
The E�ect of Noise on So�ware Engineers’ Performance
Simone Romano

University of Basilicata
Potenza, Italy

simone.romano@unibas.it

Giuseppe Scanniello
University of Basilicata

Potenza, Italy
giuseppe.scanniello@unibas.it

Davide Fucci
University of Hamburg

Hamburg, Germany
fucci@informatik.uni-hamburg.de

Natalia Juristo
Universidad Politecnica de Madrid

Madrid, Spain
natalia@�.upm.es

Burak Turhan
Brunel University London

London, UK
burak.turhan@brunel.ac.uk

ABSTRACT
Background: Noise, de�ned as an unwanted sound, is one of the
commonest factors that could a�ect people’s performance in their
daily work activities. �e so�ware engineering research commu-
nity has marginally investigated the e�ects of noise on so�ware
engineers’ performance.
Aims: We studied if noise a�ects so�ware engineers’ performance
in: (i) comprehending functional requirements and (ii) �xing faults
in source code.
Method: We conducted two experiments with �nal-year undergrad-
uate students in Computer Science. In the �rst experiment, we
asked 55 students to comprehend functional requirements exposing
them or not to noise, while in the second experiment 42 students
were asked to �x faults in Java code.
Results: �e participants in the second experiment, when exposed
to noise, had signi�cantly worse performance in �xing faults in
source code. On the other hand, we did not observe any statistically
signi�cant di�erence in the �rst experiment.
Conclusions: Fixing faults in source code seems to be more vulnera-
ble to noise than comprehending functional requirements.

CCS CONCEPTS
•So�ware and its engineering→ So�ware creation andman-
agement;

KEYWORDS
Noise, controlled experiment, functional requirement, bug �xing
ACM Reference format:
Simone Romano, Giuseppe Scanniello, Davide Fucci, Natalia Juristo, and Bu-
rak Turhan. 2018. �e E�ect of Noise on So�ware Engineers’ Performance.
In Proceedings of ACM Conference, Washington, DC, USA, July 2017 (Confer-
ence’17), 10 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Peopleware refers to one of the three aspects of computer tech-
nology (hardware and so�ware are the other two). It concerns
anything that has to do with the role of people in so�ware develop-
ment [10]. Peopleware might cover issues related to productivity,
organizational factors, workspaces, and so on [2].

Conference’17, Washington, DC, USA
2018. 978-x-xxxx-xxxx-x/YY/MM. . . $00.00
DOI: 10.1145/nnnnnnn.nnnnnnn

Nowadays, workspaces tend to have less privacy, with less dedi-
cated space, which leads to noisy environment. �e reason for this
trend is the cost. A “penny” saved on the workspace is a “penny”
earned on the bo�om line, or so the logic goes [14]. �e savings
of a cost-reduced workplace are a�ractive, but they need to be
compared to the risk of performance reduction in daily working
activities/tasks. So�ware companies that provide a noisy workplace
are comforted by the belief that this factor does not ma�er [14],
but noise exerts its speci�c in�uences on various forms of cogni-
tive responses [38]. A�er all, so�ware engineers are knowledge
workers—they need to have their brain in gear to do their work—and
thus their performance would be sensitive to a noisy workplace.

In this paper, we present the results of two controlled experi-
ments, whose overarching goal was to assess if noise in�uences
so�ware engineers’ performance. In the �rst experiment, we asked
55 �nal-year undergraduate students in Computer Science to com-
prehend functional requirements in normal conditions or exposing
them to noise. �e results indicated the absence of a statistically
signi�cant di�erence in the comprehension of functional require-
ments. Bearing in mind that noise could exert its in�uences on
people’s performance and these in�uences could be related to the
task [6, 19, 38], we asked the students in the �rst experiment to
take part in a second one (42 agreed to take part in), where we
varied the kind of so�ware engineering task. �at is, participants
were asked to �x faults in Java source code. �e participants in the
second experiment had signi�cantly worse performances in �xing
faults in source code when exposed to noise.

�e main contribution of our paper is to show the outcomes of
the �rst empirical investigation on the e�ect of noise in the compre-
hension of functional requirements and in the �xing of faults in Java
code. �e results suggest that there are more resource-demanding
tasks and noise seems to negatively impact the performances of
so�ware engineers when dealing with this kind of tasks.

Paper Structure. In Section 2, we present related work and
background. We show the design of our investigation in Section 3,
while the obtained results are highlighted and discussed in Section 4
and Section 5, respectively. Final remarks conclude the paper.

2 RELATEDWORK AND BACKGROUND
In this section, we �rst review the literature related to our study, and
then we summarize the reference theories concerning the e�ects
of noise on individuals’ performance.

ar
X

iv
:1

80
7.

04
10

0v
1

 [
cs

.S
E

]
 1

1
Ju

l 2
01

8

Conference’17, July 2017, Washington, DC, USA S. Romano, G. Scanniello, D. Fucci, N. Juristo, and B. Turhan

2.1 Related Work
�e study of developers’ experience—the considerations that so�-
ware developers have towards their professional activities—focuses
on personal characteristics, such as feelings [18], motivations [15],
and work�ow [24], while neglecting the physical environment in
which they operate. Nevertheless, a be�er developers’ experience is
thought to improve not only the job quality of so�ware developers
but also their productivity.

�ere have been a series of studies trying to understand how
a particular mental state of so�ware developers impacts their ac-
tivities. Flow is a state of high concentration that results in an
absolute assimilation in the activity at hand (e.g., so�ware devel-
opment) [11]. Disturbance from the surrounding environment in
which the activity is taking place (e.g., due to noise) can disrupt a
state of �ow causing work fragmentation and negative impact on
productivity [27]. Alongside, Meyer et al. [28] found that develop-
ers feel productive when they do not need to switch between tasks
and are not interrupted.

Researchers have long recognized the detrimental e�ects of dis-
turbance in the developers’ workplace; subsequently the so�ware
engineering and HCI (Human Computer Interaction) communities
have proposed di�erent solutions to the problems related to devel-
opers’ interruptibility. Gievska et al. [17] devised an interruptibility
model to mediate human interruptions by a computer. In a study
involving 24 knowledge workers (but not so�ware developers),
they showed, through the application of their model, that reducing
interruptions can increase the perceived quality of work while de-
creasing frustration. For the speci�c case of so�ware developers,
Iqbal and Bailey [20] proposed a system that would postpone pos-
sible causes of disturbance to a more apt time based on cognitive
theory. In a study with six professionals, they showed that their
approach reduces frustrations while yielding to faster reaction time.
More recently, Züger et al. [43] developed a physical device that
would signal to the surrounding environment (e.g., co-workers) the
best moment to disturb (or not) a developer based on her computer
interaction data. �ey carried out a �eld study with 449 partici-
pants (i.e., knowledge workers, 119 of which working in so�ware
engineering-related activities), showing increased awareness about
the disrupting e�ects of such kind of disturbance.

�e studies above show that so�ware developers’ interruptibility
is a topic worth investigating. However, there is only one study
that focuses to some extent to noise as a source of interference with
so�ware developers’ work. DeMarco and Lister related noise and
other environmental factors (e.g., space) to so�ware developers’
performance [13]. In particular, in a study with 166 professionals
working on a benchmarking task, they showed that a quiet and
commodious workplace could improve productivity (e.g., time to
complete the task) by a factor of 2.6. �ere are a number of dif-
ferences between the study by DeMarco and Lister and that we
present in this paper. �e main di�erences can be summarized as
follows: we conducted two studies in controlled conditions (e.g.,
noise was measured in our case, while in the study by DeMarco
and Lister participants provided their perception on the noise level
in their workplace) on two kinds of so�ware engineering tasks
(SE task/s from here onwards) and we quantitatively assessed the
e�ect of noise on performances (i.e., achieved comprehension of

functional requirements and capability to �x faults in source code).
An additional di�erence is related to the programming language of
the used experimental object (COBOL vs Java).

2.2 Background
We highlight the reference theories de�ned to explain and predict
noise e�ects on individuals’ performance.

2.2.1 Arousal Theory. To explain noise e�ects, Broadbent [6] in-
voked an arousal induced a�entional narrowing mechanism in the
individuals. In Broadbent’s theory, noise increases arousal of an in-
dividual, which decreases his/her breadth of a�ention. At relatively
lower levels of arousal, individuals exclude task-irrelevant cues, and
thus the a�entional narrowing facilitates performance. However,
beyond a certain arousal “optimal” level, individuals’ performance
is impaired because increases in arousal might cause increased nar-
rowing so that task-relevant cues are excluded. Arousal theory [6]
predicts that more demanding tasks should have lower levels of
optimum arousal, and thus these tasks should yield the greatest
performance decrements in the presence of noise. Hence, cognitive
tasks should su�er greater magnitudes of performance impairment
with respect to less demanding tasks (e.g., psychomotor ones). �e
intensity of noise and duration of noise exposure in�uence the
arousal levels; i.e., higher intensities and longer durations should
cause greater negative e�ects on performance. Concerning noise
schedule, intermi�ent noise should impair performance more than
continuous one. In summary, in the Broadbent’s theory noise e�ects
should vary according to the kind of task and the noise intensity,
duration, and schedule.

2.2.2 Composite Theory. Poulton’s [30] theory predicts that
noise e�ects should degrade individuals’ performance only for
those conditions in which inner speech1 is masked. �e gains in
individuals’ performance in continuous noise early in the task occur
because the increase in arousal compensates for the detrimental ef-
fects of masking. However, with time on task, arousal decreases and
thus masking e�ects dominate. �e way in which arousal a�ects
performances is di�erent between composite and arousal theories.
Noise intensity could also a�ect performance. In summary, noise
e�ects should be similar across task and noise kind, but moderating
e�ects are expected for intensity, duration, and schedule.

2.2.3 Maximal Adaptability Theory. In the maximal adaptability
model [19], stress (noise is a source of stress) can be accounted
for in three loci. Input represents all objective environmental and
task factors that a�ect performance (e.g., noise), adaptation con-
cerns the capacity of the individual to cope with demands intrinsic
to an environment (e.g., physiological coping responses), and out-
put refers to the individual’s response about the task environment.
�e output of a task depends on the characteristics of individu-
als, and it might be directly a�ected by noise. As for adaptation,
noise can impair the capacity through the masking or distortion
of task-relevant auditory information. According to the maximal
adaptability theory, individuals can adapt to a quite broad range of

1Also referred to as verbal thinking, inner speaking, covert self-talk, internal mono-
logue, and internal dialog. Inner speech is thinking in words and also refers to the
semi-constant internal monologue some individuals have with themselves at either
conscious or semi-conscious level [29].

The E�ect of Noise on So�ware Engineers’ Performance Conference’17, July 2017, Washington, DC, USA

Table 1: Summary of the experiments.
Characteristic Exp1 Exp2
Schedule 11:30 on 2016/12/12 11:30 on 2017/31/1
Kind of SE task Comprehension of functional requirements Fault �xing in source code
SE task duration 30 minutes 60 minutes
Experimental objects M-Shop and �eater LaTazza and AveCalc
Participants 55 Undergraduate students in Computer Science 42 Undergraduate students in Computer Science
Group1/Group2 size 28/27 21/21
Experiment design AB/BA crossover design AB/BA crossover design
Investigated RQ RQ1 RQ2

stress magnitudes. However, there is a threshold of dynamic insta-
bility in which adaptation fails, and thus performance decreases.
�e maximal adaptability theory predicts that performance on more
resource-demanding cognitive tasks, in case of noise, should be
more impaired than performance on motor or perceptual tasks. For
higher noise intensities and longer noise durations, there should be
a greater performance impairment. Concerning the kind of noise,
speech noise should be more disruptive than non-speech, especially
in cognitive tasks. Also, noise schedule could a�ect performance.
In summary, the maximal adaptability theory predicts that noise ef-
fects should vary as a function of task and noise kind, and schedule,
duration, and intensity.

2.2.4 Empirical Evidences from Noise E�ects on Performance.
Arousal, composite, and maximal adaptability theories predict simi-
lar results on noise e�ects for certain variables (e.g., noise intensity,
duration, and schedule), but di�erent results for others (e.g., kind of
task and noise). Szalma and Hancock [38] have recently conducted
a meta-analysis on noise e�ects on individuals’ performances. Re-
sults con�rm only in part the predictions of the three reference
theories, and in some cases are inconsistent with such predictions.
�at is, the meta-analytic results con�rm that noise e�ects varied
as a function of the kind of noise and task, and noise intensity, du-
ration, and schedule. However, Szalma and Hancock reported that
shorter durations have greater detrimental e�ects on performance
than longer durations.

3 STUDY DESIGN
In Table 1, we summarize the main characteristics of our study,
which comprises two controlled experiments. We refer to these
experiments as Exp1 and Exp2 (see the second and third columns
of Table 1), respectively. Exp1 was conducted on 2016/12/12, while
Exp2 on 2017/31/1. In both experiments, we investigated whether
noise a�ects performance when carrying out some SE tasks. �e
participants in Exp1 had to comprehend functional requirements
of two so�ware systems (i.e., M-Shop and �eater as shown in the
fourth row of Table 1) exposing them or not to noise. Similarly,
the participants in Exp2 had to �x faults in two Java programs (i.e.,
LaTazza and AveCalc as shown in Table 1).

To perform our study, we followed the guidelines by Juristo and
Moreno [22], and Wohlin et al. [42]. We present the design of our
study according to Jedlitschka et al.’s guidelines [21].

3.1 Goals
�e goal of our study, according to the Goal �estion Metrics
(GQM) template [4], is:

Analyze noise for the purpose of evaluating its e�ect with re-
spect to the performances in comprehending functional require-
ments and in �xing faults in Java source code from the point of
view of the researcher in the context of �nal-year undergraduate
students in Computer Science.
�erefore, we investigated the following research questions:
RQ1 Does noise worsen so�ware engineers’ performance in com-

prehending functional requirements?
RQ2 Does noise worsen so�ware engineers’ performance in �xing

faults in source code?

3.2 Experimental Units
�e participants in our experiments were �nal-year undergraduate
students in Computer Science at the University of Basilicata. �ey
had programming experience in Java and basic knowledge of so�-
ware design, development, and testing. �e participants a�ended
the So�ware Engineering (SE) course in which we conducted both
experiments as optional laboratory exercises. �is course taught
advanced elements concerning: so�ware development processes,
requirements speci�cation, so�ware design, maintenance, and test-
ing. During the SE course, the participants carried out homework
and classwork on requirements speci�cation and bug �xing to in-
crease their technical maturity on the topics covered in the course.

To encourage the participation in our study, we rewarded the
students who took part in Exp1 with a bonus, i.e., one point on their
�nal mark in the SE course. Not all the participants in Exp1 took part
in Exp2; a subset of the participants in the �rst experiment took part
in the second one too. Students who took part in both experiments
received two points of bonus. We communicated to the participants
that their performance in the experiments would not a�ect their
grade, and that the collected data would be shared anonymously
and used for research purposes only. �e participation in both
experiments was on voluntary basis (i.e., in no case we obliged
students to participate in the experiments).

3.3 Experimental Material
As for Exp1, the chosen experimental objects where:
• M-Shop—A system for managing the sales in a music shop.
• �eater—A system for managing the reservation of tickets in

a theater.
For each of these systems, one functional requirement with the
corresponding models (i.e., functional model, analysis object model,
and dynamic model) was selected from its requirements analysis
speci�cation.2 In particular, the selected functional requirement for
2�e use of incomplete documentation and of a subset of the entire so�ware system on
which a maintenance operation impacts is quite common in the so�ware industry [7].

Conference’17, July 2017, Washington, DC, USA S. Romano, G. Scanniello, D. Fucci, N. Juristo, and B. Turhan

M-Shop was “Search Album by Singer,” while for �eater was “Buy
�eater Ticket.” We chose these systems, and we selected these func-
tional requirements because they were previously used in a family
of controlled experiments to assess whether the comprehension of
functional requirements was in�uenced by the use of dynamic mod-
els (represented through UML sequence diagrams) [1]. �e authors,
who conducted this family of experiments, administered the partic-
ipants in the control group with the functional model and analysis
object model associated with the selected functional requirement.
�e participants in the treatment group were administered with
the same models as the control group plus the dynamic models
(i.e., UML sequence diagrams). To evaluate the comprehension of
functional requirements, the authors asked the participants to �ll
out comprehension questionnaires. Assessing comprehension of
so�ware artifacts (e.g., models or source code) through question-
naires is common in SE experiments (e.g., [23, 33]). We exploited in
Exp1 the experimental material, i.e., models and questionnaires, the
authors [1] made available on the web and they administered to the
participants in the treatment group. �is design choice should not
a�ect the results because the participants who accomplished the
task in noise conditions were provided with the same material as
the participants who accomplished the task in normal conditions.

As for Exp2, we chose the following experimental objects:
LaTazza—A Java desktop application for managing the sale and
the supply of small-bags of beverages (co�ee, arabica co�ee, tea)
for a co�ee maker. Its source code had 18 classes and 1,215 LOC
(i.e., Lines of Code).
AveCalc—A Java desktop application for managing the exams of a
student during its university career. Its source code had 33 classes
and 1,388 LOC.
LaTazza and AveCalc were used in other empirical studies (e.g., [32,
35]). In particular, we exploited the source code of the experimental
objects used in the three experiments by Ricca et al. [32] (the source
code they administered to the control group was the same as the
treatment group). To assess the performance in �xing faults in
source code, we provided the participants with bug reports and
asked them to �x the faults that such bug reports described. We
exploited the bug reports Scanniello et al. [35] de�ned on the ex-
perimental objects by Ricca et al. [32] and then used in their family
of controlled experiments (the bug reports administered to partici-
pants were the same in both treatment and control groups). Similar
to Exp1, we used the experimental material (i.e., source code and
bug reports) the authors [32, 35] made available on the web. It is
worth mentioning that assessing the performance in �xing faults in
source code with a di�erent instrumentation tool (e.g., picking the
correct �x for a bug from a multiple-choice question) would have
decreased the realism of the fault �xing tasks. Conversely, the used
instrumentation tool allowed reducing threats to external validity.

We used experimental materials de�ned by di�erent researchers
to mitigate experimenters’ expectancies biases. We made both
experimental material and raw data available on the web.3

3.4 Tasks
�e participants in Exp1 had to perform the following tasks:
Examples are when only part of the documentation exists (e.g., in lean development
processes), is up to date, or is useful to perform a given SE task.
3www2.unibas.it/sromano/downloads/NoiseExpsReplicationPackage.zip

Q5. Based on the furnished models, the primary actor can:
(Mark the right answer/s)
� Select any album
�Modify an album
� Get the available copies for an album
� See the details of an album

Figure 1: A sample comprehension question for M-Shop.

Start Time (hh:mm): End Time (hh:mm):
ID 2
Title Wrong product selection
Description If you select “supply of small bags” and then “Co�ee” to

buy a supply of co�ee, arabica co�ee is wrongly bought
instead of co�ee. �e problem does not occur when
buying a supply of arabica co�ee.

Figure 2: A sample bug report for LaTazza.

(1) Comprehension task 1—We provided each participant with
the models associated with the functional requirement “Search
Album by Singer” of M-Shop. To evaluate the comprehension
of such a requirement, we asked the participants to �ll out a
comprehension questionnaire consisting of 11 closed-ended
questions. Each question admi�ed one or more right answers.
In Figure 1, we report a sample question of the comprehension
questionnaire of M-Shop, which admi�ed two right answers:
“Get the available copies for an album” and “See the details of
an album.”

(2) Comprehension task 2—We asked the participants to per-
form the same task as the previous one, but the experimental
object was �eater. In particular, we gave each participant
the models associated with the functional requirement “Buy
�eater Ticket.” �en, we asked to �ll out a comprehension
questionnaire similar (e.g., it comprised 11 closed-ended ques-
tions) to that used in the previous task.

As for Exp2, the participants had to perform the following tasks:
(1) Bug �xing task 1—We provided the participants with the

source code (no test cases were given) and mission (i.e., problem
statement) of LaTazza. We also gave them six bug reports, one
for each fault the participants had to �x in the source code of
LaTazza. A bug report contained the ID of the corresponding
bug, as well as a title and a description. In Figure 2, we show
a sample bug report for LaTazza. When a participant �xed a
fault, he/she had to indicate the portion of source code he/she
modi�ed to �x such a fault, i.e., his/her patch. In particular,
the participant had to insert two Java comments to delimit the
modi�ed code: /*patch <fault ID> start*/ just before
the patch, and /*patch end*/ at the end of the patch. �is
procedure is the same as used in [35], where further details on
the bug reports and the faults are available and that we have
not reported here for space reason and scant relevance. �e
participants had to also write down when they start tackling
each bug and when it was �xed (see Figure 2).

(2) Bug �xing task 2—We asked the participants to perform the
same task as the previous one but on AveCalc. �erefore, we
provided them with the source code and mission of AveCalc
together with six bug reports. To indicate the patches, the par-
ticipants had to use Java comments as done in the previous task.

http://www2.unibas.it/sromano/downloads/NoiseExpsReplicationPackage.zip

The E�ect of Noise on So�ware Engineers’ Performance Conference’17, July 2017, Washington, DC, USA

3.5 Hypotheses, Parameters, and Variables
�e participants who had to perform the tasks (i.e., comprehen-
sion of functional requirements or bug �xing in source code) in
the presence of noise comprised the treatment group; while those
who worked on the tasks in normal conditions (i.e., they were not
exposed to noise) comprised the control group. �erefore, in each
experiment Condition is the main independent variable (also known
as main factor or manipulated factor or main explanatory variable).
Condition is a nominal variable that assumes two values: NOISE
(i.e., participants working in noise conditions) and NORMAL (i.e.,
participants working in normal conditions).

To quantify so�ware engineers’ performance in comprehending
functional requirements, we evaluated participants’ answers to each
comprehension questionnaire by using two strategies. �e �rst one
was an information retrieval-based strategy [25]. It consists in
computing precision (Pc) and recall (Rc) of the answers given by
the participant s as follows:

Pc =
∑n
i=1 |answerss,i∩oraclei |
|∑n

i=1 answerss,i | Rc =
∑n
i=1 |answerss,i∩oraclei |

|∑n
i=1 oraclei |

where answerss,i is the set of answers the participant s provided for
the question i , while oraclei is the set of correct expected answers
(i.e., the oracle) for the question i . We indicate with n the number
of questions (i.e., 11 for both M-Shop and �eater). From a practical
perspective, Pc and Rc estimate correctness and completenesses
of the given answers. To get a single measure that represents a
trade-o� between correctness and completenesses, we compute the
balanced F-measure [25] between Pc and Rc as follows:

Fc =
2 ∗ Pc ∗ Rc
Pc + Rc

�is metric assumes values in the interval [0, 1], where 1 means that
the participant s answered very good the questions of the compre-
hension questionnaire, so assuming that his/her comprehension of
functional requirements was very good. Conversely, a value close
to 0 means that he/she answered very bad (i.e., functional require-
ments were scarcely comprehended). �is information retrieval-
based strategy is the same as used in [1]. �e second strategy we
adopted to quantify performance in comprehending functional re-
quirements was inspired to that used by Kamsties et al. [23]. In
particular, for each participant s , we computed the variable count
as follows:

counts,i =

{
1 i f answerss,i = oraclei
0 otherwise

count assumes 1 as the value if and only if the set of answers pro-
vided by the participant s to the question i corresponds to the oracle
for the question. We quanti�ed performance in comprehending
functional requirements by means of the following metric:

Avд =

∑n
i=1 counts,i

n

where n is the number of questions. Avд assumes values in the
interval [0,1], where 1 is the best possible value. In other words, the
higher the Avд value, the be�er the comprehension of functional
requirements is. Unlike Fc , Avд does not take into account partial
answers. �e use of two metrics (i.e., Fc and Avд) to assess the
comprehension of functional requirements allowed us to mitigate
possible construct validity threats (i.e., mono-method bias) [42].

To measure so�ware engineers’ performance in �xing faults in
source code, we relied on the information retrieval-based strategy
used in [35]. We estimated correctness and completeness of the
faults the participant s �xed by means of the precision (Pf) and
recall (Rf) measures, respectively:

Pf =
f aults correctly f ixeds

f aults f ixeds
Rf =

f aults correctly f ixeds
f aults present

where # f aults f ixeds is the count of bug the participant s �xed
both correctly and incorrectly. We knew this information because
each participant had to delimit his/her patch when �xing a given
fault (see Section 3.4). To get # f aults correctly f ixeds , we �rst
inspected the patches provided by the participant s , then we run
an acceptance test suite for each bug. If this suite passed, the
corresponding bug was correctly �xed. # f aults present is the
number of bug the participants had to �x (i.e., six for both LaTazza
and AveCalc).

To get a trade-o� between correctness and completeness of �xed
faults, and thus estimate performance in �xing fault in source code,
we computed the balanced F-measure as follows:

Ff =
2 ∗ Pf ∗ Rf
Pf + Rf

A value for Ff close to 0 means that the performance in �xing faults
was very bad (i.e., existing bugs were, for the most part, either not
�xed or incorrectly �xed), while a value close to 1 means that the
performance in �xing faults was very good.

According to our research questions, we formulated the follow-
ing null-hypotheses:
Hn1 Noise does not signi�cantly a�ect so�ware engineers’ perfor-

mance in comprehending functional requirements.
Hn2 Noise does not signi�cantly a�ect so�ware engineers’ perfor-

mance in �xing faults in source code.
Given the literature regarding the e�ect of noise (e.g., [6, 19, 30, 38]),
we expect that noise might have detrimental e�ect on so�ware en-
gineers’ performance. �erefore, previous knowledge allows us to
formulate the one-tailed alternative hypotheses: noise signi�cantly
and negatively a�ects so�ware engineers’ performance in [compre-
hending functional requirements | �xing faults in source code].

3.6 Experiment Design
In Figure 3, we graphically describe the overall design of our em-
pirical investigation. Before Exp1 took place, the participants had
to �ll out a pre-questionnaire to gather their demographic infor-
mation. We used Google Forms to create this questionnaire and
le� the participants the possibility to �ll it out from 2016/11/22 to
2016/11/29. �e gathered information on the participants allowed
us to characterize the context of our study be�er.

For both experiments, the used design was an AB/BA crossover.
AB/BA crossover designs have two treatments (i.e., A and B) and
two periods (i.e., the times at which each treatment is applied). Par-
ticipants are split into two experimental groups and administered
with every treatment only once. In AB/BA crossover designs, the
groups are the sequences, i.e., the order in which treatments are
administered to participants [39].

Figure 3 also shows how the AB/BA crossover design was applied
to both Exp1 and Exp2. In our case, the treatments A and B were

Conference’17, July 2017, Washington, DC, USA S. Romano, G. Scanniello, D. Fucci, N. Juristo, and B. Turhan

Exp1 (55 participants)

(A) Noise - Lab1

(B) Normal - Lab2 (A) Noise - Lab1

(B) Normal - Lab2

M-Shop (Period 1) Theather (Period 2)

Group1
Sequence:AB
(27 participants)

Group2
Sequence:BA
(28 participants)

wash-out

M-Shop
Specification

Adaptation Requirements
Comprehension

Noise

Input Output

Adaptation OutputInput

Pre-questionnaire

Post-experiment task

Exp2 (41 participants)

(A) Noise - Lab1

(B) Normal - Lab2 (A) Noise - Lab1

(B) Normal - Lab2

LaTazza (Period 1) AveCalc (Period 2)

Group 1
Sequence:AB
(20 participants)

Group 2
Sequence:BA
(21 participants)

wash-out Post-experiment task

2017/31/12016/12/12from 2016/11/22 to
2016/11/29

Exp1 (55 participants - comp. of functional reqs)

(A) Noise - Lab1

(B) Normal - Lab2 (A) Noise - Lab1

(B) Normal - Lab2

M-Shop (Period 1 - Task 1) Theather (Period 2 - Task 2)

Group1
Sequence:AB
(28 participants)

Group2
Sequence:BA
(27 participants)

wash-out

Pre-questionnaire

Exp2 (42 participants - bug fixing)

(A) Noise - Lab1

(B) Normal - Lab2 (A) Noise - Lab1

(B) Normal - Lab2

LaTazza (Period 1 - Task 1) AveCalc (Period 2 - Task 2)

Group 1
Sequence:AB
(21 participants)

Group 2
Sequence:BA
(21 participants)

wash-out

2017/31/12016/12/12from 2016/11/22 to
2016/11/29

Figure 3: Summary of the design.
NOISE and NORMAL, respectively. �e participants were randomly
assigned to the experimental groups:
Group1—It comprises participants assigned to the sequence AB
(i.e., NOISE is applied in the �rst period, while NORMAL in the
second).
Group2—It comprises participants assigned to the sequence BA
(i.e., NORMAL is applied in the �rst period, while NOISE in the
second).
As for Exp1, the number of participants in Group1 and Group2 was
28 and 27, respectively; while 21 and 21 in Exp2. Independently from
the treatment, the participants in Exp1 performed comprehension
task 1 (on M-Shop) in the �rst period, while comprehension task
2 (on �eater) in the second. �e participants in Exp2 carried out
bug �xing task 1 (on LaTazza) in the �rst period, while bug �xing
task 2 (on AveCalc) in the second. Group1 and Group2 carried out
each task (e.g., comprehension task 1) at the same time.

Comprehension tasks lasted 30 minutes each, while bug �xing
tasks lasted one hour each. We �xed the time to accomplish the
tasks on the basis of the experimental data reported in [1, 35]. �e
use of tasks with di�erent durations allowed studying the e�ect of
duration on performance. �e strategy we used to de�ne perfor-
mance (in both the experiments) was time �xed, namely the number
of successful steps within the time limit de�nes performance [5].

NOISE was always applied in the Lab1 research laboratory, while
NORMAL always in Lab2 (see Figure 3). We took this design deci-
sion to mitigate possible conclusion validity threats related to the
experimental se�ings.

We added a 30-minute wash-out period between Period 1 and
Period 2 (see Figure 3). �e rationale behind the use of wash-out
periods (as suggested in medicine studies) is to leave su�cient
time for the e�ect of a treatment to recede completely, and thus
possibly neutralize carryover e�ects.4 However, it can be di�cult
to determine how long a wash-out period should be to recede
completely the e�ect of a treatment [12]. �at is, the required
length of wash-out period for a given treatment is usually unknown
before the study takes place [16]. �erefore, carryover e�ects could
also occur in the presence of wash-out periods if they are not long
enough. �erefore, we analyzed whether carryover e�ects were
present in our experiments (see Section 3.8).

4Carryover is an internal validity threat of crossover designs. It occurs when a treat-
ment is administered before the e�ect of another previously administered treatment
has completely receded [39].

3.7 Experiment Setting
�e Directive 2003/10/EC5 of the European Parliament lays down
minimum health and safety requirements regarding the exposure
of workers to the risks arising from noise. In particular, if the noise
exposure level6 (LEX) is greater than or equal to 85 dB, workers
shall wear individual hearing protectors; thus values that match or
exceed such a limit are considered harmful to health. �e partici-
pants administered with the NOISE treatment had to accomplish
the tasks with a value of LEX (i.e., 82 dB) close but inferior to the
limit mentioned above. �us individual hearing protectors were
not required. �e kind of noise was speech because it is the major
type of practical distractive noise in workplaces with open-o�ce
plans [26, 38]. As for the participants working in normal conditions,
they performed the experimental tasks in a laboratory (i.e., Lab2)
far from road tra�c and other sources of noise (the measured LEX
value was equal to 42 dB, namely a common value of noise level
for quiet o�ce workplaces [26]). We chose the exposure value for
the NOISE treatment on the basis of the results from the study by
Szalma and Hancock: low-intensity noise is more debilitating than
high-intensity noise for those studies in which quiet is the control
condition [38]. �erefore, if we found a signi�cant e�ect of noise,
we would expect an higher e�ect of noise for lower LEX values.

�e NOISE treatment was administered in a laboratory (i.e., Lab1)
equipped with a sound system. A (ceiling) speaker was present on
each workstation used by each participant. �e distance between
each speaker and each workstation was always the same. Before the
experiments took place, for any workstation we measured the noise
level chosen for the experimental se�ing with a sound meter. In
particular, we placed the sound meter 45 cm above the desk. Such a
measurement allowed us to grasp, with some approximation,7 what
a participant would have heard during the tasks. We measured the
noise levels also during the experiments. Lab1 was far from road
tra�c (i.e., the most dominant source of environmental noise [3])
and other sources of noise that might have interfered with the noise
reproduced by the sound system.

Furniture (e.g., the kind of desk or chair) in Lab1 was the same as
in Lab2. �ese laboratories were equipped with the same PCs (i.e.,
same hardware and so�ware con�gurations) and the environmental
con�gurations were similar (e.g., similar light level) as well as the
design (i.e., open-o�ce). �is is because we wanted to mitigate en-
vironmental factors that might a�ect results in an unexpected way.
Similar to Lab1, Lab2 was far from sources of noise.
5eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02003L0010-20081211
6It is the time-weighted average of the noise exposure levels.
7�is is an approximated measurement because di�erent participants’ posture and
height could slightly a�ect the noise levels the participants heard.

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02003L0010-20081211

The E�ect of Noise on So�ware Engineers’ Performance Conference’17, July 2017, Washington, DC, USA

3.8 Analysis Procedure
We used the following analysis procedure for each experiment
and each dependent variable. According to Wellek and Ble�ner’s
study [41], we perform a pre-test to check the presence of a car-
ryover e�ect. Let X1i and X2i be the dependent variable values
(e.g., Fc) for the participant i of Group1 (i.e., sequence AB) in the
�rst and second periods, respectively. Similarly, let Y1j and Y2j be
the dependent variable values for the participant j of Group2 (i.e.,
sequence BA) in the �rst and second periods, respectively. For each
participant i of Group1 and each participant j of Group2, we com-
pute the within-participant sums of the dependent variable values
in both periods as follows: Ci (X) = X1i +X2i andCj (Y) = Y1j +Y2j .
If data are normally distributed, we run an unpaired two-sided
t-test to verify the null-hypothesis: are the expected mean values
of within-participant sums the same [41]? In case data are not
normally distributed, we run a two-sided Mann-Whitney U test [9]
(also known as Wilcoxon rank-sum test). �e Mann-Whitney U test
is a non-parametric alternative to the t-test [42]. If the t-test/Mann-
Whitney U test does not reject the null-hypothesis, the carryover
e�ect is not statistically signi�cant.

If carryover e�ect is not statistically signi�cant, we performed
the following steps:

(1) We computed descriptive statistics and build boxplots for each
dependent variable.

(2) We tested whether the e�ect of noise was statistically signi�-
cant on the dependent variable. To this end, for each participant
i of Group1 and each participant j of Group2, we computed the
within-participant di�erences of the dependent variable values
in both periods [41]: Di (X) = X1i −X2i and D j (Y) = Y1j −Y2j .
�en, if the data were normally distributed, we run an un-
paired two-sided t-test, where the tested null-hypothesis is: are
the expected mean values of within-participant di�erences the
same [41]? We run a two-sided Mann-Whitney U test, if data
are not normally distributed.

If carryover e�ect is statistically signi�cant for a given depended
variable, we discarded the second period [39]. �at is, we analyzed
the �rst period as follows:

(1) We computed descriptive statistics and build boxplots.
(2) We tested if the e�ect of noise was statistically signi�cant on

the dependent variable values by means of an unpaired two-
sided t-test, if the data were normally distributed, or a two-sided
Mann-Whitney U test otherwise.

To check normality of data, we used the Shapiro-Wilk test [36]
(Shapiro test, from here onwards).

As it is customary with tests of statistical signi�cance, we accept
a probability of 5% of commi�ing Type-I error (i.e., α = 0.05).

Since 42 out of 55 participants took part in both the experiments,
we also studied the performances of the participants in Exp1 who
also participated in Exp2. We refer to this subset as Exp1*, where
Group1 and Group2 comprised 21 participants each. �e analysis
procedure for Exp1* was the same as that used for Exp1 and Exp2.
�e goal of this further analysis was to see if the results from Exp1
are con�rmed or not by those from Exp1*. In case of con�rma-
tion, we can state that the results from Exp1 were not due to any
characteristic of the participants who did not take part in Exp2.

Table 2: Results from the pre-test to check the presence of
carryover e�ects (in bold p-values less than α).

Experiment Variable p-value

Exp1 Fc 0.5179
Avд 0.4312

Exp1* Fc 0.2432
Avд 0.1809

Exp2 Ff 0.0358

4 RESULTS
In this section, we report the results of our analysis.

4.1 Carryover Analysis
�e Shapiro test suggested that the data were normally distributed
in each experiment and for each dependent variable (i.e., p-values
were greater than α), thus we applied a t-test to check the pres-
ence of a carryover e�ect. �e obtained p-values are reported in
Table 2. �e results indicate that the carryover e�ect is not statis-
tically signi�cant for any dependent variable in Exp1 and Exp1*.
�e carryover e�ect is statistically signi�cant for Ff in Exp2 (p-
value=0.0358); thus we analyzed only the �rst period.

4.2 Descriptive Statistics and Boxplots
In Table 3, we summarize descriptive statistics of the dependent vari-
able values the participants obtained in each experiment grouped
by treatment (i.e., NORMAL or NOISE). �ese values are also graph-
ically summarized using the boxplots in Figure 4.

As for Exp1, the descriptive statistics suggest that there is not a
huge di�erence between the participants administered with NOR-
MAL and NOISE with respect to Fc (0.6781 vs 0.6833 on average)
and Avд (0.5025 vs 0.5256 on average). �e boxplots in Figure 4.a
con�rms this similarity. �is result seems to be con�rmed in Exp1*.
On average, the Fc values are 0.687 for NORMAL and 0.6949 for
NOISE, whereas the Avд values are 0.5065 and 0.5281, respectively.

As for Exp2, the descriptive statistics of the Ff values seem to
indicate that there is a di�erence between the NORMAL and NOISE
treatments (0.4814 vs 0.3149 on average). �e boxplots, shown in
Figure 4.c, seem to con�rm this result.

4.3 Hypotheses Testing
4.3.1 Hn1—comprehension of functional requirements. As for

Exp1, we used the t-test for Fc because the data were normally
distributed, while we used the Mann-Whitney U test for Avд be-
cause the Shapiro test indicated that the data were not normally
distributed (i.e., p-value = 0.0167 for Group2). As for Exp1*, we
used the t-test for both Fc and Avд (the Shapiro test always re-
turned p-values greater than α). For both Exp1 and Exp1*, and any
dependent variable, we could not reject Hn1 (see Table 4).

4.3.2 Hn2—fault fixing in source code. �e Mann-Whitney U
test—the Shapiro test returned a p-value equal to 0.0229 for NOISE—
allowed us to reject Hn2 with respect to Ff (p-value = 0.024, see
Table 4). �us, noise has a signi�cant and negative e�ect on so�-
ware engineers’ performance in �xing faults in source code. To
measure the magnitude of the di�erence, we used the Cli�’s δ e�ect

Conference’17, July 2017, Washington, DC, USA S. Romano, G. Scanniello, D. Fucci, N. Juristo, and B. Turhan

●

NORMAL NOISE

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
c

●

NORMAL NOISE

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
vg

(a) Exp1

●

●

NORMAL NOISE

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
c

●

NORMAL NOISE

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
vg

(b) Exp1*

●

NORMAL NOISE

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
f

(c) Exp2
Figure 4: Boxplots for: Fc and Avд in Exp1 (a), Fc and Avд in Exp1* (b), and Ff in Exp2 (c).

Table 3: Some descriptive statistics grouped by experiment,
variable, and condition.

Experiment Variable Statistic NORMAL NOISE

Exp1

Fc

Median 0.6923 0.7143
Mean 0.6781 0.6833
Std 0.1268 0.1398

Avд
Median 0.5455 0.5455
Mean 0.5025 0.5256
Std 0.1296 0.1552

Exp1*

Fc

Median 0.6923 0.7143
Mean 0.687 0.6949
Std 0.118 0.1382

Avд
Median 0.5455 0.5455
Mean 0.5065 0.5281
Std 0.124 0.1646

Exp2 Ff

Median 0.5 0.2857
Mean 0.4814 0.3149
Std 0.2969 0.1983

Table 4: Results from the testing of Hn1 and Hn2 (p-values
less than α are reported in bold).

Hn Experiment Variable p-value E�ect size

Hn1
Exp1 Fc 0.7309 -

Avд 0.3119 -

Exp1* Fc 0.7116 -
Avд 0.3782 -

Hn2 Exp2 Ff 0.024 medium (0.4014)

Table 5: Some descriptive statistics for Ff when tanking into
account only the �rst 30 minutes.

Statistic NORMAL NOISE
Median 0.2857 0.2857
Mean 0.3141 0.1741
Std 0.2163 0.2024

size [8]. �is kind of e�ect size is used when data are not normally
distributed or the normality assumption is discarded. As shown in
Table 4, the e�ect of noise on fault �xing tasks was medium.8

4.4 Further Analysis
We analyzed the data from Exp2 by taking into account the �rst 30
minutes (�rst period). �is was possible because we knew when
8According to Romano et al. [34], the Cli�’s δ e�ect size is: “negligible” if |δ | < 0.147,
“small” if 0.147 ≤ |δ | < 0.33, “medium” if 0.33 ≤ |δ | < 0.474, or “large” otherwise.

each participant started tackling any bug and when it was �xed
(see Section 3.4). We perform this further analysis to exclude noise
duration (Exp1 and Exp2 lasted 30 and 60 minutes, respectively)
from the possible causes behind the lack of statistical signi�cant
di�erence in Exp1 (and Exp1*), with respect to Exp2.

In Table 5, we report some descriptive statistics for Ff with
respect to the �rst 30 minutes of Exp2. �ese descriptive statistics
indicate that, on average, who �xed faults in the presence of noise
had worse performance than who worked in normal conditions (the
mean values of Ff are 0.1741 for NOISE and 0.3141 for NORMAL). To
check that this di�erence was statistically signi�cant, we ran a two
sided Mann-Whitney U test (the data were not normally distributed
for both NOISE and NORMAL as the Shapiro test suggested). �e
returned p-value (0.0281) indicate that the participants exposed to
noise for 30 minutes had signi�cantly worse performances in �xing
fault in source code than the participants not exposed. �e e�ect of
noise was medium (the Cli�’s δ e�ect size value was 0.3605). �us,
we can exclude that di�erent noise durations are behind the lack of
statistical signi�cant di�erence in Exp1 (and Exp1*).

5 DISCUSSION
In the next subsections, we �rst discuss the results by linking them
to RQ1 and RQ2. �en, we delineate practical implications from the
obtained results and future directions for our research. We conclude
discussing threats that could a�ect the validity of our results.

5.1 Linking Results to Research�estions and
Overall Discussion

Results from Exp1 and Exp1* suggest that noise does not signi�-
cantly a�ect the comprehension of functional requirements. �us,
we cannot positively answer RQ1. On the other hand, we observed
that noise negatively a�ects faults �xing (also restricting the analy-
sis to the �rst 30 minutes in Exp2, see Section 4.4). �us, we can
positively answer RQ2: “noise worsens so�ware engineers’ per-
formance in �xing faults in source code.” �is outcome suggests
that noise duration is not the cause of the lack of statistically sig-
ni�cant di�erence in Exp1 (and Exp1*), but it is the kind of task.
Fixing faults in source code seems to be more vulnerable to noise
than comprehending functional requirements. According to the
meta-analytic results by Szalma and Hancock’s [38], we can then
speculate that �xing faults is more resource-demanding than com-
prehending functional requirements. Concluding, it seems that

The E�ect of Noise on So�ware Engineers’ Performance Conference’17, July 2017, Washington, DC, USA

there are tasks in so�ware engineering that are more resource-
demanding than others and noise seems to negatively a�ect the
executuion of these tasks.

5.2 Implications and Future Directions
We focus here on practitioner and researcher perspectives.

• Comparing our results on the comprehension of functional re-
quirements to those reported in [1] (where the same experimen-
tal material and dependent variable Fc were used), we observe
that our participants (i.e., �nal-years undergraduate students)
performed worse than Ph.D. students (on average, 0.6781 is the
Fc value in Exp1, while 0.727 is the one achieved by the Ph.D.
students), but be�er than professionals (0.6781 vs 0.631, on av-
erage). �us, we postulate that the participants in Exp1 had an
adequate level of familiarity with the used modeling notation, so
allowing us to assume that they are representative of profession-
als. �erefore, rather than replicating the �rst experiment with
professionals, the researcher could be interested in investigating
whether di�erent noise intensities (i.e., levels) a�ect so�ware
engineers’ performance in comprehending functional require-
ments. �e researcher could also be interested in varying the
modeling methods (i.e., UML) and assessing if the comprehension
of functional requirements is still not vulnerable to noise.

• We observed a statistically signi�cant di�erence in fault �xing
tasks when the participants were exposed or not to noise. �is
�nding is relevant for the practitioner because noisy workspaces
(e.g., those with open-o�ce plans) could cause a reduction in the
performance of so�ware engineers that have to �x faults in Java
code. In other words, a penny saved on the workspace could
be paid with interest later. However, we believe that caution is
needed concerning this �nding and we advise future work. For
example, the researcher could investigate if Exp2 results also
hold for professionals. Other directions for future work could
consist in varying the noise intensity and type.

• Fixing faults in source code seems to be more vulnerable to
noise than comprehending functional requirements. �is �nd-
ing is consistent with arousal and maximal adaptability the-
ories [6, 19] and the results from the Szalma and Hancock’s
meta-analysis [38]. �e researcher could be interested in study-
ing which tasks are more (or less) vulnerable to noise. �at is,
some kinds of tasks (i.e., those less resource-demanding) could be
weakly a�ected by noise. �us, so�ware companies could save
money by providing workspaces with open-o�ce plan to the
so�ware engineers involved in these kinds of tasks. On the other
hand, more resource-demanding tasks should be more vulnerable
to noise. �us, quiet workspaces (e.g., those with closed-o�ce
plans) are advisable. �is is clearly relevant for the practitioner.

• Given our results, we speculate that a 30-minute wash-out period
is not enough as far as 1-hour fault �xing tasks is concerned. Our
results provide a reference point for the duration of wash-out
periods, which we did not have when we designed our exper-
iments. �is �nding is of interest for the practitioner too. For
example, our results suggest so�ware engineers to take a break
greater than 30 minutes when performing a fault �xing task in
the presence of noise. Such a long wash-out period might be

expensive for a so�ware company. �erefore, it could be more
advisable to provide so�ware engineers with quieter workspaces.

• �e presence of a signi�cant carryover e�ect in Exp2 indicates
a detrimental e�ects of noise on the performance, when �xing
faults in Java code, even when participants are no longer exposed
to noise. �is is relevant for the practitioner. On the other hand,
the researcher could be interested in further investigating on
this ma�er using special conceived investigations.

5.3 �reats to Validity
We discuss threats that could a�ect our results by following the
recommendations by Wohlin et al. [42].

5.3.1 Internal Validity. Social threats to validity might exist.
�e participants exposed to noise might be more motivated to ac-
complish the task (e.g., due to arousal e�ect) than the participants
working in normal condition [6, 19]. On the other hand, the partici-
pants exposed to noise might give up performing as they would do
under normal conditions (i.e., resentful demoralization). �is kind
of threat is present when the data analysis is conducted on the �rst
period (i.e., when dealing with a statistically signi�cant carryover).

�e selection threat of le�ing volunteers take part in the ex-
periments could in�uence the results since they could be more
motivated than actual developers.

To prevent that participants exchanged information on the tasks
(i.e., di�usion or imitation of treatments), we monitored them during
the execution of each task and we took back all the material we
gave them to accomplish the tasks. In addition, Group1 and Group2
performed the same task (e.g., bug �xing on LaTazza) at the same
time (see Section 3.6) in each experiment.

�e use of an AB/BA design might a�ect internal validity. We
dealt with this kind of threat by means of a wash-out period in each
experiment. We studied if wash-out periods were long enough to
neutralize carryover e�ect (Section 3.8). In case of carryover was
present, we used the strategy suggested by Vegas et al. [39] (i.e.,
taking into account only the �rst period in the data analysis).

5.3.2 Construct Validity. To deal with this kind of threat, we
exploited metrics well known and adopted in the literature (e.g., [1,
31, 35]). As far as Exp2 is concerned, we considered only one metric
to assess participants’ performances (i.e., mono-method bias).

Although we did not inform the participants about our research
goals, they were aware of being part of an investigation on noise
e�ect. �us, there could be the risk of hypotheses guessing.

We informed students that achieved performance would not
a�ect the SE course grades and gather data would be shared anony-
mously and in aggregated fashion (i.e., evaluation apprehension).

5.3.3 Conclusion Validity. �e implementation of a treatment
(e.g., NOISE) might be not similar between di�erent participants (i.e.,
reliability of treatment implementation). As shown in Section 3.7,
we mitigate this kind of threat by implementing treatment/control
as standard as possible over di�erent participants.

5.3.4 External Validity. �e participants were sampled by conve-
nience. �erefore, generalizing the results to a di�erent population
(e.g., professional so�ware developers rather than students at the
University of Basilicata) poses a threat of interaction of selection and

Conference’17, July 2017, Washington, DC, USA S. Romano, G. Scanniello, D. Fucci, N. Juristo, and B. Turhan

treatment. Working with students also implies various advantages,
such as: their homogeneous prior knowledge, the availability of a
large number of participants [40] (55 and 42 participants in studies
like ours is appreciable), and the possibility to test experimental
design and initial hypotheses [37].

�e use of UML as modeling notation in Exp1 might threaten
the generalizability of the results (i.e., interaction of se�ing and
treatment). We opted for UML because it is a de-facto standard in
so�ware modeling and the students were familiar with it. Another
threat of interaction of se�ing and treatment might exist due to the
non-real-world experimental tasks used. �e experimental tasks
should equally a�ect the results of the participants when exposed
or not to noise.

6 CONCLUSION
We present the results of an empirical evaluation constituted of two
controlled experiments. Both experiments assess whether noise
negatively in�uences so�ware engineers’ performances. In the
�rst experiment, we asked 55 �nal-year undergraduate students in
Computer Science to comprehend functional requirements. While
performing this task, the participants in this experiment were ex-
posed or not to noise. We asked these participants to take part in
the second experiment (42 out of 55 agreed to participate in) where
the task to be performed was �xing faults in Java source code. �e
results suggest that the participants had signi�cantly worse per-
formance in �xing faults in source code when exposed to noise,
while no di�erence was observed in comprehending functional
requirements. We conjecture that bug �xing is a more resource-
demanding than comprehending functional requirements as it is
more vulnerable to noise. �erefore, it seems that there are more
resource-demanding tasks than others, and noise seems to nega-
tively impact tasks that are more resource-demanding.

REFERENCES
[1] S. Abrahão, C. Gravino, E. Insfran, G. Scanniello, and G. Tortora. 2013. Assessing

the E�ectiveness of Sequence Diagrams in the Comprehension of Functional
Requirements: Results from a Family of Five Experiments. IEEE Trans. on So�w.
Eng. 39, 3 (2013), 327–342.

[2] S. T. Acuna, N. Juristo, A. M. Moreno, and A. Mon. 2010. A So�ware Process Model
Handbook for Incorporating People’s Capabilities (1st ed.). Springer Publishing
Company, Incorporated.

[3] European Environment Agency and Europæiske Miljøagentur. 2014. Noise in
Europe 2014. European Environment Agency.

[4] V. Basili, G. Caldiera, and D. H. Rombach. 1994. �eGoal�estionMetric Paradigm,
Encyclopedia of So�ware Engineering. John Wiley and Sons. 528–532 pages.

[5] G. R. Bergersen, D. I. K. Sjøberg, and T. Dybå. 2014. Construction and Validation
of an Instrument for Measuring Programming Skill. IEEE Trans. on So�w. Eng.
40, 12 (2014), 1163–1184.

[6] D.E. Broadbent. 1978. �e current state of noise research: Reply to Poulton.
Psychological Bulletin 85 (1978), 1052–1067.

[7] B. Bruegge and A. H. Dutoit. 2003. Object-Oriented So�ware Engineering: Using
UML, Pa�erns and Java (2nd ed.). Prentice-Hall.

[8] N. Cli�. 1996. Ordinal methods for behavioral data analysis. Psychology Press,
New-York, USA.

[9] W. J. Conover. 1998. Practical Nonparametric Statistics (3rd ed.). Wiley.
[10] L.L. Constantine. 1995. Constantine on Peopleware. Yourdon Press.
[11] M. Csikszentmihalyi. 2009. Creativity: Flow and the Psychology of Discovery and

Invention (Harper Perennial Modern Classics). HarperCollins e-books.
[12] A. Dean, M. Morris, J. Stu�en, and D. Bingham. 2015. Handbook of Design and

Analysis of Experiments. Chapman and Hall/CRC.
[13] T. DeMarco and T. Lister. 1985. Programmer Performance and the E�ects of the

Workplace. In Proc. of the International Conference on So�ware Engineering. IEEE,
268–272.

[14] T. DeMarco and T. Lister. 2013. Peopleware: Productive Projects and Teams (3rd
ed.). Addison-Wesley Professional.

[15] F. Fagerholm and J. Münch. 2012. Developer experience: Concept and de�nition.
In International Conference on So�ware and System Process. IEEE, 73–77.

[16] J. I. Gallin and F. P. Ognibene. 2007. Principles and Practice of Clinical Research
(2nd ed.). Academic Press.

[17] S. Gievska, R. Lindeman, and J. Sibert. 2005. Examining the qualitative gains of
mediating human interruptions during hci. In Proc. of the International Conference
on Human-Computer Interaction.

[18] D. Graziotin, X. Wang, and P. Abrahamsson. 2014. So�ware Developers, Moods,
Emotions, and Performance. IEEE So�ware 31, 4 (2014), 24–27.

[19] P. A. Hancock and J. S. Warm. 1989. A Dynamic Model of Stress and Sustained
A�ention. Human Factors 31, 5 (1989), 519–537.

[20] Shamsi T. Iqbal and Brian P. Bailey. 2007. Understanding and Developing Models
for Detecting and Di�erentiating Breakpoints During Interactive Tasks. In Proc. of
the SIGCHI Conference on Human Factors in Computing Systems. ACM, 697–706.

[21] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. 2008. Reporting Experiments in
So�ware Engineering. In Guide to Advanced Empirical So�ware Engineering.
Springer London, 201–228.

[22] N. Juristo and A.M. Moreno. 2001. Basics of So�ware Engineering Experimentation.
Kluwer Academic Publishers.

[23] E. Kamsties, A. von Knethen, and R. Reussner. 2003. A controlled experiment to
evaluate how styles a�ect the understandability of requirements speci�cations.
Inf. So�w. Technol. 45, 14 (2003), 955–965.

[24] K. Kuusinen, H. Petrie, F. Fagerholm, and T. Mikkonen. 2016. Flow, Intrinsic
Motivation, and Developer Experience in So�ware Engineering. In Agile Pro-
cesses in So�ware Engineering and Extreme Programming. Springer International
Publishing, 104–117.

[25] C. D. Manning, P. Raghavan, and H. Schtze. 2008. Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA.

[26] L. E. Maxwell. 2015. Noise in the o�ce workplace. Facility Planning and Man-
agement Notes 1, 11 (2015).

[27] A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, and T. Fritz. 2017. �e
Work Life of Developers: Activities, Switches and Perceived Productivity. IEEE
Trans. on So�w. Eng. PP, 99 (2017), 1–1.

[28] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann. 2014. So�ware Devel-
opers’ Perceptions of Productivity. In Proc. of the ACM SIGSOFT International
Symposium on Foundations of So�ware Engineering. ACM, 19–29.

[29] A. Morin, J. D. Runyan, and T. M. Brinthaupt. 2015. Editorial: Inner Experiences:
�eory, Measurement, Frequency, Content, and Functions. Frontiers in Psychology
6 (2015), 1758.

[30] E.C. Poulton. 1979. Composite model for human performance in continuous
noise. Psychological Review 86 (1979), 361–375.

[31] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato. 2010. How
Developers’ Experience and Ability In�uence Web Application Comprehension
Tasks Supported by UML Stereotypes: A Series of Four Experiments. IEEE Trans.
on So�w. Eng. 36, 1 (2010), 96–118.

[32] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, M. Ceccato, and C. A. Visag-
gio. 2008. Are �t tables really talking?. In Proc. of the ACM/IEEE International
Conference on So�ware Engineering. IEEE, 361–370.

[33] F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, and E. Astesiano. 2014. Assessing
the E�ect of Screen Mockups on the Comprehension of Functional Requirements.
ACM Trans. So�w. Eng. Methodol. 24, 1, Article 1 (2014), 1:1–1:38 pages.

[34] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek. 2006. Appropriate
statistics for ordinal level data: Should we really be using t-test and Cohen’sd for
evaluating group di�erences on the NSSE and other surveys?. In annual meeting
of the Florida Association of Institutional Research, February. 1–3.

[35] G. Scanniello, M. Risi, P. Tramontana, and S. Romano. 2017. Fixing Faults in C
and Java Source Code: Abbreviated vs. Full-Word Identi�er Names. ACM Trans.
So�w. Eng. Methodol. 26, 2, Article 6 (2017), 43 pages.

[36] S. Shapiro and M. Wilk. 1965. An analysis of variance test for normality.
Biometrika 52, 3-4 (1965), 591–611.

[37] D. I. K. Sjoberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N.
Liborg, and A. C. Rekdal. 2005. A Survey of Controlled Experiments in So�ware
Engineering. IEEE Trans. on So�w. Eng. 31, 9 (2005), 733–753.

[38] J. L. Szalma and P. A. Hancock. 2011. Noise e�ects on human performance: a
meta-analytic synthesis. Psychological bulletin 137, 4 (2011), 682–707.

[39] S. Vegas, C. Apa, and N. Juristo. 2016. Crossover Designs in So�ware Engineering
Experiments: Bene�ts and Perils. IEEE Trans. on So�w. Eng. 42, 2 (2016), 120–135.

[40] J. Verelst. 2004. �e In�uence of the Level of Abstraction on the Evolvability of
Conceptual Models of Information Systems. In Procedeedings of the International
Symposium on Empirical So�ware Engineering. IEEE Computer Society, 17–26.

[41] S. Wellek and M. Ble�ner. 2012. On the Proper Use of the Crossover Design in
Clinical Trials. Dtsch Arztebl International 109, 15 (2012), 276–281.

[42] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén. 2012.
Experimentation in So�ware Engineering. Springer.

[43] M. Züger, C. Corley, A. N. Meyer, B. Li, T. Fritz, D. Shepherd, V. Augustine,
P. Francis, N. Kra�, and W. Snipes. 2017. Reducing Interruptions at Work: A
Large-Scale Field Study of FlowLight. In Proc. of the CHI Conference on Human
Factors in Computing Systems. ACM, 61–72.

	Abstract
	1 Introduction
	2 Related Work and Background
	2.1 Related Work
	2.2 Background

	3 Study Design
	3.1 Goals
	3.2 Experimental Units
	3.3 Experimental Material
	3.4 Tasks
	3.5 Hypotheses, Parameters, and Variables
	3.6 Experiment Design
	3.7 Experiment Setting
	3.8 Analysis Procedure

	4 Results
	4.1 Carryover Analysis
	4.2 Descriptive Statistics and Boxplots
	4.3 Hypotheses Testing
	4.4 Further Analysis

	5 Discussion
	5.1 Linking Results to Research Questions and Overall Discussion
	5.2 Implications and Future Directions
	5.3 Threats to Validity

	6 Conclusion
	References

