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Abstract. In this work we focus on the mode-I quasi-static crack propagation in 

adhesive joints or composite laminates. For this problems a number of different 

standards have been approved. The most widely used are based on the double 

cantilever beam (DCB) test and on linear elastic fracture mechanics (LEFM) but 

differ in some aspects of the testing procedure and the recommended data-reduction 

schemes. The applicability of these methods is still a matter of debate in the 

scientific community, particularly in the case of ductile interfaces. We revisit the 

accuracy of the most used standards and compare it with other methods based on 

either LEFM or J-integral theory. All the methods analysed in our work are based 

on either Euler-Bernoulli or Timoshenko beam theories. We present a number of 

numerical examples where we compare different expressions for fracture resistance 

obtained with different methods. The input for the analysis, which includes applied 

load, cross-head displacement and rotation, crack length and cohesive zone length, 

is obtained from the numerical model which simulates real experiments. In these 

simulations, we use a Timoshenko beam model with a bi-linear CZM, which allows 

us accurate comparison with analytical formulas for fracture resistance based on 

Euler-Bernoulli and Timoshenko beam theory. 

1 Introduction 

In recent years, the use of linear elastic fracture mechanics (LEFM) for the 
experimental determination of the fracture resistance during adhesive joint debonding or 
composite delamination in presence of `large-scale' fracture processes, has been 
seriously questioned. In general, it is widely accepted that “LEFM is not applicable to 
those specimens containing large fracture process zone around the delamination front” 
[1]. Instead, there is a general consensus that, in presence of large process zones, J-
integral theory [2] provides a more accurate framework to determine the fracture 
resistance [3].  

Because for the aforementioned types of problems, a very accurate characterisation 
of the fracture cannot be obtained using a one-parameter fracture-mechanics theory, the 
richer modelling framework of cohesive-zone models (CZMs) is an alternative that is 
usually considered [4]. In this work we will consider the critical energy release rate, ��, 
the critical value of the J integral, ��, and the area under the traction separation law Ω as 
candidates to characterise fracture resistance by a single energy value. Because, in the 
general case, Ω is the only parameter that can be considered as an interface property, we 
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will assess the accuracy of methods based on either �� or �� by evaluating how closely 
they predict Ω.  

When it comes to mode-I delamination or debonding, today we have many different 
standard procedures for determining the fracture resistance of adhesive joints and 
composite laminates [5], [6]. Due to its simple geometry and a rather simple testing 
procedure used, the double cantilever beam (DCB) is the most commonly used 
specimen in all the standards. All standards use analytical formulae to compute �� based 
on LEFM and simple beam theories (Euler-Bernoulli or Timoshenko), where it is 
assumed that the DCB arms are clamped at the crack tip. Furthermore, in order to 
compute ��, the measurement of the crack length, which is usually done optically by 
means of a travelling microscope or a high-resolution camera, is required. However, 
determining the exact position of the crack tip is extremely difficult and time-
consuming, and it can introduce significant uncertainty in the determination of ��. 
Although formulae for �� that do not require measurement of the crack length have been 
already proposed in the literature [7], [8], they do not take into account the difference 
between the actual crack length, �, and the equivalent crack length, ���, which is the 
length that makes simple beam deflection formulae valid for a measured pair of force 
and displacement.  

In this work we first discuss the difference between ��, �� and Ω in Section 2. Then, 
for the case of a DCB with prescribed displacement, in Section 3 we derive the correct 
formula for ��. Using the numerical data produced from ‘virtual’ experiments, the 
accuracy of different formulae for �� and �� is compared in Section 4. Finally, the most 
important conclusions are presented in Section 5. This work is a brief summary of [9], 
where a more detailed discussion about the J integral, the case of DCB with prescribed 
rotations and additional numerical comparisons can be found. 

2 Relationship between 	
, �
 and � 

Let us consider the case of a DCB specimen that is modelled as a 2D solid pinned in 
two points, subject to a monotonically increasing prescribed (opening) displacement, , 
on one of its pinned ends  as shown in Figure 1. An initial crack of length �� is assumed 
to be present in a plane of geometric, material and loading symmetry of the body so that 
crack propagates in pure mode I.   

 

 
Figure 1: Geometry of a DCB with prescribed displacement 

The interface of the DCB considered is modelled with the CZM shown in Figure 2(a) 
where the behaviour is linear elastic with progressive damage. As clarified in Figure 
2(a), �� and �� are the limit values of the relative displacement, �, at the interface, 
whereas ���� is the limit value of the contact traction �. It is very important to notice 
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that in a DCB new damage dissipation occurs only ahead of the crack tip on the part of 
the interface where �� < � ≤ ��. Once �� is reached all the energy, Ω, is dissipated 
(see Figure 2(b)). 

 

 
Figure 2: DCB with a bi-linear CZM with progressive failure: traction separation law for (a) a 

partially damaged point and (b) a fully damaged point, and (c) the associated structural response 

 
When the body with an initial crack �� reaches the force �� and the displacement �, 

which is the point at which � reaches �� at the initial crack tip, the triangle OAA'O 
represents the part of the external work stored as elastic energy, which in this case is the 
total potential energy Π�, whereas the part OAO (where OA is a curve and AO a straight 
line) is energy dissipated due to damage at the interface ahead of the crack tip, and will 
be here denoted by Π�.�. As soon as at the crack tip � = ��, the crack will start 
propagating if the prescribed displacement is further increased. In other words, when the 
prescribed displacement is � > �, the crack length will become �� + Δ�, while the 
force decreases from �� to ��. The potential energy stored at point B, Π�, is the area of 
the triangle OBB'O.  

The unloaded body from point B would not be the same as one with an initial crack 
equal to �� + Δ�, because the latter would have no damage developed ahead of the 
crack tip. The area OBO (where  OB is a curve and BO is a straight line), shaded in 
yellow in Figure 2(c), represents the energy dissipated ahead of the crack tip at point B 
when the linear elastic CZM with progressive failure is used, and is therefore denoted by 
Π�.�. Grey area in Figure 2(c) represents the energy dissipated on a newly created crack 
surface. In general, at all times during crack propagation the total (nonlinear) potential 
energy, Π!", can be written as 

 Π!" = Π + Π� (1) 

where, as discussed above, Π is the energy stored, while Π!" is the energy dissipated 
ahead of the crack tip. As shown in [9], we can derive the following relation: 
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or, for the case of an homogeneous material, where Ω = ��, 
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The above results show that the difference between �� and Ω, and between ��and �� 
for a homogeneous interface, is  not to be attributed to the size of the cohesive zone, but 
to the variation of the amount of energy already dissipated ahead of the crack tip during 
crack propagation. In other words, if the profile of the specific energy dissipated ahead 
of the crack tip remains unaltered during crack propagation, and therefore translates in a 
steady-state fashion together with the crack tip, then �� = �� = Ω. It is worth 
mentioning, that in [9] it has been shown that for a case of a non-homogeneous interface 
(which can be modelled as variable Ω over the interface), �� ≠ Ω. 

3 Determination of 	
 for a DCB with prescribed displacement 

 
We will assume that the DCB (as shown in Figure 1) is a 2D body undergoing an 

isothermal, quasi-static, rate-independent deformation process, where the length, width 
and depth of each arm are denoted by ,, - and ℎ, respectively, with ℎ ≪ ,. We will also 
assume that strains, displacements and rotations are sufficiently small so that a 
geometrically linear beam model is sufficiently effective. Because the behaviour is 
linear elastic with damage, using geometrically linear beam theories, the total potential 
energy is given by 

 Π0, �2 = 3 4
5  , (4) 

 
where � = �0, �2 is the reaction force.  

�,  and � can be related using formulae from simple beam theories, but we have to 
be aware that the crack length in these formulae is not the actual crack length �, but an 
equivalent crack length, which will be denoted by ���.6 or ���.7 to specify that Euler-
Bernoulli or Timoshenko beam theory is considered, respectively. Beam deflection 
formulae are based on the assumption that the arms of the DCB are clamped at the crack 
tip, but cross sections at the crack tip are normally characterised by both a displacement 
and a rotation as a result of the deformation of the interface and of the beam in front of 
the crack tip. Therefore, the equivalent crack length is defined as the length that the 
crack should have to make the formulae correct if the arms were really clamped at the 
crack tip, for given values of � and . 

For Euler-Bernoulli beam theory we have 

 ���.6 = 89 4 6:
5 3

;
 , (5) 

where <= is the bending stiffness of a single DCB arm. Because the total potential 
energy can be now expressed as 

 Π0, �2 = Π60, ���.60�22, (8) 
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we can derive  
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which can be written as  

 �� = ��6
)�?@.>

)� ,  (10) 

where 

 ��6 = 3A�?@.>A
% 6: . (11) 

The derivative 
*�?@.>

*�  in Equation (10) also defines how close to being steady state the 

crack propagation is. Therefore, for 
*�?@.>

*� = 1, we have �� = �� = Ω, which, as shown 

in [9], is the case for a DCB with prescribed rotations. Analogous procedure can be 
applied also for Timoshenko beam theory, as shown in [9]. 

4 Numerical Examples 

By using a DCB numerical model [10] consisting of Timoshenko beam finite 
elements with an interface with a bi-linear CZM (see Figure 2(a)), we created ‘virtual’ 
experimental data (�,  and �), which are then used in various formulae for �� and ��. In 
our numerical model Ω is a known input value. By keeping Ω constant and changing 
���� (and ��), we can obtain a range of behaviours at the interface, which vary from an 
extremely brittle one to a extremely ductile one (with a relatively large damage process 
zone). All the data used in the numerical examples are given in Tables 1 and 2, where < 
represents the Young’s modulus, C is Poisson’s ratio (shear stiffness is computed as D =

6
50$EF2) and GH is the shear correction coefficient. 

Table 1:  Geometric data used in the virtual experiments 

, ℎ - �� 
[mm] [mm] [mm] [mm] 
200 6 25 25 

 
Table 2:  Material data used in the virtual experiments 

< C GH Ω �I�J �K �0 
[GPa] [-] [-] [N/mm] [MPa] [mm] [mm] 

70 1/3 5/6 1 {7.5, 15, 30, 60, 120} 2Ω/�I�J 0.01 �� 
 
In Figure 3, values of ��6 (as defined in Equation (11)) and d���.6/d� are given for 

different values of ����. It can be noted that as ���� increases the behaviour at the 
interface becomes more brittle and the crack propagation becomes extremely close to 

being steady state. In the limit case (���� → ∞), 
*�?@.>

*� = 1 and ��6 = �� = Ω. 

However, even for the most ductile case (���� = 7.5 MPa), we can see that the crack 
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propagation is very close to being steady state and ��6 is indeed a very good 
approximation of Ω. Moreover, formula (11) for ��6 does not require the measurement 
of the crack length. 
 

 

Figure 3:  Values of (a) ��6/Ω and (b) d���.6/d� for different values of �I�J 

By multiplying ��6 and d���.6/d�, i.e. Figures 3(a) and 3(b), we get the actual value 
of ��. In Figure 4(a) we can see that the same values of �� are obtained regardless the 
beam theory used (EBT stands for Euler-Bernoulli, while TBT for Timoshenko beam 
theory). We can also see that as ���� → ∞, �� → Ω. In Figure 4(b), a comparison is 
made between different formulae for �� and ��, where, according to [9],  

 ��7 = 3A
% S $

T�U − 5 VW
3 X, (12) 

is the critical value of the J integral with shear deformability of the arms taken into 
account. Y4 represents the rotation of the DCB arm at the point where the displacement 
 is prescribed. For Euler-Bernoulli beam theory, ��6 is obtained by letting DZH → ∞ in 
Equation (12). It can be noted that, for Y4 obtained from a virtual experiment, Equation 
(12) for ��7 is the only formula capable of giving the input value of  Ω. ��[ and Ω[ are 
values of �� and Ω computed using the areas under the � −  diagram, as discussed in 
Section 2. We can appreciate that the accuracy of all formulas presented in Figure 4(b) 
is very high, considering that the behaviour of the interface is extremely ductile.  

5 Conclusions 

In this work, for a case of a mode-I delamination in a DCB we derived the 
relationship between the critical energy released rate, ��, the critical value of the J 
integral, ��, and the area under the traction-separation law of a CZM, Ω. We showed 
that, their difference is not to be attributed to the size of the damage process zone, but to 
how close to being steady state crack propagation is. As shown in Section 4, even for 
relatively large damage process zones, the difference between �� (which is derived from 
LEFM) and Ω is extremely small. Moreover, simple analytical formulae derived from 
LEFM and geometrically linear beam theories, namely ��6 and ��7, are very accurate 
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approximations of Ω that, unlike the formulae used in standards, do not require the 
measurement of the crack length. 

In [9], a detailed derivation of the relationship between ��, �� and Ω, derivation of the 
expressions for ��7, ��7 and ��6 can be found. Furthermore, the case of a DCB with 
prescribed rotations is investigated. Various numerical examples are presented where 
the accuracy of different expressions for �� and �� is assessed and compared with data-
reduction schemes from standards.  

 

Figure 4: Values of: (a) ��/Ω for different values of �I�J and (b) different fracture 
resistance parameters normalised with respect to Ω obtained for �I�J = 7.5 MPa 

Supplementary data 

Supplementary material related to this article can be found on-line at 
http://dx.doi.org/10.17633/rd.brunel.6194483. 
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