and alternative models, we found that the DW model is followed
closely by the negative binomial and Poisson—inverse gamma models in the overdispersed case
and by the Conway—Maxwell-Poisson model in the underdispersed case. The computational
time between the DW and Conway—Maxwell-Poisson models, however, is strikingly different,
with the Conway—Maxwell-Poisson model taking approximately 129 s, compared with the DW
model which took only 0.3 s, for a single simulation of the results reported here.

4.2. Simulation 2: simulating data from a negative binomial model with tail effects

In a second simulation, we test the performance of our approach in the case of misspecifica-
tion and tail behaviour. In particular, we simulate data with a negative binomial conditional
distribution, with the parameters . (mean) and o (dispersion) linked to the covariates by

log{p(x)}=0.6+0.4x,

log{c(x)} =—542x>. ®

We simulate tail behaviour by letting the dispersion parameter depend on a regressor that does
not affect the mean.

Table 1 reports the square root of the error in equation (8), averaged over 100 iterations,
with X and X, drawn from an N(0, 1) distribution and for three different sample sizes (n =
50, 100, 1000). The complexity of the models is selected to match that of the generating model
(equation (9)), i.e. a linear link on both parameters. For the DW model, we also considered a
simpler model where (3 is held constant. It is interesting that the more complex DW model is
performing similarly to the well-specified negative binomial model, whereas keeping 3 constant
in the DW model leads to poorer results. Indeed, looking at the parameter estimates of the
more complex DW model, X is found significant in predicting ¢ whereas X» is significant in
the regression on [, suggesting that the regression on both parameters helps to identify more
complex dependences such as tail behaviour.

5. Modelling the relationship between family background and planned fertility

We use the latest data from the national survey of demographic dynamics in Mexico (Instituto
Nacional de Estadistica y Geografia, 2014) to study the effect of education and family back-
ground on fertility plans. In particular, we take as dependent variable the number of planned
children declared by young Mexican women at the survey interview. As in Miranda (2008), we
consider women between 15 and 17 years old who at the time of the interview were living with
at least one biological parent and had neither started independent economic life nor entered
motherhood. This selection avoids any confusion between current and planned fertility and
ensures that all individuals are broadly at the same point of their life cycle. Some covariates are
selected to control for education and family background: whether the teenager can speak an
indigenous or native language, whether primary, secondary and higher education attainments
were completed, a wealth index (low, medium low, medium high and high), the location of
the parental household (rural, urban and suburban) and a set of variables describing the socio-
economic characteristics of the head of the family, among which the age and gender and the same
educational attainment covariates were considered for the teenagers. Finally, the total number
of people living with the teenager (family size) and a series of dummies indicating the state of
residence (32 in total) are also used as explanatory variables. This gives a total of 53 explanatory
variables in this study and a sample size of 5906 women. Fig. 4 shows the distribution of the
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Fig. 4. Distribution of the response variable: ideal number of children for 15-17-years-old Mexican women

Table 2. The Poisson, DW and Conway—Maxwell-Poisson generalized additive models selected on the
ideal fertility data with a B-spline (with degree D and number of internal knots k) for two of the variables+

Model AIC Log-likelihood Number Age (family head)  Family size  Time (s)
of parameters
D k D k
Poission 19779.59 —9838.796 51 1 1 1 0 0.14
DW 19351.46 —9561.731 114 2 3 2 2 9.67
Conway—Maxwell- 19175.24 —9475.621 112 1 1 3 3 7339.46
Poisson

TThe last column reports the system time.

response variable. Without taking into consideration the effect of the covariates, the distribution
of ideal fertility shows underdispersion relative to a Poisson distribution with a dispersion index
of 0.86, higher than that of the 1997 data (0.55), possibly because a small number of outliers
(eight women) declared more than 12 planned children (the maximum in Miranda (2008)).

We fit Poisson, Conway—Maxwell-Poisson and DW generalized additive models to these data
(the generalized Poisson model had problems of convergence with this data set). As penalized
regression splines are not implemented for Conway—Maxwell-Poisson models, unpenalized B-
splines were used for all models, with knots placed at the quantiles of the covariates. Given
the computational complexity of the Conway—Maxwell-Poisson model but in the interest of a
fair comparison, we select the best model with the following strategy: we fix a linear link on all
parameters (one for the Poisson and two for the DW and Conway—Maxwell-Poisson models);
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Fig. 5. Q-Q-plot of the randomized quantile residuals of the (a) Conway—Maxwell-Poisson and (b) DW
generalized additive models fitted to the ideal fertility data
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Table 3. Partial effects on ideal fertility for the jittering (top) and the DW (bottom)
generalized additive models for the regressors that are found significant at the 5%
level by the DW modelf

Regressor Results for the following values of T.

0.25 0.5 0.75 0.9 0.95 0.99
Jittering
family size —0.01 —0.038 —0.054 —0.069 —0.076  —0.362
HFage 0.037 0.035 0.041 0.12 0.168 0.317
cprimary 6.971 2.929 2.216 1.221 1.624 5.082
isecondary 7.233 2.729 1.942 0.89 1.447 5.443
csecondary 7.336 2.82 2.047 0.706 1.837 3.016
osecondary 7.335 2.811 2.019 0.985 1.481 5.549
wealth_mlow —0.077 —0.111 —0.167  —0.166 0.109 0.564
wealth_mhigh —0.074 —0.128 —0.183 —0.096 0.245 2.477
wealth_high —0.087 —0.07 —0.063 0.052 0.979 3.852
HFmale 0.048 0.011 0.053 0.039 —-0.044  —1.062
HFcprimary 0.111 0.056 0.061 —0.117  —-0.218  —1.664
HFisecondary 0.101 0.029 0.021 —0.185  —0.338 —1.151
HFcsecondary —0.031 0.09 0.178 —0.039  —-0.324  —-2.209
HFosecondary 0.062 0.022 0.085 0.06 0.163 0.031
Dw
family size —0.003 —0.042 —0.096 —0.155  —0.194  —0.273
HFage 0.028 0.045 0.066 0.087 0.1 0.126
cprimary 2.386 2.625 2.741 2.756 2.731 2.627
isecondary 2.429 2.582 2.598 2.517 2.434 2.220
csecondary 2.814 2.79 2.607 2.337 2.139 1.710
osecondary 2.517 2.66 2.663 2.568 2.475 2.243
wealth_mlow —0.265 —0.179 —0.005 0.223 0.387 0.746
wealth_mhigh —0.405 —0.215 0.172 0.684 1.059 1.888
wealth_high —0.344 —0.094 0.377 0.984 1.423 2.387
HFmale 0.095 0.033 —0.064 —-0.176  —0.252  —0.409
HFcprimary 0.313 0.134 —0.129 —-0422  -0.618 —1.017
HFisecondary 0.221 0.083 —0.124 —0.357  —0.513 —0.833
HFcsecondary 0.266 0.063 —0.227 —0.546  —0.757 —1.184
HFosecondary 0.133 0.09 0.014  —0.077  —0.141 —0.274

TFor jittering, significance at 5% for each quantile is highlighted in italics.

then we consider the inclusion of possible non-linear terms for the two non-categorical variables
(age of the head of the family and family size) in a forward stepwise manner. For this, we select
the same level of complexity for each parameter and we search for all model combinations up
to a maximum of degree 3 of the polynomial and three internal knots (a cubic spline). The best
model at each step is selected on the basis of AIC. Table 2 shows that the model selected resulted
in a quadratic spline for the two continuous variables in this study. Fig. 5 shows the fitting of
the top two models in terms of randomized quantile residuals. Overall, the DW and Conway—
Maxwell-Poisson models appear to provide a similar fit to the data, with a slightly lower AIC
for the Conway—Maxwell-Poisson model but a worse fit of the Gaussian distribution to the
residuals. The computational time, here reported only for the best model in the search, shows a
striking difference between the DW and Conway—Maxwell-Poisson models, which limits further
comparisons and more extensive searches. We have further compared the selected DW model
with a penalized spline model, using the same degree and number of (equally spaced) knots as
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the selected model and imposing a penalty on the third-order differences of the parameters (AIC
=19374.33), and with a smoothing cubic spline (AIC =19373.38). Overall, no improvement
was observed over the unpenalized B-spline model of Table 2, but all models were superior to
a simple DW model with a linear link on ¢ and G (AIC =19410.49). Finally, using this simple
linear model as the baseline model, the more complex B-spline models did not show signs of
variance inflation, with generalized variance inflation factors close to 1 in all cases, e.g. the Cox
and Snell and the Cragg and Uhler generalized R>-factors are 1.0148 and 1.0155 respectively
for the unpenalized B-spline model (Nagelkerke, 1991).

To summarize the findings from our fitted model and in an attempt to measure how well a
flexible parametric approach can approximate the conditional distribution of ideal fertility given
the explanatory variables, we compare the partial effects that were obtained from our model
with those of a more flexible non-parametric jittering approach where a quadratic spline (with
the same number of internal knots as in the DW model) is fitted to each conditional quantile,
thus resulting in a larger number of parameters. The effects are calculated as in equation (7)
and are reported in Table 3 only for the variables that are found significant at the 5% level by
the DW model. Table 3 shows similar levels of effects between the two approaches, in terms of
both sign and intensity. In addition, both approaches can capture tail effects in the distribu-
tion, with several variables exhibiting sign reversals of the effects. The conclusions are similar
to those obtained by Miranda (2008) in their earlier study, with variables related to education
and family background being highly significant. In our analysis, and also using the Conway—
Maxwell-Poisson model, the education indicators of the head of the family appear to be highly
significant whereas these are not picked up as significant by the jittering approach although
the marginal effects are close. This may be down to a higher instability in the estimation of the
standard errors for jittering, possibly due to the larger number of parameters and also to the
uniform random sampling underlying the method (100 samples are used for the results that
are presented in this paper). A further example of this is with the variable family size, which
is not found significant for the Conway—Maxwell-Poisson model (p-values above 0.1) but is
found highly significant for the DW model and only for some of the quantiles for the jittering
approach (e.g. 0.99 but not 0.9 and 0.95). Although detecting T-dependent significant variables
can be seen as an advantage of the jittering approach over the parametric approaches, this can
be seen as a limitation when the conclusions are overly sensitive to the specific quantile selected,
as observed in this instance. Fig. 6 shows further how this discontinuity could be the result of
crossing of quantiles, which is a further drawback of fitting models individually for each quan-
tile. Although the general trends are similar between DW and jittering, the jittering approach
produces crossing of quantiles at the extreme of the distribution, where there is usually a small
sample size.

6. Conclusions

Motivated by an investigation about the dependence of planned fertility on education and family
background, we develop a novel regression model for count data based on the DW distribution,
which has had limited use to date. We show how a regression model based on this distribution
can provide a simple and unified framework to capture different levels of dispersion in the data,
namely underdispersion and overdispersion. Given the expected complex dependences in the
planned fertility study, we develop a generalized additive model to link both parameters of the
distribution to the explanatory variables.

Through a simulation study and the real data application we show some important features
of the models proposed, which could potentially lead to their wide applicability to the modelling
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of count data. Firstly, the conditional quantiles have a simple analytical formula, which makes
the calculation of partial effects straightforward as well as the interpretation of the regression
coefficients. Secondly, the likelihood is the same as that of a continuous Weibull distribution
with interval-censored data, so efficient implementations are already available in the R package
gamlss, forarange of models, including mixed and mixture models, and inferential procedures,
including penalized likelihood approaches. Thirdly, the distribution can capture both cases of
overdispersion and underdispersion, similarly to the Conway—Maxwell-Poisson distribution
but at a fraction of the time. Fourthly, a generalized additive DW model can compete against
the more flexible quantile regression approaches, without the need of individual fitting at each
quantile and without the inherent issue of conditional quantiles crossing.

The analysis on the planned fertility study showed overall a good fit of the model proposed
compared with the existing parametric methods and similar results to those obtained by the
non-parametric jittering approach. Jittering, however, suffered from some instability in the
estimation of the parameters at the extreme quantiles and crossing of the conditionals’ quantile.
A goodness-of-fit check of the randomized quantile residuals from the DW model selected
showed some departure from normality at the tails of the distribution. Future work will extend
the approach proposed in this paper to more flexible DW distributions, such as the three-
parameter Burr type XII distribution (Para and Jan, 2016) which was found to provide a good
fit to the ideal fertility response variable (AIC(Burr) = 18400.36 versus AIC(DW) =20047.40)
but which has not been implemented in a regression context.
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