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Symbol Abbreviations

V̇ = dV/dt A derivative taken with respect to time

x(0) = x0 Initial condition
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(x, y), x > 0, y > 0
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Interior of IR3

+

{
(x, y, z), x > 0, y > 0, z > 0

}
Interior of IR4

+

{
(x, y, z, w), x > 0, y > 0, z > 0, w > 0

}
J∗(Fi) the Jacobian matrix J(Fi) at the bifurcation parameter

Int.IR3
+(xyz) the interior of IR3

+(xyz)

∂IR3
+(xyz) the boundary axes of IR3
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IR2
+

{
(x, y), x ≥ 0, y ≥ 0

}
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+

{
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Abstract

Many biological problems can be reduced to the description of a food chain model

or a food web. In these systems, the biodiversity and coexistence of all species are

vital issues to discuss. Three ecological models have been proposed in case of the

existence of a reserved area, in order to understand multi-species interactions so as to

prevent the slow extinction of some endangered species and to test the stability when

the length of the food chain and size of the web models are increased. It is taken

that the environment has been divided into two disjoint regions, namely, unreserved

and reserved zones, where a predator is not allowed to enter the latter. The first

model describes a four species food chain predator-prey model with prey refuge (prey

in the reserved zone, prey in the unreserved zone, predator and top predator), with

the predator being entirely dependent on the prey in the unprotected area. The

second model addresses the same problem, but in addition, a third component in the

chain partially depends on the prey in the unreserved zone. Finally, the last model

investigates a four species food web system with a prey refuge and in this case, the

fourth component can also feed directly on the prey in the unreserved zone. The

boundedness, existence and uniqueness of the solutions of the proposed models are

established. The local and global dynamical behaviours are investigated, with the

persistence conditions of the models being elicited. The local bifurcation near each

of the equilibrium points is obtained. The numerical simulations in MATLAB R© are

used to study the influence of the existence of the reserved zone on the dynamical

behaviour of the proposed models. It has been concluded that the role of the reserved

area could be beneficial for the survival and stabilising of multi-species interactions.
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Chapter 1: Introduction

1.1 Background

Ecology is that part of Biology, which deals with the study of the distribution

and the interactions of organisms with their environment and with one another. A

group of organisms whose members have the same structural traits and who can

interbreed with each other is known as a species. An ecosystem is the set of all

species of a given area and the encompassing physical environment. The application

of mathematical concepts to problems in ecology has resulted in a branch of biology

known as mathematical ecology. Population dynamics deals with the time-dependent

behaviour of modelled ecological systems. These models provide significant insights

into the behaviour of nature. Usually, these systems consider many complex com-

munities involving many species, which interact in a very complicated manner and

hence, can be challenging to analyse as well as compute models and draw conclusions

from them. The mathematical equations can govern the time evolution of interacting

species. The evolution and growth of the species depend on many factors, such as

overcrowding, age structure, past population size, sources of food supply, interac-

tions with other species, topographical, ecological and environmental conditions in

the habitat, including seasonal and climatic variations. For more detail see [1].

Since all living organisms in nature are interdependent, the associations exist-

ing between the different ones influence the survival of species and the performance

of the entire ecosystem. Hence, to understand the comprehensive dynamics of the

ecosystem, it is necessary to consider the impact of both environmental variations
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and multispecies interactions. The ecological interactions are positive (mutually ben-

eficial), negative (mutually detrimental) or neutral. In an ecosystem, the populations

can be very much affected by the interactions between the organisms. There are many

ways that they can interact with each other and within an ecosystem, with the main

types of these interactions being as follows [2].

• Competition

A kind of relationship in which different organisms or populations are compet-

ing for the same limited resources at the same time, where each species is going

to hurt all others. The limiting resource may be water, forest, minerals, prey,

space, environment, etc., which is responsible for the growth and survival of

organisms in the ecosystem. For example, in a forest different populations of

plants are competing for sunlight and water nutrients in the soil. Competition

can occur either within species (intraspecific), for example, resources compe-

tition or between species (interspecific). When competition occurs among the

same species, they are going to harm each other.

• Commensalism

A relationship between two organisms in the ecosystem in which one species

benefits and the other species remain unaffected. For instance, regarding the

mosquito Wyomia smithii - the larvae live inside the plant Sarracenia purpura

and do not harm the plant.

• Mutualism

An interspecific interaction in which both populations enhance the other. Dur-

ing this interaction, both communities in the presence of the other grow to

survive and reproduce at a higher rate. Pollination is an excellent example for

explaining mutualism, whereby the plant gets to benefit from the dispersal of

pollen, and the pollinator obtains a meal of nectar from the flower.

• Predation
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An organism (predator) that feeds on another (prey) for its food. In this in-

teraction, the existence of prey enhances the predator, while the latter might

threaten the presence of the former. Typical examples of predation are bats

eating insects and snakes eating mice.

The predator-prey interaction can be generalised to use in three species or more.

A series of interrelated organisms in terms of their feeding habits is called food chain.

It shows how resources are directly transferred from one living organism to another

via food. The food chain has an essential role in maintaining the balance of the

ecosystem. If one component in the food chain is missing, then the dynamics of the

ecosystem will be disturbed, which will affect a population of prey or predators in

the ecosystem. The following could be part of a food chain: the frog could be eaten

by the snake, and the snake could be eaten by the owl. The food chain looks like

this: frog → snake → owl. Let us now consider an example of a food web, where in

addition the snake might get eaten by a fox or hawk in the forest as well as an owl and

hence, in that case, one linear pathway regarding what an organism eats cannot be

adequately described. For situations like this, a food web can be constructed, which

consists of many connections of food chains and represents the different species that

can eat and be eaten by. Since in real life each organism can eat multiple species and

be eaten by multiple species, a food web is a much more practical schematic of the

transfer of resources within an ecosystem [3].

To understand the ecological interaction between prey and predator, many ap-

proaches can be adopted, one of these being to develop a mathematical model. Since

Lotka [4] and Volterra [5] proposed the simple model of predator-prey interaction,

which is now known as the Lotka-Volterra model, many mathematical models have

been introduced to understand more complex ecological interactions [6–8]. For more

detail, please see Chapter 3.
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1.2 Problem statement and motivations

Recently, there has been a worldwide movement aimed at enhancing the under-

standing of ecological stability. However, many significant problems are still unsolved.

The most significant challenges to control the co-existence of the interaction between

biological species can be summarised as the follows [9].

• Resources limitation and energy conservation

It is well known that the resource carrying capacity of our planet is limited.

All species require resources, for example, energy, light, nutrition, radiation etc.

A poor understanding of ecology is leading to the destruction of resources, e.g.

non-renewable sources, like oil, coal, natural gas as well as pollution and destruc-

tion of the ozone layer. Hence, effective management strategies for exploited

biological resources are required. Otherwise, destruction of some organisms

might happen that would mean the death of others.

• Human activities

Humans continue to destroy wildlife habitats by introducing contaminants, such

as pesticides and industrial waste into the environment, deforestation, climate

change, mismanagement, overharvesting, ect.. This behaviour, if unchanged,

could someday render the Earth uninhabitable.

• Natural disasters

Every species has their environment that adapts to it, and it cannot live away

from it. This environment provides all the elements of its life. The nature

of the environment can be destroyed by natural disasters, such as flooding,

desertification, earthquakes, volcanoes, the spread of some diseases or epidemics

etc. Environmental damage might happen that breaks down communication

links between species that in turn leads to the devastation of large numbers of

them.
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• Resource allocation

All organisms need to share limited natural resources at the same time for

coexistence such as air, minerals, environment and space. Lack of ecological

know-how has led to deprivation and looting of these natural resources resulting

in scarcity as well as competition.

The above points are aspects of an issue of increasing concern, namely, the scarcity

of resources and stress on our environment, which can induce the extinction and

endangerment of species. A slight change in the environment could have a profound

influence on all living species. In particular, a food chain might lose one of their

components. These problems will create an imbalance in the ecosystem. For species

protection, some strategies and appropriate measures that will diminish interaction by

species including the creation of reserved zones, restricting harvesting, etc. need to be

deployed [10]. The role of reserved zones (the areas in which the prey is successfully

controlled and protected from predation) in four species food chain/web predator-

prey dynamics will be explored in this thesis. It will be shown how reserved zones

can stabilise ecosystems.

1.3 Thesis aim and objectives

In this thesis, we show how the mathematical models play an essential role in de-

scribing and understanding the dynamical behaviour of ecosystems by using the prin-

ciples of biology. However, the aim of this study to keep the prey in food chain/web

from extinction. Accordingly, the main objectives of this thesis are listed as follows.

1. Proposing four species food chain/web prey-predator models with prey refuge.

Analysis and understanding the dynamical behaviour of the models, by which

it will become known what might happen in a system over time. Hence, it

will be more possible to forecast threats to extinction and then act to prevent

potentially adverse effects that might occur.
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2. Mathematical analysis of the proposed models is used to establish the conditions

that influence the existence, uniqueness, positivity, stability and boundedness

of the solutions of the models.

3. Investigating how parameters such as birth rate, death rate, predator handling

time of the prey, competition among prey and the attack rate of the predator

affect the dynamics of the population densities of the proposed systems.

4. Find out how the reserved zone impacts on the long-term survival of each species

subject to ecological stability.

1.4 Thesis overview

Having provided an introduction, the motivations as well as the contributions in

this chapter, the rest of the thesis is organised as follows.

• Chapter two: some principles, theorems, tools and methods that are used in

this study are explained.

• Chapter three: in this chapter, the historical background and a literature

review regarding the dynamics of multi-component models, such as predator-

prey models, food chain models, food web models as well as models with a

reserved zone in ecological systems, are provided.

• Chapter four: in this chapter, the modelling of the four species food chain

prey-predator model with a prey refuge is proposed. A variety of analytical

methods and tools are used to study the existence, uniqueness, boundedness,

local stability, local bifurcation, and persistence of the solutions of the model.

The global dynamics of this model is investigated analytically as well as numeri-

cally. The model shows a rich dynamic in the space of nonnegative solutions. In

particular, the dynamics around the different equilibrium points are studied in

detail, including the strictly positive equilibrium, the equilibrium for which only
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the top predator vanishing and the remaining components are strictly positive,

the equilibrium with two vanishing components and the trivial equilibrium. The

long-term behaviour of the system is investigated, and conditions for persistence

derived.

• Chapter five: In this chapter, the model in Chapter four is modified by propos-

ing that the predator (the third component) has its logistic growth term. Thus,

the latter has two supply resources. A variety of analytical methods and tools

are used to study the existence, uniqueness, boundedness, local stability, local

bifurcation, and persistence of the solutions of the proposed model. The global

dynamics of this model are investigated analytically as well as numerically. All

the equilibrium points are obtained, which correspond to those in Chapter four

plus two new equilibrium points. The first one, in which only the third compo-

nent is strictly positive and the remaining are vanishing. The second one only

the last two component are strictly positive and the other two are zero. The

simulations of this model show that for larg-time the solutions approach the

strictly positive steady state.

• Chapter six: this chapter presents and analyses the modelling of a four species

food web prey-predator model in the case of the existence of a prey refuge. It

is a modification of the model in Chapter four, but now the last predator can

feed directly on the first prey, in addition to all the other connections in the

previous model. The boundedness, existence and uniqueness of the solution

of the model under consideration are studied. The local stability analysis of

this four-dimensional system is discussed analytically, and the conditions for

the persistence of all species are established. The global dynamics of the model

is studied using analytical and numerical tools. The dynamical behaviour is

found to be very sensitive to parameter values and initial data, in particular,

the stability of equilibrium points. Now, all the equilibrium points are obtained,

which correspond to those in Chapter four plus a new equilibrium point, for
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which only the third component vanishes and the remaining components are

strictly positive.

• Chapter Seven: provides a summary of the thesis, makes conclusions and

some suggestions are put forward for future research avenues.
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Chapter 2: Preliminaries

2.1 Introduction

Through mathematical differential equations, scientific problems can be formu-

lated and studied. To analyse these differential equations, various mathematical tools

are required. In this chapter, they are reviewed together with some of the definitions,

basic concepts, and theorems that are used throughout this thesis.

2.2 Qualitative behaviour in the nonlinear dynamical system

Deterministic nonlinear dynamics is classified according to the qualitative be-

haviour of its attractors. An attractor is a geometrical object in the state space,

which attracts all trajectories starting within its domain. The most straightforward

kind of dynamics is stability around the equilibrium point. A stable equilibrium is a

point in phase space, to which the trajectory returns after a small perturbation. The

approach to the stable point can be either exponential or oscillatory [11].

A more complex dynamical behaviour is a stable limit cycle. In continuous models,

the limit cycle attractor is a closed curve in phase space towards which all trajectories

approach. In order for a differential model to be able to exhibit a stable cycle, it

should be of order two or higher. A limit cycle is a periodic attractor in the strict

mathematical sense, because its trajectory repeats itself precisely after some time. In

situations when these two simple attractors govern the asymptotic dynamics, then

the system is said to be in an ordered state. If a system is so, its future state at any
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point can be predicted with an arbitrary degree of accuracy. Quasi-periodicity has

very similar behaviour to limit cycles. It occurs in two-or higher-dimensional discrete

models and three-or higher-dimensional continuous ones. It resembles limit cycles,

but the periods of the oscillations vary and the system never precisely repeats itself.

Neighbouring points remain near one another in quasi-cycles. Quasi-periodicity often

occurs when periodic subsystems are coupled [12].

Moreover, a chaotic or strange attractor is one whose variables do not have regular

amplitudes or periods, and it is always found within a restricted range of state space.

The unpredictable and irregular time evolution of many nonlinear systems has been

dubbed as chaos. The critical feature of chaotic dynamics is its sensitive dependence

on the initial conditions, for even a minimal change in these can lead to different

results in chaotic systems. Indeed, the divergence between results grows exponentially

in time for virtually all pairs of starting conditions. So, we deduced that long-term

predictions of chaotic systems are futile. Also, in continuous autonomous systems,

chaos cannot arise unless the dimensionality of the system is three or higher [13].

2.3 Mathematical tools

In the following, a number of mathematical tools that are used in this thesis are

rviewed.

2.3.1 Local stability analysis

Consider the nonlinear autonomous system:

dxi
dt

= Fi(x1, x2, ..., xn, ), i = 1, 2, ..., n, (2.1)

where, x ∈ Rn. In the following, some basic definitions are presented, which are

needed to study the stability of the system (2.1).
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• A system of differential equations (2.1) is said to be dissipative, if there is a

bounded subset D of Rn such that for any x0 ∈ Rn there is a time t0, which

depends on x0 and D so that the solution φ(t, x0) ∈ D for t ≥ t0 [14].

• A point x∗ = (x∗1, x
∗
2, ..., x

∗
n) is supposed to be an equilibrium point (or steady

state point) of the system (2.1) if it satisfies the following equation Fi(x∗) =

0;∀i = 1, 2, ..., n [11].

• A point p ∈ Rn is called an ω-limit point of x ∈ Rn, which is denoted by ω(x),

if there is a sequence {ti} with ti →∞ as i→∞, such that the solution of Eq.

(2.1) with initial condition x(0) = x satisfies that φ(ti, x) → p as i → ∞. On

the other hand, α-limit points are defined similarly by taking a sequence {ti},

where ti → −∞ as i → ∞. The set of all ω-limit points is called the ω-limit

set. The α-limit set is similarly defined [15].

Now, to determine the local stability of x∗ we should understand the nature of the

solutions of system (2.1) near the equilibrium point x∗.

Let x(t) = x∗(t)+ξ(t), where x(t) be any other solution and ξ(t) = (ξ1, ξ2, ..., ξn)(t)

represents small perturbation of the original solution. Then the linear approximation

for small perturbation can be written as

dξ

dt
∼= V (t)ξ,

where the matrix V (t) = (∂Fi/∂xj)x∗ is the variational matrix at the equilibrium

point. The eigenvalues of this matrix decide whether the equilibrium point is linearly

stable or unstable. The characteristic equation for the variational matrix is computed:

det(V − λI) = λn + A1λ
n−1 + A2λ

n−2 + ...+ An = 0. (2.2)

Then, the Routh-Hurwitz criterion [16] is applied to obtain constraints on the coeffi-

cients A1, A2, ..., An, which are the necessary and sufficient to ensure all eigenvalues

lie in the left half complex plane. If the choice of parametric values is such that all the

constraints are simultaneously satisfied, then the system will be locally asymptotically
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stable at x∗. On the other hand, violation of any one of these conditions implies that

x∗ is an unstable equilibrium point. As a result, an equilibrium point x∗ of the system

(2.1) is said to be globally asymptotically stable if x∗ is asymptotically stable for any

initial point x(0) ∈ Rn. This definition means that the basin of attraction of an equi-

librium point x∗ that is denoted by B(x∗). Here B(x∗) = {x(0) : φ(t, x(0)) −−−→
t→∞

x∗}

is equal to Rn if and only if it is globally asymptotically stable. Therefore, it should

be clear that if the equilibrium point x∗ is so, then it is locally asymptotically sta-

ble, but not vice versa. Moreover, An equilibrium point x∗ of the system (2.1) is

called a hyperbolic equilibrium point if none of the eigenvalues have a zero-real part.

Otherwise, it is a non-hyperbolic equilibrium point.

2.3.2 Routh-Hurwitz criterion

Consider the following polynomial of degree n, which is defined by:

Pn(λ) = λn + a1λ
n−1 + a2λ

n−2 + ...+ an = 0.

let D1 = a1, D2 = det

a1 a3

1 a2

, Dk = det



a1 a3 a5 . . . a2k−1

1 a2 a4 . . . a2k−2

0 a1 a3 . . . a2k−3

: 1 a2 . . . a2k−4

: : : . . . :

0 0 0 . . . ak


,

where ai = 0 if i > n. Then all the roots of Pn(λ) have a negative real part, if,

Dk > 0 for all k = 1, 2, ..., n. Now, by applying this criterion when

• n = 2

For n = 2, we have P2(λ) = λ2 + a1λ+ a2 = 0, and hence, D1 = a1,

D2 = det

a1 0

1 a2

 = a1a2. Thus, for n = 2, the necessary and sufficient

conditions of all roots having negative real parts are a1 > 0 and a2 > 0.
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• n = 3

For n = 3, P3(λ) = λ3 + a1λ
2 + a2λ + a3 = 0, and hence, D1 = a1, D2 =

det

a1 a3

1 a2

 = a1a2 − a3, D3 = det


a1 a3 0

1 a2 0

0 a1 a3

 = (a1a2 − a3)a3. Thus, for

n = 3, the necessary and sufficient conditions for all roots having negative real

parts are a1 > 0, a3 > 0 and a1a2 − a3 > 0.

• n = 4

Finally, for n = 4 , we have P4(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0, and

hence, D1 = a1, D2 = det

a1 a3

1 a2

 = a1a2 − a3, D3 = det


a1 a3 0

1 a2 a4

0 a1 a3

 =

(a1a2 − a3)a3 − a2
1a4,

D4 = det


a1 a3 0 0

1 a2 a4 0

0 a1 a3 0

0 1 a2 a4

 = a4(a1a2a3 − a2
3 − a2

1a4).

Thus, for n = 4, the necessary and sufficient conditions for all roots having

negative real part are a1 > 0, a3 > 0, a4 > 0 and (a1a2 − a3)a3 − a2
1a4 > 0 [17].

Now, due to the above classification of an equilibrium point of the system (2.1),

the domain of system (2.1) D ⊂ Rn can be represented as the direct sum of three

subspaces, which are defined as follows [18]:

Es = span{e1, e2, ..., es},

Eu = span{es+1, es+2, ..., es+u},

Ec = span{es+u+1, es+u+2, ..., es+u+c},
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with s+u+c = n is the dimension of the system. Here {e1, e2, ..., es} are the eigenvec-

tors of J = dF (x∗) corresponding to the eigenvalues of J = dF (x∗), having negative

real parts, {es+1, es+2, ..., es+u} are the eigenvectors of J = dF (x∗) corresponding to

eigenvalues of J = dF (x∗), having positive real parts, and {es+u+1, es+u+2, ..., es+u+c}

are the eigenvectors of J = dF (x∗) corresponding to the eigenvalues of J = dF (x∗),

having zero real parts. The subspaces Es, Eu and Ec are referred to as the stable,

unstable and centre subspace respectively.

2.3.3 Local stable and unstable manifold

To state the local stable manifold theorem, we need the following definition. Let

x∗ be a hyperbolic equilibrium point of the system (2.1). Then, the local stable and

unstable manifolds of x∗ are defined as follows:

W s(x∗) = {v ∈ U |φ(t, v) −−−→
t→∞

x∗ and φ(t, v) ∈ U,∀t ≥ 0},

W u(x∗) = {v ∈ U |φ(t, v) −−−→
t→∞

x∗ and φ(t, v) ∈ U,∀t ≤ 0},

where, U ∈ Rn is a neighbourhood of the equilibrium point x∗. So the next the-

orem tells us that W s(x∗) and W u(x∗) are in fact tangent to Es, Eu at x∗ [19].

Theorem 2.3.1 Suppose that system (2.1) has a hyperbolic equilibrium point x∗, then

there exist a local stable and/or an unstable manifold W s(x∗), W u(x∗), of the same

dimensions ns and nu as those of the eigenspaces Es, Eu of the linearized system

(2.1), and tangent to Es, Eu at x∗. W s(x∗), W u(x∗) are as smooth as the function

F of the system (2.1).

The above theorem shows that the invariant manifolds W s(x∗) and W u(x∗) provide

nonlinear analogues of the flat stable and unstable eigenspace Es, Eu of the linear

system (2.1).
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2.3.4 Hartman-Grobman criterion

Let x∗ be a hyperbolic equilibrium point of the system (2.1); then there is a

homeomorphism h defined on some neighbourhood of x∗ in Rn locally taking orbits

of the nonlinear flow φ(t) of system (2.1) to those of the linear flow etJ of system

(2.1). This homeomorphism preserves the sense of orbits and can also be chosen to

preserve parameterisation by time, see [20]. Consequently, the orbit structure near a

hyperbolic equilibrium point of the system (2.1) is qualitatively the same as the orbit

structure given by the associated linearised dynamical system (2.2).

2.3.5 Lyapunov method

This method can be used to determine the stability and instability of an equilib-

rium point (especially of non-hyperbolic type) of nonlinear systems. It has also been

utilized to study the stability of the equilibrium point for the linear system. Further,

it works for finite and infinite dimensions, with the basic idea of the method being

as follows. Suppose that; we have a vector field (2.1) with an equilibrium point x∗,

then to determine whether or not x∗ is stable, it is sufficient to find a neighbourhood

of x∗ for which the orbits are starting in U remain in there for all positive time. This

condition would be satisfied, if we can show that the vector field is either tangent to

the boundary of U or pointing inward toward x∗. Also, this situation should remain

true even as we shrink U down onto x∗. Note that the way of showing this situation

is known by the Lyapunov method. The general theorem for stability and instability

of an equilibrium point which makes these ideas precise is given in the following.

Theorem 2.3.2 (Lyapunov stability)

Let x∗ be an equilibrium point of the system (2.1) and let L : U → R be a C1

function defined on some neighbourhood of x∗(U ⊆ Rn) such that:

1. L(x∗) = 0 and L(x) > 0 if x 6= x∗ (that is mean L is a positive definite function).

2. L
′
(x) ≤ 0 in U − {x∗}. Then, x∗ is stable, Moreover, if
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3. L
′
(x) < 0 in U − {x∗}. Then, x∗ is asymptotically stable See [21].

Note that, the function L given above is known as Lyapunov function. In addition, if

U can be chosen to be all Rn, then x∗ is said to be a globally asymptotically stable,

if conditions (1) and (3) hold [22].

Theorem 2.3.3 (LaSalle invariance principle)

Suppose that x∗ = 0 is an equilibrium point of system (2.1), and V is a Lyapunov

function on some neighbourhood U of x∗ = 0. If x0 ∈ U has its forward trajectory

bounded with limit points in U , and M is the largest invariant set of E =
{
x∗ ∈ U :

V̇ (x∗) = 0}, then φ(x0, t)→M as t→∞ [23].

2.3.6 Two-dimensional flow

Consider the following autonomous two-dimensional system:

dx

dt
= f(x, y)

dy

dt
= g(x, y)

(2.3)

where, (x, y) ∈ U ⊆ R2 with f and g are sufficiently smooth functions. According

to the above discussion, the stability analysis of system (2.3) is well understood. In

the following, two theorems that consider the constraints that grant the existence and

non-existence of closed orbits in the plane are covered.

Theorem 2.3.4 (Poincare-Bendixson) A nonempty compact ω− or α− limit set

of a planar flow, which contains no equilibrium points is a closed orbit [24].

Obviously, the Poincare-Bendixson theorem suggests that the solution of a system of

two-dimensional autonomous differential equations of first order converges either to

a point or closed curve.

Now, the non-existence condition of a closed orbit of the system (2.3) is established

in the following theorem.
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2.3.7 Bendixson-Dulic’s criterion

Consider the planar dynamical system given by (2.3), where f and g are at least

C1. Let B be C1 functioning in a simply connected region D ⊂ R2. If ∂(Bf)/∂x +

∂(Bg)/∂y is not identically zero and does not change sign in D, then the system has

no closed orbits lying entirely in D [16].

2.3.8 Persistence and extinction

In general, the term persistence is a global property of the dynamical system;

which does not depend upon interior solution space structure, but instead, upon

solution behaviour near extinction boundaries. From the biological point of view,

the persistence of a system means the survival of all its population at a future time.

However, mathematically it implies that a strictly positive solution does not have an

omega limit set in the boundary planes of a non-negative cone [25]. Accordingly, if

the dynamical system does not persist, then the solution has an omega limit set on

the boundary planes of the non-negative cone, and hence the dynamical system faces

extinction. Moreover, a system is said to persist, if each component of the population

does.

In this thesis, the Freedman and Waltman approach [26] for the persistence of a

dynamical system is used. This approach is given below.

2.3.8.1 Freedman and Waltman approach

Consider the general ecological model of three interacting predator-prey popula-

tions defined as:
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dx

dt
= xf(x, y, z), x(0) = x0 ≥ 0,

dy

dt
= yg(x, y, z), y(0) = y0 ≥ 0,

dz

dt
= zh(x, y, z), z(0) = z0 ≥ 0.

(2.4)

Here, x will always be a prey population, z will always be a predator population,

and y will either a predator or prey or both. The abstract theorem for the persistence

of a three-species system (2.4) is given in the following.

Theorem 2.3.5 let the following hypotheses hold:

• f , g and h are C1 in R3
+;

• All the solutions of the system (2.4) with the non-negative initial condition are

bounded in forward time;

• If there exists an equilibrium point on the x- and/or y-axis, then they are hy-

perbolic saddle points;

• Interior to each positive coordinate plane there is at most one equilibrium point,

which if it exists, is unstable in the positive direction orthogonal to that plane,

and around which there are no periodic orbits, then the system (2.4) persists.

Lemma 1 (Butler-McGhee) Let p be an isolated hyperbolic equilibrium point in

the omega limit set Ω(x) of an orbit o(x). Then either Ω(x) = p or there exist points

q+, q− in Ω(x) with q+ ∈M+(p) and q− ∈M−(p).

Here, M+(p) and M−(p) represent the stable and unstable manifolds of the hyperbolic

equilibrium point p; o(x) is the orbit throogh the point x [26] .

In the following subsection, the local bifurcation near the equilibrium point is

studied.
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2.3.9 Local bifurcation

Consider the following system:

x
′
= F (x, µ), (2.5)

where, x
′

=
(
dx1/dt, dx2/dt, ..., dxn/dt

)T
, F = (F1, F2, ..., Fn, )

T and µ ∈ R is a

parameter. We shall assume throughout this thesis that F ∈ C1(E × I), where E

is an open set in Rn, n ∈ N and I ⊂ R is an interval. We use DF (x, µ) to denote

the Jacobian matrix and Fµ(x, µ) to denote the vector of partial derivatives of the

elements of F concerning the parameter µ. The term bifurcation is a qualitative

change of the nature of the solution under variation of system’s parameter [27].

2.3.9.1 Sotomayor approach

Suppose that F (x∗, µ0) = 0 and that n× n matrix J ≡ DF (X∗, µ0) has a simple

eigenvalue λ = 0 with eigenvector V and that the n×n matrix JT has an eigenvector

Ψ corresponding to the eigenvalue λ = 0 . Furthermore, suppose that J has k

eigenvalues with negative real part and n − k − 1 eigenvalues with the positive real

part and that the following conditions are satisfied:

ΨTFµ(x∗, µ0) 6= 0,ΨT bD2F
(
x∗, µ0

)
(V, V )c 6= 0. (2.6)

Then, the system (2.5) experiences a saddle-node bifurcation at the equilibrium

point x∗ as the parameter µ passes through the bifurcation value µ = µ0. However,

if the conditions given by (2.6) are changed to:

ΨTFµ(x∗, µ0) = 0,ΨT
[
DFµ

(
x∗, µ0

)
V
]
6= 0,ΨT

[
D2F

(
x∗, µ0

)
(V, V )

]
6= 0. (2.7)

Then, the system (2.5) experiences a transcritical bifurcation at the equilibrium

point x∗ as the parameter µ passes through the bifurcation value µ = µ0.



20

Finally, if the conditions given by (2.6) are changed to:

ΨTFµ(x∗, µ0) = 0,ΨT
[
DFµ

(
x∗, µ0

)
V
]
6= 0,

ΨT
[
D2F

(
x∗, µ0

)
(V, V )

]
= 0,ΨT

[
D3F

(
x∗, µ0

)
(V, V, V )

]
6= 0.

Then, the system (2.5) experiences a pitchfork bifurcation at the equilibrium point

x∗ as the parameter µ passes through the bifurcation value µ = µ0 [28]. In the

following the conditions, the gradients that occur for a simple Hopf bifurcation in a

dynamical system (2.5) are presented.

2.3.10 Hopf bifurcation

Let F (x∗, µ) = 0 for all µ ∈ R. A value µ = µ̃ is said to be a Hopf bifurcation

value for a steady solution x∗ of the system (2.5) if, the Jacobian matrix DF (x∗, µ̃)

has a simple pair of purely imaginary eigenvalues and no other eigenvalues with zero

real parts, while the phase portrait of the system (2.5) will change as µ passes through

µ̃, where a periodic orbit is created in the neighbourhood of µ̃ [29].

Consider the system (2.5) with an equilibrium point x∗. Then, if there exists

a parameter µ ∈ I with I ⊂ R and F ∈ Cα
(
Rn × R,R2

)
for some α ≥ n with

F (x∗, µ) = 0∀µ ∈ R, so that:

1. A simple pair of complex eigenvalues of the Jacobian matrix J(x∗) of the system

(2.5) at the equilibrium point x∗ exists, say γ(µ) = ξ1(µ)± iξ2(µ) whereby they

become purely imaginary at µ = µ0, while all the other eigenvalues remain real

and negative.

2. dξ1(µ)
dµ
|µ=µ0 6= 0, (this part called transversality condition) then the system (2.5)

has a simple Hopf bifurcation at µ̃.

2.3.10.1 Haque and Venturino methods

According to the above definition, the traditional simple Hopf bifurcation cri-

terion is stated regarding the properties of eigenvalues. Since the computations of
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eigenvalues are sometimes difficult, it is worth having a criterion stated in relation

to the coefficients of the characteristic equations. Haque and Venturino [30] derived

a criterion for simple Hopf bifurcation using the properties of the coefficients of the

characteristic equation, instead of those of eigenvalues. This is related to the Routh-

Hurwitz criterion and is convenient in many applications. Their criterion is stated

for n = 3 for more details see [30]. The criterion for n = 4 is stated regarding the

properties of eigenvalues [31].

Consider the characteristic equation given by:

P4(τ) = τ 4 + C1τ
3 + C2γ

2 + C3γ + C4 = 0,

here, C1 = −tr
(
J(x∗)

)
, C2 = M1

(
J(x∗)

)
, C3 = −M2

(
J(x∗)

)
and C4 = det

(
J(x∗)

)
with M1

(
J(x∗)

)
and M2

(
J(x∗)

)
representing the sum of the principal minors of order

two and three of J(x∗), respectively. The first condition of Hop bifurcation holds if:

Ci > 0; i = 1, 3; ∆1 = C1C2−C3 > 0;C3
1 −4∆1 > 0; ∆2 = C3(C1C2−C3)−C2

1C4 = 0;

consequently, C4 = C3(C1C2 − C3)/C2
1 . So, the characteristic equation becomes:

P4(τ) =
(
τ 2 +

C3

C1

)(
τ 2 + C1τ +

∆1

C1

)
= 0. (2.8)

The roots of Eq.(2.8) are τ1,2 = 1
2

(
− C1 ±

√
C2

1 − 4∆1

C1

)
, τ3,4 = ±i

√
C3

C1
.

Now, to verify the transversality condition of Hopf bifurcation, we substitute

τ(q) = α(q)± iα(q) into Eq.(2.8), and then calculating its derivative concerning the

bifurcation parameter q, P
′
4 = (τ(q)) = 0, comparing the two sides of this equation

and then equating their real and imaginary parts, we have:

Ψ̄(q)α
′

1(q)− Φ̄(q)α
′

2(q) + C̄(q) = 0,

Φ̄(q)α
′

1(q)− Ψ̄(q)α
′

2(q) + Γ(q) = 0,
(2.9)

where,
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Ψ̄(q) = 4(α1(q))3 + 3C1(q)(α1(q))2 + C3(q) + 2C2(q)α1(q)− 12α1(q)α2
2(q)

− 3C1(q)(α2(q))2,

Φ̄(q) = 12(α1(q))2α2(q) + 6C1(q)α1(q)α2(q) + 2C2(q)α2(q)− 4(α2(q))3,

Θ̄(q) = (α1(q))3C
′

1(q) + C
′

3(µ)α1(q) + C
′

2(q)(α1(q))2 + C
′

4(q)− 3C
′

1(q)α1(q)(α2(q))2

− C
′

2(q)(α2(q))2,

Γ̄(q) = 3(α1(q))2α2(q)C
′

1(q) + C
′

3(q)α2(q) + 2C
′

2(q)α1(q)α2(q)− C1
′(q)(α2(q))3.

Solving the linear system (2.9) by using Cramer’s rule for the unknowns α
′
1(q) and

α
′
2(µ), gives that:

α
′

1(q) =
Θ̄(q)Ψ̄(q) + Γ(q)Φ̄(q)

(Ψ̄(q))2 + (Φ̄(q))2
;

α
′

2(µ) =
−Γ(µ)Ψ̄(µ) + Θ̄(µ)Φ̄(µ)

(Ψ̄(µ))2 + (Φ̄(µ))2
.

Hence, the transversality condition not being zero, if and only if:

Θ̄(µ)Ψ̄(µ) + Γ̄(µ)Φ̄(µ) 6= 0.

2.3.11 Gronwall lemma

Let x(t) be a function that is satisfying the following differential inequality x
′ ≤

ax+ b; x(0) = x0 where a, b are constants. Then, for all t ≥ 0 we have:

x(t) ≤ x0e
at +

b

a
(eat − 1); a 6= 0,

and,

x(t) ≤ x0 + bt; a = 0.

See [32] for more detail.
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2.3.12 Descartes rule of signs

Let p(x) define a characteristic polynomial with real coefficients and a nonzero

constant term, with the terms being in descending powers of x. Hence, the number of

positive real roots of p(x) = 0 either equals the number of variances in sign occurring

in the coefficients of p(x), or less than the number of variations by a positive even

number. See [33] for more detail.

2.4 Summary

In this chapter, essential mathematical tools for analysing the solutions have been

presented in detail, including local stability analysis, the Routh-Hurwitz criterion, the

Lyapunov method, persistence and local bifurcations. They will be used in the next

chapters to understand the behaviour of the proposed models and their solutions.

The next chapter will review a selection of the relevant recent literature concerning

modelling, analysis and numerical computation multi-species interaction models.
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Chapter 3: Background and liter-

ature review

3.1 Introduction

A variety of mathematical models for multi-species interaction incorporating dif-

ferent factors to suit the varied environmental requirements is obtainable in the lit-

erature, such as predator-prey models, food chain models, food web models as well

as models with a reserved zone. A selected historical background and a literature re-

view regarding the dynamics of multi-component models is provided in this chapter.

A practical model is one that meets the objectives, explains what is currently hap-

pening and predicts what will happen in future. Before presenting the literature, it is

worth illustrating the general model simulating the first type of interaction between

any two species. In the following, the most common form of the dynamics between

any two-species having the prey-predator type of interaction will be described.

3.2 Prey predator model

It was just under a century ago that the very first endeavour to predict the exis-

tence of species and evolution was predicted mathematically. The physicist, Lotka [4],

and mathematician, Volterra [5] were the first to explore that field. At that time, it

constituted the dominant theme of the theoretical biology of population dynamics.
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The dynamical system, which describes the interaction of two interacting species, can

be broadly written as below:

dx

dt
= g1(x) + f1(x, y),

dy

dt
= g2(y) + f2(x, y),

(3.1)

where, the population densities of the two interacting species at time t are denoted

by x(t) and y(t). It is worth noting that measuring the rate of growth is divided

into two terms, namely, g1(x), g2(y), representing the auto-growth/or decay part of

the species in the absence of others and f1(x, y), f2(x, y) for the growth/decay due

to the interactions between the two species. Since f1(x, y) and f2(x, y) account for

the interactions between species that affect the growth rate of each in different ways,

their ratio can be assumed as being a constant that differs from unity. Hence, consider

that: f2(x, y) = kf1(x, y), where, k is a constant then system (3.1) becomes:

dx

dt
=g1(x) + f1(x, y),

dy

dt
=g2(y) + kf1(x, y).

(3.2)

The signs of g1, g2, f1 and k depend on the way the species interact. With the

reliance on the various formulae of f1, the system (3.2) represents different types of

interactions. The classical type of interaction is called Lotka-Volterra, which describes

the dynamic interaction between a prey population x and a predator one y, according

to following differential equation:

dx

dt
=rx− axy,

dy

dt
=eaxy − hy,

(3.3)

where, each term in the system (3.3) can be described as follows.

• g1(x) = rx represents the rate of growth of the prey population in the absence

of predators. The rate of intrinsic of change of the prey (when the predator is

absent) is represented by r. Thus, the prey population would increase exponen-

tially in the absence of predators as: x(t) = x0e
rt.
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• kf1(x, y) = eaxy is the production/growth rate of predator offspring, where (e)

is the conversion rate of prey into predator.

• g2(y) = hy represents the predator’s death rate in the absence of prey and h

is the mortality rate per capita of a predator when prey is not present. Thus,

predator decay exponentially in the absence of prey is: y(t) = y0e
−ht.

Over the last sixty years, several sophisticated models have been suggested to de-

scribe two or more interacting species based on the Lotka and Volterra models. This

is done by considering the effects of age structure, crowding, time delay, switching,

functional response and/or other factors [34–41]. The predator-prey relationships are

considered as a type of interaction covering many kinds of natural enemies, such as

parasitoid plants and herbivores, hosts and parasites, typical predators and their prey,

etc. Despite the vital modelling work achieved by Lotka and Volterra, there has been

far less quantitative-focused work on predation than on competition. This arises from

the fact that it is far more challenging to integrate realistic biology into predation

models in comparison to competing ones. Stability analysis for simple models often

predict either the coexistence conditions or the competitive effect between the species.

Whereas predator-prey models are more difficult to analyse as they are more compli-

cated and it is often the case that their dynamics leads to periodic behaviour. In this

thesis, the proposed models are concerned with the predator-prey type of interactions.

The general form for modelling the continuous time predator-prey interactions has

the following structure:

dx

dt
=g(x)x− f(x, y)y,

dy

dt
=ef(x, y)y − h(y)y,

(3.4)

where, x and y represent the densities of prey and predator respectively. Moreover,

g(x) is the prey per-capita growth rate in the absence of predation and f(x, y), rep-

resents the functional response in both the prey and predator equations. e is the

conversion/growth rate of the consumed prey into the new predator, and h(y) is the

natural death-rate of the predator in the absence of prey. The dynamics of the two
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varieties in predator-prey models are based on the “trophic function” f(x, y), which

is represented in the prey equation as a functional response. This means a change in

the prey’s densities, which attack per unit of time per predator, while in the predator

equation called numerical response (predator growth rate as a function of consumption

of prey). The functional responses applied in ecological modelling, can be commonly

classified into three forms, namely: prey-dependent, predator-dependent and ratio-

dependent [42]. The most common trophic/ predation functions that are used in

ecological modelling are described as below.

1. Prey-Dependent Functions:

The term prey-dependent describes the consumption rate by each predator

which only a function of prey that is f(x, y) = f(x). In fact, there are many

classifications of prey-dependent functional responses can be extensively found

in the literature [43]. The most common types are identified as follows.

• Lotka-Volterra Type:

In this type, for each of individual predator, the rate of consumption grows

linearly with the prey. Hence, this type of functional response can be

written as:f(x) = ax;x ≥ 0, where, a > 0 is the rate of consumption of

prey by a predator.

• Holling Type-I:

This type is like the well-known Lotka-Volterra type, but with a fixed

maximum or upper limit γ, being:

f(x) =

ax 0 < x < α

γ α ≤ x

(3.5)

where, α is the constant amount of prey at which the predator overfeeds

at γ.

Despite the simplicity of the Type-I and Lotka-Volterra functional re-

sponses, they are still regularly used for manageable ecological models.
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• Holling Type-II Functional Response:

With this type, the consumption rate of each consumer rises at a reducing

rate with prey density until it becomes constant at the saturation level. It

is asymptotically approaching the maximal value a = 1/h, which is defined

as:

f(x) =
Ax

1 + Ahx
=

ax

b+ x
, (3.6)

where, A represents the search rate, h is the time spent on the handling

of one prey; a is the maximum attack/harvest rate, and b = 1/Ah is the

half saturation level, such that f(b) = a/2. In addition, Eq.(3.6) is one

of the most widely deployed ones among ecologists, which is also known

as the Michaelis-Menten type, due to it being proposed by Michaelis and

Menten [44].

• Holling Type-III Functional Response:

n this type, the consumption rate of an individual predator initially accel-

erates and then decelerates towards saturation level, which can be defined

as:

f(x) =
Ax2

1 + Ahx2
=

ax2

b+ x2
, (3.7)

2. Ratio-Dependent Functions:

The prey-dependent type of functional responses does not integrate the predator

abundance in its formula. Hence, Ginzberg and Arditi [45] suggested a new

type of functional response known as ratio-dependent, in which the rate of prey

feeding per predator depends on the ratio between both their densities, instead

of depending only on that of the prey density. Their functional response can be

written by using the ratio (x/y) instead of (x) in a Holling type-II functional

response as follows:

f(x, y) =
A(x/y)

1 + Ah(x/y)
=

ax

by + x
. (3.8)
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3. Predator-Dependent Functions:

In this type, the functional response is dependent also on the densities of both

the prey and predator. Mathematically, both of the prey-dependent and ratio-

dependent functional responses could be considered as a limitation case for the

general type of predator-dependent functional response. It has been noticed

that high predator density leads to more recurrent encounters between predators

[46,47]. The first use of a predator-dependent functional response goes back to

DeAngelis et al [48] and Beddington [49], which is now known as the DeAngelis-

Beddington functional response and has the following form:

f(x, y) =
ax

βy + αhx+ 1
=

ax

by + x+ c
, (3.9)

where, h describes the prey handling time, and β is an empirical constant,

which can be defined as the product of the predator encounter rate and predator

handling time. The main idea of this form is that the predators are wasting their

time in handling prey as well as in dealing with other predators. Furthermore,

Eq.(3.9) is ratio-dependent with small values of c and prey-dependent when b is

minimal. In other words, ratio-dependence and prey–dependence are at opposite

ends of the spectrum of predator-dependent functional/numerical responses that

represent the general functions both of prey and predator densities, i.e.

f(x)⇐ f(x, y)⇒ f(x/y).

3.3 Logistic growth

After Lotka and Volterra formulated their model, Warder [50] presented his initial

studies on under crowding dynamics, and it was widely acknowledged at that time

that the growth of a single species has the following formula:

dN

dt
= rN, (3.10)

where, r is the growth rate per capita, N is the species’ density. This equation is

remaining true where the populations are not restricted by resources. With resource
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limitations, the ecologists Pierre F. Verhulst and biologist Raymond Pearl [51] mod-

ified (3.10) to the logistic of each species counting the intraspecific completion for

resources as being:

dN

dt
= rN

(
1− N

k

)
, (3.11)

where, k represents the carrying capacity (maximum population density) that the

environment can support. For high population densities, the per capita population

growth rate is going to be negative. The logistic model has a unique globally stable

positive equilibrium at the carrying capacity k. As a result, (3.11) has become a

familiar with the concept of negative density, overcrowding and population limitation

resources [52].

3.4 The behaviour of multi-species interactions

In the field of mathematical biology, the ecosystem models of predator-prey have

been extensively discussed in the literature. The first development of a simple model

describing the interaction between populations goes back to Lotka [4] and Volterra [5].

They first introduced their prey-predator system, which is a food chain of length two,

as stated in Eq.(5.2). They demonstrated that for any initial condition the simple

food chain models can permanently oscillate. Contemporary theorists now consider

food chain models with lengths n;n ≥ 2, which contain n interspecific interactions of

populations consisting of n trophic levels, whereby each population except for the low-

est gets its resources from those on the lower trophic levels. The resources are passed

to the next population along a linear chain. A network of many intersecting food

chains is also called a food web. Many food-chain/web models that have appeared

are of the Lotka-Volterra type, with different terms for a functional response. For

example, the consideration models in [53–57] include the Lotka-Volterra food-chain

as special cases. Regarding general food chains with arbitrary length, early theoret-

ical studies [58–60] were based on local behaviour stability. It has been noted from

these analytical studies that even though a food chain model has a simple structure,
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it has very complicated dynamics. Moreover, Hastings and Powell [61] proposed a

model of a food chain including a Holling type I functional response. It was noted

that for long-term behaviour the proposed model exhibits to chaotic behaviour when

reasonable biological parameter values have been chosen. After the appearance of

chaos in their model, they concluded that the chaotic dynamics might be widespread

in food web models. Furthermore, in [62] the dynamics of a food chain model of three

species with Holling type-I and type-III functional responses for both of predator

and super predator, respectively, were studied. The results elicited that the solutions

had periodic behaviour around the steady states and possessed Hopf bifurcations.

The persistence of the top species in their models is sensitively dependent on several

sets of parameters, such that this species at specific values decreases over time to

eventually dying out. Chaudhuri and Kar [63] proposed a model of two competing

prey and one predator in which the former is affected by both of the existence of

the latter and harvesting. The feeding rate of the predator in their model increases

linearly with the density of prey and by using a Lyapunov method, they established

the conditions for global stability of the system. They also recognised the require-

ments policy to get the optimal harvest by using Pontryagin’s maximal principle.

Green [64] formulated a system of two prey-one predator in which the former are

replenished following a linear type of rate, instead of a logistic one. It was found out

that the combined supply of prey to the predator a stabilise the system. This study

also involved investigating some behaviour, such as limit cycles and chaos; however,

the model does not consider either prey harvesting or competition amongst prey.

Vlastmil and Eisner [65] proposed a tri-trophic food chain composed of a logistic sup-

ply of prey, a classical Lotka-Volterra functional response for prey and predator, and

a Holling type-II functional response for predator and superpredator. For the study,

the extinction of the lower resource due to the competition of prey was exhibited.

Furthermore, the numerical analysis showed that by using the control parameter, it

is possible to break the stable behaviour of the system, thus driving it into an un-

stable state. In another study of [66], a food chain model with a ratio-dependent
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functional response was considered. In this work, the population was separated into

three different classes, namely: prey, predator and top-predator. In this model, the

intra-specific competition among the predators has been incorporated. Moreover, the

system exhibits saddle-node bifurcation, and Hopf bifurcation for some choices of the

applicable parameters. Kabuye [67] proposed a four-species (lions, hyaenas, Ugandan

kobs and waterbucks) model based on the interactions among them in the Queen

Elizabeth National Park. The kobs and the waterbucks were the prey, while the lions

and hyaenas were the predators. The author recognised the conditions for the stable

existence of all the species by using the Routh-Hurwitz criteria. Moreover, he showed

that how cooperation, as well as interspecific and intraspecific competition among

the species, affected the dynamics around the equilibrium in the system. This system

was based on the standard linear type predator-prey competition model, and terms

such as logistic growth with carrying capacity and functional responses have been

excluded. While, Edwin [68] proposed a three-species (lions, buffalo and Ugandan

kobs) predator-prey model also based on the interactions among them in the Queen

Elizabeth National Park. The kobs and buffalo were the prey, while the lions were

the predator. The researcher exhibited that the three species could co-exist if one of

the preys (Uganda Kobs) were not harvested. While, the numerical simulation result

of the model shows the dynamical behaviour of the system could be changed from a

stable to a limit cycle when values of some parameters such as natural death rate of

the predator, the harvesting rate, and food conversion rate of the predator are var-

ied. This system was based on Holling Type II functional response to one prey, and

ratio-dependent functional response to the other prey. Terms such as logistic growth

with carrying capacity and functional responses have been excluded. Furthermore,

Schaffer and collaborators (Gilpin and Guckenheimer) [69–72] produced a much more

significant complicated dynamics than ecologists had earlier believed could appear

in a model with three species or more, which is called chaos. Later, this behaviour

became familiar to most ecologists, such as May [73] and Schaffer and Kot [74] in

that they investigated the arising of chaos in ecological models. Another exploration
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by Gilpin [75] confirmed that a system of two competing prey and one predator could

exhibit chaotic behaviour.

One approach to studying an ecological community starts with the principles of a

food web. However, theoretical studies of such webs have to contend with the question

of how to combine a three number or more of interacting species. One approach

to this type of research involves assuming the ”building blocks” through which the

species interacting are in a pairwise fashion see the influential books of May and

Pimm [76,77]. That is, the dynamic behaviour of the entire interacting community is

assumed to arise from the coupling of these interacting pairs. Hence, this approach

has the significant advantage that it is tractable for theoretical studies. Furthermore,

the considerable intuition that researchers have developed over the decades with two-

species models could also be applied to community food web questions. However,

the dynamic behaviour that could be critical to organism function might emerge

only through the interaction of three or more species. To understand plant-insect

interactions, Price et al. [78] put forward a substantial case that this interaction must

be based on three trophic-level structures or more. Also, the influential approaches

of Paine [79] in relation to marine intertidal communities, determined the importance

of higher trophic levels to lower ones in the food web model and similar results have

arisen from experiments in freshwater.

3.5 The refuge in population dynamics

One of the most essential parts of biological activities is the biosphere, which is

habitually responsible for the changes in environment and ecology. The interaction

and co-existence of biological species have been widely studied via mathematical

models by many investigators [80–84].

A variety of biological species has been taken to extinction, due to some causer

such as overexploitation, over-predation, environmental pollution, mismanagement of

the habitat etc. Regarding which, several researchers have reported that in many
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situations there needs to be a constant amount of prey protected from the effect of

predation by a refuge. Accordingly, a number of mathematical models and investiga-

tion incorporate refugia, i.e. areas in which the prey survive and are not successfully

suppressed by the predator. Moreover, these are aimed at decreasing the interaction

between species [85].

The fundamental role of refuges/reserve area in the predator-prey model has re-

ceived significant attention and has also been pointed to by several researchers [86–88]

for studying the behaviour of coexistence of interacted species over the long-term. In

particular, Collings [89] studied precisely the behaviour of a predator-prey system

in the case of the existence of refuge to protect a constant amount of prey, with

temperature dependent parameters appropriately chosen for a mite interaction with

a fruit species. His study showed that the existence of a temperature interval such

that the quantity of the refuge increases dynamically destabilises the proposed sys-

tem. Furthermore, the interaction is not as much as likely to persist all the species

on the part of this interval. Hence, the prey and predator have densities that are

lower compared to when there is no refuge available. Krivan suggested a model of

a predator-prey system for investigating the effects of the optimal antipredator be-

haviour of the prey. He detected from the behaviour of this system that it leads to a

reduction of the oscillations that consequently, results in the persistence of all of the

population densities [90]. Chattopadhyay et al. [91] suggested a predator-prey model

with some cover for the prey species. It was demonstrated that the global stability of

this model around the positive steady state does not mean that there is permanence

of the system. Furthermore, Kar [92] studied a harvest of the predator-prey model to-

gether with a prey refuge. It was observed that using the harvesting effect as control,

is more likely to break the cyclic behaviour of the system. However, in the investiga-

tions above, the dynamic behaviour of living prey together with the predator in the

unreserved area has not been considered explicitly. In [93], the effects of prey protec-

tion on the behaviour of a predator-prey interaction with Holling type I functional

responses are formulated. The results exhibited that the impact of having a refuge
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increases the prey population, while decreasing the density of the predators. It was

also that the effect of the refuge could stabilise the proposed model, and destabilise

it under an inadequate set of conditions. Furthermore, in [94] the effect of a prey

refuge in the predator-prey model was analysed under the assumption that the rate

of prey movement to the protection area is proportional to the density of predator.

Subsequently, the results proved that the prey takes advantage of the protected area

by increasing their density, while the predators decrease as refuge usage grows.

In fishery resources, the reserved zone plays a vital role in the aquatic environment

by protecting them from overexploitation [95]. Regarding which, Dubey [96] proposed

a mathematical model for studying the dynamic behaviour of a fishery resource in

an aquatic environment involving two areas, namely, a free fishing zone and a reserve

zone, where fishing was strictly not allowed. It was shown that the fish populations

could be maintained at a proper equilibrium level in the habitation, even if the fishery

is exploited incessantly in the unprotected area. Dubey [97] suggested a model of a

predator-prey in the case of the existence of a reserved area. It was assumed that the

habitation was also divided into two separate zones, namely: reserved and unreserved

zones. The predators were not allowed to enter the last region, and they consumed the

prey in the unreserved area according to the classic functional response of the Lotka-

Volterra type. In his study, he concluded that the existence of the prey refuge takes

advantage to stabilising the proposed model. Recently, Mukherjee [98], formulated

and analysed a predator-prey model coupled with a reserved zone of prey and with a

Holling type-II functional response for a predator, which entirely depended on the prey

in the unreserved area. It was shown how the existence of the reserved zone fosters the

stabilising of the proposed system. Later on, Agarwal and Pathak [99] proposed and

analysed a system of two prey and one predator in which one of the former spread into

two environment patches consisting both of reserved and unreserved areas of prey.

Again, both studies confirmed how the reserved zone is responsible for stabilising

their models.
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Keeping that in view, in this thesis the idea of the reserved zone is adopted and

developed to a new mathematical model by incorporating an additional equation.

This equation represents the more general predator (top predator) in an unreserved

area with the functional response of linear type which is coupled to a food chain

predation process. Then, the coexistence and stability behaviour of the new system

is studied in the next chapter in detail.

3.6 Summary

In this chapter, some types of Holling’s interaction functions between species have

been presented. The models, which describe the interaction between populations,

have been presented in detail. Moreover, a selection of the relevant recent literature

regarding multi-species models has been reviewed. It was shown that ecological situa-

tions consisting of three or more species have very complicated dynamics. In addition,

dynamics behaviour, such as cycles, instability and chaos in several predator-prey

models, has been explained. Further, the notion of refuge in population behaviour

has been considered in one of the population species as a means of stabilising the

behaviour of prey-predator interactions. That is, as a from the reviewed studies,

it has emerged that the idea of refuge could be vital in populations, in particular,

as a stabilising force in predator and prey population dynamics, being applicable to

address some practical ecosystem challenges.
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Chapter 4: The effect of the reserve

zone on the behaviour

of a food chain model

4.1 Introduction

In this chapter, the modelling of a food chain prey-predator model with reserve

zone effect on the prey is proposed. A variety of analytical methods and tools are used

to study the existence, uniqueness, boundedness, local stability, local bifurcation,

and persistence of the solutions of the proposed model. The global dynamics of

this model are investigated analytically as well as numerically. The model shows

rich dynamics in the space of non-negative solutions. In particular, the dynamics

around the different equilibrium points have been studied in detail, such as the strictly

positive equilibrium, the equilibrium for which only the top predator vanishes and

the remaining components are strictly positive, the equilibrium with two vanishing

components and the trivial equilibrium. The long-term behaviour of the system has

been studied, and conditions for persistence have been derived. Finally, the role of the

reserved zone has been investigated in detail to achieve the coexistence of all species.
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4.2 Mathematical model

Suppose there is a food chain consisting of prey, predator and a top predator,

where the following assumptions have been made to formulate the model.

• The prey population has been separated into two classes: x(t), which is the

density of the prey in the non-reserved zone and y(t), the density of the prey

in the reserve region when predators are not allowed to enter.

• z(t), w(t) are the densities of predator and top predator species at a particular

time, respectively.

Under the above assumptions, the model can be presented by the following system of

differential equations:

dx

dt
= rx

(
1− x

k

)
− σ1x+ σ2y − β1xz = f1(x, y, z, w),

dy

dt
= sy

(
1− y

l

)
+ σ1x− σ2y = f2(x, y, z, w),

dz

dt
= β2xz − β0z − γ1zw = f3(x, y, z, w),

dw

dt
= γ2zw − αw = f4(x, y, z, w).

(4.1)

Here, the model (4.1) has been analysed with the initial conditions x(0) ≥ 0, y(0) ≥ 0,

z(0) ≥ 0 and w(0) ≥ 0. p(x) = β1x and q(z) = γ1z are the Lotka-Volterra type of

functional responses. All parameters of the model system (4.1) are assumed to be

positive and described as follows.

k and l are the carrying capacities of the prey in the unreserved and reserved zone,

respectively, with intrinsic growth rates r and s; σ1 is the migration rate coefficient

of the prey species from the unreserved to reserved area and σ2 the migration rate

coefficient of the prey species from the reserved to unreserved zone; β1 is the attack

rate of the predator on the prey in the unreserved region; β2 is the conversion rate

of the prey in the unreserved zone to a predator; γ1 is the attack rate of the top
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predator on the predator; γ2 is the conversion rate of the predator to the top predator;

and finally, β0 and α represent the predator and top predator’s natural death rate,

respectively .

Apparently, the functions on the right-hand side in the system (4.1) are continu-

ously differentiable functions on IR4
+ =

{
(x, y, z, w), x ≥ 0, y ≥ 0, z ≥ 0, w ≥ 0

}
and

hence, they are Lipschitzian. Therefore, a solution to the system (4.1) exists, which

is unique. Further, all the solutions of the model (4.1) with any non-negative initial

conditions are bounded, as shown in the following section.

4.3 Boundedness

Theorem 4.3.1 Assume that the conditions β1 ≥ β2 and γ1 ≥ γ2 hold, then all the

solutions of the system (4.1) which initiate in IR4
+ are bounded.

Proof Let (x(t), y(t), z(t), w(t)) be an arbitrary solution of the system (4.1) with a

non-negative initial condition. Then for U(t) = x(t) + y(t) + z(t) + w(t), we have

dU

dt
= rx− rx2

k
+ sy − sy2

l
− (β1 − β2)xz − (γ1 − γ2)zw − β0z − αw.

Hence, according to the assumptions of the theorem, the following is obtained:

dU

dt
≤ rx− rx2

k
+ sy − sy2

l
− β0z − αw

dU

dt
+ ξU ≤ 2rx− rx2

k
+ 2sy − sy2

l
,

where, ξ = min{r, s, β0, α}, then

dU

dt
+ ξU ≤ rk − r

k

(
x− k

)2
+ sl − s

l

(
y − l

)2

≤ rk + sl = µ.

Applying Gronwall’s Inequality (see Subsection 2.3.11), the following is obtained:

0 ≤ U
(
x(t), y(t), z(t), w(t)

)
≤ µ

ξ

(
1− e−ξt

)
+ U(0)e−ξt.
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Therefore,

0 ≤ lim sup
t→∞

U
(
t
)
≤ µ

ξ
.

Hence, all the solutions of the system (4.1) that are initiated in IR4
+ are attracted

to the region Ω =
{(
x, y, z, w

)
∈ IR4

+ : U = x + y + z + w ≤ µ
ξ

}
under the given

conditions. Thus, these solutions are bounded, and the proof is complete.

Remark

According to the above proof, the following can be noted:

• Since lim supt→∞ U
(
t
)

in the above theorem is independent of the initial condi-

tion, thus, in this case, the whole system can be said to be uniformly bounded.

• System (4.1) is dissipative (see Subsection 2.3.1).

• Since β1 represents the depletion rate coefficient of prey due to its intake by the

predator and β2 denotes the growth rate coefficient of the predator due to its

interaction with its prey, it is natural to assume that β1 ≥ β2, and by the same

argument γ1 ≥ γ2 [97].

4.4 Positive invariance

Let X =
(
x, y, z, w

)T ∈ IR4 and, f(X) =
[
f1(X), f2(X), f3(X), f4(X)

]T
where,

f(X) : IR4
+ → IR4 and f ∈ C∞+ (IR4

+). Then system (4.1) becomes:

Ẋ = f(X), (4.2)

with X(0) = X0 ∈ IR4
+. It is clear for any X(0) ∈ IR4

+, such that Xi = 0, then

[fi(X)]xi=0 ≥ 0 (for i = 1, 2, 3, 4). Now, any solution of the Eq.(4.2) with X0 ∈ IR4
+,

say X(t) = X(t,X0), is such that X(t) ∈ IR4
+ for all t > 0 [100].

Lemma 2 (Main assumption) it will be assumed that r > σ1 and s > σ2.
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Proof It is easy to validate that if σ2 = 0, which means that there is no migration

from the reserved to unreserved area, and r − σ1 < 0, then dx/dt < 0. Similarly,

when σ1 = 0 and r− σ2 < 0, then dy/dt < 0. The interest here lies in the case where

dx/dt and dy/dt can be positive. Hence, the conditions that have been stated in the

lemma will be taken as the main assumption.

In the following, the existence of the equilibrium points of the system (4.1) will

be elucidated.

4.5 Existence of equilibria

The food chain prey-predator model with a reserved zone given by the system

(4.1) has four nonnegative equilibrium points, namely:

• F0 = (0, 0, 0, 0) is the vanishing fixed point;

• F1 = (x̂, ŷ, 0, 0) is the planar fixed point;

• F2 = (x̄, ȳ, z̄, 0) is the top predator-free fixed point;

• F3 = (x∗, y∗, z∗, w∗) is the interior fixed point.

The equilibrium F0 = (0, 0, 0, 0) obviously exists and the existence of F1, F2, and

F3 are now shown in the following.

4.5.1 The existence of the planar equilibrium point

The equilibrium point F1 = (x̂, ŷ, 0, 0) exists in the interior of IR2
+ of the xy- plane,

if and only if, x̂ and ŷ represent the positive solution of the following set of algebraic

equations:

r
(

1− x

k

)
− σ1 +

σ2y

x
= 0, (4.3)

s
(

1− y

l

)
− σ2 +

σ1x

y
= 0. (4.4)



42

From equation (4.3),

y =
1

σ2

[rx2

k
− (r − σ1)x

]
. (4.5)

Now, substituting the value of y into Eq.(4.4), a little algebraic manipulation yields:

ax3 + bx2 + cx+ d = 0, (4.6)

where,

a =
sr2

lσ2
2k

2
> 0,

b =
−2rs(r − σ1)

lkσ2
2

< 0,

c =
s(r − σ1)2

lσ2
2

− r(s− σ2)

kσ2

,

d =
(r − σ1)(s− σ2)

σ2

− σ1.

Hence, by using Descartes rule of signs (see Subsection 2.3.12), Eq.(5.5) has a

unique positive solution, say x = x̂, if the following inequalities hold:

s(r − σ1)2

lσ2
2

<
r(s− σ2)

kσ2

,

(r − σ1)(s− σ2) < σ1σ2.

Knowing the value of x̂, the value of ŷ is computed from Eq.(5.4). It should also be

noted that for ŷ to be positive, the following must be the case:

x̂ >
k

r
(r − σ1). (4.7)

Similarly, the value of x̂ can be determined from Eq.(4.4) as:

x̂ =
1

σ1

[sŷ2

l
− (s− σ2)ŷ

]
.

While, ŷ is a positive root that can be determined from Eq.(4.3), so that:

ŷ >
l

s
(s− σ2). (4.8)

Consequently, conditions (4.7) and (4.8) represent the necessary conditions for the

existence of the planar equilibrium point F1 in the interior of IR2
+ of the xy-plane.
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4.5.2 The existence of the top predator-free equilibrium point

The equilibrium point F2 exists in the interior of IR3
+ of the xyz-plane, if and only

if, x̄, ȳ and z̄ are the positive roots of the following set of algebraic equations:

r
(

1− x

k

)
− σ1 +

σ2y

x
− β1z = 0,

s
(

1− y

l

)
− σ2 +

σ1x

y
= 0,

β2x− β0 = 0.

Solving the above equations, gives that:

x̄ =
β0

β2

,

ȳ =
l

2sβ2

[
lβ2(s− σ2) +

√
l2β2

2(s− σ2)2 + 4slβ0β2σ1

]
,

z̄ =
β2

β0β1

[β0(r − σ1)

β2

− rβ2
0

kβ2
2

+ σ2ȳ
]
.

Undoubtedly, for z̄ to be positive, the following condition must holds:

[β0(r − σ1)

β2

−+σ2ȳ
]
> − rβ

2
0

kβ2
2

, (4.9)

It is clear that condition (4.9) gives a threshold value k of the carrying capacity in

the free access area. Thus, the predator keeps surviving. Also, it should be noted

that condition (4.9) could fail when k is small enough and hence, the existence of the

top predator-free fixed point is violated.

4.5.3 The existence of the positive equilibrium point

The positive equilibrium point F3 exists in the interior of IR4
+, if and only if,

x∗, y∗, z∗ and w∗ are the positive solutions of the following set of equations:
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r
(

1− x

k

)
− σ1 +

σ2y

x
− β1z = 0, (4.10)

s
(

1− y

l

)
− σ2 +

σ1x

y
= 0, (4.11)

β2x− β0 − γ1w = 0, (4.12)

γ2z − α = 0. (4.13)

From the above list of equations, the following is obtained:

y =
l

2s

[
(s− σ2) +

√
(s− σ2)2 +

4sσ1x

l

]
, (4.14)

z∗ =
α

γ2

, (4.15)

w =
β2x− β0

γ1

. (4.16)

By substituting the values of y and z in Eq.(4.10), a little algebraic manipulation

yields:

ax3 + bx2 + cx+ d = 0, (4.17)

where,

a =
(−r
k

)2

> 0,

b =
2r

k

(
(r − σ1)− β1α

γ2

)
,

c =
−2r

k

(σ2l

2s
(s− σ2)

)
+
(

(r − σ1)− β1α

γ2

)2

,

d = −
[σ2l

s

(
s− σ2

)(
(r − σ1)− β1α

γ2

)
+
σ1σ

2
2l

s

]
.

By using Descartes rule of signs, Eq.(5.11) has a unique positive solution x = x∗, if

the following inequality

(
r − σ1

)
>
β1α

γ2

, (4.18)

holds. Knowing the value of x∗, the values of y∗ and w∗ can be computed from
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Equations (5.18) and (4.16), respectively. It should also be noted that for w∗ to be

positive, the following must be true:

β2x
∗ > β0. (4.19)

4.6 Local stability of the equilibrium points

In this section, the local dynamic behaviour of the system (4.1) around each of

the above equilibrium points is discussed by making use of the eigenvalue method.

The Jacobian matrix of system (4.1) at any point is given by:

J =


r − σ1 −

2rx

k
− β1z σ2 −β1x 0

σ1 s− σ2 −
2sy

l
0 0

β2z 0 β2x− β0 − γ1w −γ1z

0 0 γ2w γ2z − α


, (4.20)

and, the eigenvalues of the resulting matrix are computed as follows:

4.6.1 Local stability behaviour of F0

In the following lemma, it is shown that F0 is always a saddle point.

Lemma 3 The vanishing equilibrium point F0 = (0, 0, 0, 0) is a saddle point in IR4
+.

Proof First, the Jacobian matrix of the system (4.1) at F0 can be written by:

J(F0) =


r − σ1 σ2 0 0

σ1 s− σ2 0 0

0 0 −β0 0

0 0 0 −α

 (4.21)
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Then, it is easy to verify that, the eigenvalues of J(F0) satisfy the following relations:

T = λ01 + λ02 = (r − σ1) + (s− σ2) > 0, (4.22)

D = λ01.λ02 = (r − σ1)(s− σ2)− σ1σ2, (4.23)

λ03 = −β0 < 0, (4.24)

λ04 = −α < 0, (4.25)

where, λ0i (i = 1, 2, 3, 4) represent the eigenvalues that describe the dynamics in the

directions of their eigenvectors. Note that, according to Eq.(4.23), the eigenvalues

λ01 and λ02 are positive, provided that:

(r − σ1)(s− σ2) > σ1σ2,

and then, F0 is the unstable point in the interior of IR2
+ of the xy-plane. However,

λ01 and λ01 have opposite signs, provided that:

(r − σ1)(s− σ2) < σ1σ2.

Hence, F0 is a saddle point in the interior of IR2
+ of the xy-plane. Further, according

to Eqs. (4.24)-(4.25), the equilibrium point F0 is a saddle point in the interior of IR4
+.

It should be also noted that the formulae of λ01 and λ02 are given by the following

equations:

λ01,02 =
T±

√
(T)2 − 4D

2
. (4.26)

4.6.2 Local stability behaviour of F1

In the following lemma, the local behaviour of the planar fixed point F1 is shown.

Lemma 4 The planar equilibrium point F1 = (x̂, ŷ, 0, 0) is locally asymptotically

stable in IR4
+, whenever:

β2x̂ < β0, (4.27)
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holds.

Proof The Jacobian matrix of system (4.1) at the equilibrium point F1 is given by:

J(F1) =


r − σ1 − 2rx̂

k
σ2 −β1x̂ 0

σ1 s− σ2 − 2sŷ
l

0 0

0 0 β2x̂− β0 0

0 0 0 −α

 (4.28)

Straightforward computations show that the eigenvalues of the Jacobian matrix J(F1)

satisfy the following relations:

λ11 + λ12 = −
(σ2ŷ

x̂
+
rx̂

k
+
σ1x̂

ŷ
+
sŷ

l

)
< 0, (4.29)

λ11.λ12 =

(
rs(x̂)2(ŷ)2 + skσ2(ŷ)3 + rσ1(x̂)3

klx̂ŷ

)
> 0, (4.30)

λ13 = β2x̂− β0, (4.31)

λ14 = −α < 0, (4.32)

where, λ1i (i = 1, 2, 3, 4) represent the eigenvalues that describe the dynamics in the

directions of their eigenvectors. Note that, according to equations (4.29)-(4.32), all the

eigenvalues of J(F1) have negative real parts and hence, F1 is locally asymptotically

stable in IR4
+, if and only if, condition (4.27) holds. However, it is a saddle point in

the interior of IR4
+, if the condition (4.27) is violated.

4.6.3 Local stability behaviour of F2

In the following lemma, the local behaviour of the top predator-free fixed point

F2 is shown.

Lemma 5 The top predator-free equilibrium point F2 = (x̄, ȳ, z̄, 0) is locally asymp-

totically stable in IR4
+ whenever

γ2z̄ < α. (4.33)

holds.
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Proof The Jacobian matrix of the system (4.1) at the equilibrium point F2 =

(x̄, ȳ, z̄, 0) can be written as:

J(F2) =


a11 a12 a13 0

a21 a22 0 0

a31 0 0 a34

0 0 0 a44

 (4.34)

where,

a11 = −
(σ2ȳ

x̄
+
rx̄

k

)
< 0; a12 = σ2 > 0; a13 = −β1x̄ < 0; a21 = σ1 > 0;

a22 = −
(σ1x̄

ȳ
+
sȳ

l

)
< 0; a31 = β2z̄ > 0; a34 = −γ1z̄ < 0; a44 = γ2z̄ − α.

The first root of the characteristic equation of J(F2) is γ2z̄ − α and the other three

roots are given by:

λ3 + A1λ
2 + A2λ+ A3 = 0.

The coefficients of the characteristic equation of J(F2) can be written as:

A1 = −(a11 + a22) > 0,

A2 = a11a22 − a12a21 − a13a31,

A3 = a22a13a31 > 0.

Further,

∆ = A1A2 − A3 = (a11 + a22)(a12a21 + a11a22) + a11a13a31

=

[
klσ2(ȳ)2 + rl(x̄)2ȳ + klσ1(x̄)2 + skx̄(ȳ)2

x̄ȳkl

][
skσ2(ȳ)3 + rlσ1(x̄)3 + rs(x̄)2(ȳ)2

x̄ȳkl

]

+

(
β1β2z̄(kσ2ȳ + r(x̄)2)

l

)
> 0.

Now, according to the Routh-Hurwitz criteria (see Subsection 2.3.2), all the eigenval-

ues of J(F2) have roots with negative real parts, provided that Ai(i = 1, 3) > 0 and

∆ > 0. Therefore, F2 is locally asymptotically stable, if (4.33) holds.
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4.6.4 Local stability behaviour of F3

In the following lemma, the local behaviour of the positive fixed point F3 is shown.

Lemma 6 The positive equilibrium point F3 = (x∗, y∗, z∗, w∗) is locally asymptotically

stable in IR4
+ whenever it exists.

Proof The Jacobian matrix of the system (4.1), at the positive equilibrium point

F3 = (x∗, y∗, z∗, w∗), can be written as:

J(F3) =


a11 a12 a13 0

a21 a22 0 0

a31 0 0 a34

0 0 a43 0

 (4.35)

where,

a11 = −
(σ2y

∗

x∗
+
rx∗

k

)
< 0; a12 = σ2 > 0; a13 = −β1x

∗ < 0; a21 = σ1 > 0;

a22 = −
(σ1x

∗

y∗
+
sy∗

l

)
< 0; a23 = 0; a31 = β2z

∗ > 0; a34 = −γ1z
∗ < 0; a43 = γ2w

∗.

Accordingly, the characteristic equation of J(F3) is given by:

λ4 + A1λ
3 + A2λ

2 + A3λ+ A4 = 0.

Here,

A1 = −M1 > 0,

A2 = M2 +M3 > 0,

A3 = a11M4 − a22M3,

A4 = −M2M4,

where,

M1 = a11 + a22 < 0, M2 = a11a22 − a12a21 > 0, M3 = −a13a31 − a34a43 > 0,
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M4 = a34a43 < 0.

Further,

∆ = A1A2A3 − A2
3 − A2

1A4

=
(
a11M4 − a22M3

)(
a11a13a31 −M1M2

)
+M2

1M2M4

= a13a31

(
a2

11M4 − a22M3 − a22M1M2

)
> 0.

Now, according to the Routh-Hurwitz criteria, all the eigenvalues of J(F3) have roots

with negative real parts, since Ai(i = 1, 3, 4) > 0 and ∆ > 0. Hence, F3 is locally

asymptotically stable in the interior of IR4
+.

4.7 Global dynamical behaviour

In this section, the global stability of the local equilibrium points is investigated

by using the Lyapunov direct method (see Subcection 2.3.5), as shown in the following

theorems.

Theorem 4.7.1 Assume that the equilibrium point F1 is locally asymptotically stable

in IR4
+, then it is globally asymptotically stable in IR4

+.

Proof Consider the following positive definite function:

R1(x, y, z, w) = c1

(
x− x̂− x̂ ln

x

x̂

)
+ c2

(
y − ŷ − ŷ ln

y

ŷ

)
+ c3z + c4w,

where, ci, (i = 1, 2, 3, 4) are positive constants to be determined. Now, the time

derivative of R1 along the trajectory of the system (4.1) can be written as:
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dR1

dt
= c1

(x− x̂
x

)dx
dt

+ c2

(y − ŷ
y

)dy
dt

+ c3
dz

dt
+ c4

dw

dt

= c1

(
x− x̂

)(
r − rx

k
− σ1 +

σ2y

x
− β1z

)
+ c2

(
y − ŷ

)(
s− sy

l
+
σ1x

y
− σ2

)
+ c3

(
β2xz − β0z − γ1zw

)
+ c4

(
γ2zw − αw

)
= c1

(
x− x̂

)(−r
k

(
x− x̂

)
+ σ2

(y
x
− ŷ

x̂

)
− β1z

)
+ c2

(
y − ŷ

)(−s
l

(
y − ŷ

)
+ σ1

(x
y
− x̂

ŷ

))
+ c3

(
β2xz − β0z − γ1zw

)
+ c4

(
γ2zw − αw

)
.

Therefore,

dR1

dt
=
−c1r

k

(
x− x̂

)2
+ c1σ2

(
x− x̂

)(yx̂− xŷ
xx̂

)
− c1

(
x− x̂

)
β1z
)

− c2s

l

(
y − ŷ

)2
+ c2σ1

(
y − ŷ

)(xŷ − yx̂
yŷ

)
+ c3

(
β2xz − β0z − γ1zw

)
+ c4

(
γ2zw − αw

)
.

By choosing the positive constants as

c1 = 1, c2 =
σ2ŷ

σ1x̂
, c3 =

β1

β2

, c4 =
β1γ1

β2γ2

,

the following is obtained,

dR1

dt
= −

( r
k

)(
x− x̂

)2 −
( σ2

xx̂y

)(
xŷ − yx̂

)2 −
(sσ2ŷ

lσ1x̂

)(
y − ŷ

)2

+
(
x̂− β0

β2

)
β1z −

(αβ1γ1

β2γ2

)
w.

Then, dR1

dt
< 0 under the local stability condition (4.27). Hence, R1 is a Lyapunov

function. Therefore, F1 is globally asymptotically stable in IR4
+.

The next theorem shows the global stability of the top predator-free equilibrium point

F2 in IR4
+.

Theorem 4.7.2 Assume that the equilibrium point F2 is locally asymptotically stable

in IR4
+, then it is globally asymptotically stable in IR4

+.
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Proof Consider the following positive definite function:

R2(x, y, z, w) = c1

(
x− x̄− x̄ ln

x

x̄

)
+ c2

(
y − ȳ − ȳ ln

y

ȳ

)
+ c3

(
z − z̄ − z̄ ln

z

z̄

)
+ c4w,

where, ci, (i = 1, 2, 3, 4) are positive constants to be determined. Now the time

derivative of R2 along the trajectory of the system (4.1) can be written as:

dR2

dt
= c1

(x− x̄
x

)dx
dt

+ c2

(y − ȳ
y

)dy
dt

+ c3

(z − z̄
z

)dz
dt

+ c4
dw

dt

= c1

(
x− x̄

)(
r − rx

k
− σ1 +

σ2y

x
− β1z

)
+ c2

(
y − ȳ

)(
s− sy

l
+
σ1x

y
− σ2

)
+ c3

(
z − z̄

)(
β2x− β0 − γ1w

)
+ c4

(
γ2zw − αw

)
= c1

(
x− x̄

)(−r
k

(
x− x̄

)
+ σ2

(y
x
− ȳ

x̄

)
− β1

(
z − z̄

))
+ c2

(
y − ȳ

)(−s
l

(
y − ȳ

)
+ σ1

(x
y
− x̄

ȳ

))
+ c3

(
z − z̄

)(
β2

(
x− x̄

)
− γ1w

)
+ c4

(
γ2zw − αw

)
.

Therefore,

dR2

dt
=
−c1r

k

(
x− x̄

)2
+ c1σ2

(
x− x̄

)(yx̄− xȳ
xx̄

)
− c1β1

(
x− x̄

)(
z − z̄

)
− c2s

l

(
y − ȳ

)2
+ c2σ1

(
y − ȳ

)(xȳ − yx̄
yȳ

)
+ c3

(
x− x̄

)(
z − z̄

)
− c3γ1w

(
z − z̄

)
+ c4

(
γ2zw − α

)
w.

By choosing the positive constants as

c1 = 1, c2 =
σ2ȳ

σ1x̄
, c3 =

β1

β2

, c4 =
β1γ1

β2γ2

,

the following is obtained

dR2

dt
= −

( r
k

)(
x− x̄

)2 −
( σ2

xx̄y

)(
xȳ − yx̄

)2

−
(sσ2ȳ

lσ1x̄

)(
y − ȳ

)2
+
(
γ2z̄ − α

)(β1γ1

β2γ2

)
w.

Then, dR2

dt
≤ 0 which is negative semi-definite under the local stability condition

(4.33). Thus, F2 is Lyapunov stable. However, the setN2 =
{

(x, y, z, w)/Ṙ2(x, y, z, w) =
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0
}

, which is the set N2 =
{

(x, y, z, w)/x = x̄, y = ȳ, w = 0
}

, does not contain any

trajectory of the system except F2 = (x̄, ȳ, z̄, 0). Therefore, by LaSalle’s invariance

principle (see Theorem 2.3.3), F2 is globally asymptotically stable in IR4
+ if the local

stability condition holds.

Finally, the global stability of the positive equilibrium point F3 in the interior of IR4
+

is investigated, as shown in the following theorem.

Theorem 4.7.3 The equilibrium point F3 is globally asymptotically stable in IR4
+

whenever it exists.

Proof Consider the following positive definite function:

R3(x, y, z, w) = c1

(
x− x∗ − x∗ ln

x

x∗

)
+ c2

(
y − y∗ − y∗ ln

y

y∗

)
+ c3

(
z − z∗ − z∗ ln

z

z∗

)
+ c4

(
w − w∗ − w∗ ln

w

w∗

)
,

where, ci, (i = 1, 2, 3, 4) are positive constants to be determined. Now, the time

derivative of R3 along the trajectory of the system (4.1) can be written as:

dR3

dt
= c1

(x− x∗
x

)dx
dt

+ c2

(y − y∗
y

)dy
dt

+ c3

(z − z∗
z

)dz
dt

+ c4

(w − w∗
w

)dw
dt

= c1

(
x− x∗

)(
r − rx

k
− σ1 +

σ2y

x
− β1z

)
+ c2

(
y − y∗

)(
s− sy

l
+
σ1x

y
− σ2

)
+ c3

(
z − z∗

)(
β2x− β0 − γ1w

)
+ c4

(
w − w∗

)(
γ2z − α

)
.

Therefore,

dR3

dt
=
−c1r

k

(
x− x∗

)2
+ c1σ2

(
x− x∗

)(yx∗ − xy∗
xx∗

)
− c1β1

(
x− x∗

)(
z − z∗

)
− c2s

l

(
y − y∗

)2
+ c2σ1

(
y − y∗

)(xy∗ − yx∗
yy∗

)
+ c3β2

(
x− x∗

)(
z − z∗

)
− c3γ1

(
z − z∗

)(
w − w∗

)
+ c4γ2

(
z − z∗

)(
w − w∗

)
.

By choosing the positive constants as

c1 = 1, c2 =
σ2y

∗

σ1x∗
, c3 =

β1

β2

, c4 =
β1γ1

β2γ2

,
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the following is obtained

dR3

dt
= −

( r
k

)(
x− x∗

)2 −
( σ2

xx∗y

)(
xy∗ − yx∗

)2 −
(sσ2y

∗

lσ1x∗

)(
y − y∗

)2
.

Then, dR3

dt
≤ 0 which is negative semi-definite and thus F3 is Lyapunov stable.

However, the set N3 =
{

(x, y, z, w)/Ṙ3(x, y, z, w) = 0
}

, which is the set N3 ={
(x, y, z, w)/x = x∗, y = y∗

}
, does not contain any trajectory of the system ex-

cept F3 = (x∗, y∗, z∗, w∗). Therefore, by LaSalle’s invariance principle F3 is globally

asymptotically stable in interior of IR4
+.

4.8 Persistence analysis

In this section, the persistence conditions of system (4.1) are studied using the

Freedman and Waltman approach (see Subsubsection 2.3.8.1). In general, the persis-

tence of a system, from the mathematical point of view, means that strictly positive

trajectories of it that initiate in the interior of IR4
+ have no omega-limit sets on the

boundary planes. Biologically, this implies the survival of all species of the system

over the long-term.

Now, before establishing the persistence conditions of system (4.1), first, the stable

behaviour of F1 and F2 in the boundary planes xy and xyz needs to be studied, which

is undertaken through the following lemma.

Lemma 7 Assume that conditions (4.27) and (4.33) are satisfied, which represent the

local stability conditions for the equilibrium points F1 and F2, respectively. Then they

are globally asymptotically stable in the interior of IR2
+(xy) and IR3

+(xyz), respectively.

Proof The proof of the above Lemma is clear, and so omitted.

In the following theorem, the persistence condition of the system (4.1) is established.

Theorem 4.8.1 If the conditions (4.27) and (4.33) are violated, then, the system

(4.1) persists.
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Proof Suppose that q is a point in the interior of IR4
+ and, o(q) is the orbit through

q. Let Ω(q) be the omega limit set of o(q). Note that, Ω(q) is bounded due to the

boundedness of the system (4.1). First, it is claimed that F0 /∈ Ω(q). Assume the

contrary, and then, since F0 is a saddle point, it cannot be the only point in Ω(q),

and hence, according to the Butler-McGhee lemma (see Lemma 1, page 18) there is

at least another point, say p, such that p ∈ ωs(F0)∩Ω(q), where, ωs(F0) is the stable

manifold of F0. Now, ωs(F0) is the space IR3
+(xzw) or IR3

+(yzw) and the entire orbit

through p, which denoted by o(p), is contained in Ω(q).

Suppose that ωs(F0) is the space IR3
+(xzw) (similar proof as when ωs(F0) is the

space IR3
+(yzw)). Then, if p ∈ ∂IR3

+(xzw) (i.e. on the boundary axes of IR3
+(xzw)),

this means that the particular positive axis (that containing p) is included in Ω(q),

thus contradicting its boundedness. Now, let p ∈ Int.IR3
+(xzw) (i.e. in the interior of

IR3
+(xzw)). Since there is no equilibrium point in the Int.IR3

+(xzw), the orbit through

p, which is contained in Ω(q), must be unbounded. Giving a contradiction too, this

shows that F0 /∈ Ω(q).

Now, it is shown that F1 /∈ Ω(q) since F1 is a saddle point when the equation (4.27)

is violated. Then, again by the Butler-McGhee lemma, there is at least another point,

say p1, such that p1 ∈ ωs(F1) ∩ Ω(q), also, where ωs(F1) is the space IR3
+(xyw). Note

that, if p1 ∈ ∂IR3
+(xyw), then a contradiction occurs, as in the first part of the proof. Let

now, p1 ∈ Int.IR3
+(xyw), again, since there is no equilibrium point in the Int.IR3

+(xyw),

then the o(p1) ⊂ Ω(q) is unbounded, which gives a contradiction to the boundedness

of Ω(q). Thus, F1 /∈ Ω(q). Now, since F2 is the saddle point in IR4
+ if and only if

equation (4.33) is violated. Then, by using the argument entirely analogous to the

above yields that F2 cannot be contained in Ω(q). Thus, Ω(q) must be in the interior

of IR4
+, which proves the persistence of the system (4.1).



56

4.9 Local bifurcation analysis

In this section, the effect of varying parameter values on the dynamical behaviour

of the system (4.1) around each equilibrium point is studied. In the following theo-

rems, an application of Sotomayor’s hypothesis for local bifurcation is adapted (see

Subsubsection 2.3.9.1).

Now, the Jacobian matrix of system (4.1) at each of the equilibrium points is

given by:

J = DF =


r − σ1 −

2rx

k
− β1z σ2 −β1x 0

σ1 s− σ2 −
2sy

l
0 0

β2z 0 β2x− β0 − γ1w −γ1z

0 0 γ2w γ2z − α


.

For any non-zero vector V = (v1, v2, v3, v4)T :

D2F (V, V ) =


−2v1

(
rv1
k
− β1v3

)
−2s

l
v2

2

2v3(β2v1 − γ1v4)

2γ2v3v4

 (4.36)

and,

D3F (V, V, V ) = (0, 0, 0, 0)T .

So, according to Sotomayor’s theorem the pitchfork bifurcation does not occur at any

of the points Fi, i = 0, 1, 2, 3.

Theorem 4.9.1 Suppose that

(r − σ1)2 − lσ3
1 6= 0. (4.37)

Then, for the parameter value σ∗2 =
s(r − σ1)

r
system (4.1), at the equilibrium point

F0, has a transcritical bifurcation.
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Proof According to the Jacobian matrix J(F0), given by (4.21), system (6.1), at

the equilibrium point F0, has a zero eigenvalue, say
(
λ01 or λ02

)
, at σ2 = σ∗2, and the

Jacobian matrix J(F0), becomes:

J∗(F0) =


r − σ1 σ∗2 0 0

σ1 s− σ∗2 0 0

0 0 −β0 0

0 0 0 −α

 .

Now, suppose that V [0] =
(
v

[0]
1 , v

[0]
2 , v

[0]
3 , v

[0]
4

)T
is an eigenvector corresponding to the

eigenvalue λ01 = 0 (same, if λ02 = 0). Thus,
(
J∗(F0)− λ01I

)
V [0] = 0, which implies:

v
[0]
1 =

(σ∗2 − s)v
[0]
2

σ1

, v
[0]
3 = v

[0]
4 = 0 and v

[0]
2 represents any non zero real number.

Let ψ[0] =
(
ψ

[0]
1 , ψ

[0]
2 , ψ

[0]
3 , ψ

[0]
4

)T
be an eigenvector associated with the eigenvalue λ01

of the matrix (J∗(F0))T . Then,
(
(J∗(F0))T − λ01I

)
ψ[0] = 0. Subsequently, by solving

this equation for ψ[0], ψ
[0]
1 =

(σ∗2 − s)ψ
[0]
2

σ∗2
, ψ

[0]
3 = ψ

[0]
4 = 0 is obtained, where ψ

[0]
2 , is

any non-zero real number.

Now, to confirm that the conditions of Sotomayor’s theorem for transcritical bifurca-

tion are satisfied, the following is considered:

∂f

∂σ2

= f
′

σ2
(X, σ2) =

(
∂f1

∂σ2

,
∂f2

∂σ2

,
∂f3

∂σ2

,
∂f4

∂σ2

)T
= (y,−y, 0, 0)T .

Therefore, f
′
σ2

(F0, σ
∗
2) = (0, 0, 0, 0)T and hence, (ψ[0])Tf

′
σ2

(F0, σ
∗
2) = 0. Thus, accord-

ing to Sotomayor’s theorem, saddle-node bifurcation cannot occur, while the first

condition of transcritical bifurcation is satisfied.

Now,

Dfσ2(X, σ2) =


0 1 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 ,

where, Dfσ2(X, σ2) represents the derivative of fσ2(X, σ2) with respect to X =

(x, y, z, w)T . Also, it is observed that:
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Dfσ2(F0, σ
∗
2)V [0] =


0 1 0 0

0 −1 0 0

0 0 0 0

0 0 0 0




v

[0]
1

v
[0]
2

0

0

 =


v

[0]
2

−v[0]
2

0

0

 ,

(ψ[0])T [Dfσ2(F0, σ
∗
2)V [0]] =

(
ψ

[0]
1 , ψ

[0]
2 , 0, 0

)(
v

[0]
2 ,−v

[0]
2 , 0, 0

)T
=

(−s
σ∗2

)
ψ

[0]
2 v

[0]
2 6= 0.

Now, by substituting in (4.36), the following is obtained:

D2f
(
F0, σ

∗
2

)(
V [0], V [0]

)
=

(
−2r

(
v

[0]
1

)2

k
,
−2s

(
v

[0]
2

)2

l
, 0, 0

)T

.

Hence, according to condition (4.37):

(
ψ[0]
)T[

D2f(F0, σ
∗
2)
(
V [0], V [0]

)]
=

(
ψ

[0]
1 , ψ

[0]
2 , 0, 0

)(−2r
(
v

[0]
1

)2

k
,
−2s

(
v

[0]
2

)2

l
, 0, 0

)T

= −2
(
v

[0]
1

)2
ψ

[0]
2

(
s3

r2

)(
− lσ3

1 +
(
r − σ1

)2
)
6= 0.

This means the second condition of transcritical bifurcation is satisfied. Thus, ac-

cording to Sotomayor’s theorem, system (4.1) has transcritical bifurcation at F0 with

the parameter σ2 = σ∗2.

Theorem 4.9.2 Suppose that

v
[1]
3 6= 0. (4.38)

Then, for the parameter value β∗2 = β0/x̂, system (4.1), at the equilibrium point F1,

has a transcritical bifurcation.

Proof According to the Jacobian matrix J(F1) given by (4.28), system (4.1), at the

equilibrium point F1, has a zero eigenvalue, say λ13, at β2 = β∗2 and the Jacobian

matrix J(F1) becomes
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J∗(F1) =


r − σ1 − 2rx̂

k
σ2 −β1x̂ 0

σ1 s− σ2 − 2sŷ
l

0 0

0 0 −β0 0

0 0 0 −α

 .

Now, suppose that V [1] =
(
v

[1]
1 , v

[1]
2 , v

[1]
3 , v

[1]
4

)T
is an eigenvector corresponding to the

eigenvalue λ13. Then,
(
J∗(F1)− λ13I

)
V [1] = 0, which implies

v
[1]
2 =

σ1lv
[1]
1

2sŷ − (s− σ2)l
,

v
[1]
3 =

(
(rk − 2rx̂− σ1k)(2sŷ − (s− σ2)l) + σ1σ2lk

β1x̂k(2sŷ − (s− σ2)l)

)
v

[1]
1 ,

v
[1]
4 = 0,

where, v
[1]
1 is any non-zero real number. Let ψ[1] =

(
ψ

[1]
1 , ψ

[1]
2 , ψ

[1]
3 , ψ

[1]
4

)T
be an eigen-

vector associated with the eigenvalue λ13 of the matrix (J∗(F1))T . Then,
(
(J∗(F1))T−

λ13I
)
ψ[1] = 0. By solving this equation for ψ[1], ψ

[1]
1 = ψ

[1]
2 = ψ

[1]
4 = 0 is obtained,

where ψ
[1]
3 is any non-zero real number.

Now, to confirm whether the conditions of Sotomayor’s theorem for transcritical bi-

furcation are satisfied, the following is considered:

∂f

∂β2

= f
′

β2
(X, β2) =

(
∂f1

∂β2

,
∂f2

∂β2

,
∂f3

∂β2

,
∂f4

∂β2

)T
= (0, 0, xz, 0)T .

Thus, f
′

β2
(F1, β

∗
2) = (0, 0, 0, 0)T and hence, (ψ[1])Tf

′

β2(F1, β
∗
2) = 0. Therefore, accord-

ing to Sotomayor’s theorem, saddle-node bifurcation cannot occur, while the first

condition of transcritical bifurcation is satisfied.

Now,

Dfβ2(X, β2) =


0 0 0 0

0 0 0 0

z 0 x 0

0 0 0 0

 ,
where, Dfβ2(X, β2) represents the derivative of fβ2(X, β2) with respect to X =

(x, y, z, w)T . Moreover, it is observed under condition (4.38) that:
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Dfβ2(F1, β
∗
2)V [1] =


0 0 0 0

0 0 0 0

0 0 x̂ 0

0 0 0 0




v

[1]
1

v
[1]
2

v
[1]
3

0

 =


0

0

x̂v
[1]
3

0

 ,

(ψ[1])T
[
Dfβ2(F1, β

∗
2)V [1]

]
=

(
0, 0, ψ

[1]
3 , 0

)(
0, 0, x̂v

[1]
3 , 0

)T
= x̂ψ

[1]
3 v

[1]
3 6= 0.

Now, by substituting in (4.36), the following is obtained

D2f
(
F1, β

∗
2

)(
V [1], V [1]

)
=

(
− 2v

[1]
1

(
r
(
v

[1]
1

)2

k
+ β1v

[1]
3

)
,
−2s

(
v

[1]
2

)2

l
, 2β∗2v

[1]
1 v

[1]
3 , 0

)T

.

Hence, according to condition (4.38)(
ψ[1]
)T [

D2f(F1, β
∗
2)
(
V [1], V [1]

)]
= −2β∗2v

[1]
1 v

[1]
3 ψ

[1]
3 6= 0.

This means the second condition of transcritical bifurcation is satisfied. Thus, ac-

cording to Sotomayor’s theorem system, (4.1) has transcritical bifurcation at F1 with

the parameter β2 = β∗2 .

Theorem 4.9.3 Suppose that

v
[2]
3 6= 0. (4.39)

Then, for the parameter value γ∗2 =
α

z̄
, system (4.1), at the equilibrium point F2, has

transcritical bifurcation.

Proof According to the Jacobian matrix J(F2), given by (4.34), system (4.1), at

the equilibrium point F2, has a zero eigenvalue, say λ24, at γ2 = γ∗2 and this matrix

becomes

J∗(F2) =


r − σ1 − 2rx̄

k
− β1z̄ σ2 −β1x̄ 0

σ1 s− σ2 − 2sȳ
l

0 0

β2z̄ 0 0 −γ1z̄

0 0 0 0

 .
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Now, suppose that V [2] =
(
v

[2]
1 , v

[2]
2 , v

[2]
3 , v

[2]
4

)T
is an eigenvector corresponding to the

eigenvalue λ24. Thus,
(
J∗(F2)− λ24I

)
V [2] = 0, which implies

v
[2]
2 =

σ1lv
[2]
1

2sȳ − (s− σ2)l
,

v
[2]
3 =

(
(rk − 2rx̄− σ1k − kβ1z̄)(2sȳ − (s− σ2)l) + σ1σ2lk

β1x̄k(2sȳ − (s− σ2)l)

)
v

[2]
1 ,

v
[2]
4 =

β2v
[2]
1

γ1

,

where, v
[2]
1 is any non-zero real number and 2sȳ 6= (s − σ2)l. Then, let ψ[2] =(

ψ
[2]
1 , ψ

[2]
2 , ψ

[2]
3 , ψ

[2]
4

)T
be an eigenvector associated with the eigenvalue λ24 of the ma-

trix (J∗(F2))T . So,
(
(J∗(F2))T − λ24I

)
ψ[2] = 0 and by solving this equation for ψ[2],

ψ
[2]
1 = ψ

[2]
2 = ψ

[2]
3 = 0 is the result, where ψ

[2]
4 is any non-zero real number.

Now, to confirm that the conditions of Sotomayor’s theorem for transcritical bi-

furcation are satisfied, the following is considered:

∂f

∂γ2

= f
′

γ2
(X, γ2) =

(
∂f1

∂γ2

,
∂f2

∂γ2

,
∂f3

∂γ2

,
∂f4

∂γ2

)T
= (0, 0, 0, zw)T .

Therefore, f
′
γ2

(F2, γ
∗
2) = (0, 0, 0, 0)T and hence, (ψ[2])Tf

′
γ2(F2, γ

∗
2) = 0. So, accord-

ing to Sotomayor’s theorem, saddle-node bifurcation cannot occur, while the first

condition of transcritical bifurcation is satisfied. Now,

Dfγ2(X, γ2) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 w z

 ,

where, Dfγ2(X, γ2) represent the derivative of fγ2(X, γ2) with respect toX = (x, y, z, w)T .

Further, it is observed under condition (4.39) that the following is obtained:

Dfγ2(F2, γ
∗
2)V [2] =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 z̄




v

[2]
1

v
[2]
2

v
[2]
3

v
[2]
4

 =


0

0

0

z̄v
[2]
4

 ,
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(ψ[2])T
[
Dfγ2(F2, γ

∗
2)V [2]

]
=

(
0, 0, 0, ψ

[2]
4

)(
0, 0, 0, z̄v

[2]
4

)T
= z̄ψ

[2]
4 v

[2]
4 6= 0.

Now, by substituting in (4.36) it is found that

D2 f
(
F2, γ

∗
2

)(
V [2], V [2]

)
=

(
− 2v

[2]
1

(
r
(
v

[2]
1

)
k

+ β1v
[2]
3

)
,
−2s

(
v

[2]
2

)2

l
, 2v

[2]
3

(
β2v

[2]
1 − γ1v

[2]
4

)
, 2γ∗2v

[2]
3 v

[2]
4

)T

.

Hence, according to condition (4.39)(
ψ[2]
)T [

D2f(F2, γ
∗
2)
(
V [2], V [2]

)]
= −2γ∗2v

[2]
3 v

[2]
4 ψ

[2]
4 6= 0.

This means the second condition of transcritical bifurcation is satisfied. Thus, ac-

cording to Sotomayor’s theorem, system (4.1) has transcritical bifurcation at F2 with

the parameter γ2 = γ∗2 .

Remark

1. According to the Jacobian matrix J(F3), given by (4.35), all the eigenvalues of

J(F3) have negative real parts at the equilibrium point F3. Therefore, F3 is a

hyperbolic equilibrium point and thus, the system (4.1) has no bifurcation at

F3.

2. From the formula λ01 and λ02 given by (4.26), it is clear that Re(λ01) =

Re(λ02) = λ01 + λ02 6= 0 and both λ03 and λ04 are real eigenvalues (see Equa-

tions (4.24)-(4.25)). Hence, there is no possibility of Hopf bifurcation occurring

at F0.

3. According to the Jacobian matrix J(F1) given by (4.28), it is clear that J(F1)

has four real eigenvalues (see Equations (4.29)-(4.32). Therefore, there is no

possibility for Hopf bifurcation to occur at this point.

4. According to the Jacobian matrix J(F2) given by (4.34), it is clear that J(F2)

has four real eigenvalues. Therefore, there is no possibility of Hopf bifurcation

occurring at this point.
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4.10 Numerical analysis

The main goal of this section is to find the key parameters of the system (4.1)

that affects the behaviour of the proposed model by using numerical simulations.

The dynamics of the system (4.1) is presented by solving the system numerically and

then drawing the time series of the solutions of the system (4.1) for different sets of

parameters.

Now, for the following set of parameters:

r =1.5, k = 50, σ1 = 0.5, σ2 = 0.7, β1 = 0.9, β2 = 0.75,

β0 =0.01, s = 1.4, l = 40, α = 0.4, γ1 = 0.5, γ2 = 0.2,
(4.40)

the conditions (6.11) and (4.19) are satisfied. This shows that the positive equilibrium

point F3 exists, and it is given by: (x∗, y∗, z∗, w∗) = (15.46, 27.91, 2.00, 23.17).
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Fig. 4.1. Convergence of the solution of the system (4.1) to the posi-
tive equilibrium point with the data given by Eq.(4.40).

Figure 4.1, indicates that the solution of the system (4.1) oscillates for some small

period and then, in the long-time limit, it asymptotically approaches the positive

equilibrium point.
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Now, to investigate the effect of the varying parameter values on the behaviour of

system (4.1), the model has been solved numerically for the data given in Eq.(4.40),varying

one parameter each time as will be shown in the following subsections.

4.10.1 The effect of varying the migration rate of the prey to the reserved

area

Figure 4.2 shows the effect of migration to the reserved area, which is described by

the parameter σ1, on the behaviour of the system (4.1) with time. It is observed that

for different values of σ1, the solution initially oscillates for a small period and then,

asymptotically approaches its equilibrium level in the interior of IR4
+. As a result of

rising the migration rate to the protected area, it can be seen that the density of the

prey in the reserved zone increases. On the other hand, the populations of the top

predator and the prey in the unreserved area decrease, while the third component

has not affected.
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Fig. 4.2. Convergence of the solution of the system (4.1) for the data
given by Eq.(4.40) with (a) σ1 = 0.001 to the stable point(17.17,
20.02, 2.00, 25.74) in the interior of IR4

+. (b) σ1 = 1 to the stable
point (13.14, 31.8, 2.00, 19.69) in the interior of IR4

+.
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4.10.2 The effect of varying the natural death rate of the predator

Now, the same analysis is used for different values of the predator’s natural mor-

tality, which is described by the parameter β0, and the rest of the parameter values

are kept the same as in Eq.(4.40). Figure 4.3 shows that for various values of β0,

the solution initially oscillates for a while and then, it settles down to its equilibrium

level in the interior of IR4
+. Due to the decrease of the predator’s natural death-rate,

the density of the top predator increases significantly. This means an abundance of

the predator and hence, the food conversion rate of the predator to the top predator

increases (and vice versa). On the other hand, the populations of the prey in both

the reserved and unreserved zone, as well as the predator (the third component), are

not affected.
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Fig. 4.3. Convergence of the solution of the system (4.1) for the
data given by Eq.(4.40) with (a) β0 = 1 to the stable point (15.46,
27.91,2.00, 21.19) in the interior of IR4

+. (b) β0 = 0.001 to the stable
point (15.46, 27.91,2.00, 23.18) in the interior of IR4

+.
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4.10.3 The effect of varying the natural death rate of the top predator

The effect of varying α, which represents the top predator’s natural death-rate,

on the behaviour of the system (4.1), is also studied. From Figure 4.5, the following

results can be observed. As α increases, the density of the top predator decreases and

thus, the attack rate γ1 by the top predator on the predator decreases, which implies

that there is an abundance of the latter. Furthermore, as a result of the predator’s

density increase, the attack rate on the prey in the unreserved zone increases, which

affects negatively their density in the unprotected area. Thus, the migration rate to

the reserved zone is also affected. Also, for different values of α, the system (4.1)

starts to oscillate for a particular time and then, attains the equilibrium level in the

interior of IR4
+. It follows that the system (4.1) persists for long-term behaviour.
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Fig. 4.4. Convergence of the solution of the system (4.1) for the data
given by Eq.(4.40) with (a) α = 1 to the stable point (4.38, 22.75, 5.00,
6.55) in the interior of IR4

+. (b) α = 0.1 to the stable point (39.47,
35.76, 0.5, 59.19) in the interior of IR4

+. (c) α = 0.01 to the stable
point (44.85, 38.49, 0.05, 74.75) in the interior of IR4

+. (d) α = 0.001
to the stable point (50.94, 38.77, 0.005, 76.39) in the interior of IR4

+.
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4.10.4 The effect of varying the attack rate of the top predator on the

predator

Figures 4.1 and 4.5 illustrate the effect of the top predator’s attack rate on the

predator, which is described by the parameter γ1, in terms of the behaviour of the

system (4.1) versus time. It can be noticed that for various values of γ1, the solution

initially oscillates, and after a specific time it attains its equilibrium level in the

interior of IR4
+. Also, when increasing γ1, which means that the food conversion rate

to the top predator increases and hence, its density is rapidly increasing. On the other

hand, the densities both of the prey in the reserved and unreserved area, as well as the

predator, are not affected. Once again, the system (4.1) persists for varying values of

γ1.
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Fig. 4.5. Convergence of the solution of the system (4.1) for the data
given by Eq.(4.40) with (a) γ1 = 0.001 to the stable point (15.46,
27.91, 2.00, 11.58) in the interior of IR4

+. (b) γ1 = 1 to the stable
point (15.46, 27.91, 2.00, 1158.1) in the interior of IR4

+.
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4.10.5 The effect of varying the conversion rate of the predator to the

top predator

Now, Figure 4.6 studies the impact of the conversion rate of the predator to the

top predator γ2, on the behaviour of the species with t. When varying γ2 and keeping

the other parameters in Eq.(4.40) fixed, it can be observed that the solution of system

(4.1) converges to the equilibrium point in the interior of IR3
+ after oscillating for a

certain amount of time. In this case, the w-component of the equilibrium point is

strictly positive for γ2 ≥ 0.0004, but it becomes zero for γ2 < 0.00039. Hence, the

system (4.1) loses its persistence and the chain is broken.
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Fig. 4.6. Convergence of the solution of the system (4.1) for the data
given by Eq.(4.40) with (a) γ2 = 1 to the stable point (41.69, 36.37,
0.40, 62.51) in the interior of IR4

+, (b) γ2 = 0.01 to the stable point
(0.44, 20.28, 40.00, 0.58) in the interior of IR4

+, (c) γ2 = 0.0004 to
the stable point (0.01, 20.01, 999.38, 0.003) in the interior of IR4

+, (d)
γ2 = 0.00039 to the stable point (0.01, 20, 1025.8, 0) in the interior
of IR3

+.
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4.10.6 The effect of varying the unreserved area rate on the species

Similarly, for different values of σ2, which represent the impact of the unreserved

area on the behaviour of the species. When varying σ2 and keeping the other parame-

ters in (4.40) fixed, the solution of system (4.1) initially fluctuates for some time, and

then, it converges to the equilibrium point. Furthermore, the top predator species

w remains strictly positive for σ2 ≥ 0.0003, while it becomes zero for σ2 = 0.00029.

Hence, the system (4.1) loses its persistence, and the chain is broken (see Figure 4.7).

Also, when decreasing σ2, which means an abundance of prey, this negatively impacts

on the density of the top predator. On the other hand, the densities of both of the

prey in the reserved area and the predator are not affected.
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Fig. 4.7. Convergence of the solution of the system (4.1) for the data
given by Eq.(4.40) with (a) σ2 = 1 to the stable point (15.6, 27.58,
2.00, 23.38) in the interior of IR4

+. (b) σ2 = 0.001 to the stable point
(0.04, 39.98, 2.00, 0.05) in the interior of IR4

+. (c) σ2 = 0.0003 to
the stable point (0.01, 39.99, 2.00, 0.002) in the interior of IR4

+, (d)
σ2 = 0.00029 to the stable point (0.01, 39.99, 1.82, 0) in the interior
of IR3

+.
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4.10.7 The effect of varying the conversion rate of the prey in the unre-

served zone to the predator

For the parameter values given in Eq.(4.40) with different β2, which represent

the conversion rate of the prey in the unreserved zone to the predator, system (4.1)

again losses its persistence and the trajectory asymptotically approaches to the stable

equilibrium point in the interior of IR3
+. In this case, the z- and w- components of

the equilibrium point are strictly positive for β2 ≥ 0.0002, but this becomes zero for

β2 = 0.00019. Hence, the system (4.1) loses its persistence, and the chain is broken.

(See Figure 4.8).
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Fig. 4.8. Convergence of the solution of the system (4.1) for the data
given by Eq.(4.40) with (a) β2 = 1, to the stable point (15.6, 27.91,
2.00, 30.9) in the interior of IR4

+. (b) β2 = 0.01, to the stable point
(15.46, 27.91, 2.00, 0.28) in the interior of IR4

+. (c) β2 = 0.0002, to
the stable point (15.46, 27.91, 2.00, 0.04) in the interior of IR4

+. (d)
β2 = 0.00019 to the stable point (51.05, 38.79, 0, 0) in the interior of
IR2

+.
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4.10.8 The effect of varying the attack rate of the predator on the prey

in the unreserve zone

Finally, Figure 4.9 shows the behaviour of the solution of system (4.1) for varying

one of the most important parameters, namely β1, due to the connection between the

first component and the third in the chain. Since the fourth component totally de-

pends on the third one, it is worth studying the dynamic behaviour of this parameter

carefully. Again from Figure 4.9, it can be seen that as β1 → 0, the eigenvalues have

the following forms:

For β1 = 0.1,

λ1 = −0.2881 + 4.4316i, λ2 = −0.2881− 4.4316i, λ3 = −1.0542, λ4 = −2.2366.

When β1 = 0.01,

λ1 = −0.078 + 3.9688i, λ2 = −0.0378− 3.9688i, λ3 = −2.5759, λ4 = −1.4059.

When β1 = 0.0001,

λ1 = −0.0039 + 3.9190i, λ2 = −0.0039− 3.9190i, λ3 = −2.6260, λ4 = −1.4434.

When β1 = 0.00001,

λ1 = −0.0004 + 3.9041i, λ2 = −0.0004− 3.9041i, λ3 = −2.6309, λ4 = −1.4469.

While the analytical expansion gives, λ1,2 = ±
√
γ1γ2z∗w∗i = 3.904025 (when β1 = 0

as a limit). This result confirms the numerical calculations up to three decimal

places. The numerical studies and the analytical expansion show that the real parts

of the eigenvalues λ1 and λ2 are proportional to β1 and their ratio is approximately

-4. Together with the other eigenvalues, which have a negative real part that is

not small, this means that for small β1 the solution decays exponentially towards

the equilibrium point F3 at a rate, which is very small. On the other hand, the

imaginary parts of λ1 and λ2 are not small and explain that the solution oscillates

with a frequency
√
γ1γ2z∗w∗, which is also not small. This observation is in agreement

with the Routh-Hurwitz criteria, which show that all the eigenvalues of J(F3) have

a negative real part and hence, F3 is a hyperbolic equilibrium point. Figure 4.9 also
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indicates that the slow-decaying and oscillating components are z and w, whereas x

and y converge fast to their equilibrium and do not oscillate.
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Fig. 4.9. Convergence of the solution of the system (4.1) for the data
given by Eq.(4.40) with (a) β1 = 0.1 to the stable point (45.76, 37.45,
2.00, 68.62) in the interior of IR4

+. (b) β1 = 0.01 to the stable point
(50.52, 38.66, 2.00, 75.76) in the interior of IR4

+. (c) β1 = 0.0001 to
the stable point (51.05, 38.79, 2.01, 76.58) in the interior of IR4

+. (d)
β1 = 0.00001 to the stable point (51.05, 38.79, 1.99, 76.59) in the
interior of IR4

+.

4.11 Conclusion

An ecological model, which describes the effect of the reserved zone on the dy-

namical behaviour of a food chain prey-predator model with a Lotka-Volterra type
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of functional response, has been proposed and studied. The boundedness of system

(4.1) has been shown, and the possible dynamical behaviour of this system has been

investigated analytically at the equilibrium points. The persistence conditions of the

proposed system have been derived. It has been proven that the solutions of system

(4.1) possess transcritical bifurcation. To confirm the analytical results, system (4.1)

has been solved numerically, and the effects of various parameters on the dynamical

behaviour of the proposed system have been performed, with the following results

being obtained.

1. The persistence of the top predator w hinges solely on the parameters β2, σ2 and

γ2. In particular, if β2 = 0.0019, then this species decreases over time, eventually

dying out, and the solution of system (4.1) is attained asymptotically to the

equilibrium point in IR3
+, while this species survives when β2 ≥ 0.002.

2. The existence of the predator z relies solely on the conversion rate β2 of the

prey in the unreserved zone to the third component in the chain. This species

decreases over time until it faces extinction, and this causes the chain to break.

Hence, the solution of system (4.1) settles down asymptotically to the equilib-

rium point in IR2
+. In particular, if β2 = 0.0019 , then this species decreases

over time and dies out, whilst it survives when β2 ≥ 0.002.

3. Both the prey species x in the unreserved zone and the prey species y in the

reserved area are persistent under all conditions.

4. It is observed that the dynamic behaviour of system (4.1) does not change if

one of the parameters σ1, β0, α, β1 and γ1 is varied.

Overall, the system with the reserved zone, as shown in this chapter, converges to

a steady state for a wide range of parameters.
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Chapter 5: The effect of the reserve

zone on the partially de-

pendent predator-prey

model

5.1 Introduction

In this chapter, we study the effect of a reserve zone on the food chain prey-

predator model introduced earlier. We propose to model such an effect by introducing

a partial dependence of the predator population (z) on the prey in the unprotected

zone (x). In this case, the latter represents an alternative resource for the predator.

As before, we discuss the existence of equilibrium points and perform carry out the

stability analysis by making use of the eigenvalue method, Routh-Hurwitz criteria and

Lyapunov direct method. The model shows rich dynamics in the space of non-negative

solutions. We find that in addition to the equilibrium with two vanishing components

and the trivial equilibrium (which have been already discussed before) there are two

new equilibria. One is the equilibrium for which only the top predator vanishes

and the remaining components are strictly positive, and the other is when only the

last two components are strictly positive and the other two are zero. The long-

term behaviour of the system is studied, and conditions for persistence are derived.
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Finally, the simulations of this model show that for large-time the solutions approach

the strictly positive steady state.

5.2 Mathematical model

Similarly to the previous chapter, we consider a food chain consisting of prey in

the unreserved zones, prey in the reserved zone (which predators are not allowed to

enter), predator and a top predator. The corresponding densities are denoted by x(t),

y(t), z(t) and w(t). Now, however, the predator population (z) is allowed to partially

depend on the prey in the unreserved zone (x). This is modelled by an extra logistic

term added to the first component of the system of differential equations:

dx

dt
= rx

(
1− x

k

)
− σ1x+ σ2y − β1xz = f1(x, y, z, w),

dy

dt
= sy

(
1− y

l

)
+ σ1x− σ2y = f2(x, y, z, w),

dz

dt
= az

(
1− z

m

)
+ β2xz − β0z − γ1zw = f3(x, y, z, w),

dw

dt
= γ2zw − αw = f4(x, y, z, w).

(5.1)

Here, m and a are two new model parameters: m is the carrying capacity of the

predator, wheres a is the intrinsic growth rate. The other model parameters are the

same as in Chapter 4. The proposed model (5.1) has been analysed with the initial

conditions x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0 and w(0) ≥ 0, p(x) = β1x and q(z) = γ1z are

the Lotka-Volterra type of functional responses. All parameters of the model system

(5.1) are again assumed to be positive.

Under the above assumptions, the functions on the right-hand side in the system

(5.1) are continuously differentiable functions on IR4
+ =

{
(x, y, z, w), x ≥ 0, y ≥ 0, z ≥

0, w ≥ 0
}

and hence, they are Lipschitzian. Therefore, a solution to the system (5.1)

exists, which is unique. Further, all the solutions of the model (5.1) with any non-

negative initial conditions are bounded, as is shown in the following section.
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5.3 Boundedness

Theorem 5.3.1 Assume that the conditions β1 ≥ β2 and γ1 ≥ γ2 hold, then all the

solutions of the system (5.1) which initiate in IR4
+ are uniformly bounded.

Proof Let (x(t), y(t), z(t), w(t)) be an arbitrary solution of the system (5.1) with a

non-negative initial condition. Then for U(t) = x(t) + y(t) + z(t) + w(t), we have

dU

dt
= rx− rx2

k
+ sy − sy2

l
+ az − az2

m
− (β1 − β2)xz − (γ1 − γ2)zw − β0z − αw.

Hence, according to the assumptions of the theorem, the following is obtained:

dU

dt
≤ rx− rx2

k
+ sy − sy2

l
+ az − az2

m
− β0z − αw

dU

dt
+ ξU ≤ 2rx− rx2

k
+ 2sy − sy2

l
,

where, ξ = min{r, s, β0, α, a}, then

dU

dt
+ ξU ≤ rk − r

k

(
x− k

)2
+ sl − s

l

(
y − l

)2

≤ rk + sl = µ.

Applying Gronwall’s Inequality, the following is obtained:

0 ≤ U
(
x(t), y(t), z(t), w(t)

)
≤ µ

ξ

(
1− e−ξt

)
+ U(0)e−ξt.

Therefore,

0 ≤ lim sup
t→∞

U
(
t
)
≤ µ

ξ
.

Hence, all the solutions of the system (5.1) that are initiated in the IR4
+ are attracted

to the region Ω =
{(
x, y, z, w

)
∈ IR4

+ : U = x + y + z + w ≤ µ
ξ

}
under the given

conditions. Thus, these solutions are bounded, and the proof is complete.
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5.4 Positive invariance

See Subsection (4.4).

In the following, the existence of the equilibrium points of the system (5.1) will

be elucidated.

5.5 Existence of equilibria

The system, which given by (5.1), has six nonnegative equilibrium points, namely:

• F0 = (0, 0, 0, 0) is the vanishing fixed point;

• F1 = (x̂, ŷ, 0, 0) is the xy planar fixed point;

• F2 = (0, 0, z̈, 0) is the axial fixed point;

• F3 = (0, 0, z̃, w̃) is the zw planar fixed point;

• F4 = (x̄, ȳ, z̄, 0) is the top predator-free fixed point;

• F5 = (x∗, y∗, z∗, w∗) is the interior fixed point.

The existence of F0 = (0, 0, 0, 0) and F1 = (x̂, ŷ, 0, 0) are similar to that in Subsection

4.5.1, and hence omitted, while the existence of F2, F3, F4 and F5 are now shown as

follows:

5.5.1 The existence of the axial equilibrium point

The equilibrium point F2 exists on z axis of if and only if, z̈ is the positive root of

the following algebraic equation: a−
(
az
m

)
− β0 = 0. Solving this equation gives that:

z̈ =

(
a− β0

)
m

a
.

It should also be noted that for z̈ > 0 to be positive, the following must be the case:

a > β0.
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Thus, in the absence of prey in the reserved and unreserved zone and the top predator,

the intrinsic growth rate of the predator must be higher than its natural mortality

rate for the equilibrium point F2 to exist.

5.5.2 The existence of the zw− planar equilibrium point

The equilibrium point F3 = (0, 0, z̃, w̃) exists in the interior of IR2
+ of the zw-

plane, if and only if, z̃ and w̃ represent the positive solution of the following set of

algebraic equations:

a
(

1− z

m

)
− β0 − γ1w = 0, (5.2)

γ2z − α = 0. (5.3)

From equation (5.3),

z̃ =
α

γ2

. (5.4)

Now, substituting the value of z̃ into Eq.(5.2), a little algebraic manipulation yields:

w̃ =
mγ2(a− β0)− aα

mγ1γ2

, (5.5)

It should also be noted that for w̃ > 0 to be positive, the following must be the case:

amγ2 > aα +mβ0γ2.

5.5.3 The existence of the top predator-free equilibrium point

The equilibrium point F4 exists in the interior of IR3
+ of the xyz-plane, if and only

if, x̄, ȳ and z̄ are the positive roots of the following set of algebraic equations:

r
(

1− x

k

)
− σ1 +

σ2y

x
− β1z = 0, (5.6)

s
(

1− y

l

)
− σ2 +

σ1x

y
= 0, (5.7)

a
(

1− z

m

)
+ β2x− β0 = 0. (5.8)
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From the above list of equations, the following is obtained:

y =
l

2s

[
(s− σ2) +

√
(s− σ2)2 +

4sσ1x

l

]
, (5.9)

z =

(
a+ β2x− β0

)
m

a
. (5.10)

By substituting the values of y and z in Eq.(5.6), a little algebraic manipulation

yields:

ax3 + bx2 + cx+ d = 0, (5.11)

where,

a =

[
r

k
+
β1β2m

a

]2

> 0,

b = 2

(
r

k
+
β1β2m

a

)
+

(
r − σ1 −mβ1 +

mβ0β1

a

)
,

c = −2

(
r

k
+
β1β2m

a

)[
lσ2(s− σ2)

2s

]
+

(
r − σ1 −mβ1 +

mβ0β1

a

)2

,

d = −

[
lσ2(s− σ2)

2s

](
r − σ1 −mβ1 +

mβ0β1

a

)
+

(
σ1σ

2
2l

s

)
.

By using Descartes rule of signs, Eq.(5.11) has a unique positive solution x = x̄, if

the following inequality

(
σ1σ2

s− σ2

)
+ β1m <

(
r − σ1

)
+
[β0β1m

a

]
, (5.12)

holds. Knowing the value of x̄, the values of ȳ and z̄ can be computed from Equations

(5.9) and (5.10), respectively. It should also be noted that for z̄ to be positive, the

following must be true:

a+ β2x̄ > β0. (5.13)
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5.5.4 The existence of the positive equilibrium point

The positive equilibrium point F5 exists in the interior of IR4
+, if and only if,

x∗, y∗, z∗ and w∗ are the positive solutions of the following set of equations:

r
(

1− x

k

)
− σ1 +

σ2y

x
− β1z = 0, (5.14)

s
(

1− y

l

)
− σ2 +

σ1x

y
= 0, (5.15)

a
(

1− z

m

)
+ β2x− β0 − γ1w = 0, (5.16)

γ2z − α = 0. (5.17)

From the above list of equations, the following is obtained:

y =
l

2s

(
(s− σ2) +

√
(s− σ2)2 +

4sσ1x

l

)
, (5.18)

z∗ =
α

γ2

, (5.19)

w =
γ2m

(
a+ β2x

)
−
(
aα + β0γ2m

)
γ1γ2m

. (5.20)

By substituting the values of y and z in Eq.(5.14), a little algebraic manipulation

yields:

ax3 + bx2 + cx+ d = 0, (5.21)

where,

a =
(−r
k

)2

> 0,

b =
2r

k

(
(r − σ1)− β1α

γ2

)
,

c =
2r

k

(σ2l

2s
(s− σ2)

)
+
(

(r − σ1)− β1α

γ2

)2

,

d =
σ2l

s

(
s− σ2

)(
(r − σ1)− β1α

γ2

)
+
σ1σ

2
2l

s
.

By using Descartes rule of signs, Eq.(5.21) has a unique positive solution x = x∗, if
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the following inequality

(
r − σ1

)
>
β1α

γ2

, (5.22)

holds. Knowing the value of x∗, the values of y∗ and w∗ can be computed from

Equations (5.9) and (5.22), respectively. It should also be noted that for w∗ to be

positive, the following must be true:

γ2m
(
a+ β2x

∗) > (aα + β0γ2m
)
. (5.23)

5.6 Local stability of the equilibrium points

Similarly to the previous chapter, the local dynamic behaviour of the system (5.1)

is discussed by making use of the eigenvalue method and Routh-Hurwitz criteria. The

Jacobian matrix of the system (5.1) at any point is given by

J =


r − σ1 −

2rx

k
− β1z σ2 −β1x 0

σ1 s− σ2 −
2sy

l
0 0

β2z 0 a− 2az
m

+ β2x− β0 − γ1w −γ1z

0 0 γ2w γ2z − α


,

and, the eigenvalues of the resulting matrix are computed as follows:

5.6.1 Local stability behaviour of F0

In the following lemma, it is shown that F0 is always a saddle point.

Lemma 8 The vanishing equilibrium point F0 = (0, 0, 0, 0) is a saddle point in the

IR4
+.

Proof First, the Jacobian matrix of the system (5.1) at F0 can be written by:



82

J(F0) =


r − σ1 σ2 0 0

σ1 s− σ2 0 0

0 0 a− β0 0

0 0 0 −α

 (5.24)

Then, it is easy to verify that, the eigenvalues of J(F0) satisfy the following relations:

λ01 + λ02 = (r − σ1) + (s− σ2) > 0, (5.25)

λ01.λ02 = (r − σ1)(s− σ2)− σ1σ2, (5.26)

λ03 = a− β0, (5.27)

λ04 = −α < 0, (5.28)

where, λ0i (i = 1, 2, 3, 4) represent the eigenvalues that describe the dynamics in the

directions of their eigenvectors. Note that, according to Eq.(5.26), the eigenvalues

λ01 and λ02 are positive, provided that:

(r − σ1)(s− σ2) > σ1σ2,

and then, F0 is the unstable point in the interior of IR2
+ of the xy-plane. However,

λ01 and λ01 have opposite signs, provided that:

(r − σ1)(s− σ2) < σ1σ2.

Hence, F0 is a saddle point in the interior of IR2
+ of the xy-plane. Further, according

to Eqs. (4.24)-(4.25), the equilibrium point F0 is a saddle point in the interior of IR4
+.

5.6.2 Local stability behaviour of F1

In the following lemma, the local behaviour of the xy- planar fixed point F1 is

shown.
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Lemma 9 The planar equilibrium point F1 = (x̂, ŷ, 0, 0) is locally asymptotically

stable in IR4
+, whenever:

a+ β2x̂ < β0, (5.29)

holds.

Proof The Jacobian matrix of system (5.1) at the equilibrium point F1 is given by:

J(F1) =


r − σ1 − 2rx̂

k
σ2 −β1x̂ 0

σ1 s− σ2 − 2sŷ
l

0 0

0 0 a+ β2x̂− β0 0

0 0 0 −α

 (5.30)

Straightforward computations show that the eigenvalues of the Jacobian matrix J(F1)

satisfy the following relations:

λ11 + λ12 = −
(σ2ŷ

x̂
+
rx̂

k
+
σ1x̂

ŷ
+
sŷ

l

)
< 0, (5.31)

λ11.λ12 =

(
rs(x̂)2(ŷ)2 + skσ2(ŷ)3 + rσ1(x̂)3

klx̂ŷ

)
> 0, (5.32)

λ13 = a+ β2x̂− β0, (5.33)

λ14 = −α < 0, (5.34)

where, λ1i (i = 1, 2, 3, 4) represent the eigenvalues that describe the dynamics in the

directions of their eigenvectors. Note that, according to equations (5.31)-(5.34), all the

eigenvalues of J(F1) have negative real parts and hence, F1 is locally asymptotically

stable in IR4
+, if and only if, condition (5.29) holds. However, it is a saddle point in

the interior of IR4
+, if the condition (5.29) is violated.

5.6.3 Local stability behaviour of F2

In the following lemma, the local behaviour of the z- axial fixed point F2 is shown.
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Lemma 10 The axial equilibrium point F2 = (0, 0, z̈, 0) is locally stable in IR4
+, when-

ever:

r − σ1 + s− σ2 < β1z̈,(
r − σ1 − β1z̈

)(
s− σ2

)
− σ1σ2 > 0,

γ2z̈ < α,

(5.35)

hold.

Proof The Jacobian matrix of system (5.1) at the equilibrium point F2 is given by:

J(F2) =


r − σ1 − β1z̈ σ2 0 0

σ1 s− σ2 0 0

β2z̈ 0 0 −γ1z̈

0 0 0 γ2z̈ − α

 (5.36)

Straightforward computations show that the eigenvalues of the Jacobian matrix J(F2)

satisfy the following relations:

λ21 + λ22 = (r − σ1)− β1z̈ + (s− σ2), (5.37)

λ21.λ22 = (r − σ1 − β1z̈).(s− σ2)− σ1σ2, (5.38)

λ23 = 0, (5.39)

λ24 = γ2z̈ − α, (5.40)

where, λ1i (i = 1, 2, 3, 4) represent the eigenvalues that describe the dynamics in

the directions of their eigenvectors. Note that, according to equations (5.37)-(5.40),

the eigenvalues
(
λ21, λ22 and λ24

)
of J(F2) have negative real parts and hence, F2 is

locally stable in IR4
+, if and only if, conditions (5.35) hold. However, it is a saddle

point in the interior of IR4
+, if one of the conditions in (5.35) is violated.

5.6.4 Local stability behaviour of F3

In the following lemma, the local behaviour of the zw- planar fixed point F3 is

shown.
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Lemma 11 The planar equilibrium point F3 = (0, 0, z̃, w̃) is locally asymptotically

stable in IR4
+, whenever:

r − σ1 + s− σ2 < β1z̃,(
r − σ1 − β1z̃

)(
s− σ2

)
− σ1σ2 > 0,

(5.41)

hold.

Proof The Jacobian matrix of system (5.1) at the equilibrium point F3 is given by:

J(F3) =


r − σ1 − β1z̃ σ2 0 0

σ1 s− σ2 0 0

β2z̃ 0 −az̃
m
−γ1z̃

0 0 γ2w̃ 0

 (5.42)

Straightforward computations show that the eigenvalues of the Jacobian matrix J(F3)

satisfy the following relations:

λ31 + λ32 = (r − σ1)− β1z̈ + (s− σ2), (5.43)

λ31.λ32 = (r − σ1 − β1z̈).(s− σ2)− σ1σ2, (5.44)

λ33 + λ34 =
−az̃
m

< 0, (5.45)

λ33.λ34 = γ1γ2z̃w̃ > 0, (5.46)

where, λ3i (i = 1, 2, 3, 4) represent the eigenvalues that describe the dynamics in the

directions of their eigenvectors. Note that, according to equations (5.43)-(5.46), all the

eigenvalues of J(F3) have negative real parts and hence, F3 is locally asymptotically

stable in IR4
+, if and only if, condition (5.41) holds. However, it is a saddle point in

the interior of IR4
+, if one of the conditions in (5.41) is violated.

5.6.5 Local stability behaviour of F4

In the following lemma, the local behaviour of the top predator-free fixed point

F4 is shown.
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Lemma 12 The top predator-free equilibrium point F4 = (x̄, ȳ, z̄, 0) is locally asymp-

totically stable in IR4
+ whenever

γ2z̄ < α. (5.47)

holds.

Proof The Jacobian matrix of the system (5.1) at the equilibrium point F4 =

(x̄, ȳ, z̄, 0) can be written as:

J(F4) =


a11 a12 a13 0

a21 a22 0 0

a31 0 a33 a34

0 0 0 a44

 (5.48)

where,

a11 = −
(σ2ȳ

x̄
+
rx̄

k

)
< 0; a12 = σ2 > 0; a13 = −β1x̄ < 0;

a21 = σ1 > 0; a22 = −
(σ1x̄

ȳ
+
sȳ

l

)
< 0; a31 = β2z̄ > 0;

a32 = 0; a33 = −
(az̄
m

)
; a34 = −γ1z̄ < 0; a44 = γ2z̄ − α.

The first root of the characteristic equation of J(F4) is γ2z̄ − α and the other three

roots are given by:

λ3 + A1λ
2 + A2λ+ A3 = 0.

The coefficients of the characteristic equation of J(F4) can be written as:

A1 = −(a11 + a22 + a33) > 0,

A2 = a11a33 + a22a33 − a13a31 +M1 > 0,

A3 = a13a31a22 − a33M1 > 0,

where, M1 = a11a22 − a12a21 > 0. Further,

∆ = A1A2 − A3 = (a11 + a33)(a13a31 + a11a33)

−
(
a11 + a22

)[
M1 + a22a33

]
− 2a11a22a33 > 0.
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Now, according to the Routh-Hurwitz criteria, all the eigenvalues of J(F4) have roots

with negative real parts, provided that Ai(i = 1, 3) > 0 and ∆ > 0. Therefore, F4 is

locally asymptotically stable, if (5.47) holds.

5.6.6 Local stability behaviour of F5

In the following lemma, the local behaviour of the positive fixed point F5 is shown.

Lemma 13 The positive equilibrium point F5 = (x∗, y∗, z∗, w∗) is locally asymptoti-

cally stable in IR4
+ whenever it exists.

Proof The Jacobian matrix of the system (5.1), at the positive equilibrium point

F5 = (x∗, y∗, z∗, w∗), can be written as:

J(F5) =


a11 a12 a13 0

a21 a22 0 0

a31 0 a33 a34

0 0 a43 0

 (5.49)

where,

a11 = −
(σ2y

∗

x∗
+
rx∗

k

)
< 0; a12 = σ2 > 0; a13 = −β1x

∗ < 0;

a21 = σ1 > 0; a22 = −
(σ1x

∗

y∗
+
sy∗

l

)
< 0; a31 = β2z

∗ > 0;

a33 = −
(az̄
m

)
; a34 = −γ1z

∗ < 0; a43 = γ2w
∗.

Accordingly, the characteristic equation of J(F5) is given by:

λ4 + A1λ
3 + A2λ

2 + A3λ+ A4 = 0.

Here,

A1 = −
(
a33 +M2

)
> 0,

A2 = a33M2 +M1 − a13a31 − a34a43 > 0,

A3 = a43a34M2 − a33M1 + a13a31a22 > 0,

A4 = −a34a43M1 > 0,

where,
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M1 = a11a22 − a12a21 > 0, M2 = a11 + a22 < 0.

Further,

∆ = A1A2A3 − A2
3 − A2

1A4

=
[
−M2

(
a33(a33 +M2) +M1

)
+ a13a31(a11 + a33) + a33a34a43

]
(

a43a34M2 − a33M1 + a31a13a22

)
+ a34a43M1(a33 +M2)2 > 0.

Now, according to the Routh-Hurwitz criteria, all the eigenvalues of J(F5) have roots

with negative real parts since Ai(i = 1, 3, 4) > 0 and ∆ > 0. Hence, F5 is locally

asymptotically stable in the interior of IR4
+.

5.7 Global dynamical behaviour

In this section, the global stability of the local equilibrium points is investigated

by using the Lyapunov direct method, as shown in the following theorems.

Theorem 5.7.1 Assume that the equilibrium point F1 is locally asymptotically stable

in IR4
+, then it is globally asymptotically stable in IR4

+.

Proof Consider the following positive definite function:

R1(x, y, z, w) = c1

(
x− x̂− x̂ ln

x

x̂

)
+ c2

(
y − ŷ − ŷ ln

y

ŷ

)
+ c3z + c4w,

where, ci, (i = 1, 2, 3, 4) are positive constants to be determined. Now, the time

derivative of R1 along the trajectory of the system (5.1) can be written as:
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dR1

dt
= c1

(x− x̂
x

)dx
dt

+ c2

(y − ŷ
y

)dy
dt

+ c3
dz

dt
+ c4

dw

dt

= c1

(
x− x̂

)(
r − rx

k
− σ1 +

σ2y

x
− β1z

)
+ c2

(
y − ŷ

)(
s− sy

l
+
σ1x

y
− σ2

)
+ c3

(
az − a(z)2

m
+ β2xz − β0z − γ1zw

)
+ c4

(
γ2zw − αw

)
= c1

(
x− x̂

)(−r
k

(
x− x̂

)
+ σ2

(y
x
− ŷ

x̂

)
− β1z

)
+ c2

(
y − ŷ

)(−s
l

(
y − ŷ

)
+ σ1

(x
y
− x̂

ŷ

))
+ c3

(
az − a(z)2

m
+ β2xz − β0z − γ1zw

)
+ c4

(
γ2zw − αw

)
.

Therefore,

dR1

dt
=
−c1r

k

(
x− x̂

)2
+ c1σ2

(
x− x̂

)(yx̂− xŷ
xx̂

)
− c1

(
x− x̂

)
β1z
)

− c2s

l

(
y − ŷ

)2
+ c2σ1

(
y − ŷ

)(xŷ − yx̂
yŷ

)
+ c3

(
az − a(z)2

m
+ β2xz − β0z − γ1zw

)
+ c4

(
γ2zw − αw

)
.

By choosing the positive constants as

c1 = 1, c2 =
σ2ŷ

σ1x̂
, c3 =

β1

β2

, c4 =
β1γ1

β2γ2

,

the following is obtained,

dR1

dt
= −

( r
k

)(
x− x̂

)2 −
( σ2

xx̂y

)(
xŷ − yx̂

)2 −
(sσ2ŷ

lσ1x̂

)(
y − ŷ

)2

+
(
β2x̂+ a− β0

)(β2

β1

)
z −

( aβ1

mβ2

)
z2 −

(αβ1γ1

β2γ2

)
w.

Then, dR1

dt
< 0 under the local stability condition (5.29) and hence, R1 is a Lyapunov

function. Therefore, F1 is globally asymptotically stable in IR4
+.

The next theorem shows the global stability of the top predator-free equilibrium point

F4 in IR4
+.



90

Theorem 5.7.2 Assume that the equilibrium point F4 is locally asymptotically stable

in IR4
+, then it is globally asymptotically stable in IR4

+.

Proof Consider the following positive definite function:

R2(x, y, z, w) = c1

(
x− x̄− x̄ ln

x

x̄

)
+ c2

(
y − ȳ − ȳ ln

y

ȳ

)
+ c3

(
z − z̄ − z̄ ln

z

z̄

)
+ c4w,

where, ci, (i = 1, 2, 3, 4) are positive constants to be determined. Now the time

derivative of R4 along the trajectory of the system (5.1) can be written as:

dR2

dt
= c1

(x− x̄
x

)dx
dt

+ c2

(y − ȳ
y

)dy
dt

+ c3

(z − z̄
z

)dz
dt

+ c4
dw

dt

= c1

(
x− x̄

)(
r − rx

k
− σ1 +

σ2y

x
− β1z

)
+ c2

(
y − ȳ

)(
s− sy

l
+
σ1x

y
− σ2

)
+ c3

(
z − z̄

)(
a− az

m
+ β2x− β0 − γ1w

)
+ c4

(
γ2zw − αw

)
= c1

(
x− x̄

)(−r
k

(
x− x̄

)
+ σ2

(y
x
− ȳ

x̄

)
− β1

(
z − z̄

))
+ c2

(
y − ȳ

)(−s
l

(
y − ȳ

)
+ σ1

(x
y
− x̄

ȳ

))
+ c3

(
z − z̄

)(
− a

m

(
z − z̄

)
+ β2

(
x− x̄

)
− γ1w

)
+ c4

(
γ2zw − αw

)
.

Therefore,

dR2

dt
=
−c1r

k

(
x− x̄

)2
+ c1σ2

(
x− x̄

)(yx̄− xȳ
xx̄

)
− c1β1

(
x− x̄

)(
z − z̄

)
− c2s

l

(
y − ȳ

)2
+ c2σ1

(
y − ȳ

)(xȳ − yx̄
yȳ

)
− c3

( a
m

)(
z − z̄

)2

+ c3

(
x− x̄

)(
z − z̄

)
− c3γ1w

(
z − z̄

)
+ c4

(
γ2zw − αw

)
.

By choosing the positive constants as

c1 = 1, c2 =
σ2ȳ

σ1x̄
, c3 =

β1

β2

, c4 =
β1γ1

β2γ2

,

the following is obtained

dR2

dt
= −

( r
k

)(
x− x̄

)2 −
( σ2

xx̄y

)(
xȳ − yx̄

)2 −
( aβ1

mβ2

)(
z − z̄

)2

−
(sσ2ȳ

lσ1x̄

)(
y − ȳ

)2
+
(
γ2z̄ − α

)(β1γ1

β2γ2

)
w.
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Then, dR2

dt
< 0 under the local stability condition (5.47) and hence, R2 is a Lyapunov

function. Therefore, F4 is globally asymptotically stable in IR4
+.

Finally, the global stability of the positive equilibrium point F5 in the interior of IR4
+

is investigated, as shown in the following theorem.

Theorem 5.7.3 The equilibrium point F5 is globally asymptotically stable in IR4
+

whenever it exists.

Proof Consider the following positive definite function:

R3(x, y, z, w) = c1

(
x− x∗ − x∗ ln

x

x∗

)
+ c2

(
y − y∗ − y∗ ln

y

y∗

)
+ c3

(
z − z∗ − z∗ ln

z

z∗

)
+ c4

(
w − w∗ − w∗ ln

w

w∗

)
,

where, ci, (i = 1, 2, 3, 4) are positive constants to be determined. Now, the time

derivative of R2 along the trajectory of the system (4.1) can be written as:

dR3

dt
= c1

(x− x∗
x

)dx
dt

+ c2

(y − y∗
y

)dy
dt

+ c3

(z − z∗
z

)dz
dt

+ c4

(w − w∗
w

)dw
dt

= c1

(
x− x∗

)(
r − rx

k
− σ1 +

σ2y

x
− β1z

)
+ c2

(
y − y∗

)(
s− sy

l
+
σ1x

y
− σ2

)
+ c3

(
z − z∗

)(
a− az

m
+ β2x− β0 − γ1w

)
+ c4

(
w − w∗

)(
γ2z − α

)
.

Therefore,

dR3

dt
=
−c1r

k

(
x− x∗

)2
+ c1σ2

(
x− x∗

)(yx∗ − xy∗
xx∗

)
− c1β1

(
x− x∗

)(
z − z∗

)
− c2s

l

(
y − y∗

)2
+ c2σ1

(
y − y∗

)(xy∗ − yx∗
yy∗

)
+ c3β2

(
x− x∗

)(
z − z∗

)
− c3a

m

(
z − z∗

)2 − c3γ1

(
z − z∗

)(
w − w∗

)
+ c4γ2

(
z − z∗

)(
w − w∗

)
.

By choosing the positive constants as

c1 = 1, c2 =
σ2y

∗

σ1x∗
, c3 =

β1

β2

, c4 =
β1γ1

β2γ2

,

the following is obtained

dR3

dt
= −

( r
k

)(
x− x∗

)2 −
( σ2

xx∗y

)(
xy∗ − yx∗

)2 −
(sσ2y

∗

lσ1x∗

)(
y − y∗

)2
.
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Then, dR3

dt
≤ 0 which is negative semi-definite and then F5 is Lyapunov stable.

However, the set N3 =
{

(x, y, z, w)/Ṙ3(x, y, z, w) = 0
}

, which is the set N3 ={
(x, y, z, w)/x = x∗, y = y∗

}
, does not contain any trajectory of the system ex-

cept F5 = (x∗, y∗, z∗, w∗). Therefore, by LaSalle’s invariance principle F5 is globally

asymptotically stable in interior of IR4
+.

5.8 Persistence analysis

Similarly to the previous chapter, the persistence conditions of the system (5.1)

are studied using the Freedman and Waltman approach.

In the following theorem, the persistence condition of the system (5.1) is estab-

lished.

Theorem 5.8.1 If the conditions (5.29), (5.35), (5.41) and (5.47) are violated, then,

the system (5.1) persists.

Proof Followed directly by the application of Freedman and Waltman persistence

theorem.

5.9 Local bifurcation analysis

In this section, the effect of varying parameter values on the dynamical behaviour

of the system (5.1) around each equilibrium point is studied. In the following theo-

rems, an application of Sotomayor’s hypothesis for local bifurcation is adapted.

Now, the Jacobian matrix of system (5.1) at each of the equilibrium points is

given by:

J = DF =


r − σ1 −

2rx

k
− β1z σ2 −β1x 0

σ1 s− σ2 −
2sy

l
0 0

β2z 0 a− 2az
m

+ β2x− β0 − γ1w −γ1z

0 0 γ2w γ2z − α


.
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For any non-zero vector V = (v1, v2, v3, v4)T :

D2F (V, V ) =


−2v1

(
rv1
k
− β1v3

)
−2s

l
v2

2

2v3

(
β2v1 − aV3

m
− γ1v4

)
2γ2v3v4

 (5.50)

and,

D3F (V, V, V ) = (0, 0, 0, 0)T .

So, according to Sotomayor’s theorem the pitchfork bifurcation does not occur at any

of the points Fi, i = 0, 1, 2, 3, 4, 5.

Theorem 5.9.1 Suppose that

(r − σ1)2 − lσ3
1 6= 0. (5.51)

Then, for the parameter value σ∗2 =
s(r − σ1)

r
system (5.1), at the equilibrium point

F0, has a transcritical bifurcation.

Proof Similar to the proof of the Theorem 4.9.1.

Theorem 5.9.2 Suppose that

v
[1]
3 6= 0. (5.52)

Then, for the parameter value β∗2 = β0−a
x̂

, system (5.1), at the equilibrium point F1,

has a transcritical bifurcation.

Proof Similar to the proof of the Theorem 4.9.2.

Theorem 5.9.3 Suppose that

v
[2]
1

(rv[2]
1

k
+ β1v

[2]
3

)
ψ

[2]
1 +

(s
l

)(
v

[2]
2

)2
ψ

[2]
2 6= 0. (5.53)

Then, for the parameter value γ2 = α/z̈, system (5.1), at the equilibrium point F2,

has a transcritical bifurcation.
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Proof According to the Jacobian matrix J(F2), system (5.1), at the equilibrium

point F2, has a zero eigenvalue, say λ24, at γ2 = γ∗2 and the Jacobian matrix J(F2)

becomes:

J∗(F2) =


r − σ1 − β1z̈ σ2 0 0

σ1 s− σ2 0 0

β2z̈ 0 0 −γ1z̈

0 0 0 0

 .

Now, suppose that V [2] =
(
v

[2]
1 , v

[2]
2 , v

[2]
3 , v

[2]
4

)T
is an eigenvector corresponding to the

eigenvalue λ24. Then,
(
J∗(F2)− λ24I

)
V [2] = 0, which implies:

v
[2]
2 =

σ1v
[2]
1

(σ2 − s)
,

v
[2]
4 =

β2v
[2]
1

γ1

,

where, v
[2]
1 is any non-zero real number. Let ψ[2] =

(
ψ

[2]
1 , ψ

[2]
2 , ψ

[2]
3 , ψ

[2]
4

)T
be an eigen-

vector associated with the eigenvalue λ24 of the matrix (J∗(F2))T . Then,
(
(J∗(F2))T−

λ24I
)
ψ[2] = 0. By solving this equation for ψ[2], ψ

[2]
2 =

σ2ψ
[2]
1

σ2−s , ψ
[2]
3 = 0 are obtained,

where ψ
[2]
1 is any non-zero real number.

Now, to confirm whether the conditions of Sotomayor’s theorem for transcritical bi-

furcation are satisfied, the following is considered:

∂f

∂γ2

= f
′

γ2
(X, γ2) =

(
∂f1

∂γ2

,
∂f2

∂γ2

,
∂f3

∂γ2

,
∂f4

∂γ2

)T
= (0, 0, 0, zw)T .

Thus, f
′
γ2

(F2, γ
∗
2) = (0, 0, 0, 0)T and hence, (ψ[2])Tf

′
γ2

(F2, γ
∗
2) = 0. Therefore, accord-

ing to Sotomayor’s theorem, saddle-node bifurcation cannot occur, while the first

condition of transcritical bifurcation is satisfied.

Now,

Dfγ2(X, γ2) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 w z

 ,
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where, Dfγ2(X, γ2) represents the derivative of fγ2(X, γ2) with respect toX = (x, y, z, w)T .

Moreover, it is observed under condition (5.53) that:

Dfγ2(F2, γ
∗
2)V [2] =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 z̈




v

[2]
1

v
[2]
2

v
[2]
3

v
[2]
4

 =


0

0

0

z̈v
[2]
4

 ,

(ψ[2])T
[
Dfγ2(F2, γ

∗
2)V [2]

]
=

(
ψ

[2]
1 , ψ

[2]
2 , 0, ψ

[2]
4

)(
0, 0, 0, z̈v

[2]
4

)T
= z̈ψ

[2]
4 v

[2]
4 6= 0.

Now, by substituting in (5.50) and according to condition (5.53), the following is

obtained:(
ψ[2]
)T [

D2f(F2, γ
∗
2)
(
V [2], V [2]

)]
= −2v

[2]
1

(rv[2]
1

k
+ β1v

[2]
3

)
ψ

[2]
1 − 2

(s
l

)(
v

[2]
2

)2
ψ

[2]
2 6= 0.

This means the second condition of transcritical bifurcation is satisfied. Thus, ac-

cording to Sotomayor’s theorem system, (5.1) has transcritical bifurcation at F2 with

the parameter γ2 = γ∗2 .

Theorem 5.9.4 Suppose that

rl(s− σ2)3 6= ksσ2(σ1)2. (5.54)

Then, for the parameter value β∗1 = (r−σ1)(s−σ2)−σ1σ2
(s−σ2)z̃

, system (5.1), at the equilibrium

point F3, has a transcritical bifurcation.

Proof According to the Jacobian matrix J(F3), system (5.1), at the equilibrium

point F3, has a zero eigenvalue, say λ31, at β1 = β∗1 and the Jacobian matrix J(F3)

becomes

J∗(F3) =


r − σ1 − β1z̃ σ2 0 0

σ1 s− σ2 0 0

β2z̃ 0 −2az̃
m

−γ1z̃

0 0 γ2w̃ 0

 .
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Now, suppose that V [3] =
(
v

[3]
1 , v

[3]
2 , v

[3]
3 , v

[3]
4

)T
is an eigenvector corresponding to the

eigenvalue λ31. Then,
(
J∗(F3)− λ31I

)
V [3] = 0, which implies

v
[3]
2 =

σ1v
[3]
1

(σ2 − s)
,

v
[3]
3 = 0

v
[3]
4 =

β2v
[3]
1

γ1

,

where, v
[3]
1 is any non-zero real number. Let ψ[3] =

(
ψ

[3]
1 , ψ

[3]
2 , ψ

[3]
3 , ψ

[3]
4

)T
be an eigen-

vector associated with the eigenvalue λ31 of the matrix (J∗(F3))T . Then,
(
(J∗(F3))T−

λ31I
)
ψ[3] = 0. By solving this equation for ψ[3], ψ

[3]
2 =

σ2ψ
[3]
1

σ2−s , ψ
[3]
3 = ψ

[3]
4 = 0 are ob-

tained, where ψ
[3]
1 is any non-zero real number.

Now, to confirm whether the conditions of Sotomayor’s theorem for saddle-node bi-

furcation are satisfied, the following is considered:

∂f

∂β1

= f
′

β1
(X, β1) =

(
∂f1

∂β1

,
∂f2

∂β1

,
∂f3

∂β1

,
∂f4

∂β1

)T
= (−z, 0, 0, 0)T .

Thus, f
′

β1
(F3, β

∗
1) = (−z̃, 0, 0, 0)T and hence,

(ψ[3])Tf
′

β1
(F3, β

∗
1) = (ψ

[3]
1 , ψ

[3]
2 , 0, 0)T (−z̃, 0, 0, 0)T = −ψ[3]

1 z̃ 6= 0

Therefore, according to Sotomayor’s theorem, transcritical bifurcation cannot oc-

cur, while the first condition of saddle-node bifurcation is satisfied.

Now,

Dfβ1(X, β1) =


0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

where, Dfβ1(X, β1) represents the derivative of fβ1(X, β1) with respect to X =

(x, y, z, w)T . Moreover, it is observed under condition (5.54) that:
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Dfβ1(F3, β
∗
1)V [3] =


0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0




v

[3]
1

v
[3]
2

0

v
[3]
4

 =


0

0

0

0

 ,

(ψ[3])T
[
Dfβ1(F3, β

∗
1)V [3]

]
=

(
ψ

[3]
1 , ψ

[3]
2 , 0, 0

)(
0, 0, 0, 0

)T
= 0.

Now, by substituting in (5.50) and according to condition (5.54), the following is

obtained:

(
ψ[3]
)T [

D2f(F3, β
∗
1)
(
V [3], V [3]

)]
= 2ψ

[3]
1

(
v

[3]
1

)2(−r
k

+
sσ2(σ1)2

l(s− σ2)3

)
6= 0.

This means the second condition of saddle-node bifurcation is satisfied. Thus, ac-

cording to Sotomayor’s theorem system, (5.1) has saddle-node bifurcation at F3 with

the parameter β1 = β∗1 .

Theorem 5.9.5 Suppose that

v
[4]
3 , v

[4]
4 6= 0. (5.55)

Then, for the parameter value γ∗2 =
α

z̄
, system (5.1), at the equilibrium point F4, has

transcritical bifurcation.

Proof According to the Jacobian matrix J(F4), given by (5.48), system (5.1), at

the equilibrium point F4, has a zero eigenvalue, say λ44, at γ2 = γ∗2 and this matrix

becomes

J∗(F4) =


r − σ1 − 2rx̄

k
− β1z̄ σ2 −β1x̄ 0

σ1 s− σ2 − 2sȳ
l

0 0

β2z̄ 0 −az̄
m

−γ1z̄

0 0 0 0

 .
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Now, suppose that V [4] =
(
v

[4]
1 , v

[4]
2 , v

[4]
3 , v

[4]
4

)T
is an eigenvector corresponding to the

eigenvalue λ44. Thus,
(
J∗(F4)− λ44I

)
V [4] = 0, which implies:

v
[4]
2 =

σ1lv
[4]
1

2sȳ − (s− σ2)l
,

v
[4]
3 =

(
(rk − 2rx̄− σ1k − kβ1z̄)(2sȳ − (s− σ2)l) + σ1σ2lk

β1x̄k(2sȳ − (s− σ2)l)

)
v

[4]
1 ,

v
[4]
4 =

mβ2v
[4]
1 − av

[4]
3

mγ1

,

where, v
[4]
1 is any non-zero real number and 2sȳ 6= (s − σ2)l. Then, let ψ[4] =(

ψ
[4]
1 , ψ

[4]
2 , ψ

[4]
3 , ψ

[4]
4

)T
be an eigenvector associated with the eigenvalue λ44 of the ma-

trix (J∗(F4))T . So,
(
(J∗(F4))T − λ44I

)
ψ[4] = 0 and by solving this equation for ψ[4],

ψ
[4]
1 = ψ

[4]
2 = ψ

[4]
3 = 0 is the result, where ψ

[4]
4 is any non-zero real number.

Now, to confirm that the conditions of Sotomayor’s theorem for transcritical bi-

furcation are satisfied, the following is considered:

∂f

∂γ2

= f
′

γ2
(X, γ2) =

(
∂f1

∂γ2

,
∂f2

∂γ2

,
∂f3

∂γ2

,
∂f4

∂γ2

)T
= (0, 0, 0, zw)T .

Therefore, f
′
γ2

(F4, γ
∗
2) = (0, 0, 0, 0)T and hence, (ψ[4])Tf

′
γ2(F4, γ

∗
2) = 0. So, accord-

ing to Sotomayor’s theorem, saddle-node bifurcation cannot occur, while the first

condition of transcritical bifurcation is satisfied. Now,

Dfγ2(X, γ2) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 w z

 ,

where, Dfγ2(X, γ2) represent the derivative of fγ2(X, γ2) with respect toX = (x, y, z, w)T .

Further, it is observed under condition (5.55) that the following is obtained:

Dfγ2(F4, γ
∗
2)V [4] =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 z̄




v

[4]
1

v
[4]
2

v
[4]
3

v
[4]
4

 =


0

0

0

z̄v
[2]
4

 ,
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(ψ[4])T
[
Dfγ2(F4, γ

∗
2)V [4]

]
=

(
0, 0, 0, ψ

[4]
4

)(
0, 0, 0, z̄v

[4]
4

)T
= z̄ψ

[4]
4 v

[4]
4 6= 0.

Now, by substituting in (5.50) and according to condition (5.55), it is found that:(
ψ[4]
)T [

D2f(F4, γ
∗
2)
(
V [4], V [4]

)]
= −2γ∗2v

[4]
3 v

[4]
4 ψ

[4]
4 6= 0.

This means the second condition of transcritical bifurcation is satisfied. Thus, ac-

cording to Sotomayor’s theorem, system (5.1) has transcritical bifurcation at F4 with

the parameter γ2 = γ∗2 .

Remark

1. According to the Jacobian matrix J(F5), given by (5.49), all the eigenvalues of

J(F5) have negative real parts at the equilibrium point F5. Therefore, F5 is a

hyperbolic equilibrium point and thus, the system (5.1) has no bifurcation at

F5.

2. According to the Jacobian matrices J(F0), J(F1), J(F2), J(F3) and J(F4)

given by (5.24), (5.30), (5.36), (5.42) and (5.48) respectively, it is clear that

J(Fi), i = 0, 1, 2, 3, 4 has four real eigenvalues. Therefore, there is no possi-

bility of Hopf bifurcation occurring at this points.

5.10 Numerical analysis

The main goal of this section is to find the key parameters of the system (5.1)

that affects the behaviour of the proposed model by using numerical simulations. The

dynamics of the system (5.1) is presented by solving the system numerically and then

drawing the time series of the solutions of the system (5.1) are drawn for different

sets of parameters.

Now, for the following set of parameters:

r =1.5, k = 50, σ1 = 0.5, σ2 = 0.7, β1 = 0.9, β2 = 0.75, β0 = 0.01,

s =1.4, l = 40, α = 0.4, γ1 = 0.5, γ2 = 0.1, a = 1.5,m = 45,
(5.56)
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the conditions (5.22) and (5.23) are satisfied. This shows that the positive equilibrium

point F3 exists, and it is given by: (x∗, y∗, z∗, w∗) = (5.94, 23.59, 4.00, 11.63).
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Fig. 5.1. Convergence of the solution of the system (5.1) to the posi-
tive equilibrium point with the data given by Eq.(5.56).

Figure 5.1, indicates that the solution of the system (5.1) oscillates for some small

period and then, in the long-time limit, it asymptotically approaches the positive

equilibrium point.

Now, to investigate the effect of the varying parameter values on the behaviour

of the system (5.1), the model has been solved numerically for the data given in

Eq.(5.56), varying one parameter each time in the following subsections.
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5.10.1 The effect of varying the migration rate of the prey to the reserved

area

Figure 5.2 shows the effect of migration to the reserved area, which is described by

the parameter σ1, on the behaviour of the system (5.1) with time. It is observed that

for different values of σ1, the solution initially oscillates for a small period and then,

asymptotically approaches its equilibrium level in the interior of IR4
+. As a result of

rising the migration rate to the protected area, it can be seen that the density of

the prey in the reserved zone increases. On the other hand, the populations of the

top predator and the prey in the unreserved area slightly decrease, while the third

component has not affected.
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Fig. 5.2. Convergence of the solution of the system (5.1) for the data
given by Eq.(5.56) with (a) σ1 = 0.001 to the stable point(6.12, 20.00,
4.00, 11.90) in the interior of IR4

+. (b) σ1 = 1 to the stable point (5.59,
26.12, 4.00, 11.10) in the interior of IR4

+.
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5.10.2 The effect of varying the natural death rate of the predator

Now the same analysis is used for different values of the predator’s natural mor-

tality, which is described by the parameter β0, and the rest of the parameter values

are kept the same as in Eq.(5.56). Figure 5.3 shows that for various values of β0,

the solution initially oscillates for a while and then it settles down to its equilibrium

level in the interior of IR4
+. Due to the decrease of the predator’s natural death-rate,

the density of the top predator increases. This means an abundance of the predator

and hence, the food conversion rate of the predator to the top predator increases

(and vice versa). On the other hand, the populations of the prey in the reserved and

unreserved zone, as well as the predator (the third component), are not affected.
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Fig. 5.3. Convergence of the solution of the system (5.1) for the data
given by Eq.(5.56) with (a) β0 = 1 to the stable point (5.94, 23.59,
4.00, 9.65) in the interior of IR4

+. (b) β0 = 0.001 to the stable point
(5.94, 23.59, 4.00, 11.64) in the interior of IR4

+.
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5.10.3 The effect of varying the natural death rate of the top predator

The effect of varying α, which represents the top predator’s natural death-rate,

on the behaviour of the system (5.1), is also studied. From Figure 5.4, the following

results can be observed. As α increases, the density of the top predator decreases and

thus, the attack rate γ1 by the top predator on the predator decreases, which implies

that there is an abundance of the latter. Furthermore, as a result of the predator’s

density increasing, the attack rate on the prey in the unreserved zone increases, which

affects negatively their density in the unprotected area. Thus, the migration rate to

the reserved zone is also affected. Further, for different values of α, the system (5.1)

starts to oscillate for a particular time and then, attains the equilibrium level in the

interior of IR4
+. It follows that the system (5.1) persists for long-term behaviour.
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Fig. 5.4. Convergence of the solution of the system (5.1) for the data
given by Eq.(5.56) with (a) α = 1 to the stable point (1.84, 21.24,
10.00, 5.08) in the interior of IR4

+. (b) α = 0.0001 to the stable point
(50.82, 38.74, 0.01, 79.20) in the interior of IR4

+.



104

5.10.4 The effect of varying the attack rate of the top predator on the

predator

Figure 5.4 illustrates the effect of the top predator’s attack rate on the predator,

which is described by the parameter γ1, in terms of the behaviour of the system (5.1)

versus time. It can be noticed that for various values of γ1, the solution initially

oscillates, and after a specific time it attains its equilibrium level in the interior of

IR4
+. Also, when increasing γ1, which means that the food conversion rate to the top

predator increases and hence, its density is rapidly increasing. On the other hand,

the densities of the prey in the reserved and unreserved area, as well as the predator,

are not affected. Once again, the system (5.1) persists for varying values of γ1.
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Fig. 5.5. Convergence of the solution of the system (5.1) for the data
given by Eq.(5.56) with (a) γ1 = 0.01 to the stable point (5.94, 23.59,
4.00, 581.59) in the interior of IR4

+. (b) γ1 = 1 to the stable point
(5.94, 23.59, 4.00, 5.81) in the interior of IR4

+.
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5.10.5 The effect of varying the conversion rate of the predator to the

top predator

Now, Figure 5.6 studies the impact of the conversion rate of the predator to

the top predator γ2, on the behaviour of the species with t. When varying γ2 and

keeping the other parameters in Eq.(5.56) fixed, it can be observed that the solution of

system (5.1) converges to the equilibrium point in the interior of IR4
+ after oscillating

for a certain amount of time. Due to the decreasing of γ2, the densities of the top

predator, the prey in the reserved and unreserved zone decrease. On the other hand,

the population of the predator (the third component) increases significantly.
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Fig. 5.6. Convergence of the solution of the system (5.1) for the data
given by Eq.(5.56) with (a) γ2 = 1 to the stable point (39.47, 35.76,
0.50, 62.589) in the interior of IR4

+, (b) γ2 = 0.0001 to the stable point
(0.30, 20.21, 51.69, 0.41) in the interior of IR4

+.
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5.10.6 The effect of varying the unreserved area rate on the species

Similarly, for different values of σ2, which represent the impact of the unreserved

area on the behaviour of the species. When varying σ2 and keeping the other param-

eters in (5.56) fixed, the solution of system (5.1) initially fluctuates for some time,

and then, it converges to the equilibrium point. Furthermore, Due to the decreasing

of σ2, the densities of the top predator and the prey in the unreserved area decrease.

On the other hand, the population of the prey in the reserved zone increases, while,

the third component is not affected (see Figure 5.7).
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Fig. 5.7. Convergence of the solution of the system (5.1) for the data
given by Eq.(5.56) with (a) σ2 = 1 to the stable point (5.96, 16.56,
4.00, 11.65) in the interior of IR4

+. (b) σ2 = 0.0001 to the stable point
(0.01, 39.99, 4.00, 2.70) in the interior of IR4

+.
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5.10.7 The effect of varying the conversion rate of the prey in the unre-

served zone to the predator

For the parameter values given in Eq.(5.56) with different β2, which represent

the conversion rate of the prey in the unreserved zone to the predator, the following

results can be observed. As β2 decreases, the population of the top predator affects

negatively, which implies the decreases of their density. Furthermore, the densities of

the prey in the reserved and unreserved zone as well as the predator are not affected.

Also, for different values of α, the system (5.1) starts to oscillate for a particular

time and then, attains the equilibrium level in the interior of IR4
+. It follows that the

system (5.1) persists for long-term behaviour (see Figure 5.8).
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Fig. 5.8. Convergence of the solution of the system (5.1) for the data
given by Eq.(5.56) with (a) β2 = 1, to the stable point (5.94, 23.59,
4.00, 14.60) in the interior of IR4

+. (b) β2 = 0.0001, to the stable point
(5.94, 23.59, 4, 2.70) in the interior of IR4

+.
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5.10.8 The effect of varying the attack rate of the predator on the prey

in the unreserve zone

Finally, Figure 5.9 shows the behaviour of the solution of system (5.1) for varying

β1, which connects the first component with the third in the chain. Figure 5.9 indi-

cates that the slow-decaying and oscillating components are z and w, whereas x and

y converge fast to their equilibrium level.
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Fig. 5.9. Convergence of the solution of the system (5.1) for the data
given by Eq.(5.56) with (a) β1 = 1 to the stable point (5.14, 23.17,
4.00, 10.42) in the interior of IR4

+. (b) β1 = 0.001 to the stable point
(50.95, 38.77, 4.00, 79.14) in the interior of IR4

+. (c) β1 = 0.0001 to
the stable point (51.05, 38.79, 4.00, 79.29) in the interior of IR4

+.
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5.11 Conclusion

An ecological model, which describes the effect of the reserved zone on the dy-

namical behaviour of a food chain prey-predator model when the third component is

partially dependent on the prey in the unprotected zone, has been proposed and stud-

ied. The boundedness of system (5.1) has been shown, and the possible dynamical

behaviour of this system has been investigated analytically at the equilibrium points.

The persistence conditions of the proposed system have been derived. It has been

proven that the solutions of system (5.1) possess transcritical bifurcation. To confirm

the analytical results, system (5.1) has been solved numerically, and the effects of

various parameters on the dynamical behaviour of the proposed system have been

performed, with the following results being obtained.

1. The prey species x in the unreserved zone, the prey species y in the reserved

area, the predator z and the top predator w are persistent under all conditions.

2. It is observed that the dynamic behaviour of system (5.1) does not change if

one of the parameters σ1, σ2, β0, α, β1, β2, γ1 and γ2 is varied.

3. The positive equilibrium point, whenever it exists, is always globally asymptot-

ically stable.

Overall, the system with the reserved zone, as shown in this chapter, shows that

an alternative supply for the third component leads to the persistence of the proposed

system as a whole.
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Chapter 6: The effect of the reserve

zone on the behaviour

of a food web model

6.1 Introduction

In this Chapter, the modelling of a four species food web model with reserve

zone effect on the prey is proposed. It is assumed that the third level predator

(z) feeds on the prey species in the first level (x) only and hence it is known as a

specialist predator, while the predator species in the fourth level (w) takes the food

from the species in the first and third level and hence it is known as a generalist

predator. The boundedness, existence and uniqueness of the solution of the model

under consideration are studied. The existences of equilibria and stability analysis

are discussed with the help of the stability theory of ordinary differential equations.

The dynamical behaviour of the solution is found to be very sensitive to parameter

values and initial data, in particular, the stability of equilibrium points. Now, all the

equilibrium points are obtained, which correspond to those in Chapter four plus a new

equilibrium point, for which only the third component vanishes and the remaining

components are strictly positive.



111

6.2 Mathematical model

In this chapter, we consider a food web model which consists of prey in the unre-

served zones, prey in the reserved zone, specialist predator and a generalist predator.

The corresponding densities are denoted by x(t), y(t), z(t) and w(t). Now, however,

the generalist predator population (z) is allowed to feed directly on the first prey (x).

This is modelled by adding two more terms of Holling type 1 functional response to

the first component of the main system of differential equations:

dx

dt
= rx

(
1− x

k

)
− σ1x+ σ2y − β1xz − α1xw = f1(x, y, z, w),

dy

dt
= sy

(
1− y

l

)
+ σ1x− σ2y = f2(x, y, z, w),

dz

dt
= β2xz − β0z − γ1zw = f3(x, y, z, w),

dw

dt
= α2xw + γ2zw − αw = f4(x, y, z, w),

(6.1)

Here, α1 and α2 are two new model parameters: α1 is the attack rate of the generalist

predator on the prey in the unreserved region, wheres α2 is the conversion rate of latter

to a generalist predator. The other model parameters are the same as in Chapter

4. The proposed model (6.1) has been analysed with the initial conditions x(0) ≥ 0,

y(0) ≥ 0, z(0) ≥ 0 and w(0) ≥ 0, p1(x) = α1x, p2(x) = β1x and q(z) = γ1z are

the Lotka-Volterra type of functional responses. All parameters of the model system

(5.1) are again assumed to be positive.

Apparently, the functions on the right-hand side in the system (6.1) are continu-

ously differentiable functions on IR4
+ =

{
(x, y, z, w), x ≥ 0, y ≥ 0, z ≥ 0, w ≥ 0

}
and

hence, they are Lipschitzian. Therefore, a solution to the system (6.1) exists, which

is unique. Further, all the solutions of the model (6.1) with any non-negative initial

conditions are bounded, as shown in the following section.
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6.3 Boundedness

Theorem 6.3.1 Assume that the conditions α1 ≥ α2, β1 ≥ β2 and γ1 ≥ γ2 hold, then

all the solutions of the system (6.1) which initiate in the IR4
+ are uniformly bounded.

Proof Let (x(t), y(t), z(t), w(t)) be an arbitrary solution of the system (6.1) with a

non-negative initial condition. Then for U(t) = x(t) + y(t) + z(t) + w(t), we have

dU

dt
= rx− rx2

k
+ sy − sy2

l
− (α1 − α2)xw − (β1 − β2)xz − (γ1 − γ2)zw − β0z − αw.

Hence, according to the given condition the following is obtained:

dU

dt
≤ rx− rx2

k
+ sy − sy2

l
− β0z − αw,

dU

dt
+ ξU ≤ 2rx− rx2

k
+ 2sy − sy2

l
,

where, ξ = min{r, s, β0, α}, then

dU

dt
+ ξU ≤ rk − r

k

(
x− k

)2
+ sl − s

l

(
y − l

)2

≤ rk + sl = µ.

Applying Gronwall’s Inequality, the following is obtained:

0 ≤ U
(
x(t), y(t), z(t), w(t)

)
≤ µ

ξ

(
1− e−ξt

)
+ U(0)e−ξt.

Therefore,

0 ≤ lim sup
t→∞

U
(
t
)
≤ µ

ξ
.

Hence, all the solutions of the system (6.1) that are initiated in IR4
+ are attracted

to the region Ω =
{(
x, y, z, w

)
∈ IR4

+ : U = x + y + z + w ≤ µ
ξ

}
under the given

conditions. Thus, these solutions are bounded, and the proof is complete.
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6.4 Positive invariance

See Subsection (4.4).

In the following, the existence of the equilibrium points of the system (6.1) will

be elucidated.

6.5 Existence of equilibria

The food web prey-predator model with a reserved zone given by the system (6.1)

has five nonnegative equilibrium points, namely:

• F0 = (0, 0, 0, 0) is the vanishing fixed point;

• F1 = (x̂, ŷ, 0, 0) is the planar fixed point;

• F2 = (x̄, ȳ, z̄, 0) is the generalist predator-free fixed point;

• F3 = (ẋ, ẏ, 0, ẇ) is the specialist predator-free fixed point;

• F4 = (x∗, y∗, z∗, w∗) is the interior fixed point.

The existence of F0 = (0, 0, 0, 0), F1 = (x̂, ŷ, 0, 0) and F2 = (x̄, ȳ, z̄, 0) are similar to

that in Subsection 4.5.1 and 4.5.2, and hence omitted, while the existence of F3 and

F4 are now shown as follows:

6.5.1 The existence of the specialist predator-free equilibrium point

The equilibrium point F3 exists in the interior of IR3
+ of the xyw-plane if and only

if, ẋ, ẏ and ẇ are the positive roots of the following set of algebraic equations:

r
(

1− x

k

)
− σ1 +

σ2y

x
− α1w = 0,

s
(

1− y

l

)
− σ2 +

σ1x

y
= 0,

α2x− α = 0.
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Solving the above equations, gives that:

ẋ =
α

α2

,

ẏ =
l

2sα2

[
lα2(s− σ2) +

√
l2α2

2(s− σ2)2 + 4slαα2σ1

]
,

ẇ =
α2

αα1

[α(r − σ1)

α2

− rα2

kα2
2

+ σ2ẏ
]
.

Undoubtedly, for ẇ to be positive, the following condition must holds:[α(r − σ1)

α2

+ σ2ẏ
]
>
rα2

kα2
2

, (6.2)

It is clear that condition (6.2) gives a threshold value of the carrying capacity k

in the free access area. Thus, the generalist predator species keeps surviving. Also,

it should be noted that condition (6.2) could fail when k is small enough and hence,

the existence of the specialist predator-free fixed point is violated.

6.5.2 The existence of the positive equilibrium point

The positive equilibrium point F4 exists in the interior of IR4
+, if and only if,

x∗, y∗, z∗ and w∗ are the positive solutions of the following set of equations:

r
(

1− x

k

)
− σ1 +

σ2y

x
− β1z − α1w = 0, (6.3)

s
(

1− y

l

)
− σ2 +

σ1x

y
= 0, (6.4)

β2x− β0 − γ1w = 0, (6.5)

α2x+ γ2z − α = 0. (6.6)

From the above list of equations, the following is obtained:

y =
l

2s

[
(s− σ2) +

√
(s− σ2)2 +

4sσ1x

l

]
, (6.7)

z =
α− α2x

γ2

, (6.8)

w =
β2x− β0

γ1

. (6.9)
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By substituting the values of y, z and w in Eq.(6.3), a little algebraic manipulation

yields:

ax3 + bx2 + cx+ d = 0, (6.10)

where,

a =
(α2β1

γ2

− r

k
− α1β1

γ1

)2

> 0,

b = −2
(α2β1

γ2

− r

k
− α1β1

γ1

)(
(r − σ1)− αβ1

γ2

+
α1β0

γ1

)
,

c =

(
lσ2(s− σ2)

s

)(α2β1

γ2

− r

k
− α1β1

γ1

)
+
(

(r − σ1)− αβ1

γ2

+
α1β0

γ1

)2

,

d = − lσ2

s

(
(s− σ2)

(
(r − σ1)− αβ1

γ2

+
α1β0

γ1

)
+ σ1σ2

)
.

By using Descartes rule of signs, Eq.(6.10) has a unique positive solution x = x∗, if

the following inequality

β1

γ2

< min

{
rγ1 + α1β1k

α2γ1k
,

(
r − σ1)γ1 + α1β0

αγ1

}
, (6.11)

holds. Knowing the value of x∗, the values of y∗, z∗ and w∗ can be computed from

Equations (6.7)-(6.9), respectively. It should also be noted that for z∗ and w∗ to be

positive, the following must be true:

β0

β2

< x∗ <
α

α2

. (6.12)

6.6 Local stability of the equilibrium points

Similarly to the previous chapter, the local dynamic behaviour of the system (6.1)

is discussed by making use of the eigenvalue method and Routh-Hurwitz criteria. The

Jacobian matrix of the system (6.1) at any point is given by

J =


r − σ1 −

2rx

k
− β1z − α1w σ2 −β1x −α1x

σ1 s− σ2 −
2sy

l
0 0

β2z 0 β2x− β0 − γ1w −γ1z

α2w 0 γ2w α2x+ γ2z − α


,
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and, the eigenvalues of the resulting matrix are computed as follows:

6.6.1 Local stability behaviour of F0

In the following lemma, it is shown that F0 is always a saddle point.

Lemma 14 The vanishing equilibrium point F0 = (0, 0, 0, 0) is a saddle point in the

IR4
+.

Proof The proof of this lemma is similar to that in Subsection 5.6.1 , and hence

omitted.

6.6.2 Local stability behaviour of F1

In the following lemma, the local behaviour of the planar fixed point F1 is shown.

Lemma 15 The planar equilibrium point F1 = (x̂, ŷ, 0, 0) is locally asymptotically

stable in IR4
+, whenever:

x̂ < min

{
α

α2

,
β0

β2

}
, (6.13)

holds.

Proof The Jacobian matrix of system (6.1) at the equilibrium point F1 is given by:

J(F1) =


r − σ1 − 2rx̂

k
σ2 −β1x̂ −α1x̂

σ1 s− σ2 − 2sŷ
l

0 0

0 0 β2x̂− β0 0

0 0 0 α2x̂− α

 (6.14)
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Straightforward computations show that the eigenvalues of the Jacobian matrix J(F1)

satisfy the following relations:

λ11 + λ12 = −
(σ2ŷ

x̂
+
rx̂

k
+
σ1x̂

ŷ
+
sŷ

l

)
< 0, (6.15)

λ11.λ12 =

(
rs(x̂)2(ŷ)2 + skσ2(ŷ)3 + rσ1(x̂)3

klx̂ŷ

)
> 0, (6.16)

λ13 = β2x̂− β0, (6.17)

λ14 = α2x̂− α < 0. (6.18)

where, λ1i (i = 1, 2, 3, 4) represent the eigenvalues that describe the dynamics in the

directions of their eigenvectors. Note that, according to equations (6.15)-(6.18), all the

eigenvalues of J(F1) have negative real parts and hence, F1 is locally asymptotically

stable in IR4
+, if and only if, condition (6.13) holds. However, it is a saddle point in

the interior of IR4
+, if the condition (6.13) is violated.

6.6.3 Local stability behaviour of F2

In the following lemma, the local behaviour of the generalist predator-free fixed

point F2 is shown.

Lemma 16 The generalist predator-free equilibrium point F2 = (x̄, ȳ, z̄, 0) is locally

asymptotically stable in IR4
+ whenever

α2x̄+ γ2z̄ < α, (6.19)

holds.

Proof The Jacobian matrix of the system (6.1) at the equilibrium point F2 =

(x̄, ȳ, z̄, 0) can be written as:

J(F2) =


a11 a12 a13 a14

a21 a22 0 0

a31 0 0 a34

0 0 0 a44

 , (6.20)
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where,

a11 = −
(σ2ȳ

x̄
+
rx̄

k

)
< 0; a12 = σ2 > 0; a13 = −β1x̄ < 0;

a14 = −α1x̄; a21 = σ1 > 0; a22 = −
(σ1x̄

ȳ
+
sȳ

l

)
< 0;

a31 = β2z̄ > 0; a32 = 0; a34 = −γ1z̄ < 0; a44 = α2x̄+ γ2z̄ − α.

The first root of the characteristic equation of J(F2) is α2x̄+ γ2z̄ − α and, the other

three roots are given by:

λ3 + A1λ
2 + A2λ+ A3 = 0.

The coefficients of the characteristic equation of J(F2) can be written as:

A1 = −(a11 + a22) > 0,

A2 = a11a22 − a12a21 − a13a31,

A3 = a22a13a31 > 0.

Further,

∆ = A1A2 − A3 = (a11 + a22)(a12a21 + a11a22) + a11a13a31

=
[klσ2(ȳ)2 + rl(x̄)2ȳ + klσ1(x̄)2 + skx̄(ȳ)2

x̄ȳkl

][skσ2(ȳ)3 + rlσ1(x̄)3 + rs(x̄)2(ȳ)2

x̄ȳkl

]
+

(β1β2z̄(kσ2ȳ + r(x̄)2)

l

)
> 0.

Now, according to the Routh-Hurwitz criteria, all the eigenvalues of J(F2) have

roots with negative real parts, provided that Ai(i = 1, 3) > 0 and ∆ > 0. Therefore,

F2 is locally asymptotically stable, if (6.19) holds.

6.6.4 Local stability behaviour of F3

In the following lemma, the local behaviour of the specialist predator-free fixed

point F3 is shown.

Lemma 17 The specialist predator-free equilibrium point F3 = (ẋ, ẏ, 0, ẇ) is locally

asymptotically stable in IR4
+ whenever

β2ẋ < β0 + γ1ẇ, (6.21)
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holds.

Proof The Jacobian matrix of the system (6.1) at the equilibrium point F3 =

(ẋ, ẏ, 0, ẇ) can be written as:

J(F3) =


a11 a12 a13 a14

a21 a22 0 0

0 0 a33 0

a41 0 a43 0

 (6.22)

where,

a11 = −
(σ2ẏ

ẋ
+
rẋ

k

)
< 0; a12 = σ2 > 0; a13 = −β1ẋ < 0; a14 = −α1ẋ; a21 = σ1 > 0;

a22 = −
(σ1ẋ

ẏ
+
sẏ

l

)
< 0; a33 = β2ẋ− β0 − γ1ẇ; a41 = α2ẇ; a43 = γ2ẇ.

The first root of the characteristic equation of J(F3) is β2ẋ−β0− γ1ẇ and, the other

three roots are given by:

λ3 + A1λ
2 + A2λ+ A3 = 0.

The coefficients of the characteristic equation of J(F3) can be written as:

A1 = −(a11 + a22) > 0,

A2 = a11a22 − a12a21 − a14a41,

A3 = a22a14a41 > 0.

Further,

∆ = A1A2 − A3 = (a11 + a22)(a12a21 + a11a22) + a11a14a41

=
[klσ2(ẏ)2 + rl(ẋ)2ẏ + klσ1(ẋ)2 + skẋ(ẏ)2

ẋẏkl

][skσ2(ẏ)3 + rlσ1(ẋ)3 + rs(ẋ)2(ẏ)2

ẋẏkl

]
+

(α1α2ẇ(kσ2ẏ + r(ẋ)2)

k

)
> 0.

Now, according to the Routh-Hurwitz criteria, all the eigenvalues of J(F3) have

roots with negative real parts, provided that Ai(i = 1, 3) > 0 and ∆ > 0. Therefore,

F3 is locally asymptotically stable, if (6.21) holds.
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6.6.5 Local stability behaviour of F4

In the following lemma, the local behaviour of the positive fixed point F4 is shown.

Lemma 18 The positive equilibrium point F4 = (x∗, y∗, z∗, w∗) is locally asymptoti-

cally stable in IR4
+ when the following conditions hold as : A3 > 0, A4 > 0,

(
A1A2 −

A3

)
A3 − A4A

2
1 > 0, where Ai’s are given in the proof of this lemma.

Proof The Jacobian matrix of the system (6.1), at the positive equilibrium point

F4 = (x∗, y∗, z∗, w∗), can be written as:

J(F4) =


a11 a12 a13 a14

a21 a22 0 0

a31 0 0 a34

a41 0 a43 a44

 (6.23)

where,

a11 = −
(σ2y

∗

x∗
+
rx∗

k

)
< 0; a12 = σ2 > 0; a13 = −β1x

∗ < 0; a14 = −α1x
∗ < 0;

a21 = σ1 > 0; a22 = −
(σ1x

∗

y∗
+
sy∗

l

)
< 0; a31 = β2z

∗ > 0; a33 = 0; a34 = −γ1z
∗ < 0;

a41 = α2w
∗; a43 = γ2w

∗; a44 = α2w
∗ + γ2z

∗ − α.

Accordingly, the characteristic equation of J(F4) is given by:

λ4 + A1λ
3 + A2λ

2 + A3λ+ A4 = 0. (6.24)

Here,

A1 = −M1 > 0,

A2 = M2 +M3 > 0,

A3 = a11M5 − a22M3 −M4,

A4 = −M2M5 + a22M4,

∆1 = A1A2 − A3 = −
(
M1M2 +M4 − a11a14a41 − a11a13a31

)
where,

M1 = a11 +a22 < 0, M2 = a11a22−a12a21 > 0, M3 = −a13a31−a34a43−a14a41 > 0,
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M4 = a13a34a41 + a14a31a43, M5 = a34a43 < 0.

Further,

∆2 = A1A2A3 − A2
3 − A2

1A4

=
(
a22M3 +M4

)(
M1M2 +M4 − a11a14a41 − a11a13a31

)
− M5

[
a11M4 − a2

11

(
a14a41 + a13a31)− a22M1(M2 −M1

)]
.

Now, according to the Routh-Hurwitz criteria, all the eigenvalues of J(F4) have roots

with negative real parts when Ai(i = 1, 3, 4) > 0 and ∆2 > 0. Hence, F4 is locally

asymptotically stable in the interior of IR4
+ if the conditions that have been stated in

the lemma hold.

A consequence of above lemma is the statement in the next corollary.

Corollary 6.6.0.1 The positive equilibrium point F4 = (x∗, y∗, z∗, w∗) is locally asymp-

totically stable in IR4
+ whenever

α1γ2β2 = α2γ1β1, (6.25)

holds.

Proof If the case M4 = α1γ2β2 − α2γ1β1 = 0 is taken in the above lemma and

re-written Mi as:

M1 = a11 + a22 < 0,

M2 = a13a31 + a14a41 < 0,

M3 = a12a21 − a11a22 < 0,

then, the following is obtained:
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A1 = −M1 > 0,

A2 = −
(
M2 +M3 + a34a43

)
> 0,

A3 = a34a43M1 + a22M2 > 0,

A4 = a34a43M3 > 0,

∆1 = A1A2 − A3 =
(
M1M3 + a11M2

)
> 0,

∆2 = A1A2A3 − A2
3 − A2

1A4

=
(
a22M1M2M3 + a11a34a43M1M2 + a11a22M

2
2

)
> 0.

Now, according to the Routh-Hurwitz criteria, all the eigenvalues of J(F4) have roots

with negative real parts, when Ai(i = 1, 3, 4) > 0 and ∆2 > 0. Hence, F4 is locally

asymptotically stable in the interior of IR4
+ if (6.25) holds.

6.7 Global dynamical behaviour

In this section, the global stability of the local equilibrium points is investigated

by using the Lyapunov direct method, as shown in the following theorems.

Theorem 6.7.1 Assume that the equilibrium point F1 is locally asymptotically stable

in IR4
+, then it is globally asymptotically stable in IR4

+ whenever

α1γ2β2 ≤ α2γ1β1, (6.26)

holds.

Proof Consider the following positive definite function:

R1(x, y, z, w) = c1

(
x− x̂− x̂ ln

x

x̂

)
+ c2

(
y − ŷ − ŷ ln

y

ŷ

)
+ c3z + c4w,

where, ci, (i = 1, 2, 3, 4) are positive constants to be determined. Now, the time

derivative of R1 along the trajectory of the system (6.1) can be written as:
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dR1

dt
= c1

(x− x̂
x

)dx
dt

+ c2

(y − ŷ
y

)dy
dt

+ c3
dz

dt
+ c4

dw

dt

= c1

(
x− x̂

)(
r − rx

k
− σ1 +

σ2y

x
− β1z − α1w

)
+ c2

(
y − ŷ

)(
s− sy

l
+
σ1x

y
− σ2

)
+ c3

(
β2xz − β0z − γ1zw

)
+ c4

(
α2xw + γ2zw − αw

)
= c1

(
x− x̂

)(−r
k

(
x− x̂

)
+ σ2

(y
x
− ŷ

x̂

)
− β1z − α1w

)
+ c2

(
y − ŷ

)(−s
l

(
y − ŷ

)
+ σ1

(x
y
− x̂

ŷ

))
+ c3

(
β2xz − β0z − γ1zw

)
+ c4

(
α2xw + γ2zw − αw

)
.

Therefore,

dR1

dt
=
−c1r

k

(
x− x̂

)2
+ c1σ2

(
x− x̂

)(yx̂− xŷ
xx̂

)
− c1

(
x− x̂

)
β1z − c1

(
x− x̂

)
α1w

)
− c2s

l

(
y − ŷ

)2
+ c2σ1

(
y − ŷ

)(xŷ − yx̂
yŷ

)
+ c3

(
β2xz − β0z − γ1zw

)
+ c4

(
α2xw + γ2zw − αw

)
.

By choosing the positive constants as:

c1 = 1, c2 =
σ2ŷ

σ1x̂
, c3 =

β1

β2

, c4 =
α1

α2

,

the following is obtained,

dR1

dt
= −

( r
k

)(
x− x̂

)2 −
( σ2

xx̂y

)(
xŷ − yx̂

)2 −
(sσ2ŷ

lσ1x̂

)(
y − ŷ

)2

+
(
x̂− β0

β2

)
β1z +

(
x̂− α0

α2

)
α1w −

(α2β1γ1 − α1β2γ2

α2β2

)
zw.

Then, dR1

dt
< 0 under the local stability condition (6.13) and (6.26). Hence, R1 is a

Lyapunov function. Therefore, F1 is globally asymptotically stable in IR4
+.

Condition (6.26) shows how the two chains (x → z → w) and (x → w) interact

with to each other.

The next theorem shows the global stability of the generalist predator-free equi-

librium point F2 in IR4
+.
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Theorem 6.7.2 Assume that the equilibrium point F2 is locally asymptotically stable

in IR4
+, then it is globally asymptotically stable in IR4

+ whenever condition

α1γ2β2 = α2γ1β1, (6.27)

holds.

Proof Consider the following positive definite function:

R2(x, y, z, w) = c1

(
x− x̄− x̄ ln

x

x̄

)
+ c2

(
y − ȳ − ȳ ln

y

ȳ

)
+ c3

(
z − z̄ − z̄ ln

z

z̄

)
+ c4w,

where, ci, (i = 1, 2, 3, 4) are positive constants to be determined. Now the time

derivative of R2 along the trajectory of the system (6.1) can be written as:

dR2

dt
= c1

(x− x̄
x

)dx
dt

+ c2

(y − ȳ
y

)dy
dt

+ c3

(z − z̄
z

)dz
dt

+ c4
dw

dt

= c1

(
x− x̄

)(
r − rx

k
− σ1 +

σ2y

x
− β1z − α1w

)
+ c2

(
y − ȳ

)(
s− sy

l
+
σ1x

y
− σ2

)
+ c3

(
z − z̄

)(
β2x− β0 − γ1w

)
+ c4

(
α2xw + γ2zw − αw

)
= c1

(
x− x̄

)(−r
k

(
x− x̄

)
+ σ2

(y
x
− ȳ

x̄

)
− β1

(
z − z̄

)
− α1w

)
+ c2

(
y − ȳ

)(−s
l

(
y − ȳ

)
+ σ1

(x
y
− x̄

ȳ

))
+ c3

(
z − z̄

)(
β2

(
x− x̄

)
− γ1w

)
+ c4

(
α2xw + γ2zw − αw

)
.

Therefore,

dR2

dt
=
−c1r

k

(
x− x̄

)2
+ c1σ2

(
x− x̄

)(yx̄− xȳ
xx̄

)
− c1β1

(
x− x̄

)(
z − z̄

)
− c1α1w

(
x− x̄

)
− c2s

l

(
y − ȳ

)2
+ c2σ1

(
y − ȳ

)(xȳ − yx̄
yȳ

)
+ c3

(
x− x̄

)(
z − z̄

)
− c3γ1w

(
z − z̄

)
+ c4

(
α2xw + γ2zw − αw

)
.

By choosing the positive constants as:

c1 = 1, c2 =
σ2ȳ

σ1x̄
, c3 =

β1

β2

, c4 =
α1

α2

,

the following is obtained:

dR2

dt
= −

( r
k

)(
x− x̄

)2 −
( σ2

xx̄y

)(
xȳ − yx̄

)2 −
(sσ2ȳ

lσ1x̄

)(
y − ȳ

)2
.
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Then, dR2

dt
≤ 0 which is negative semi-definite under the local stability condition

(6.19) and (6.27). Thus, F2 is Lyapunov stable. However, the set

N2 =
{

(x, y, z, w)/Ṙ2(x, y, z, w) = 0
}

, which is the set N2 =
{

(x, y, z, w)/x =

x̄, y = ȳ
}

, does not contain any trajectory of the system except F2 = (x̄, ȳ, z̄, 0).

Therefore, by LaSalle’s invariance principle, F2 is globally asymptotically stable in

IR4
+ if the local stability condition (6.19) and (6.25) hold.

The next theorem shows the global stability of the specialist predator-free equilibrium

point F3 in IR4
+.

Theorem 6.7.3 Assume that the equilibrium point F3 is locally asymptotically stable

in IR4
+, then it is globally asymptotically stable in IR4

+ whenever condition (6.27) holds.

Proof Consider the following positive definite function:

R3(x, y, z, w) = c1

(
x− ẋ− ẋ ln

x

ẋ

)
+ c2

(
y− ẏ− ẏ ln

y

ẏ

)
+ c3z + c4

(
w− ẇ− ẇ ln

w

ẇ

)
,

where, ci, (i = 1, 2, 3, 4) are positive constants to be determined. Now the time

derivative of R3 along the trajectory of the system (6.1) can be written as:

dR3

dt
= c1

(x− ẋ
x

)dx
dt

+ c2

(y − ẏ
y

)dy
dt

+ c3
dz

dt
+ c4

(w − ẇ
w

)dw
dt

= c1

(
x− ẋ

)(−r
k

(
x− ẋ

)
+ σ2

(y
x
− ẏ

ẋ

)
− β1z − α1

(
w − ẇ

))
+ c2

(
y − ẏ

)(−s
l

(
y − ẏ

)
+ σ1

(x
y
− ẋ

ẏ

))
+ c3z

(
β2x− γ1w − β0

)
+ c4

(
w − ẇ

)(
α2

(
x− ẋ

)
+ γ2z

)
.

By choosing the positive constants as:

c1 = 1, c2 =
σ2ẏ

σ1ẋ
, c3 =

β1

β2

, c4 =
α1

α2

,

the following is obtained:

dR3

dt
= −

( r
k

)(
x− ẋ

)2 −
( σ2

xẋy

)(
xẏ − yẋ

)2 −
(sσ2ẏ

lσ1ẋ

)(
y − ẏ

)2
.
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Then, dR3

dt
≤ 0 which is negative semi-definite under the local stability condition

(6.21) and (6.27). Thus, F3 is Lyapunov stable. However, the set

N3 =
{

(x, y, z, w)/Ṙ3(x, y, z, w) = 0
}

, which is the set N3 =
{

(x, y, z, w)/x =

ẋ, y = ẏ
}

, does not contain any trajectory of the system except F3 = (ẋ, ẏ, 0, ẇ).

Therefore, by LaSalle’s invariance principle, F3 is globally asymptotically stable in

IR4
+ if the local stability condition (6.21) and (6.27) hold.

Finally, the global stability of the positive equilibrium point F4 in the interior of IR4
+

is investigated, as shown in the following theorem.

Theorem 6.7.4 The equilibrium point F4 is globally asymptotically stable in IR4
+

whenever it exists.

Proof Consider the following positive definite function:

R4(x, y, z, w) = c1

(
x− x∗ − x∗ ln

x

x∗

)
+ c2

(
y − y∗ − y∗ ln

y

y∗

)
+ c3

(
z − z∗ − z∗ ln

z

z∗

)
+ c4

(
w − w∗ − w∗ ln

w

w∗

)
,

where, ci, (i = 1, 2, 3, 4) are positive constants to be determined. Now, the time

derivative of R4 along the trajectory of the system (6.1) can be written as:

dR4

dt
= c1

(x− x∗
x

)dx
dt

+ c2

(y − y∗
y

)dy
dt

+ c3

(z − z∗
z

)dz
dt

+ c4

(w − w∗
w

)dw
dt

= c1

(
x− x∗

)(
r − rx

k
− σ1 +

σ2y

x
− β1z

)
+ c2

(
y − y∗

)(
s− sy

l
+
σ1x

y
− σ2

)
+ c3

(
z − z∗

)(
β2x− β0 − γ1w

)
+ c4

(
w − w∗

)(
γ2z − α

)
.

Therefore,

dR4

dt
=
−c1r

k

(
x− x∗

)2
+ c1σ2

(
x− x∗

)(yx∗ − xy∗
xx∗

)
− c1β1

(
x− x∗

)(
z − z∗

)
− c2s

l

(
y − y∗

)2
+ c2σ1

(
y − y∗

)(xy∗ − yx∗
yy∗

)
+ c3β2

(
x− x∗

)(
z − z∗

)
− c3γ1

(
z − z∗

)(
w − w∗

)
+ c4γ2

(
z − z∗

)(
w − w∗

)
.
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By choosing the positive constants as:

c1 = 1, c2 =
σ2y

∗

σ1x∗
, c3 =

β1

β2

, c4 =
α1

α2

,

the following is obtained:

dR4

dt
= −

( r
k

)(
x− x∗

)2 −
( σ2

xx∗y

)(
xy∗ − yx∗

)2 −
(sσ2y

∗

lσ1x∗

)(
y − y∗

)2
.

Then, dR4

dt
≤ 0 which is negative semi-definite and thus F4 is Lyapunov stable.

However, the set N4 =
{

(x, y, z, w)/Ṙ4(x, y, z, w) = 0
}

, which is the set N4 ={
(x, y, z, w)/x = x∗, y = y∗

}
, does not contain any trajectory of the system ex-

cept F4 = (x∗, y∗, z∗, w∗). Therefore, by LaSalle’s invariance principle F4 is globally

asymptotically stable in interior of IR4
+ if the local stability holds.

6.8 Persistence analysis

Similarly to the previous chapter, the persistence conditions of the system (6.1)

are studied using the Freedman and Waltman approach.

Now, before establishing the persistence conditions of the system (6.1), first, the

stable behaviour of F1 and F2 in the boundary planes xy and xyz needs to be studied,

which is undertaken through the following lemma.

Lemma 19 Assume that conditions (4.27) and (4.33) are satisfied, which represent

the local stability conditions for the equilibrium points F1, F2 and F3, respectively.

Then they are globally asymptotically stable in the interior of IR2
+(xy), IR3

+(xyz) and

IR3
+(xyw), respectively.

Proof The proof of the above Lemma is clear, and so omitted.

In the following theorem, the persistence condition of the system (6.1) is established.

Theorem 6.8.1 If the conditions (6.13), (6.19) and (6.21) are violated, then, the

system (6.1) persists.

Proof Followed by the application of Freedman and Waltman persistence theorem.
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6.9 Local bifurcation analysis

In this section, the effect of varying parameter values on the dynamical behaviour

of the system (6.1) around each equilibrium point is studied. In the following theo-

rems, an application of Sotomayor’s hypothesis for local bifurcation is adapted.

Now, the Jacobian matrix of system (6.1) at each of the equilibrium points is

given by:

J = DF =


r − σ1 −

2rx

k
− β1z − α1w σ2 −β1x −α1x

σ1 s− σ2 −
2sy

l
0 0

β2z 0 β2x− β0 − γ1w −γ1z

α2w 0 γ2w α2x+ γ2z − α


.

For any non-zero vector V = (v1, v2, v3, v4)T :

D2F (V, V ) =


−2v1

(
rv1
k
− β1v3 + α1v4

)
−2s

l
v2

2

2v3

(
β2v1 − γ1v4

)
2v4

(
α2v1 + γ2v3

)

 (6.28)

and,

D3F (V, V, V ) = (0, 0, 0, 0)T .

So, according to Sotomayor’s theorem the pitchfork bifurcation does not occur at any

of the points Fi, i = 0, 1, 2, 3.

Theorem 6.9.1 Suppose that

(r − σ1)2 − lσ3
1 6= 0. (6.29)

Then, for the parameter value σ∗2 =
s(r − σ1)

r
system (6.1), at the equilibrium point

F0, has a transcritical bifurcation.
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Proof The proof of this theorem is similar to that of Theorem 4.9.1, and hence

omitted.

Theorem 6.9.2 Suppose that

v
[1]
3 6= 0, (6.30)

Then, for the parameter value β∗2 = β0
x̂

, system (6.1), at the equilibrium point F1, has

a transcritical bifurcation.

Proof According to the Jacobian matrix J(F1) given by (6.14), system (6.1), at the

equilibrium point F1, has a zero eigenvalue, say λ13, at β2 = β∗2 and the Jacobian

matrix J(F1) becomes:

J∗(F1) =


r − σ1 − 2rx̂

k
σ2 −β1x̂ −α1x̂

σ1 s− σ2 − 2sŷ
l

0 0

0 0 0 0

0 0 0 α2x̂− α


Now, suppose that V [1] =

(
v

[1]
1 , v

[1]
2 , v

[1]
3 , v

[1]
4

)T
is an eigenvector corresponding to the

eigenvalue λ13. Then,
(
J∗(F1)− λ13I

)
V [1] = 0, which implies:

v
[1]
2 =

σ1lv
[1]
1

2sŷ − (s− σ2)l
,

v
[1]
3 =

(
(rk − 2rx̂− σ1k)(2sŷ − (s− σ2)l) + σ1σ2lk

β1x̂k(2sŷ − (s− σ2)l)

)
v

[1]
1 ,

v
[1]
4 = 0,

where, v
[1]
1 is any non-zero real number. Let ψ[1] =

(
ψ

[1]
1 , ψ

[1]
2 , ψ

[1]
3 , ψ

[1]
4

)T
be an eigen-

vector associated with the eigenvalue λ13 of the matrix (J∗(F1))T . Then,
(
(J∗(F1))T−

λ13I
)
ψ[1] = 0. By solving this equation for ψ[1], ψ

[1]
1 = ψ

[1]
2 = ψ

[1]
4 = 0 is obtained,

where ψ
[1]
3 is any non-zero real number.

Now, to confirm whether the conditions of Sotomayor’s theorem for transcritical bi-

furcation are satisfied, the following is considered:

∂f

∂β2

= fβ2(X, β2) =

(
∂f1

∂β2

,
∂f2

∂β2

,
∂f3

∂β2

,
∂f4

∂β2

)T
= (0, 0, xz, 0)T .
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Thus, f
′

β2
(F1, β

∗
2) = (0, 0, 0, 0)T and hence, (ψ[1])Tf

′

β2(F1, β
∗
2) = 0. Therefore, accord-

ing to Sotomayor’s theorem, saddle-node bifurcation cannot occur, while the first

condition of transcritical bifurcation is satisfied.

Now,

Dfβ2(X, β2) =


0 0 0 0

0 0 0 0

z 0 x 0

0 0 0 0


where, Dfβ2(X, β2) represents the derivative of fβ2(X, β2) with respect to X =

(x, y, z, w)T . Moreover, it is observed under condition (6.30) that:

Dfβ2(F1, β
∗
2)V [1] =


0 0 0 0

0 0 0 0

0 0 x̂ 0

0 0 0 0




v

[1]
1

v
[1]
2

v
[1]
3

0

 =


0

0

x̂v
[1]
3

0



(ψ[1])T
[
Dfβ2(F1, β

∗
2)V [1]

]
=

(
0, 0, ψ

[1]
3 , 0

)(
0, 0, x̂v

[1]
3 , 0

)T
= x̂ψ

[1]
3 v

[1]
3 6= 0.

Now, by substituting in (6.28), the following is obtained:

D2f
(
F1, β

∗
2

)(
V [1], V [1]

)
=

[
− 2v

[1]
1

(
rv

[1]
1

k
+ β1v

[1]
3

)
,
−2s

(
v

[1]
2

)2

l
, 2β∗2v

[1]
1 v

[1]
3 , 0

]T
.

Hence, according to condition (6.30):

(
ψ[1]
)T [

D2f(F1, β
∗
2)
(
V [1], V [1]

)]
= 2β∗2v

[1]
1 v

[1]
3 ψ

[1]
3 6= 0.

This means the second condition of transcritical bifurcation is satisfied. Thus, ac-

cording to Sotomayor’s theorem system, (6.1) has transcritical bifurcation at F1 with

the parameter β2 = β∗2 .
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Theorem 6.9.3 Suppose that

α2v
[2]
1 + γ∗2v

[2]
3 6= 0. (6.31)

Then, for the parameter value γ∗2 = α−α2x̄
z̄

, system (6.1), at the equilibrium point F2,

has transcritical bifurcation.

Proof According to the Jacobian matrix J(F2), given by (6.20), system (6.1), at

the equilibrium point F2, has a zero eigenvalue, say λ24, at γ2 = γ∗2 and this matrix

becomes

J∗(F2) =


r − σ1 − 2rx̄

k
− β1z̄ σ2 −β1x̄ −α1x̄

σ1 s− σ2 − 2sȳ
l

0 0

β2z̄ 0 0 −γ1z̄

0 0 0 0


Now, suppose that V [2] =

(
v

[2]
1 , v

[2]
2 , v

[2]
3 , v

[2]
4

)T
is an eigenvector corresponding to the

eigenvalue λ24. Thus,
(
J∗(F2)− λ24I

)
V [2] = 0, which implies

v
[2]
2 =

σ1lv
[2]
1

2sȳ − (s− σ2)l
,

v
[2]
3 =

[(
(rk − 2rx̄− σ1k − kβ1z̄)(2sȳ − (s− σ2)l)γ1 + σ1σ2lkx̄β1γ1

x̄kβ1γ1(2sȳ − (s− σ2)l)

)

−
(

(x̄α1kβ1v
[2]
1 (2sȳ − (s− σ2)l)

x̄kβ1γ1(2sȳ − (s− σ2)l)

)]
v

[2]
1 ,

v
[2]
4 =

β2v
[2]
1

γ1

,

where, v
[2]
1 is any non-zero real number and

[
2sȳ − (s − σ2)l

]
6= 0. Then, let ψ[2] =(

ψ
[2]
1 , ψ

[2]
2 , ψ

[2]
3 , ψ

[2]
4

)T
be an eigenvector associated with the eigenvalue λ24 of the matrix

(J∗(F2))T . So,
(
(J∗(F2))T − λ24I

)
ψ[2] = 0 and by solving this equation for ψ[2],

ψ
[2]
1 = ψ

[2]
2 = ψ

[2]
3 = 0 is obtained, where ψ

[2]
4 is any non-zero real number.

Now, to confirm that the conditions of Sotomayor’s theorem for transcritical bi-

furcation are satisfied, the following is considered:

∂f

∂γ2

= f
′

γ2
(X, γ2) =

(
∂f1

∂γ2

,
∂f2

∂γ2

,
∂f3

∂γ2

,
∂f4

∂γ2

)T
= (0, 0, 0, zw)T .
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Therefore, f
′
γ2

(F2, γ
∗
2) = (0, 0, 0, 0)T and hence, (ψ[2])Tf

′
γ2

(F2, γ
∗
2) = 0. So, accord-

ing to Sotomayor’s theorem, saddle-node bifurcation cannot occur, while the first

condition of transcritical bifurcation is satisfied. Now,

Dfγ2(X, γ2) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 w z


where, Dfγ2(X, γ2) represent the derivative of fγ2(X, γ2) with respect toX = (x, y, z, w)T .

Further, it is observed under condition (6.31) that the following is obtained:

Dfγ2(F2, γ
∗
2)V [2] =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 z̄




v

[2]
1

v
[2]
2

v
[2]
3

v
[2]
4

 =


0

0

0

z̄v
[2]
4


(ψ[2])T

[
Dfγ2(F2, γ

∗
2)V [2]

]
=

(
0, 0, 0, ψ

[2]
4

)(
0, 0, 0, z̄v

[2]
4

)T
= ψ

[2]
4 z̄v

[2]
4 6= 0.

Now, by substituting in (6.28) it is found that

D2f
(
F2, γ

∗
2

)(
V [2], V [2]

)


−2v
[2]
1

(
r
(
v
[2]
1

)
k

+ β1v
[2]
3 + α1v

[2]
4

)
−2s
(
v
[2]
2

)2
l

2v
[2]
3

(
β2v

[2]
1 − γ1v

[2]
4

)
2v

[2]
4

(
α2v

[2]
1 + γ∗2v

[2]
3

)


Hence, according to condition (6.31)(

ψ[2]
)T [

D2f(F2, γ
∗
2)
(
V [2], V [2]

)]
= 2v

[2]
4

(
α2v

[2]
1 + γ∗2v

[2]
3

)
ψ

[2]
4 6= 0.

This means the second condition of transcritical bifurcation is satisfied. Thus, ac-

cording to Sotomayor’s theorem, system (6.1) has transcritical bifurcation at F2 with

the parameter γ2 = γ∗2 .
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Theorem 6.9.4 Suppose that

β2v
[3]
1 6= γ1v

[3]
4 . (6.32)

Then, for the parameter value γ∗1 =
β2ẋ− β0

ẇ
, system (6.1), at the equilibrium point

F3, has transcritical bifurcation.

Proof According to the Jacobian matrix J(F3), given by (6.22), system (6.1), at

the equilibrium point F3, has a zero eigenvalue, say λ33, at γ1 = γ∗1 and this matrix

becomes

J∗(F3) =


r − σ1 − 2rẋ

k
− γ1ẇ σ2 −β1ẋ −α1ẋ

σ1 s− σ2 − 2sẏ
l

0 0

0 0 0 0

α2ẇ 0 γ2ẇ 0


Now, suppose that V [3] =

(
v

[3]
1 , v

[3]
2 , v

[3]
3 , v

[3]
4

)T
is an eigenvector corresponding to the

eigenvalue λ33. Thus,
(
J∗(F3)− λ33I

)
V [3] = 0, which implies:

v
[3]
2 =

σ1lv
[3]
1

2sẏ − (s− σ2)l
,

v
[3]
3 =

−α2v
[3]
1

γ2

,

v
[3]
4 =

([(s− σ2)l − 2sẏ
](

(rk − 2rẋ− σ1k)γ2 + kα2β1ẋ
)
− σ1σ2klγ2

kγ2(2sẏ − (s− σ2)l)

)
v

[3]
1 ,

where, v
[3]
1 is any non-zero real number and

[
2sẏ − (s − σ2)l

]
6= 0. Then, let ψ[3] =(

ψ
[3]
1 , ψ

[3]
2 , ψ

[3]
3 , ψ

[3]
4

)T
be an eigenvector associated with the eigenvalue λ33 of the matrix

(J∗(F3))T . So,
(
(J∗(F3))T − λ33I

)
ψ[3] = 0 and by solving this equation for ψ[3],

ψ
[3]
1 = ψ

[3]
2 = ψ

[3]
4 = 0 is the result, where ψ

[3]
3 is any non-zero real number.

Now, to confirm that the conditions of Sotomayor’s theorem for transcritical bi-

furcation are satisfied, the following is considered:

∂f

∂γ1

= f
′

γ1
(X, γ1) =

(
∂f1

∂γ1

,
∂f2

∂γ1

,
∂f3

∂γ1

,
∂f4

∂γ1

)T
= (0, 0,−zw, 0)T .
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Therefore, f
′
γ1

(F3, γ
∗
1) = (0, 0, 0, 0)T and hence, (ψ[3])Tf

′
γ1(F3, γ

∗
1) = 0. So, accord-

ing to Sotomayor’s theorem, saddle-node bifurcation cannot occur, while the first

condition of transcritical bifurcation is satisfied. Now,

Dfγ1(X, γ1) =


0 0 0 0

0 0 0 0

0 0 −w −z

0 0 0 0


where, Dfγ1(X, γ1) represent the derivative of fγ1(X, γ1) with respect toX = (x, y, z, w)T .

Further, it is observed under condition (6.32) that the following is obtained:

Dfγ1(F3, γ
∗
1)V [3] =


0 0 0 0

0 0 0 0

0 0 −ẇ 0

0 0 0 0




v

[3]
1

v
[3]
2

v
[3]
3

v
[3]
4

 =


0

0

−ẇv[3]
3

0


(ψ[3])T

[
Dfγ1(F3, γ

∗
1)V [3]

]
=

(
0, 0, ψ

[3]
3 , 0

)(
0, 0,−ẇv[3]

3 , 0
)T

= −ẇψ[3]
3 v

[3]
3 6= 0.

Now, by substituting in (6.28) and according to condition (6.32), it is found that

(
ψ[3]
)T [

D2f(F3, γ
∗
1)
(
V [3], V [3]

)]
= 2v

[3]
3

(
β2v

[3]
1 − γ∗1v

[3]
4

)
ψ

[3]
3 6= 0.

This means the second condition of transcritical bifurcation is satisfied. Thus, ac-

cording to Sotomayor’s theorem, system (6.1) has transcritical bifurcation at F3 with

the parameter γ1 = γ∗1 .

Theorem 6.9.5 Suppose that

(
ψ[4]
)T [

D2f(F4, γ
∗
2)
(
V [4], V [4]

)]
6= 0. (6.33)

Then, for the parameter value γ∗2 =
a22M4

a34M2w∗
, system (6.1), at the equilibrium point

F4, has saddle-node bifurcation.
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Proof According to the Jacobian matrix J(F4), given by (6.23), system (6.1), at

the equilibrium point F4, has a zero eigenvalue, say λ44, at γ2 = γ∗2 and this matrix

becomes

J∗(F4) =


r − σ1 − 2rx∗

k
− β1z

∗ − γ1w
∗ σ2 −β1x

∗ −α1x
∗

σ1 s− σ2 − 2sy∗

l
0 0

β2z
∗ 0 0 −γ1z

∗

α2w
∗ 0 γ∗2w

∗ 0


Now, suppose that V [4] =

(
v

[4]
1 , v

[4]
2 , v

[4]
3 , v

[4]
4

)T
is an eigenvector corresponding to the

eigenvalue λ44. Thus,
(
J∗(F4)− λ44I

)
V [4] = 0, which implies

v
[4]
2 =

−σ1lv
[4]
1

(s− σ2)l − 2sy∗
,

v
[4]
3 =

−α2v
[4]
1

γ2

,

v
[4]
4 =

β2v
[4]
1

γ1

,

where, v
[4]
1 is any non-zero real number and (s − σ2)l − 2sy∗ 6= 0. Then, let ψ[4] =(

ψ
[4]
1 , ψ

[4]
2 , ψ

[4]
3 , ψ

[4]
4

)T
be an eigenvector associated with the eigenvalue λ44 of the matrix

(J∗(F4))T . So,
(
(J∗(F4))T − λ44I

)
ψ[4] = 0 and by solving this equation for ψ[4],

ψ
[4]
2 =

−σ2lψ
[4]
1

(s− σ2)l − 2sy∗
,

ψ
[4]
3 =

−α1x
∗ψ

[4]
1

γ1z∗
,

ψ
[4]
4 =

β1x
∗ψ

[4]
1

γ2w∗
,

is obtained, where ψ
[4]
1 is any non-zero real number.

Now, to confirm that the conditions of Sotomayor’s theorem for saddle-node bi-

furcation are satisfied, the following is considered:

∂f

∂γ2

= f
′

γ2
(X, γ2) =

(
∂f1

∂γ2

,
∂f2

∂γ2

,
∂f3

∂γ2

,
∂f4

∂γ2

)T
= (0, 0, zw, 0)T .
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Therefore, f
′
γ2

(F4, γ
∗
2) = (0, 0, z∗w∗, 0)T and hence,

(ψ[4])Tf
′
γ2(F4, γ

∗
2) = z∗w∗ψ

[4]
3 6= 0. So, according to Sotomayor’s theorem, trans-

critical bifurcation cannot occur, while the first condition of saddle-node bifurcation is

satisfied. Further, it is observed under condition (6.33) that the following is obtained:

(
ψ[4]
)T [

D2f(F4, γ
∗
2)
(
V [4], V [4]

)]
= −2v

[4]
1 ψ

[4]
1

(
r
k
v

[4]
1 + β1v

[4]
3 + α1v

[4]
4

)
−
[2s(v

[4]
2 )2ψ

[4]
2

l

]
+2v

[4]
3 ψ

[4]
3

(
β2v

[4]
1 − γ∗1v

[4]
4

)
+ 2v

[4]
4 ψ

[4]
4

(
α2v

[4]
1 + γ∗2v

[4]
3

)
6= 0.

This means the second condition of saddle-node bifurcation is satisfied. Thus, ac-

cording to Sotomayor’s theorem, system (6.1) has saddle-node bifurcation at F4 with

the parameter γ2 = γ∗2 .

6.10 The Hopf bifurcation analysis

In this section, the conditions for the Jacobian matrix that a simple Hopf bifur-

cation for a dynamical system (6.1) occurs, are presented. In the following theorems,

an application of Haque and Venturino methods for Hopf bifurcation is adapted (see

Subsubsection 2.3.10.1).

6.10.1 The Hopf bifurcation analysis near Fi(i = 0, 1, 2, 3)

According to the Jacobian matrices of system (6.1) at Fi, (i = 0, 1, 2, 3), given

by (4.21), (6.14), (6.20) and (6.22), all the eigenvalues of J(Fi), (i = 0, 1, 2, 3) have

negative real parts at the equilibrium point Fi. Therefore, there is no possibility for

Hopf bifurcation to occur at this points.

The possibility of Hopf bifurcation to occur near F4 is discussed in the next the-

orem.
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6.10.2 The Hopf bifurcation analysis near the positive equilibrium point

Theorem 6.10.1 Suppose that the following conditions are satisfied

A3 > 0, (6.34)

∆1 = A1A2 − A3 > 0, (6.35)

∆2 =
(
A1A2 − A3

)
A3 − A4A

2
1 = 0, (6.36)

γ∗2 > 0, (6.37)

where Ai’s are given in the proof of the lemma 18 and the formula of γ∗2 is given in

the following proof. Then, system (6.1) has a Hopf bifurcation at γ2 = γ∗2 for F4.

Proof Consider the characteristic equation of the system (6.1) at F4 which is given

by Eq.(6.24). Now, to verify the necessary and sufficient conditions for a Hopf bi-

furcation to occur, we need to find a parameter sush that ∆2 = 0 is satisfied. It is

observed that ∆2 = 0 gives:

γ∗2 =

(
a22M3 +M4

)(
a11a14a41 + a11a13a31 −M1M2 −M4

)
γ1z∗w∗

(
a11M4 − a2

11

(
a14a41 + a13a31)− a22M1(M2 −M1

)) .
Clearly, γ∗2 > 0 provided that the condition (6.37) holds. Now, at γ2 = γ∗2 the

characteristic equation given by Eq.(6.24) can be written as(
λ2

4 +
A3

A1

)(
λ2

4 + A1λ4 +
∆1

A1

)
= 0, (6.38)

which has four roots

λ41,2 = ±i
√
A3

A1

, λ43,4 =
1

2

 −A1 ±
√
A2

1 − 4
∆1

A1

 .

Clearly, at γ2 = γ∗2 there are two purely imaginary eigenvalues λ41 and λ42 and two

eigenvalues λ43 and λ44 which have negative real parts. Now for all values of γ2 in

the neighborhood of γ∗2 , the roots in general have the following forms:

λ41,2 = α1 ± iα2, λ43,4 =
1

2

 −A1 ±
√
A2

1 − 4
∆1

A1

 .
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Clearly, Re(λ41,2)|γ2=γ∗2
= α1(γ∗2) = 0 that means the first condition of the necessary

and sufficient conditions for Hopf bifurcation is satisfied at γ2 = γ∗2 . Now to verify

the transversality condition we substitute α1± iα2 into Eq.(6.38), and then calculate

its derivative with respect to the bifurcation parameter γ∗2 ,
−
Θ (γ∗2)

−
Ψ (γ∗2)+

−
Γ (γ∗2)

−
Φ

(γ∗2) 6= 0, where the form of
−
Θ,

−
Ψ,
−
Γ and

−
Φ are given in Subsubsection 2.3.10.1. Note

that for γ2 = γ∗2 , we have α1 = 0 and α2 =
√

A3

A1
, substitution into gives the following

simplifications:

−
Ψ (γ∗2) = −2A3(γ∗2);

−
Φ (γ∗2) =

2α2(γ∗2)

A1(γ∗2)

 A1(γ∗2)A2(γ∗2)− 2A3(γ∗2)

;

−
Θ (γ∗2) = A

′

4(γ∗2)−
 A3(γ∗2)A

′
2(γ∗2)

A1(γ∗2)

;

−
Γ (γ∗2) = α2(γ∗2)A

′

3(γ∗2),

where,

A
′

1(γ∗2) = 0;

A
′

2(γ∗2) = γ1z
∗w∗;

A
′

3(γ∗2) =

 a34M1 − a14a31

 w∗;

A
′

4(γ∗2) =

 a22a14a31 − a34M2

 w∗.

Hence,

−
Θ (γ∗2)

−
Ψ (γ∗2)+

−
Γ (γ∗2)

−
Φ (γ∗2) =

 (a22a14a31 − a34M2 +
a34A3(γ∗2 )

A1(γ∗2 )

)(
− 2A3(γ∗2)w∗

) 
+

 2α2
2(γ∗2 )w∗

A1(γ∗2 )

 (a34M1 − a14a31

)(
A1(γ∗2)A2(γ∗2)− 2A3(γ∗2)

)
6= 0.

This means that Hopf bifurcation has occurred.

6.11 Numerical analysis

The main goal of this section is to find the key parameters of the system (6.1)

that affects the behaviour of the proposed model by using numerical simulations.
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The dynamics of the system (6.1) is presented by solving the system numerically and

then drawing the time series of the solutions of the system (6.1) for different sets of

parameters.

Now, for the following set of parameters:

r = 2, k = 50, σ1 = 0.4, σ2 = 0.7, β1 = 0.5, β2 = 0.3, β0 = 0.01,

s = 1.4, l = 40, α = 0.25, γ1 = 0.05, γ2 = 0.01, α1 = 0.1, α2 = 0.05,
(6.39)

the conditions that have been stated in lemma 18 are satisfied. This shows that the

positive equilibrium point F4 exists, and it is given by:

(x∗, y∗, z∗, w∗) = (2.15, 21.16, 14.21, 12.74).
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Fig. 6.1. Convergence of the solution of the system (6.1) to the posi-
tive equilibrium point with the data given by Eq.(6.39).

Figure 6.1, indicates that the solution of the system (6.1) oscillates for some small

period and then, in the long-time limit, it asymptotically approaches the positive

equilibrium point.

Now, to investigate the effect of the varying parameter values on the behaviour

of the system (6.1), the model has been solved numerically for the data given in

Eq.(6.39), varying one parameter each time, as:
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6.11.1 The effect of varying the migration rate of the prey to the reserved

area

Figure 6.2 shows the effect of migration to the reserved area, which is described

by the parameter σ1, on the behaviour of the system (6.1) with time. It is observed

that for different values of σ1, the solution initially oscillates for a small period and

then, asymptotically approaches its equilibrium level in the interior of IR4
+. As the

result of rising migration rate to the protected area, it can be seen that the density

of the prey in the reserved zone increases. On the other hand, the populations of

the generalist predator and the prey in the unreserved area decrease, while the third

component has slightly increased.
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Fig. 6.2. Convergence of the solution of the system (6.1) for the
data given by Eq.(6.39) with (a) σ1 = 1 to the stable point
(2.08,22.62,14.58,12.29) in the interior of IR4

+, (b) σ1 = 0.001 to the
stable point (2.17,20,14.11,12.86) in the interior of IR4

+.
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6.11.2 The effect of varying the natural death rate of the specialist preda-

tor

Now the same analysis is used for different values of the specialist predator’s nat-

ural mortality, which is described by the parameter β0, and the rest of the parameter

values are kept the same as in Eq.(6.39). Figure 6.3 shows that for various values of

β0, the solution initially oscillates for a while and then it settles down to its equilib-

rium level. Furthermore, the specialist predator species z remains strictly positive for

β0 ≤ 0.160, while it becomes zero for β0 = 0.161. Hence, the system (6.1) loses its

persistence, and the chain is broken. Due to the increase of the specialist predator’s

natural death-rate, the densities of the prey in the unreserved area and the generalist

predator increase significantly. This means an abundance of the prey in an unpro-

tected area and hence, the food conversion rate of the prey to the generalist predator

increases (and vice versa). On the other hand, the prey in the private zone is slightly

affected.
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Fig. 6.3. Convergence of the solution of the system (6.1) for the data
given by Eq.(6.39) with (a) β0 = 0.001 to the stable point (2.14, 21.55,
14.28, 12.83) in the interior of IR4

+, (b) β0 = 0.0001 to the stable point
(2.14, 21.15, 14.29, 12.84) in the interior of IR4

+, (c) β0 = 0.16 to the
stable point (2.7, 21.44, 11.47, 13) in the interior of IR4

+, (d) β0 = 0.161
to the stable point (5, 22.53, 0, 45.54) in the interior of IR3

+.
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6.11.3 The effect of varying the natural death rate of the generalist preda-

tor

The effect of varying α, which represents the top predator’s natural death-rate,

on the behaviour of the system (6.1), is also studied. From Figure 6.4, the following

results can be observed. For various values of α, the solution starts to oscillate for

a particular time and then, attains the equilibrium level. Furthermore, the specialist

predator species z remains strictly positive for α ≥ 0.25, while it becomes zero for

α = 0.24. Hence, the system (6.1) loses its persistence, and the chain is broken. Due

to the decrease of the generalist predator’s natural death-rate, the densities of the prey

in the reserved, unreserved area and the generalist predator increases significantly.

This means an abundance of the prey in an unprotected area and hence, the food

conversion rate of the prey to the generalist predator increases (and vice versa).

Furthermore, the migration rate to the reserved zone is also affected, which also

showes an abundance of prey in the protected area.
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Fig. 6.4. Convergence of the solution of the system (6.1) for the data
given by Eq.(6.39) with (a) α = 1 to the stable point (0.29, 20.16,
98.52, 1.57) in the interior of IR4

+, (b) α = 0.24 to the stable point
(4.8, 22.44, 0, 56.81) in the interior of IR3

+.
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6.11.4 The effect of varying the attack rate of the generalist predator on

the specialist predator

Figure 6.5 illustrates the effect of the generalist predator’s attack rate on the

specialist predator, which is described by the parameter γ1, in terms of the behaviour

of the system (6.1) versus time. It can be noticed that for various values of γ1, the

solution initially oscillates, and after a specific time it attains its equilibrium level.

Also, the specialist predator species z remains strictly positive for γ1 ≤ 0.061, while

it becomes zero for γ1 = 0.062. Hence, the system (6.1) loses its persistence, and

the chain is broken. On the other hand, the system (6.1) persists when decreasing

γ1. Further, the density of the generalist predator rapidly increases, which means

that the food conversion rate to the latter increases. Hence, the system (6.1) loses its

persistence and the chain is broken.
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Fig. 6.5. Convergence of the solution of the system (6.1) for the data
given by Eq.(6.39) with (a) γ1 = 0.061 to the stable point (2.54, 21.36,
12.25, 12.37) in the interior of IR4

+, (b) γ1 = 0.062 to the stable point
(5, 22.53, 0, 45.54) in the interior of IR3

+, (c) γ1 = 0.001 to the stable
point (0.56, 20.31, 22.19, 158.29) in the interior of IR4

+, (d) γ1 = 0.0001
to the stable point (0.23, 20.1, 23.78, 530.24) in the interior of IR4

+.
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6.11.5 The effect of varying the conversion rate of the specialist predator

to the generalist predator

Now, Figure 6.6 studies the impact of the conversion rate of the specialist predator

to the generalist predator γ2, on the behaviour of the species with t. When varying

γ2 and keeping the other parameters in Eq.(6.39) fixed, it can be observed that the

solution of system (6.1) converges to the equilibrium point after oscillating for a

certain amount of time. Further, the w-component of the equilibrium point is strictly

positive for γ2 ≥ 0.0099, but it becomes zero for γ2 = 0.00010. On the other hand,

the z-component of the equilibrium point is strictly positive for γ2 ≤ 0.01, but it

becomes zero for γ2 = 0.011. Hence, the system (6.1) loses its persistence and the

chain is broken.
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Fig. 6.6. Convergence of the solution of the system (6.1) for the data
given by Eq.(6.39) with (a) γ2 = 0.1 to the stable point (2.15, 21.16,
14.21, 12.74) in the interior of IR4

+ , (b) γ2 = 0.011 to the stable point
(5, 22.53, 0, 45.54) in the interior of IR3

+, (c) γ2 = 0.0099 to the stable
point (2.09, 21.13, 14.65, 12.39) in the interior of IR4

+. (d) γ2 = 0.0001
to the stable point (0.03, 20.02, 825.28, 0) in the interior of IR3

+.
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6.11.6 The effect of varying the unreserved area rate on the species

Similarly, for different values of σ2, which represent the impact of the unreserved

area on the behaviour of the species. When varying σ2 and keeping the other param-

eters in (6.39) fixed, the solution of system (6.1) initially fluctuates for some time,

and then, it converges to the equilibrium level. Furthermore, the generalist predator

species w remains strictly positive for σ2 ≥ 0.09, while it becomes zero for σ2 = 0.08.

Hence, the system (6.1) loses its persistence, and the chain is broken (see Figure 6.7).

Also, when decreasing σ2, the density of the prey in unreserved zone decreases, this

negatively impacts on the density of the generalist predator. On the other hand, the

decrease of σ2 has positive impact on the density of the prey in the reserved area.
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Fig. 6.7. Convergence of the solution of the system (6.1) for the data
given by Eq.(6.39) with (a) σ2 = 0.09 to the stable point (0.36, 37.25,
23.17, 1.9) in the interior of IR4

+, (b) σ2 = 0.08 to the stable point
(0.03, 39.72, 26.59, 0) in the interior of IR3

+, (c) σ2 = 1 to the stable
point (1.6, 12.89, 16.74, 9.7) in the interior of IR4

+.
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6.11.7 The effect of varying the attack rate of the specialist predator on

the prey in the unreserve zone

Figure 6.8 shows the behaviour of the solution of system (6.1) with different β1,

which represent the attack rate of the specialist predator on the prey in the unreserve

zone. For varying β1, the solution of system (6.1) converges to the equilibrium level

after oscillating for a certain amount of time. In this case, the z-component of the

equilibrium point is strictly positive for β1 ≥ 0.48 and hence, system (6.1) persists.

While, it becomes zero for β1 = 0.47, hence, the system (6.1) loses its persistence and

the chain is broken. On the other hand, the decrease of β1 has positive impact on the

densities of the prey in the unreserved area and the generalist predator.
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Fig. 6.8. Convergence of the solution of the system (6.1) for the data
given by Eq.(6.39) with (a) β1 = 0.48 to the stable point (2.48, 21.33,
12.55, 14.73) in the interior of IR4

+, (b) β1 = 0.47 to the stable point
(5, 22.53, 0, 45.54) in the interior of IR3

+, (c) β1 = 1 to the stable
point (0.7, 20.39, 21.48, 4.01) in the interior of IR4

+.
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6.11.8 The effect of varying the conversion rate of the prey in unreserve

area to the specialist predator

Now, Figure 6.9 studies the impact of the conversion rate of the prey in unreserve

area to the specialist predator β2, on the behaviour of the species with t. When

varying β2 and keeping the other parameters in Eq.(6.39) fixed, it is observed that

the solution initially oscillates for a small period and then, asymptotically approaches

its equilibrium level. It can be observed that the solution of system (6.1) converges to

the equilibrium level after oscillating for a certain amount of time. In this case, the

z-component of the equilibrium point is strictly positive for β2 ≥ 0.25, and hence the

system (6.1) persists. On the other hand, it becomes zero for β2 = 0.24, therefore,

the system (6.1) loses its persistence and the chain is broken. On the other hand, the

decrease of β2 has positive impact on the densities of the prey in the reserved and

unreserved area as well as the generalist predator.
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Fig. 6.9. Convergence of the solution of the system (6.1) for the data
given by Eq.(6.39) with (a) β2 = 0.25 to the stable point (2.48, 21.33,
12.58, 12.21) in the interior of IR4

+, (b) β2 = 0.24 to the stable point
(5, 22.53, 0, 45.54) in the interior of IR3

+, (c) β2 = 1 to the stable
point (1.42, 20.78, 17.88, 28.25) in the interior of IR4

+.
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6.11.9 The effect of varying the attack rate of the generalist predator on

the specialist predator

Figure 6.10 shows the behaviour of the solution of system (6.1) with different α1,

which represent the attack rate of the generalist predator on the specialist predator.

For varying α1, the solution of system (6.1) converges to the equilibrium level after

oscillating for a certain amount of time. In this case, the z-component of the equilib-

rium point is strictly positive for α1 ≥ 0.01 and hence, system (6.1) persists. While,

it becomes zero for α1 = 0.09, hence, the system (6.1) loses its persistence and the

chain is broken. On the other hand, the decrease of α1 has positive impact on the

densities of the prey in the reserved and unreserved area as well as the generalist

predator.
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Fig. 6.10. Convergence of the solution of the system (6.1) for the data
given by Eq.(6.39) with (a) α1 = 1 to the stable point (1, 20.56, 19.95,
5.85) in the interior of IR4

+, (b) α1 = 0.09 to the stable point (5.61,
23.51, 0, 439.86) in the interior of IR3

+.
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6.11.10 The effect of varying the conversion rate of the prey in unreserve

area to the generalist predator

Now, Figure 6.11 studies the impact of the conversion rate of the prey in unreserve

area to the generalist predator α2, on the behaviour of the species with t. When

varying α2 and keeping the other parameters in Eq.(6.39) fixed, it can be observed

that the solution of system (6.1) converges to the equilibrium level after oscillating

for a certain amount of time. In this case, the z-component of the equilibrium point is

strictly positive for α2 ≤ 0.05, and hence the system (6.1) persists. While, it becomes

zero for α2 = 0.06, therefore, the system (6.1) loses its persistence and the chain is

broken. On the other hand, the decreasing of α2 has negatinv impact on the densities

of the prey in the unreserved area and the generalist predator.
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Fig. 6.11. Convergence of the solution of the system (6.1) for the data
given by Eq.(6.39) with (a) α2 = 0.06 to the stable point (4.16, 22.14,
0, 51.54) in the interior of IR3

+, (b) α2 = 0.0001 to the stable point
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6.12 Conclusion

An ecological model, which describes the effect of the reserved zone on the dy-

namical behaviour of a food web prey-predator model with a Lotka-Volterra type

of functional response, has been proposed and studied. The boundedness of system

(6.1) has been shown, and the possible dynamical behaviour of this system has been

investigated analytically at the equilibrium points. The persistence conditions of the

proposed system have been derived. It has been proven that the solutions of system

(6.1) possess transcritical bifurcation. To confirm the analytical results, system (6.1)

has been solved numerically, and the effects of various parameters on the dynamical

behaviour of the proposed system have been performed, with the following results

being obtained.

1. The persistence of the generalist predator w hinges solely on the parameters

σ2 and γ2. In particular, if σ2 = 0.08, then this species decreases over time,

eventually dying out, and the solution of system (6.1) is attained asymptotically

to the equilibrium point in IR3
+, while this species survives when σ2 ≥ 0.09.

2. The existence of the specialist predator z relies solely on the parameters β1, β2,

β0, α1, α2, α, γ1 and γ2. In particular, if β0 ≤ 0.016 This species decreases over

time until it faces extinction, and this causes the chain to break. Hence, the

solution of system (6.1) settles down asymptotically to the equilibrium point in

IR3
+. Further, this species survives when β0 = 0.061.

3. Both the prey species x in the unreserved zone and the prey species y in the

reserved area are persistent under all conditions.

4. It is observed that the dynamic behaviour of system (6.1) does not change if

the σ1 is varied.

Overall, the dynamical behaviour of the system with the reserved zone, as shown in

this chapter, is found to be sensitive to parameter values and initial data.
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Chapter 7: Conclusions and future

works

7.1 Summary of the thesis and conclusions

In ecological systems, the coexistence of all species is a vital issue for the manage-

ment of existing resources and the prediction of the long-term survival of each species.

In prey-predator systems, it is well known that the solutions have a periodic dynamics

as many publications show in the literature. On the other hand, although the food

chain has a simple structure compared with the food web, it has complex dynamics.

In order to control the prey population level, three ecological models are proposed

and analysed within this thesis. The first model is a food chain predator-prey model

with prey refuge in the case when the predator entirely depends on the prey in the

protected area, while in the second model, the predator partially depends on the prey.

Finally, the third model discusses the food web predator-prey interaction with prey

refuge. These models have established that conditions for which the reserved zone

can stabilise the predator-prey systems. By using a variety of analytical methods and

tools for ordinary differential equations, the following results have been shown:

1. The uniqueness and boundedness of the proposed systems have been shown.

2. The existence and the dynamics around the different equilibrium points have

been studied in detail.
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3. The long-term behaviour of the systems has been studied, and conditions for

persistence have been derived.

4. The possible local bifurcations around the equilibrium points have been studied

in detail. In particular, it has been proven that the solutions of the proposed

systems possess transcritical bifurcation.

The systems have been solved numerically in MATLAB R©, and the effects of vari-

ous parameters on the dynamical behaviour of the proposed systems have been per-

formed. The models show rich dynamics in the space of non-negative solutions and

the following results were obtained.

• In model (4.1), when the predator entirely depends on the first component

in the chain, the prey species in the unreserved zone and the prey species in

the reserved area are persistent under all conditions. The existence of the

top predator hinges solely on the parameters β2, σ2 and γ2. Moreover, the

persistence of the predator relies solely on the conversion rate β2 of the prey

in the unreserved zone to the third component in the chain. Furthermore, the

positive equilibrium point, whenever it exists, is always globally asymptotically

stable. This behaviour shows that the role of the reserved zone has a positive

impact on stabilising the dynamics of the food chain predator-prey system.

• In model (5.1), when the predator partially depends on the first component

in the chain, the prey species in the unreserved zone, the prey species in the

reserved area, the predator and the top predator are persistent under all condi-

tions. This means that an alternative resource for the third component leads to

the persistence of all species in the proposed system. Furthermore, the positive

equilibrium point, whenever it exists, is always globally asymptotically stable

which implies that the influences of the reserved zone can be beneficial for the

species’ survival.

• In the last model (6.1), when there is a direct connection between the first

component in the chain and the third one, the prey species in the unreserved
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zone and the prey species in the reserved area are persistent under all conditions.

The dynamical behaviour is found to be very sensitive to parameter values and

initial data, in particular, the existence of the specialist and generalist predators.

This shows that the multi-connection between the species can lead to the loss

of persistence for some components.

7.2 Suggestions and recommendations for future work

In the next project, the proposed models (4.1), (5.1) and (6.1) can be further ex-

tended to investigate the effect of the combination of two different types of functional

response on the dynamic behaviour of the food chain and food web prey-predator

models with the reserved area. In this case, the new mathematical models can be

described as follows:

• In this model, it is assumed that there is a standard Lotka-Volterra functional re-

sponse between the predator and top predator, and a Holling type-II functional

response between the prey in the unreserved zone and the third component in

the chain as

dx

dt
= rx

(
1− x

k

)
− σ1x+ σ2y −

( β1xz

α0 + x

)
,

dy

dt
= sy

(
1− y

l

)
+ σ1x− σ2y,

dz

dt
=
( β2xz

α0 + x

)
− β0z − γ1zw,

dw

dt
= γ2zw − α.

Here, α0 represents the half saturation level coefficient and the other parameters

are the same as in model (4.1).
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• The same combination of functional responses are used for the second model.

In this case, model (5.1) can be re-writen as

dx

dt
= rx

(
1− x

k

)
− σ1x+ σ2y −

( β1xz

α0 + x

)
,

dy

dt
= sy

(
1− y

l

)
+ σ1x− σ2y,

dz

dt
= az

(
1− z

m

)
+
( β2xz

α0 + x

)
− β0z − γ1zw,

dw

dt
= γ2zw − α.

• In this model, It is assumed that there is a standard Lotka-Volterra functional

response between the specialist predator and generalist predator, also between

the prey ,in the unreserved zone and a generalist predator. On the other hand,

a Holling type-II functional response is assumed between the prey in the un-

reserved zone and the third component in the web. In this case, (6.1) can be

re-writen as

dx

dt
= rx

(
1− x

k

)
− σ1x+ σ2y −

( β1xz

α0 + x

)
− α1xw,

dy

dt
= sy

(
1− y

l

)
+ σ1x− σ2y,

dz

dt
=
( β2xz

α0 + x

)
− β0z − γ1zw,

dw

dt
= α2xw + γ2zw − α.

Then we can compare the new results with the once we have drived in this thesis.
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