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Abstract

This paper presents a dual reciprocity boundary element method (DRBEM) formulation for the solution

of steady-state convection-diffusion-reaction problems with variable velocity field at moderately high Péclet

number. This scheme is based on utilising the fundamental solution of the convection-diffusion-reaction

equation with constant coefficients. In this case, we decompose the velocity field into an average and a

perturbation, with the latter being treated using a dual reciprocity approximation to convert the domain in-

tegrals arising in the boundary element formulation into equivalent boundary integrals. A proposed approach

is implemented to treat the convective terms with variable velocity, for which the concentration is expanded

as a series of functions. Four numerical experiments are included with available analytical solutions, to

establish the validity of the approach and to demonstrate the efficiency of the proposed method.

Keywords: BEM, dual reciprocity technique, convection-diffusion-reaction, variable velocity field, radial

basis function

1. Introduction

The boundary element method (BEM) has been applied to steady-state convection-diffusion-reaction

problems with variable velocity by various researchers [1, 2, 3, 4, 5, 6, 7, 8, 9]. However, the solution of

this problem is still considered a big challenge, particularly for variable and high velocities. The BEM does

have an inherent advantage for the solution of convection-diffusion-reaction problems with constant velocity5

as the existing fundamental solution of the problem introduces the exact amount of upwind, contrary to

finite element or finite-difference methods where the upwind is numerical [7]. The dual reciprocity boundary

element method (DRBEM) represents an alternative for solving linear PDEs with variable coefficients [10,

11, 12, 13, 14]. The solution of problems involving variable coefficients is more difficult to achieve with the

BEM as fundamental solutions are only available for a small number of cases, for coefficients with very simple10

variations in space. The approach adopted in this paper is to split the velocity field into an average and a

perturbation; the average velocity (constant) is included in the fundamental solution, while the perturbation
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generates a domain integral which is treated with the DRBEM. A new particular solution has been used with

corresponding dual reciprocity expressions. A proposed approach was implemented to treat the convective

terms with variable velocity. Results of four test cases are presented and compared to analytical solutions.15

They show that the boundary element formulation developed in this work produces accurate results for

diffusion-dominated problems with low velocity values.

A brief outline of the rest of this paper is as follows. Section 2 reviews the representation of convection-

diffusion-reaction problems. Section 3 derives the boundary element formulation using the steady-state

fundamental solution of the corresponding equation. In section 4, the DRM formulation is developed for 2D20

steady-state convection-diffusion-reaction problem, followed in section 5 by a description of the discretisation

of the DRBEM formulation for this model. Handling the convective terms by expanding the relevant functions

as a series are shown in section 6. Section 7 gives the description of the coordinate functions and the three

radial basis functions adopted in this work. Section 8 compares and discusses the solution profiles for the

present numerical experiments. Computational aspects are included to demonstrate the performance of this25

approach in section 9. Finally, some conclusions are provided in the last section.

2. Convection-diffusion-reaction equation

The two-dimensional convection-diffusion-reaction problem over a domain Ω in <2 limited by a boundary

Γ, for isotropic materials, is governed by the following PDE:

D∇2φ (x, y)− vx (x, y)
∂φ (x, y)

∂x
− vy (x, y)

∂φ (x, y)

∂y
− k φ (x, y) = 0 (1)

x, y ∈ Ω ⊂ <d, t > 0

In Eq.(1), φ represents the concentration of a substance, treated as a function of space, Γ is a bounded

domain in <d, d is the dimension of the problem. The velocity components vx and vy along the x and

y directions and assumed to vary in space. Besides, D is the diffusivity coefficient and k represents the

first-order reaction constant or adsorption coefficient. The boundary conditions are

φ = φ̄ over ΓD (2)

q =
∂φ

∂n
= q̄ over ΓN (3)

where ΓD and ΓN are the Dirichlet and Neumann parts of the boundary with Γ = ΓD ∪ ΓN .

The parameter that describes the relative influence of the convective and diffusive components is called

Péclet number, Pé = |v |L/D, where v is the velocity field and L is the characteristic length of the domain.30

For small values of Pé, Eq.(1) behaves as a parabolic differential equation, while for large values of Pé the

equation becomes more like hyperbolic. These changes in the structure of the differential equation according

to the values of the Péclet number have significant effects on its numerical solution.
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3. Boundary element formulation of convection-diffusion-reaction problems using steady-state

fundamental solution35

For the sake of obtaining an integral equation equivalent to the above partial differential equation, a

fundamental solution of Eq.(1) is necessary. However, fundamental solutions are only available for the case

of constant velocity fields. Thus, the variable velocity components vx = vx(x, y) and vy = vy(x, y) are

decomposed into average (constant) terms v̄x and v̄y, and perturbations Px = Px (x, y) and Py = Py (x, y),

such that40

vx (x, y) = v̄x + Px (x, y)

vy (x, y) = v̄y + Py (x, y) (4)

This permits rewriting equation (1) as

D∇2 φ − v̄x
∂φ

∂x
− v̄y

∂φ

∂y
− kφ = Px

∂φ

∂x
+ Py

∂φ

∂y
(5)

The above differential equation can now be transformed into the following equivalent integral equation

φ (ξ) − D

∫
Γ

φ∗
∂φ

∂n
dΓ + D

∫
Γ

φ
∂φ∗

∂n
dΓ +

∫
Γ

φφ∗v̄n dΓ = −
∫
Ω

(
Px
∂φ

∂x
+ Py

∂φ

∂y

)
φ∗dΩ (6)

where v̄n = v̄.n, n is the unit outward normal vector and the dot stands for scalar product. In the above equa-

tion, φ∗ is the fundamental solution of the convection-diffusion-reaction equation with constant coefficients.

For two-dimensional problems, φ∗ is of the form

φ∗ (ξ, χ) =
1

2πD
e−( v̄.r2D )K0 (µr) (7)

where

µ =

[( v̄

2D

)2

+
k

D

] 1
2

(8)

in which ξ and χ are the source and field points, respectively, and r is the modulus of r, the distance vector

between the source and field points. The derivative of the fundamental solution with respect to the outward

normal direction is given by

∂φ∗

∂n
=

1

2πD
e−( v̄.r2D )

[
−µK1 (µr)

∂r

∂n
− v̄n

2D
K0 (µr)

]
(9)

In the above, K0 and K1 are Bessel functions of second kind, of orders zero and one, respectively (for

more details of the fundamental solution and its normal derivative, see [4, 6, 10]). The exponential term is

responsible for the inclusion of the correct amount of upwind into the formulation [7]. Eq.(6) is valid for

source points ξ inside the domain Ω. A similar expression can be obtained, by a limit analysis, for source

points ξ on the boundary Γ, in the form

c (ξ)φ (ξ)−D
∫
Γ

φ∗
∂φ

∂n
dΓ + D

∫
Γ

φ
∂φ∗

∂n
dΓ +

∫
Γ

φφ∗ v̄n dΓ = −
∫
Ω

(
Px
∂φ

∂x
+ Py

∂φ

∂y

)
φ∗dΩ (10)

in which c (ξ) is a function of the internal angle the boundary Γ makes at point ξ.

3



4. DRM formulation for steady-state convection-diffusion-reaction problem

In the present formulation, we concentrate on the implementation of the dual reciprocity formulation

DRM based on the fundamental solution to the steady-state convection-diffusion-reaction equation, where

the convective velocity is assumed to be variable and is split into two parts, constant and perturbation,

respectively. The basic idea is to expand the non-homogenous perturbation term on the right-hand side of

Eq.(5) in the form

Px
∂φ

∂x
+ Py

∂φ

∂y
=

M∑
k=1

fααk (11)

This series contains a sequence of known functions fk = fk (x, y), and a set of unknown coefficients αk.

Using this approximation, the domain integral in Eq.(10) can be approximated in the form∫
Ω

(
Px
∂φ

∂x
+ Py

∂φ

∂y

)
φ∗dΩ =

M∑
k=1

αk

∫
Ω

fkφ
∗dΩ (12)

The next step is to consider that, for each function fk, there exists a related function ψk which is a particular

solution of the equation

D∇2ψ − v̄x
∂ψ

∂x
− v̄y

∂ψ

∂y
− kψ = f (13)

Thus, the domain integral can be recast in the form∫
Ω

(
Px
∂φ

∂x
+ Py

∂φ

∂y

)
φ∗dΩ =

M∑
k=1

αk

∫
Ω

(
D∇2 ψk − v̄x

∂ψk
∂x
− v̄y

∂ψk
∂y
− kψk

)
φ∗dΩ (14)

Substituting Eq.(14) into (10), and utilising integration by parts in the domain integral of the resulting

equation, we finally obtain a boundary integral equation of the form

c (ξ)φ (ξ)−D
∫
Γ

φ∗
∂φ

∂n
dΓ + D

∫
Γ

φ
∂φ∗

∂n
dΓ +

∫
Γ

φφ∗ v̄n dΓ (15)

=

M∑
k=1

αk

c (ξ)ψk (ξ)− D

∫
Γ

φ∗
∂ψk
∂n

dΓ + D

∫
Γ

ψk
∂φ∗

∂n
dΓ +

∫
Γ

ψkφ
∗v̄ndΓ


5. Space discretisation of the 2D convection-diffusion-reaction model45

For the sake of simplicity in the presentation, this section will demonstrate the discretisation of the

problem. To discretise the spatial domain, boundary element formulations were employed. Eq.(15) can now

be re-written in discretised form in which the integrals over the boundary are approximated by a summation

of integrals over individual boundary elements, i.e.

ci φi −
N∑
j=1

D

∫
Γj

φ∗
∂φ

∂n
dΓ + D

N∑
j=1

∫
Γj

(
∂φ∗

∂n
+
v̄n
D
φ∗
)
φdΓ (16)
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=

M∑
k=1

αk

ci ψik (ξ)− D

N∑
j=1

∫
Γj

φ∗
∂ψk
∂n

dΓ +D

N∑
j=1

∫
Γj

(
∂φ∗

∂n
+
v̄n
D
φ∗
)
ψkdΓ


where the index i means the values at the source point ξ and N elements have been employed. The

functions φ, q = ∂φ/∂n, ψ and η = ∂ψ/∂n within each boundary element are approximated in this study

using constant elements. It should be remarked that functions ψ and η need not be approximated as they

are known functions for a specified set f . However, doing so will greatly improve the computer efficiency

of the technique with only a minor sacrifice in accuracy. Applying Eq.(16) to all boundary nodes using a

collocation technique results in the following system of equations

Hφ−Gq = (Hψ −Gη)α (17)

As shown in the above system, the same matrices H and G are used on both sides. Both ψ and η are

geometry-dependent square matrices (assuming, for simplicity, that the number of terms in expression (12)

is equal to the number of boundary nodes), and φ, q and α are vectors of nodal values. The next step in

the formulation is to find an expression for the unknown vector α. Applying Eq.(16) to all M nodes, it is

possible to write the resulting set of equations in the following matrix form,

Px
∂φ

∂x
+ Py

∂φ

∂y
= F α (18)

where Px and Py can be understood as two diagonal matrices with components Px (xi, yi) and Py (xi, yi),

respectively, while ∂φ
∂x and ∂φ

∂y are column vectors. Inverting expression (18), one arrives at

α = F−1

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
(19)

Substituting into Eq.(17),

Hφ−Gq = (Hψ −Gη) F−1

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
(20)

Defining a matrix S in the form

S = (Hψ −Gη) F−1 (21)

one can write Eq.(20) as

Hφ−Gq = S

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
(22)

Once functions fk are defined, matrix S can be established as this matrix depends on geometry only. Fur-

thermore, the coefficients of matrices Px and Py are also known. Therefore, there remains to be found an

expression relating the derivatives of φ to reduce Eq.(22) to a standard BEM form.
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6. Handling convective terms50

In this section, emphasis will be placed on convective terms. A mechanism must be established to relate

the nodal values of φ to the nodal values of its derivatives. The function-expansion approach [15] has been

implemented in this part of the work.

Assume that the function φ can be represented by

φ =

M∑
k=1

=k βk (23)

We now start by expanding the values of φ at an internal point by using expression (23). Differentiating it

with respect to x and y produces

∂φ

∂x
=

M∑
k=1

∂=k
∂x

βk and
∂φ

∂y
=

M∑
k=1

∂=k
∂y

βk (24)

Applying Eq.(23) at all M nodes, a set of equations is produced that can be represented in matrix form by

φ = = β (25)

with corresponding matrix equations for Eqs.(24) and (25) given as

∂φ

∂x
=
∂=
∂x
=−1 φ and

∂φ

∂y
=
∂=
∂y
=−1 φ (26)

Eq.(22) then takes the form

(H − P ) φ = Gq (27)

where

P = S

(
Px

∂=
∂x

+ Py
∂=
∂y

)
=−1 (28)

The coefficients of the perturbation matrix P are all geometry-dependent only. Therefore, the boundary

conditions can be implemented to Eq.(28) and the resulting system of algebraic equations solved by a direct55

or iterative scheme. It should mentioned that, normally the approximation of φ using constant boundary

element is accurate but for the normal derivatives is less accurate and has an oscillation at the edges of the

boundary which is typical for this kind of element mesh.

7. Choice of radial basis functions

In recent years, the theory of radial basis functions (RBFs) has undergone intensive research and en-60

joyed considerable success as a technique for interpolating multivariable data and functions. A radial basis

function, Ψ (x− xi) = ψ (‖x− xj‖) depends upon the separation distances of a sub set of data centres,

X ⊂ <n, {xj ∈ X, j = 1, 2, ..., N}. The distance, ‖x− xj‖, are usually taken to be the Euclidean metric,

although other metrics are possible (for more details see Golberg and Chen [16]). The type of RBF used

in the interpolation of the unknown variables normally plays an important role in determining the accuracy65
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of the DRM [17]. Partridge et al. [1] have shown that a variety of functions can in principle be used as

global interpolation functions fk. The approach used by Wrobel and DeFigueiredo [4] was based on practical

experience rather than formal mathematical analyses and motivated by a previous successful experience with

axisymmetric diffusion problems in which a similar approach was used [18]. In the present work, decision

has been made to follow [15] by starting with a simple form of the particular solution ψ and find the related70

expression for function f by substitution directly into Eq.(17). The resulting expressions are

ψ = r3,

η = 3 r [(x− xk) nx + (y − yk) ny ]

f = 9D r − 3 r [(x− xk) vx + (y − yk) vy ]− k r3

in which (xk, yk) and (x, y) are the coordinates of the kth boundary or internal point and a general point,

respectively. It is important to notice that the set of functions f produced depend not only on the distance75

r but also on the diffusivity D, velocity components vx and vy as well as the reaction rate k, therefore, it

will behave differently when diffusion or convection is the dominating process.

The most popular RBFs are labelled as: r2m−2 log r (generalised thin plate spline),
(
r2 + c2

)m/2
(gen-

eralised multiquadric) and e−β r (Gaussian) where m is an integer number and r = ‖x− xj‖. Duchon [19]

derived the thin plate splines (TPS) as an optimum solution to the interpolation problem in a certain Hilbert80

space via the construction of a reproducing kernel. It is interesting to observe that Duchon’s thin plate splines

function with m = 2 corresponds to the fundamental solution commonly used in the BEM technique to solve

biharmonic problems.

Another popular RBF for the DRM is the multiquadric (MQ). However, despite MQs excellent perfor-

mance, it contains a free parameter, c, often referred to as the shape parameter. When c is small the resulting85

interpolating surface is pulled tightly to the data points, forming a cone like basis functions. As c increases,

the peak of the cone gradually flatten. The multiquadric functions with values of m = 1 and c = 0 are often

referred to as conical functions and, with m = 3 and c = 0, as Duchon cubic. Even though TPS have been

considered optimal in interpolating multivariate functions, they do only converge linearly, Powell [20]. On

the other hand, the multiquadric (MQ) functions converge exponentially as shown by Madych and Nelson90

[21]. However, the tuning of the free parameter c can dramatically affect the quality of the solution obtained.

Increasing the value of c will lead to a flatter RBF. This will, in general, improve the rate of convergence

at the expense of increased numerical ill-conditioning of the resulting linear system [21]. Much effort has

been made to search for ideal shape parameter c when utilising the multiquadric radial basis function. This

is due to the lack of information on choosing the best shape parameter available in the literature, forcing95

the user having to make an ’ad-hoc’ decision. It is important to note that the value of the multiquadric

shape-parameter, c, has not been explicitly defined (see table(1)). After a process of investigation, the au-

thors found the optimal value of the shape parameter for the current problems to be c = 75. The radial
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Table 1: Radial Basis Functions

Name Function

multiquadric MQ
(
r2 + c2

)1/2
Thin Plate Spline TPS r2 log r

Cubic RBF r3

basis functions presented in table(1) have been examined in this paper. Thin-plate splines (TPS) and the

multiquadric are conditionally positive definite functions (for more details see [22]).100

8. Error indicators

The accuracy of numerical solutions is usually improved by mesh refinement, as in FDM, FVM and the

FEM. In our context there are two ways to present the solution convergence and accuracy, either by root

mean square error or using average relative error. Our goal here is to study the convergence rates to show

accuracy and the convergence of the proposed method for which results are reported.105

In order to estimate the simulation error throughout the numerical experiments, the root mean square

norm is utilised as shown below. It is based on the difference between the simulation results φnumer and the

analytical solution φexact as

RMS =

√√√√ 1

N

N∑
i=1

(φi,numer − φi,exact)2

φ2
i,exact

(29)

To obtain a more transparent measure of solution error, a well-known indicator has been used as an

average relative error which is defined as

err (φ) =
1

N

N∑
i=1

∣∣∣∣φi,numer − φi,exctφi,exct

∣∣∣∣ (30)

where i denotes a nodal value, φi,exact is the analytical solution, φi,numer is the numerical solution from the

boundary element analysis and N is the total number of boundary and internal nodes, was computed for

each analysis.

9. Numerical applications and discussions

The present section is concerned with the numerical application of the DRBEM for the solution of steady-110

state convection-diffusion-reaction problems with variable velocity. We shall examine several test examples

to assess the accuracy and the performance of the proposed method.
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9.1. Two-dimensional convection-diffusion-reaction problem over square region with mixed (Neumann-Dirichlet)

boundary conditions and linear variable velocity

This example, although one-dimensional, is treated here as a two-dimensional convection-diffusion-115

reaction problem with a variable velocity field in the x-direction. The velocity vx is a linear function of

x expressed as

vx (x) = k x+ c1

where

c1 = ln

(
φ1

φ0

)
− k

2

The problem geometry and discretisation are schematically described in fig.(1). The problem is modelled

as a square region with unit side length and mixed boundary conditions (Neumann-Dirichlet). There is no120

flux in the y-direction and the values φ0 = 300 and φ1 = 10 are specified at the faces x = 0 and x = 1,

respectively, with the diffusivity coefficient taking the value D = 1. The problem is discretised with 720

constant elements, 180 on each face, and 19 internal points. The exact solution of the problem is given by

φ = 300 e(
k
2 ) x2+c1 x

The plots of the variation of the concentration profile φ along the x-direction are presented in figures

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

vx (x) = k x+ c1

Domain

Boundary Node

Nodal Coordinate

Internal Point

Figure 1: Domain discretisation with boundary conditions and internal nodes of square region with linear velocity problem

(2) to (5) for the cases k = 1 to k = 100. For k = 1 the velocity vx varies from vx = −2.9012 for x = 1125

to vx = −3.9012 for x = 0 while for k = 5 the total velocity vx varies from vx = −0.9012 for x = 1 to

vx = −5.9012 when x = 0. It can be noticed that the agreement with the analytical solution is very good.

For the largest value of the reaction k = 100, the velocity vx varies between vx = 46.5988 for x = 1 and

vx = −53.4012 when x = 0. For all these cases the average velocity is v̄x = −3.401. It is obvious that, as

the velocity increases, the concentration profile distribution becomes steeper and more difficult to reproduce130

with numerical models. The maximum global Péclet number for this case study is 53.4012 for k = 100. The

first case study considered k = 1 and an average velocity v̄x = −3.901 for all nodes. The results of the
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Figure 2: Variation of concentration profile φ along face y = 0 and y = 1, with k = 1 using TPS-RBF: comparison between the

analytical (solid line) and numerical (circle points) solutions
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Figure 3: Variation of concentration profile φ along faces y = 0 and y = 1, with k = 5 using TPS-RBF: comparison between

the analytical (solid line) and numerical (circle points) solutions
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Figure 4: Variation of concentration profile φ along faces y = 0 and y = 1 with k = 20 using TPS-RBF: comparison between

the analytical (solid line) and numerical (circle points) solutions

analyses using the three RBFs are shown in Table (2). The TPS and MQ-RBFs yield the most accurate

results while the cubic-RBF is the least accurate. The relative errors for this test case using TPS are shown

in fig.(6) for k = 5. Moreover, another RMS error analysis has been done for different reaction values using135

TPS as shown in Table (3). The RMS error increases with high k, which produces higher values of the Péclet

number. The numerical evaluations of the modified Bessel functions of the second kind with zero and first

orders K0 and K1, respectively, are performed by using the Matlab built-in functions.

To assess the convergence of the boundary concentrations with mesh refinement, Table (4) presents the
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Figure 5: Variation of concentration profile φ along faces y = 0 and y = 1 with k = 100 using TPS-RBF: comparison between

the analytical (solid line) and numerical (circle points) solutions

Table 2: Results of convection-diffusion-reaction with average velocity v̄x = −3.901

x Cubic MQ TPS Analytical

0.0 300 300 300 300

0.105 215.263 201.341 201.374 200.270

0.205 153.027 135.00 134.984 137.696

0.305 108.764 90.564 90.545 95.624

0.405 77.457 61.158 61.139 67.075

0.505 55.282 41.832 41.815 47.522

0.605 39.532 29.189 29.174 34.007

0.705 28.321 20.843 20.932 24.580

0.805 20.307 15.580 15.572 17.945

0.905 14.460 12.105 12.101 13.233

1.0 10 10 10 10

Table 3: RMS error for convection-diffusion-reaction with different reaction k values

f = r2 log (r) , Problem 1

k = 1 k = 5 k = 20

RMS error in φ 0.0730 0.1611 0.7623

RMS results using TPS-RBF. The results indicate good convergence in the RMS norm.140

9.2. Two-dimensional convection-diffusion-reaction problem over a unit square channel with mixed (Neumann-

Dirichlet) boundary conditions and non-linear variable velocity field

In this second problem, the solution domain is taken to be the unit square Ω = (0, 1)× (0, 1) as described

in fig.(7). The boundary is discretised with 160 constant elements, 40 on each face, and 209 internal points

adopted. A uni-directional velocity field in the x-direction depending on the coordinate y was defined by145
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Figure 6: Relative error err (φ) at internal nodes for 2D convection-diffusion-reaction problem

Table 4: RMS norm of DRBEM for convection-diffusion-reaction problem with different meshes

RMS error norm in φ, f = r2 log (r) , Problem 1

Mesh size k = 1 k = 5 k = 10

20 0.1294 0.3171 0.3354

40 0.1143 0.2736 0.2814

80 0.0987 0.2314 0.2283

100 0.0943 0.2195 0.2131

200 0.0834 0.1899 0.1737

400 0.0765 0.1708 0.1470

720 0.0730 0.1611 0.1328

the expression

vx (y) = A (y −B)
2

The velocity field is now a second-order function of the y-coordinate, with A and B are defined as constants;

the values of the other coefficients are D = 1 and k = 0. The constant B defines the symmetry of the

velocity field with respect to the coordinate y. If B = 0.5, the velocity and the concentration profiles are

both symmetric. The analytical solution to this problem is given to be

φ = φ̄eA
1/3(A1/3 y (B− y

2 )+x)

with φ̄ = 300. The mixed boundary conditions (Neumann-Dirichlet) corresponding to the problems are

defined as

∂φ

∂n
= q = −300 A

2
3 B e

(
A

1
3

)
x
, y = 0 ; 0 ≤ x ≤ 1,

φ = 300 e
A

1
3

(
A

1
3 y (B− y

2 )+1
)
, x = 1; 0 ≤ y ≤ 1,
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Figure 7: Geometry, discretisation, internal points and boundary conditions for two-dimensional problem with uni-directional

velocity vx (y) and side lenght 1m

150

∂φ

∂n
= q = 300A

2
3 (B − 1) e

A
1
3

(
A

1
3 (B− 1

2 ) +x
)
, y = 1 ; 0 ≤ x ≤ 1,

φ = 300e
A

1
3

(
A

1
3 y (B− y

2 )
)
, x = 0 ; 0 ≤ y ≤ 1,

The average velocity v̄x = 0.0625 is adopted at every node. The simulation results using the three different

Table 5: Results of convection-diffusion-reaction with average velocity v̄x = 0.0625

x Cubic MQ TPS Analytical

0.15 348.505 352.465 348.438 348.550

0.25 385.185 390.817 385.120 385.207

0.35 425.715 432.487 425.651 425.720

0.45 470.507 477.825 470.416 470.493

0.55 520.009 527.268 519.860 519.975

0.65 574.718 581.322 574.491 574.662

0.75 635.188 640.580 634.902 635.100

0.85 702.301 705.738 701.765 701.894

0.95 775.985 777.993 775.891 775.712

RBFs are compared with the analytical solution in Table (5). It can be seen that the Cubic and TPS-RBFs

provide results of the same level of accuracy, while the MQ-RBF shows less accurate results in this case. The

RMS errors for different average velocities v̄x using TPS are shown in Table (6). Table (7) shows the RMS155

errors for different values of the parameter B using TPS, where it can be seen that the RMS is reduced as

the value of B decreases. Table (8) shows the RMS error norm for different average velocities and mesh
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Table 6: RMS error for convection-diffusion-reaction with different values of average velocity v̄x

f = r2 log (r) , Problem 2

v̄x = 0.0156 v̄x = 0.0313 v̄x = 0.25

RMS error in φ 0.0016 0.0054 0.0089

Table 7: RMS error for convection-diffusion-reaction with A = 0.5 and increasing values of B

f = r2 log (r) , Problem 2

B = 1 B = 0.5 B = 0.25

RMS error in φ 0.0225 0.0054 0.0016

Table 8: RMS norm of DRBEM for convection-diffusion-reaction problem with different spatial meshes

RMS error norm in φ, f = r2 log (r) , Problem 2

Mesh size v̄x = 0.0156 v̄x = 0.0313 v̄x = 0.25 v̄x = 0.5

20 0.0027 0.0054 0.0146 0.0244

40 0.0018 0.0043 0.0152 0.0247

80 0.0017 0.0041 0.0150 0.0241

200 0.0016 0.0041 0.0139 0.0225

400 0.00159 0.0040 0.0129 0.0211

720 0.00158 0.0040 0.0121 0.0201

sizes. It can be noticed that the errors decrease with mesh refinement. The relative error in RMS norm is

just 0.001 per cent for small values of the average velocity and 0.02% for large values of v̄x.

Table 9: Results for convection-diffusion-reaction problem using MQ-RBF with different values of the shape parameter c

x c=100 c=75 c=50 c=25 c=5 Analytical

0.05 320.825 321.342 322.438 326.857 322.725 319.348

0.3 413.973 415.212 417.832 428.255 416.120 410.051

0.5 505.360 506.786 509.797 521.762 507.024 500.838

0.7 615.378 616.557 619.052 629.031 617.490 611.727

0.9 749.037 749.577 750.727 755.392 751.101 747.162

Table 9 shows a comparison between five different values of the shape parameter c for MQ-RBF. It is160

clear that the results obtained are reasonable and laying at a similar level of accuracy, with slightly better

results when the parameter c = 75 or 100. From another point of view, as the MQ function is flattened, it

will be insensitive to the radial distance r, and the elements of matrix ψ become identical. Taking a very

high value of the shape parameter c generates collocation matrices which are poorly conditioned and require
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high-precision arithmetic to solve accurately. Using a relatively high non-dimensional shape parameter of165

75, the collocation matrices are sufficiently well conditioned to be solved using quad-precision arithmetic

(see [23, 24, 25] for more details on the shape parameter c).

Case (i): The symmetric case:

The first case is considered for which the computational domain is discretised into 200 constant elements

and 209 internal points, for which fig.(8) shows the variation of the concentration profile φ along the horizontal170

faces y = 0 and y = 1 for the case A = 0.5 and B = 0.5, compared to the analytical solution. Figures (9)

and (10) display the variation of the normal heat flux along the vertical faces x = 1 and x = 0, respectively,

using the same value of the parameters A and B, and compared to the analytical solution.
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Figure 8: Variation of concentration profile φ along faces y = 0 and y = 1 using TPS-RBF: comparison between the analytical

(solid line) and numerical (circle points) solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y-axis(m)

300

400

500

600

700

800

900

N
o

rm
a

l 
D

e
ri
v
a

ti
v
e

DRBEM

Analytical

Figure 9: Variation of normal flux q along face x = 1 using TPS-RBF: comparison between the analytical (solid line) and

numerical (circle points) solutions

Case (ii): Non-symmetric cases:

The second case is implemented using the same previous discretisation but with different values for the175

parameters A and B. Figure (11) shows the results for the concentration profile φ along the faces y = 0

and y = 1 for the case A = 0.2, B = 4. Figures (12) and (13) show the variation of the normal flux along

the vertical faces x = 0 and x = 1, respectively, for this case, compared to the analytical solution. Next,

the value of B is considered to be B = 0.4. Figure (14) shows the variation of the concentration φ along
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Figure 10: Variation of normal flux q along face x = 0 using TPS-RBF: comparison between the analytical (solid line) and

numerical (circle points) solutions
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Figure 11: Variation of concentration profile φ along faces y = 0 and y = 1 using TPS-RBF: comparison between the analytical

(solid line) and numerical (circle points) solutions
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Figure 12: Variation of normal flux q along face x = 0 using TPS-RBF: comparison between the analytical (solid line) and

numerical (circle points) solutions

the horizontal faces y = 0 and y = 1 for the case of A = 0.895, which presents an excellent agreement with180

the exact solution. Figures (15) and (16) show the distribution of the normal heat flux along the vertical

faces x = 0 and x = 1, respectively, in comparison with the analytical solution. The oscillations near the

boundaries are typical of the use of constant elements. Different scales are used in these figures due to the

difference in magnitude of the fluxes. The relative error for the present study is plotted in fig.(17), for the

case A = 0.25 and B = 0.25 with only 16 internal nodes and using TPS-RBF, which shows very accurate185
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Figure 13: Variation of normal flux q along face x = 1 using TPS-RBF: comparison between the analytical (solid line) and

numerical (circle points) solutions
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Figure 14: Variation of concentration profile φ along faces y = 0 and y = 1 using TPS-RBF: comparison between the analytical

(solid line) and numerical (circle points) solutions
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Figure 15: Variation of normal flux q along face x = 0 using TPS-RBF: comparison between the analytical (solid line) and

numerical (circle points) solutions

results even though using few internal nodes.

9.3. Two-dimensional convection-diffusion-reaction problem over a square-shaped body with mixed (Neumann-

Dirichlet) boundary conditions and non-linear variable velocity field

In the last example, the cross-section is considered to be square with unit side length. This case study

considers a uni-directional velocity field in the x-direction depending on the y-direction to take the following
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Figure 16: Variation of normal flux q along face x = 1 using TPS-RBF: comparison between the analytical (solid line) and

numerical (circle points) solutions
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Figure 17: Relative error err (φ) for 2D convection-diffusion-reaction problem at selected internal points

expression

vx (y) =
λ2

C2
(y −B)

2
(31)

with λ = k − C2
2 . The vy component is again equal to zero and consequently the equation to be solved

reduces to

D∇2φ− λ2

C2
(y −B)

2 ∂φ

∂x
− kφ = 0 (32)

subject to mixed boundary conditions (Neumann-Dirichlet) which can be defined as follows:

∂φ

∂n
= q = 300 λB e(C2x) , y = 0 ; 0 ≤ x ≤ 1,

190

φ = 300 e(
λ
2 y

2 −λB y+C2), x = 1; 0 ≤ y ≤ 1,

∂φ

∂n
= q = 300λ (1−B) eλ( ( 1

2−B) +C2x), y = 1 ; 0 ≤ x ≤ 1,

φ = 300 e(
λ
2 y

2 −λB y), x = 0 ; 0 ≤ y ≤ 1,
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A particular solution to the above equation is

φ = 300 exp

[
λ

2
y2 − λBy + C2x

]
(33)
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Figure 18: Domain discretisation of square-shaped body, internal points and boundary conditions with non-linear velocity

problem

Table 10: Results of convection-diffusion-reaction with average velocity v̄x = −1.8654

x Cubic MQ TPS Analytical

0.1 195.202 183.104 181.458 182.147

0.2 134.721 135.445 133.692 129.631

0.3 92.136 99.775 97.985 92.257

0.4 62.328 73.271 71.500 65.658

0.5 41.463 53.621 51.915 46.727

0.6 26.762 39.041 37.443 33.255

0.7 16.219 28.183 26.735 23.667

0.8 8.378 20.041 18.788 16.843

0.9 2.189 13.860 12.846 11.987

This example was studied for different average velocity values. The numerical solution when v̄x = −1.8654

is tabulated in Table (10), using the three RBFs. Once again, the best results are obtained with the TPS-

RBF. The value of the constant B defines the symmetry of the velocity field with respect to the coordinate

y. If B = 0.5 the velocity field and the concentration profiles are both symmetric. The value of the constant

C2 is defined as

C2 = ln

[
φ (1, 0)

φ (0, 0)

]
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Table 11: RMS error for convection-diffusion-reaction with increasing reaction k values

f = r2 log (r) , Problem 3

k = 5 k = 7.337 k = 10

RMS error in φ 0.2873 0.2422 0.3335

with the values φ (0, 0) = 300 and φ (1, 0) = 10. Figure (18) presents the problem geometry, discretisation

and internal nodes. The problem is discretised with number 160 constant elements, 40 on each face, and195

39 internal points. The RMS errors for different reaction values k using TPS-RBF are shown in Table(11).

The relative error at different points inside the domain with k = 9.724, B = 1.4222 and using TPS-RBF is

displayed fig.(19).
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Figure 19: Relative error err (φ) for 2D convection-diffusion-raection problem at selected internal nodes

Case(i): Non-symmetric Cases:

Figure (20) shows the concentration profile φ at the middle of channel, where the value of B was considered200

as B = 0.222 and the average velocity value, v̄x = −1.8654, with total velocity field vx = −1.8654 at y = 0

and vx = −22.9099 at y = 1, and k = 0.222. Figure (21) represents the concentration profile when k = 1
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Figure 20: Variation of concentration profile φ along the middle line of the computational domain using TPS-RBF: comparison

between analytical (solid line) and numerical (circle points) solutions
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along the bottom face y = 0 for the case B = 0.125 compared to the analytical solution. This gives velocity

values of vx = −0.5131 at y = 0 and vx = −25.1409 at y = 1. The maximum global Péclet number for

this case is Pé = 25. Figure (22) shows simulation and exact solutions utilising the value of B = 1.4222
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Figure 21: Variation of concentration profile φ along the bottom horizontal face using TPS-RBF: comparison between analytical

(solid line) and numerical (circle points) solutions

205

and k = 9.724. This gives velocity values of vx = −2.0225 at y = 0 and vx = −0.1782 at y = 1. Next,
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Figure 22: Variation of concentration profile φ along the bottom horizontal face using TPS-RBF: comparison between analytical

(solid line) and numerical (circle points) solutions
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Figure 23: Variation of concentration profile φ along the horizontal faces: comparison between analytical (solid line) and

numerical (circle points) solutions

fig.(23), shows a comparison between simulation and exact solutions by utilising k = 50. The value of B
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was considered as B = 1.6 to make the concentration φ and the velocity profiles highly non-symmetric. This

gives velocity values of vx = −1.1117 × 103 at y = 0 and vx = −156.334 at y = 1. Figures (24) and (25)

show the variation of the normal flux q along the vertical faces x = 1 and x = 0, respectively. It should
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Figure 24: Variation of normal flux q along the horizontal face x = 1: comparison between analytical (solid line) and numerical

(circle points) solutions
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Figure 25: Variation of normal flux q along the horizontal face x = 0: comparison between analytical (solid line) and numerical

(circle points) solutions

210

be stressed that the maximum global Péclet number is increased to Pé = 1.1117× 103, which is the highest

value in this test case. Next, the value of B was increased to B = 2, where the velocity vx = −212.178 at

y = 0 and vx = −53.0445 at y = 1, whereas the reaction value was increased to k = 25. The results using

TPS are in excellent agreement with the analytical solution, as shown in fig.(26). The maximum global

Péclet number in this case is Pé = 212.178. Figure (27) shows the variation of the normal flux q along the215

vertical face x = 1. It is seen that the visible oscillations near the edges are typical of the implementation of

constant boundary elements.

Case(ii): Symmetric case:

The last value of the parameter B was considered to be B = 0.5, where the velocity vx and the con-

centration profiles become symmetric. It is found that the DRBEM gives good results with reaction value220

k = 125 as displayed in fig.(28).
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Figure 26: Variation of concentration profile φ along the horizontal faces: comparison between analytical (solid line) and

numerical (circle points) solutions
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Figure 27: Variation of normal flux q along the vertical face x = 1: comparison between analytical (solid line) and numerical

(circle points) solutions
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Figure 28: Variation of concentration profile φ along the horizontal faces: comparison between analytical (solid line) and

numerical (circle points) solutions

10. Conclusions and discussions

In this article, a BEM formulation for two-dimensional steady-state convection-diffusion-reaction prob-

lems with spatial variable velocity field is presented, employing the fundamental solution of the corresponding

equation with constant coefficients and a dual reciprocity approximation of the perturbation velocity. The225

DRBEM is used to transform the domain integrals appearing in the BEM formulations into equivalent
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boundary integrals, thus retaining the boundary-only character of the standard BEM. A proposed approach

is implemented to treat the convective terms. Numerical applications are included to demonstrate the va-

lidity of the proposed technique, and its accuracy was evaluated by applying it to three tests with different

velocity fields. We can note a distinct advantage of the present approach, which demonstrates very good230

accuracy even for high reaction values which increase the Péclet number for the cases studied. It is obvious

that, as the velocity increases, the concentration distribution becomes steeper and more difficult to reproduce

with numerical models. However, all BEM solutions are still accurate for a high Péclet number Pé = 103.

We have made an extensive investigation for the last case studied by considering many different values of

the reaction coefficient k, up to k = 125. We derived and implemented three radial basis functions and tested235

them with different types of problems, and we have found that the thin-plate spline radial basis function

is the most accurate among these RBFs for our problems. It is, however, worth stressing that the small

visible oscillations of the normal fluxes at the vertical faces x = 0 and x = 1 in all test cases are common

and distinctive for constant boundary elements. Discretisation errors of the boundary elements solutions are

estimated using two different indicators to show the accuracy and effectiveness of the present method.240

Previous applications of the BEM to convection-diffusion problems have shown that the BEM appears

to be relatively free from oscillations and damping of the numerical solutions, which is typical of standard

FDM and FEM techniques. However, since the BEM formulation requires the evaluation of singular integrals,

oscillations may develop at high values of Pé if this integration is not properly carried out. Qiu et al. [6]

developed a numerical technique for all BEM at high values of Pé that isolates the singular integration245

problem and describe the measures taken and a scheme to optimise the integration. They also show that

for higher values of the Péclet number, the system matrix becomes more sparse and diagonally dominant.

Thus, powerful direct or iterative solvers can be implemented for an even increased efficiency.

The numerical techniques implemented in this paper can also be applied to transient problems, as dis-

cussed in [26].250
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