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Abstract 

Cold spraying (CS) has been widely explored over the last decade due to its low process temperature and limited 

thermal effect on spray materials. As a solid-state process, the inherent deficiencies of traditional thermal spraying 

such as oxidation, decomposition and grain growth are avoided. This article summarizes the research work on the 

fabrication of composites and nanostructured coatings by the promising CS process. After a brief introduction to CS 

and its deposition mechanisms, the preparation methods of spray powders are classified. Different methods are 

appropriate for particles of various properties, and the tendency is to design composite powders by combined 

methods in order to create coatings with specified properties. Then the co-deposition mechanism of composite 

particles as well as research findings on metal-metal, metal-ceramic and metal-intermetallic composite coatings are 

reviewed concerning the deposition characteristics, microstructure and its relation to properties. Moreover, CS has 

been used to deposit a variety of nanostructured materials, including metals, metal-ceramic composites, and even 

ceramics, retaining their nanocrystalline nature in the coating without grain growth or phase transformation. Finally, 

the potential applications of CS and issues to be addressed in coating deposition are discussed. 

Keywords: Cold spraying; Composite powder; Process parameters; Composite coatings; Nanostructured 

coatings 
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1. Introduction 

Cold spraying (CS) is a relatively new solid-state coating technique based on supersonic fluid dynamics and 

high-speed impact dynamics.1,2 The cold spray system basically consists of a compressed gas delivery system, a 

gas heater, a powder feeder, a supersonic de-Laval nozzle, a robot arm, and an operation system as schematized 

in Figure 1a.3 High-temperature compressed propulsive gas passes through a de-Laval nozzle, generating a 

supersonic flow inside and outside the nozzle. The sprayed powder particles commonly in a size range of 5-50 

μm are then realized in front of the nozzle inlet and accelerated to a high velocity ranging usually from 300 to 

1200 m/s by the supersonic jet and projected onto a substrate or a previously deposited coating in a nominally 

solid state,3,4 i.e. at a temperature well below the melting point of the powder. CS was originally developed in 

the mid-1980s at the Institute of Theoretical and Applied Mechanics of the Russian Academy of Science in 

Novosibirsk by Papyrin and his colleagues.4 They successfully deposited a wide range of pure metals, metal 

alloys, and composites onto a variety of substrate materials. A U.S. patent was issued in 1994, with a European 

one in 1995. Following these, CS has drawn worldwide attention, promting numereous experimental and 

theoretical studies, especially in the last decade.5-10  
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  Thermal spraying (TS) was primarily used to produce coatings or thin films before the invention of CS. 

However, as a fusion-based technology TS coatings gerneally suffer from weark coaing-substrate interfacial 

bonding, high porosity, high oxidation and possible negative impact on the underneath substrate.11 CS features 

higher particle velocity and lower processing temperature (see Figure 1b), producing a series of advantages 

compared to TS. For example, there are limited heat effects on substrates and spray powders. The oxidation, 

decomposition, phase transformation and grain growth of the spray materials or substrates can be avoided, 

allowing the deposition of phase transformation sensitive materials (e.g. nanostructured materials,12-14 

amorphous materials,15-19 and WC-Co20-22) and oxidation sensitive materials (e.g. Cu,23,24 Al,25,26 Ti1,27-30). In 

addition, the resulting residual stresses are normally relatively low and mostly compressive compared to TS,31,32 

which permits the deposition of thick coatings. Thus, considering its characteristics of high deposition efficiency 

(DE), high deposition rate, recyclable feedstock, together with no need for high temperature heat source, CS is 

an economical technique. 33-35 

As for the bonding mechanisms of metallic particles in CS, much work has been done in the last decade. The 

widely accepted hypothesis on the bonding process is that the high velocity impact of particles induces intensive 

plastic deformation at the interface enabling a bond to be formed, as shown in Figure 2, i.e. metallurgical or 

metallic bonding.36-46 This holds true even for the cases where the substrates are ceramics or glasses,47,48 where 

the deformation will totally occur within the particles. The second issue is that how strong the metallurgical 

bonding is or how significant is the contribution of metallurgical bonding to the final adhesion or cohesion, as 

compared to the so-called mechanical interlocking effect in TSed coatings.48-55 The third question concerns the 

possible localised interface melting and its effect on adhesion.56-61 The fourth issue is how submicron- or 

nano-sized ceramic particles are bonded in some circumstances.62,63 The literature contains brief reviews on 

these questions, e.g., by Hussain.37 Nevertheless, no matter which mechanism controls the bonding, there should 

be enough bonding strength to prevent the rebounding force, i.e., a critical velocity is needed to provide enough 

deformation and clean interfaces.24 Several important factors influence the critical velocity, i.e. materials 

properties,4,36,37 particle surface oxidation50,64-66 and particle/substrate temperature.39,64,67-73 The process 

parameters that influence these factors will affect the coating deposition.6,73-87  

Up to now, CS has been used to fabricate a variety of coatings, including mostly elemental metals and alloys, 

but also composite coatings, providing corrosion resistance,26,88-93 wear resistance21,94-96 and high temperature 

resistance,97-99 as well as functional coatings100-108 for industrial applications. The detailed microstructure 

evolution in CS coatings have been reviewed by some researchers, e.g. Lee and Kim109 and Borchers et al. 24. 
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Apart from coating deposition applications,110 additive manufacturing with CS (also called Cold Gas 

Dynamic Manufacturing (CGDM)111,112) has also been proposed based on its low processing temperature, high 

DE and controllable spray print. By this method, components can be fabricated with relatively complex shapes 

from dissimilar materials, while retaining the inherent materials properties, having great potential in rapid 

prototyping and component restoration, which may even overturn the traditional fabrication and restoration 

techniques. It is worth noting that the U.S. Department of Defense has approved a military standard 

(MIL-STD-3021) in 2008 on coating fabrication and repair of components,113 and that the U.S. Patent and 

Trademark Office has granted a number of patents, e.g. US20110129351A1 for the deposition of a protective 

strip onto the leading edge of a composite airfoil.114 Recently, CS has been added into the current additive 

manufacturing process families, as defined by the “Standard Terminology for Additive Manufacturing 

Technologies”, which is part of the ASTM F2792-12A standard series.115  

In the majority of industrial applications, coatings consisting of a single material may not fully meet difficult 

specifications such as high wear and corrosion resistance, excellent chemical stability, while composites, which 

combine the properties of different components, can be useful. In particular, compared to traditional composite 

fabrication technologies, such as powder metallurgy (PM), pressure infiltration,116 spark plasma sintering,117 in-situ 

reaction spraying and thermal spraying, friction stir processing,118 CS does not possess deleterious effects of 

interface reaction, oxidation, and under-utilization of the reinforcement phase119,120. Therefore, CS shows great 

potential in the fabrication of composite coatings. Furthermore, many techniques have been explored to fabricate 

nanocrystalline materials, e.g. inert gas condensation, precipitation from solution, mechanical alloying, rapid 

solidification, and crystallization from amorphous phases.121 However, it is very difficult to produce large-area 

nanocrystalline metallic films or large volume bulk nano metallic materials used in structures. The key point lies 

in avoiding grain growth and oxidation in order to retain the nanostructure of metallic materials, and CS does 

show great potential because of its low processing temperature. 

Since Shukla et al. first studied a CS nanostructured WC-10Co coating in the year 200020 and Ti-25 vol.% 

nano-hydroxyapatite (HA) composite coating in 2001,122 a number of articles on composite coatings, including 

metal-metal, metal-ceramic and metal-intermetallic composite coatings, as well as nanostructured coatings have 

been published. This paper mainly summarizes the important aspects related to the deposition characteristics of 

composite and nanostructured coatings by CS to enlighten its further applications. 

2. Composite feedstock  

Three methods can be used to deposit a composite coating. The first commonly used method is to prepare the 
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composite powders before spraying;123,124 the second one is to mix powders during spraying, e.g. using two or more 

powder feeders;125 the third one is to make the composites by post-spray treatment, e.g. heat treatment,97,98 laser 

surface remelting126 or friction stir processing127,128, possibly with additives. This section focuses on the pre-prepared 

composite powders for CS. 

It is a well-known fact that powder preparation is very important before spraying. Well-prepared powders 

contribute to the increase of deposition efficiency and favourable modification of coating microstructures. Besides, it 

is possible to develop high performance coatings through powder design. As per the CS process requirements on 

high deposition efficiency and stability of powder feeder, the size of powder is commonly in a size range of 5-50 

μm, while the powder morphology prefers round-shaped particles.  

Powder preparation for composite powders includes the selection of a matrix phase and a reinforcement phase, as 

well as the production methods. Generally speaking, mechanical blending, ball-milling, spray drying, agglomerating 

and sintering, coating or cladding are mainly employed to process composite powders. Different methods have their 

merits and downsides in terms of powder feeding, volume fraction and distribution of reinforcement particles, and 

interfacial bonding between the matrix and reinforcement in the coatings (see Table 1). The main considerations and 

challenges that need to be addressed in powder preparation are as follows. 

2.1 Mechanical blending 

Mechanical blending or mixing is a very simple process that has been widely used in previous studies due to its 

ease of operation, i.e., to put the powder mixture in a bottle and blend it manually or by a mixer. For instance, Wang 

et al.129 mechanically blended spherical Al (mean particle size of 10 μm) with Al2O3 (mean particle size of 20 μm) in 

a mixer to prepare Al-Al2O3 composite feedstock (Figure 3a). Yandouzi et al.130 mixed Al12Si (5-65 μm) and SiC 

(9-44 μm) powders with different ceramic contents (Figure 3b). Li et al.94 mechanically mixed gas atomized 

Al2319 powder (5-63 μm) with irregular TiN powder (10-45 μm) for CS, and Yu et al.76,131 also used this method 

to produce Al5056-SiC composite powder. Besides metal-ceramic mixtures, some researchers mixed two or 

more metals for some special applications, e.g. Al/Zn,132 Al/Cu,51 W/Cu,77 and Cu/Ni/Al133.  

Although it is relatively easy and very inexpensive, it cannot ensure adequate uniformity of the mixed powders. In 

addition, the differences in particle density, size or morphology between the mixed ingredients will result in various 

ranges of particle velocities, and thus various deposition efficiencies, which may lead to significant deviation of the 

coating composition from that of the starting powders.76,134 Furthermore, because the reinforcement is distruibted at 

the interfaces of the deformed matrix particles in this method, the distribution of reinforcement seems relatively 

nonuniform, especially when the matrix particles are relatively large. Nevertheless, if the matrix and reinforcement 
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particles are both fine, the distribution seems acceptable. 

2.2 Ball-milling 

The ball-milling method can avoid the shortcomings of mechanical blending as it is based on the cold-welding 

and crushing effects of the balls to refine the ingredient materials,135 producing finer and more homogeneous 

powders for mixtures. In this way, one can control the content, size and distribution of the two phases, and thus 

control the composition of the coatings. It is very important for use. 

It has been reported that ball-milling parameters including milling speed, time and atmosphere have a significant 

influence on powder morphology and coating quality.136 Li et al.119 milled Al5356 and TiN powder in a planetary 

ball mill (Figure 4a). Zhang et al.137 applied this method to produce Ni-Al composite powder with the atom ratio 

of 1:1. Yandouzi et al.138 ball-milled Al-12Si and B4C mixture in a liquid nitrogen atmosphere (cryomilled) 

(Figure 4b). Besides, Wang et al.,97 Kang et al.139 and Tria et al.140 also used the ball-milling method to produce 

Fe-Al, W-Cu and Ni-Ti composite powders, respectively. It is clear that all the ball-milled powders produce 

better mixtures and bonds, and thus a better coating. Li et al.119 deposited TiN reinforced Al5356 coatings with 

the feedstocks prepared with both ball-milling and mechanical-blending as shown in Figure 5. It was found that 

the ball-milled powder yields a denser and homogeneous coating with super fine TiN particles dispersed into the 

Al5356 matrix, leading to a higher microhardness due to the “constraint effect” of ceramic particulates on the 

deformation of the soft Al matrix. 

Recently, Luo et al.141 reported a novel ball-milling based method for powder preparation. They ball-milled 20 

vol.% Co powder and 80 vol.% WC-10Co powder to produce a core-shelled structured WC-Co powder as 

shown in Figure 6. The WC-10Co cores were covered with Co-rich WC-75Co shells of a thickness of 3-6 μm, in 

which the WC particle sizes are in a submicron range (Figure 6b). Therefore, the outer layer has higher 

deformability than the hard core, and the coating deposited by this kind of feedstock has improved fracture 

toughness compared to that by pure WC-10Co powder.141 

The ball-milling method is also an effective way to produce nanostructured feedstocks. In certain cases, the 

milling process is carried out in a liquid nitrogen atmosphere (called cryomilling) in order to lower the ductility 

of the metallic powders and to avoid the formation of small flakelets that are very difficult to feed. Li et al.142 

milled Fe and Si powders in a planetary mill in ethanol for various times to produce nanocrystalline powders as 

shown in Figure 7a. The Si peaks almost disappeared after 32h, at the the same time the broadening of Fe (110) 

peak could be clearly observed. This fact suggests the formation of a nanocrystalline structure in the milled 

powder as evidenced by the TEM analysis (Figure 7b). Wang et al.143 milled Fe and Al powders in a high-energy 
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ball mill in an argon atmosphere to produce composite powders with a composition corresponding to Fe60Al40 

(Figure 7c). Ajdelsztajn et al.144 cryomilled Al5083 powders with ball-to-powder weight ratio of 32:1 to prepare 

nanocrystalline powder (Figure 7d). Richer et al.,145 Ghelichi et al.146 and Zhang et al.147 prepared 

nanocrystalline Al-Mg alloy, Al7075and Al2009 feedstocks, respectively.  

Few papers have focused on the effect of the ball-milling parameters on the resultant powders and the CS 

coatings.142 Woo et al.148 used the high-energy ball-milling method to produce nano-diamond-reinforced 

aluminum matrix composites powders. They found that by altering the ball-to-powder ratio and milling time, the 

particle size and shape, Al crystal size and residual strain, the structural integrity and dispersion of nano-particle 

inclusions can be controlled as indicated in Figure 8, which is a crucial requirement for subsequent CS powder 

consolidation. 

In summary, ball milling is a good way to control the composition of the composite powder as well as that of 

the composite coating. The differences caused by the different ingredients will be eliminated because they will 

flight as “one” single composite particle. However, the mill parameters should be carefully selected to produce 

composite particles: (1) with a near-spherical shape, and (2) appropriate size range, for easy powder feeding. 

Sometimes, screening of milled powders should be conducted. This method is also cost-effective to make 

nanostructured powders, but careful control of milling process is necessary to produce particles of acceptable 

shapes, e.g in a liquid nitrogen atmosphere. 

2.3 Spray drying 

In spray drying, the ingredients are fully mixed with a liquid forming slurry, and then atomized and dried by 

hot gas, obtaining homogeneous composite powders with a near-spherical shape. Bakshi et al.149 applied this 

method to ensure a good dispersion of carbon nanotubes (CNTs) in a micron-sized gas-atomized Al-Si eutectic 

powder as shown in Figs. 9 (a, b). The spray-dried powders had a particle size of 57±21 μm, containing 5 wt.% 

CNTs. Kang et al.139 spray-dried Cu-W powder, which had already been ball-milled, to achieve better 

agglomerated W-Cu composite powder as shown in Figs. 9 (c, d), thus minimizing the effects of the large 

difference in density between Cu (8.96 g/cm3) and W (19.3 g/cm3), and ensuring homogeneous distribution of W 

in the CS W-Cu composite.  

In addition, nano-particles normally need an agglomeration treatment before CS in order to form micron-sized 

particles, because it is very difficult to feed small particles, and they do not possess enough inertia to penetrate 

the bow shocks zone.21,150 This method has also been used to produce micron-sized particles for conventional 

powder feeders in thermal spraying. Hodder et al.151 agglomerated 20 nm Al2O3 powder to form porous particles 
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with a size range from 2 to 10 μm as shown in Figure 10a, then mechanically mixed them with pure Al at various 

weight ratios to form metal-ceramic composite feedstocks. Phani et al.152 agglomerated ball-milled 

nanocrystalline Cu-Al2O3 powder to a size range of 22-45 μm for CS as shown in Figure 10b. Kim et al.153,154 

used an agglomerated nano-WC-12%Co powder for CS as shown in Figure 10c. The powder after agglomeration 

is relatively spherical and compact, and the size of WC is in a range of 100-200 nm. Similarly, Yandouzi et al.155 

also deposited nanocrystalline WC-15Co coatings with a feedstock prepared by spray drying, but the coating 

quality is less than that by the sintered WC-Co powders.  

In summary, spray drying is easy to produce homogeneous composite powders with a near-spherical shape 

ready for feeding, especially with nano-particles. However, it is worth to note that the used organic solvents may 

influence the hardness and wear resistance of the resultant coatings.156 

2.4 Agglomerating and sintering 

Powders made by spray drying usually have poor cohesion strength, requiring a post sintering treatment to 

avoid this defect. This method is mainly used in the fabrication of cermet powders for TS, e.g. WC-Co and 

Cr3C2-NiCr. The agglomerated and sintered powders usually present a spherical morphology with high volume 

fraction of micron-sized carbide particles embedded in the metallic Co binder (Figure 11a).155-157 For example, 

Wolfe et al.75 used a Cr3C2-25 wt.% NiCr powder prepared by agglomerating and sintering for CS as shown in 

Figure 11b. 

The agglomerating and sintering method can also be used for nano-WC-Co powders. Li et al.158,159 

agglomerated nano-sized WC with Co, which was then sintered. The powder produced had a size range from 5 

to 44 μm, with the WC grain size in the range of 50-500 nm as shown in Figure 12.  

In summary, besides the broader use in TS, agglomerating and sintering are very useful in making appropriate 

CS powders with spherical shapes and suitable size range. However, the production cost is a little high. In 

addition, this method has mainly been used in producing cermet powders. It would be very helpful if this 

method is used to produce other types of compsite powders. 

2.5 Coating or cladding 

Apart from the above commonly used methods, coating (or cladding) is also an effective way to produce 

composite powders. Generally, one metal is coated on a hard phase. By regulating the thickness of the coated layer, 

one can obtain powders with various volume fractions of the hard phase, and thus depositing a coating with a high 

and controlled volume fraction of the hard phase. Li et al.160,161 employed a Ni-coated Al2O3 powder produced by the 

hydrothermal hydrogen reduction method in order to increase the volume fraction of ceramic particles in the 
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deposited composite coating as shown in Figure 13a. The alumina particles are cladded with Ni particulates with a 

thickness of about 10-20 μm, thus the volume fraction of alumina in the coating can reach values as high as 29%.160 

Feng et al.162 deposited Ni coating on B4C particles by chemical vapor deposition (CVD) in order to prevent B4C 

fragmentation and promote B4C adhesion as shown in Figure 13b. Other combinations include Ni-coated 

diamond163 mixed with bronze and Ti-coated diamond mixed with Fe164, Cu-coated diamond mixed with Cu,165 to 

avoid the fracture of diamond particles and decrease the difference in mass between diamond and metallic particles 

at the same time. However, there may be a problem that the optimal thickness of the soft clad layer should be thick 

enough to successfully bond the hard phase but not too thick to lower the coating hardness.166 

This method was originally used for TS powders. If it is used for CS, certain adjusting of the process is necessary 

to yield a suitable coat to optimize the coating properties. In addition, it is difficult to generate very fine particles, 

which is expected for particle acceleration in CS. Again, the cost of this method is relatively high. 

2.6 Other methods 

It should be noted that the combination of different powder preparation methods might be useful in powder design, 

and thus coating design. Kim et al.167 produced TiB2-43 vol.%Cu nano-powders containing TiB2 particles 50-100 

nm in size as shown in Figure 14a, which was in-situ produced in a copper matrix using high-energy ball-milling of 

Ti, B and powders and self-propagating high-temperature synthesis. Yang et al.168 designed a bi-modal WC-12Co 

powder as shown in Figure 14b. The fabrication procedure uses at the beginning high-energy ball-milling of 

conventional WC-Co and nano WC particles, followed by sintering and crashing, then annealing at 1000°C in a 

hydrogen atmosphere to further modify the feedstock, producing a powder with both high hardness and high fracture 

toughness. Other methods, e.g. spray drying and simple mechanical blending,149 crushed grinding and sintering75 

casting and crushing156, wet chemically synthesizing and agglomerating,169 all aim at acquiring a homogeneous 

feedstock and enhancing the deposition efficiency of the hard reinforcement phase. However, these combined 

methods will inevitably increase the cost. 

In summary, a well-prepared powder would be beneficial to the tailoring of coating microstructure and 

properties. However, different methods have various pros and cons as summarized in Table 1. Even with 

combined methods, careful control of the powders is necessary.  

3. Co-deposition behavior and mechanism of metal-reinforcement consolidation 

3.1 Experimental work 

In the case of composite powders, their deposition behavior is different from that of the deposition of metals as the 

reinforcement particles hardly deform upon impacting. The soft metal phase deforms significantly, acting as matrix, 

while the hard phase (hard metal or ceramic) embeds in the matrix, acting as reinforcement. An interesting 
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experiment was performed by Shkodkin et al.85, where they sprayed pure Al on a steel substrate in one pass and 

simutaneously sprayed pure ceramic particles also in one pass but in a cross way with Al. It was found that a 

smooth thin Al layer was developed at the Al particle jet line, and steel erosion was found at the ceramic particle 

jet line, while the coating thickness increased linearly at their intersection position as shown in Figure 15a. This 

is the so-called “co-deposition”. They attributed this interesting fact to the ‘surface activation’ effect of ceramic 

particles, i.e., the erosion effect of hard ceramics results in an increased substrate roughness and a clean active 

surface, which promotes the deposition of Al particles as indicated in Figure 15b. Coatings can only be seen at 

the left side, which had been gritted beforehand.85 Lee et al.170,171 reported that it is easier to deposit a ceramic-soft 

metal (Al, Cu) mixture than pure Al or Cu metal or pure ceramic in low-pressure CS as shown in Figure 16. It 

should be pointed out that this is possibly true for low-pressure CS (with low DE), but not necessarily the case for 

high-pressure CS (with high DE). The thicknesses of pure Al and pure SiC coatings are about 30-40 μm and 4 μm, 

respectively, while that of composite coating can be as high as 80-100 μm under the same spray conditions. This 

fact is due to the addition of hard ceramic particles that produce many craters at the substrate surface before Al 

deposition. This is beneficial to Al adhesion, and the binder effect of soft metal in turn promotes the deposition of 

SiC, similar to the observation by Shkodkin et al.85. Grigoriev et al.166 and Sova et al.73,82,83 further pointed out 

that the addition of ceramics can lower the critical velocity for pure metals, and consequently “critical” 

temperature (the minimum gas stagnation temperature at which particles begin to adhere) necessary for spraying 

these metals, and the deposition efficiency also increases at the same time as indicated in Figure 17.166 A small 

fraction of ceramic powders (Al2O3, SiC) in the feedstock does produce a strong activation effect on the 

substrate surface and increases the deposition efficiency of the metal component in the mixture compared to 

spraying of pure metals. While a too large fraction of ceramic particles considerably hinders coating deposition 

because their erosion effect exceeds their activation effect.73,82 

For the activation mechanism of ceramics, Grigoriev et al.166 further identified two mechanisms: (1) ceramic 

particles increase the substrate roughness, and (2) clean the oxide films from the substrate surface increasing 

their chemical/metallurgical activity as shown in Figure 18. They also proposed (3) the possible interactive effect 

of metal and ceramic particles during flight under a very high powder flow rate, which cleans away oxide films 

on the surface of metal particles and increases chemical/metallurgical activity, though this is not supported by 

experimental evidence. The traditional grit blasting is efficient in removing oxide films, but the surface 

morphology produced is possibly not optimal as compared to the in-situ activation with ceramic particles. Other 

approaches such as combination of ablation and laser heating do provide optimum surface topography and 
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improve metallurgical activity, promoting intimate bonding between the coating and substrate.166,172 

The deposition process mainly consists of the impact between metal and ceramic particles, the deformation of 

metal particles and the tamping effect of ceramic particles,85,88,129,173,174 so the co-deposition behavior between 

metal and ceramic phases can increase coating deposition efficiency and bonding strength.91,129,175 However, the 

collision between ceramic particles at higher ceramic contents will become predominant and result in decreased 

deposition efficiency, since the deposition will still depend on the ductile metal due to the poor deformability of 

ceramic particles as shown in Figure 19.76,85,88,177-181 It is worth noting that the deposition efficiency increased in 

all cases with temperature, though the maximum deposition efficiency achieved was always for a ceramic 

content of about 30% for each temperature.85 The mechanism responsible for this needs further exploration. 

Additionally, it was found that the addition of hard phase (hard metal or ceramic) in the powder mixture can 

lower coating porosity and improve coating hardness due to their tamping effect during deposition as the extra 

kinetic energy of the hard phase promotes the deformation of the metal particles.137,182-184 The coating hardness 

increase is due to the increased strain hardening effect as well as the strengthening effect of ceramics. The 

microhardness of the as-sprayed TiN-reinforced composite coatings, as shown in Figure 20,185 decreases 

remarkably after heat-treatment at different temperatures for 2h due to recovery and/or recrystallization, but is 

still higher than that of pure Al coating. This fact clearly indicates that the uniformly dispersed hard particles 

significantly strengthen the matrix. 

Moreover, the presence of hard phase allows the working gas to reach high temperatures without nozzle 

clogging or blocking, which in consequence improves the coating compactness as it increases particle 

deformation and bonding due to the thermal softening effect at elevated temperatures.182,183,186 The adhesion 

strength between the coating and the substrate as well as the cohesion strength of the coating itself can be 

increased to a certain degree as shown in Figure 21. The adhesion strength is mostly determined by the bond 

between metallic particles and substrate,88 while the cohesion strength depends on the scale of deformation as 

well as the intimate contact area of metallic particles in the coating.131 The mechanical interlocking between 

ceramics and deformed metallic particles or the substrate can also affect in a positive way the bonding strength 

(Figure 21(a)). However, an excessively increased number of ceramic particles can decrease the contact area 

between the deformed particles, and thus the cohesion strength will decrease at the same time as shown in 

Figure 21(b). The coating shear strength is affected in a similar way.129 

Recently, to identify the strengthening mechanisms of hard particles in CSed composites, Huang and Li187 

designed an experimental method to qualitatively calculate the proportions of different strengthening effects on 
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the microhardness as shown in Figure 22. By comparing the microhardness of the as-sprayed and heat-treated 

TiNp/Al5356 coatings deposited with different TiN fractions (Figure 22a), two strengthening mechanisms of 

TiN particles in composite coatings were identified, i.e. the strain-hardening effect of TiN particles tamping on 

the Al5356 matrix and the dispersion strengthening effect of uniformly dispersed TiN particles (Figure 22b, also 

see Figure 20). The dispersion strengthening effect of TiN particles plays a greater role in microhardness 

increment than the strain-hardening effect of TiN tamping the Al5356 matrix. In addition, with the increase of 

TiN fraction in the coating, the microhardness increment induced by both effects rise. High resolution TEM 

analysis indicated that an intimate contact is formed at the TiNp/Al5356 interface. However, some cracks and 

pores around the TiN particle can be found at the interface, and the bonding is still relatively weak.187 

3.2 Simulation work 

Bearing in mind the above findings, Assadi et al.188 and Yu et al.184 tried to understand some important aspects 

during the depositon of composite/inhomogernous particles by numerical simulations. Although it is just on the 

beginning, some results are interesting. Assadi et al.188 found that for a hard-core/soft-shell particle (i.e., a 

ceramic core coated by a metal layer), as shown in Figure 23, the shell thickness had some influence on particle 

deposition. The rupture of the shell and detachment of the hard core becomes evident when the shell thickness is 

decreased from 2 to 1 µm. By further decreasing the shell thickness to 0.5 µm, there is also a jump in the 

maximum stress level. Since the core does not deform plastically, the same amount of kinetic energy must be 

dissipated via plastic deformation of the shell, regardless of the shell thickness. This means that for a smaller 

shell thickness, the deformation work would be higher. A higher deformation could in turn result in rupture and 

detachment, especially for complex deformation patterns as brought about by inhomogeneous material 

properties.  

Yu et al.184 also found the similar result, as shown in Figure 24. The plastic deformation of the Al5056 

particles was increased due to the non-deformation of In718 particle. In other words, all the kinetic energy of the 

In718 particle is transferred as the additional deformation of the neighboring Al5056 particles. Thus, it is 

understandable that the addition of In718 improves the compactness of the Al5056 coating as the experiment 

shows.184  

To better understand the underlying mechanism, a better simulation model and smart procedure are necessary.  

4. Composite coatings  

Composite coatings produced by CS can be either of metal-metal, of metal-ceramic, or of metal-intermetallic type. 

The research findings on the composite coating microstructure and properties are accordingly summarized in term of 
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these three types, rather than the elemental materials. 

4.1 Metal-metal composite coatings 

The metal-metal composite coatings are mainly applied in the circumstances that normally need a high thermal 

conductivity, where corrosion resistance is required, or in sputtering targets. Examples follow:  

(1) Heat sinks in electronic packages require high conductivity and low coefficient of thermal expansion, making 

the W-Cu composite a good candidate.139 

(2) The addition of Al in Zn coatings can increase greatly the coating lifetime when used as a sacrificial layer for 

protecting the substrate materials from corrosion.90,189 

(3) A Ni-Cr composite can be used as oxidation resistant coating.99 

(4) A Cu-In composite can be used as a sputtering target.190 

(5) A Cu-Cr coating can be used as an electrical contact material for its excellent electrical conductivity, high 

breaking current capability, and high resistance to electric arc corrosion and surface fusion welding.191 

CS can deposit blended elemental metal powders with two or more components to produce metal-metal 

composite coatings with a dense structure, in a relatively easier and economic way compared to thermal 

spraying.139,192 Further to these, there is no reaction or phase transformation during the CS process, and the deposited 

materials can be easily machined to the expected shapes before forming intermetallic compounds via post-spray heat 

treatment, and preserving the functional integrity of each component.90,192 For example, during CS Al/Zn mixture, 

severely deformed Al particles act as a dense matrix phase, while the slightly deformed Zn particles are 

homogeneously distributed in the Al matrix.193 Other articles have focused on various combinations, e.g. 

Ti-Al,192 Fe-Al,97 W-Cu,139 Ni-Al,98,195,196 Cu-Cr,191 Al-Co-Ce,194 Ni-Ti,140 and even bronze-quasicrystal 

(AlCuFeB)197. Typical cross sections of metal-metal composite coatings are shown in Figure 25. It is clear that 

one material is embedded in or surrounded by the other one, forming a compact structure with limited porosity 

and uniformly distributed hard particles, indicating the dense feature of CS coatings. 

Compared to traditional processing methods, metal-metal composite coatings made with CS may possess 

excellent corrosion and oxidation resistance because of the dense structure. For example, Bala et al.99 deposited 

Ni-20Cr and Ni-50Cr coatings on boiler steels with CS, where the coatings showed a dense microstructure with 

porosity less than 1.9%. The coatings also showed higher hardness than the substrate steel without discernible 

oxidation. High temperature oxidation tests at 900°C showed that Ni-20Cr and Ni-50Cr coatings reduced the weight 

gain of the steel by 84% and 93%, respectively. They also found that the Ni-20Cr coating had excellent hot corrosion 

resistance in a Na2SO4-60%V2O5 environment at 900°C, reducing the weight gain of the steel by 87.2%.93 The 
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dense, strongly adhered coatings block the penetration of corrosive species towards the substrate, and lower the 

corrosion rate of substrate.198,199 Zhao et al.90 used induction or laser to remelt the surface of a CS Zn-Al-Si 

composite coating. A protecting surface layer with gradient Zn concentration was formed with a gradient 

electrochemical potential, providing more effective protection from corrosion than a pure coating. Li et al.189 

reported that the self-corrosion rate of CS Zn-50Al coating is lower than that of a Zn coating, thus providing a 

better protection for steel.  

The other properties, e.g. electricity, are also increased. Kang et al.139 deposited the W-Cu mixture on a carbon 

steel substrate with CS and plasma spraying. There was no oxidation of Cu in the CS coating, while that 

produced with plasma spraying had a high concentration of copper oxides. Wu et al.191 fabricated the Cu-15%Cr 

coating with porosity, hardness and electrical resistivity of 0.24±0.04%, 232±7 HV, and 71.5±0.7%IACS, 

respectively, which are superior to those of the composites prepared with explosive compaction and meet 

industrial standards. Rolland et al.101 deposited an Ag-30%Ni composite coating for electrical contacts, and 

durablity testing in industrial facilities showed that the erosion of CS contacts is lower than conventional PM 

ones.  

4.2 Metal-ceramic composite coating 

4.2.1 General aspects 

Particle reinforced metal matrix composites (PRMMCs) combine the properties of metals (high strength and 

toughness) with those of ceramics (excellent wear resistance, corrosion resistance and chemical stability), 

increasing the service life of components. The preparation of PRMMCs has become one of research hot topics. 

However, it is difficult to fabricate high-performance PRMMC by conventional means, especially those with 

high volume fraction of ceramics. CS showed great potential in producing MMC coatings with metal matrices, 

such as Al and its alloys,76,88,894,95,119,120,127,129,131,138,179,180,200 Ni and its alloys91,75,160-162,201 and Cu based  

composites,153,167,202 cermets22,157,203 and other metal-ceramic coatings. The composite coatings are compact, 

have high microhardness and bonding strength, and are superior or comparable to traditional thermal sprayed 

(TSed) coatings.  

Considering the high temperature in TS, it is not suitable for depositing metallic powders containing 

oxidization sensitive or phase transformation sensitive components. Here we take WC-Co for example. WC-Co 

coatings are widely used in wear resistant applications. The hard WC particles form the major wear resistant 

constituent, while the Co binder provides toughness.155 Thermal spraying of WC-Co coatings will inevitably 

generate the brittle η phase and causedecarburization of WC, which severely affect their hardness and wear 
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resistance.20,204 A simple comparasion on the WC-Co coatings deposited by both CS and TS is made (Table 2), 

which is based on the work by Couto et al.22,157 205,206-209 The WC-xCo coatings fabricated by CS maintained the 

original phases of the particles, while the counterparts by high velocity oxy-fuel spraying (HVOF) or high 

velocity air-fuel spraying (HVAF) experienced decarbonization and formed hard brittle W2C, Co6W6C and 

Co3W3C phases, which cause the coatings to possess a higher hardness but lower toughness. However, the CS 

coatings showed lower deposition efficiency and adhesion strength. The wear rate is in the same magnitude but 

the volume loss is much lower than that by HVOF or HVAF, which suggests an increased wear resistance. 

Moreover, the corrosion resistance of coatings by CS is increased by 8-37% than that by HVOF or HVAF due to 

its dense microstructure.22,157,205,206,210 Thus, apart from the low deposition efficiency, the coating properties by 

CS seem better than those by HVOF or HVAF. 

4.2.2 Microstructure and mechanical properties 

Typical cross-sections of a few CS metal-ceramic composite coatings are shown in Figure 26. All the coatings 

present a dense microstructure. The soft metals deform severely acting as matrix, while the ceramic particles 

remain undeformed acting as reinforcement. As shown in Figure 26d, an intimate interface was formed between 

Al and Al2O3, and severe plastic deformation of Al led to grain refinement, while no trace of deformation was 

observed at the Al2O3 side.211 Normally, the tamping effect of hard ceramics promotes the deformation of metal 

phase and enhances the coating desity and hardness.  

Tables 3 and 4 summarize corrosion and wear behaviors of CS composite coatings. From Table 3, it can be 

concluded that the addition of ceramics has no negative effect on the coating corrosion behavior, e.g. the 

corrosion resistance of Al-Al2O3 coatings is comparable to that of pure Al coating88 or bulk Al alloys95, and is 

independent of the ceramic content.95,179,200 For CS coatings, two factors will influence their corrosion behavior, 

the coating porosity and residual stresses.212 The reported increased corrosion resistance of the composite 

coating is due to the increased coating compactness.182,183 The addition of hard ceramics allows using a higher 

gas preheating temperature with no clogging, which increases the softening effect as well as the tamping effect 

of ceramics to produce compact structures.182,183 ,186 Moreover, post spray heat treatment (PSHT) can also 

increase corrosion resistance by relieving residual stresses, the elimination of defects through recovery and 

recrystallization, and the reduction of voids by rearranging grains.183,186,212 The wear performance of these 

composites, as indicated in Table 4, is improved with the addition of ceramic particles. The increased coating 

hardness as well as the effect of third-body abrasion by ceramic particles may decrease the coefficient of friction 

(COF) significantly and reduce the wear rate by an order of magnitude.22,94,119,160,213,214 as shown in Figure 
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27.120,140 The decreased COF is becuase that the ceramic particles in the worn track change the wear mode from 

adhesion to abrasion.95,181 The separated ceramic particles mix with the soft surface forming a strain-hardened 

layer, which protects the underlying coating and leads to the decreased wear rate.213-215 Nevertheless, there are 

exceptions, for example, Triantou et al.216 reported that for CS Cu-A12O3, the COF increased with increasing the 

content of A12O3. However, the wear rate decreased because the plastically deformed Cu and its oxides formed a 

protective layer. Thus, the effect of ceramics on COF and wear rate is material dependent. Typical wear surfaces 

of pure coating and composite coating are shown in Figure 28. The narrower worn track on the composite 

coating than the corresponding pure coating indicated that the addition of hard ceramics increases the wear 

resistance significantly. Furthermore, Li et al.161 and Xiao et al.202 found that the wear mechanism of coatings 

depends on ambient temperature. Sevillano et al.201 found that the CS Ni-Al2O3 coating exhibits good oxidation 

resistance even at 520°C, and Heimann et al.217 reported a similar finding for Al-Al2O3 composite. 

The feedstocks for metal-ceramic composite coatings are mostly prepared with mechanical blending. Figure 

29 summarizes the contents of ceramics in the mechanically blended feedstocks and their volume fractions in 

the final coatings. The slopes of three dotted lines in Figure 29 are 1, 0.7 and 0.3, which correspond to the 

percentages of ceramics in the coating to that in the feedstock are 100%, 70% and 30%, respectively. We gave 

these values based on the observation that the content of SiC in the deposit is mainly 70-90% of that in the 

feedstock, while the value for Al2O3 is 30-70% with most contents of about 50%, giving a relative deposition 

efficiency of SiC higher than Al2O3, except for the case of Al-12Si-SiC coating. It is also clear that the content 

of ceramics in the composite is generally lower than that in the feedstock because of their relatively different 

deposition efficiencies. However, at a low concentration, the fraction of ceramics in the coating may be higher 

than that in the feedstock due to the relavtiely high deposition efficiency of the reinforcement phase.176 It should 

be noted that the Al-TiN coating has the highest deposition efficiency with the comparable TiN retaining in the 

coating (even more in other powder blends94). These facts are possibly because (1) the different densities of TiN, 

Al2O3 and SiC of 5.2g/cm3, 3.9g/cm3 and 3.2g/cm3, respectively, compared to the density of Al alloys, (2) the 

different relative deposition efficiencies of various materials in CS.65 Experiments clearly show that the fraction 

of ceramics can be controlled by adjusting feedstocks. 

Figure 30 summarizes the findings for microhardness of composite coatings with the change of ceramic 

particles in the coatings. The coating hardness is higher than the corresponding pure Al or Al alloys, and it 

increases with SiC or Al2O3, which is due to the severe plastic deformation of the Al matrix and the tamping 

effect of hard ceramics. Uniformly dispersed ceramic particles also contribute to the increase of the coating 
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hardness by restricting the deformation of soft Al matrix.218 It is worth noting that Al alloys based composite 

coatings show higher hardness than pure Al based coatings, because Al alloys is harder than pure Al. Moreover, 

there is a strong dependency of hardness of Al alloys based coatings on ceramic content. The hardness of 

coatings reinforced by SiC is remarkably higher than that by Al2O3. In addition to matrix phase effects, the 

higher deposition efficiency of SiC compared to Al2O3 (Figure 31), together with the fact that Al-SiC coatings 

show a more compact structure compared to Al-Al2O3 coatings, may also account for the higher hardness.  

Therefore, with these trends in mind, one can control the coating hardness and tribological properties by 

altering the type and content of ceramics in the feedstock.  

Furthermore, it has been reported that the grain size in the Al matrix decreases with increasing SiC content, 

and smaller size SiC particulates improve refinement. In addition to this effect, aging response is sensitive to the 

reinforcement size.219 Changing the reinforcement content in the metal matrix in a controlled manner, CS can 

accurately produce predictable changes in thermal properties like conduction and expansion.220 

4.2.3 Effect of post spray heat treatment 

Researchers have also studied other aspects of the metal-ceramic composite coatings. It has been found that 

PSHT can enhance the adhesion and compactness of the coating,185 but has little effect on size, morphology and 

distribution of ceramic particles.221 Zhou et al.212 found that PSHT can significantly improve corrosion and 

mechanical properties of CS HA-Ti coatings due to the annihilation of defects, porosity reduction and residual 

stress relief during PSHT. Watanabe et al.222 carried out four-point bending tests on WC-Co/Al multilayer 

composite coating, and found that the ductile metal phase is very effective in enhancing the toughness and 

damage tolerance of sprayed cermet coatings. Wang et al.211 used electron backscattered diffraction (EBSD) to 

characterize the CS Al-Al2O3 coating, to find anisotropic nano-mechanical properties due to the higher density 

of dislocations and grain boundaries on the cross plane formed during coating deposition. Heimann et al.217 

reported that the Al-Al2O3 coating states low thermal conductivity, low solar absorptance, comparatively high 

infrared emittance and oxidation stability, which can protect space-bound structures against deleterious effects 

of the space environment.  

4.3 Metal-intermetallic composite coatings 

4.3.1 Formation by post spray heat treatment of cold-sprayed metal-metal composites 

Intermetallics possess the advantages of high melting point, high creep strength, low density, high oxidation 

resistance and corrosion resistance, which allow them to be used as high-temperature structural materials in 

aerospace industry. However, the intrinsic brittleness of intermetallics at room temperature makes it very 
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difficult to directly deposit intermetallic particles.223 The studies are mainly about producing intermetallic 

reinforced MMCs with PSHT of as-cold-sprayed metal-metal composite coatings.51,97,98,192,195,196,224-226 

Typical metal-intermetallic composite coatings prepared by CS and PSHT are summarized in Table 5. The 

work mainly covers Ni-Al, Ti-Al and Fe-Al intermetallics. In almost every case, feedstocks were prepared with 

ball-milling and the as-sprayed coatings were annealed in an inert atmosphere (Ar or N2) at various times and 

temperatures. The following has been found:  

(1) The intermetallics formed in the annealed Ni-Al coating are mainly Al3Ni and Al3Ni2. The quantity of 

Al3Ni2 increases with temperature so as the hardness of the coating, which proves that intermetallics have a 

significant effect on coating hardness.98,195,196 In addition, pores were found in the annealed coating due to the 

Kirkendall effect.196 Zhang et al.137 also reported the Al3Ni2 phase in the ball-milled NiAl coating annealed at a 

low temperature, however, at a temperature higher than 850°C (above the melting point of Al), the whole coating 

completely transformed to NiAl. The melting of Al will greatly facilitate the reaction diffusion of Ni atoms into Al, 

besides the conventional solid-state atomic diffusion. Moreover, Podrabinnik et al.227 observed AlNi and Al3Ni2 

intermetallics in laser annealed CS Al/Al2O3-Ni composite coating. The phase transformation from a Ni-Al 

composite to NiAl intermetallic can also result in closing non-bonded gaps in the coating at higher temperatures,228 

but with the formation of pores by the Kirkendall effect. 

(2) In the case of Ti-Al composite coatings, there is no significant reaction during the CS process.229 PSHT also 

leads to the formation of intermetallic phases. By changing the heat-treatment condition, the desirable 

intermetallic phases can be formed, however, coating porosity also increases rapidly with time at elevated 

temperatures due to the Kirkendall effect.192 Kong et al.226 deposited the premixed Ti-Al powder with the molar 

ratio of 1:3, to produce a coating with a dense structure and a porosity of 0.17%. After heat treatment at 650°C 

for 5h, there was phase transformation to form TiAl3 and an interlayer of (Ti, Nb)Al3 around 10 μm was formed 

at the coating-substrate interface, and the porosity was increased to 14.69% due to the Kirkendall effect. 

Similarly, according to Ti-Al phase diagram, the contact melting of Al at 650°C will also facilitate the reaction 

diffusion of Ti atoms. Oxidation tests did indicate a good high-temperature oxidation resistance of the coating. 

Cizek et al.230 also confirmed the Kirkendall effect and the oxidation resistance of the TiAl3 coating. They 

further pointed out that the optimal PSHT temperature is 500-580°C, where intermetallic phase formation is 

induced while Kirkendall pores are almost avoided at a relatively low temperature. Wang et al.231 fabricated 

a TiAl3 bond coat by CS together with PSHT for yttria partially stabilized zirconia (YSZ) thermal barrier 

coatings (TBC). A pure Al coating with a thickness about 40-60 μm was deposited on a γ-TiAl alloy, then heat 
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treated at 700 °C for 12h in Ar, obtaining a dense TiAl3 coating with a thickness about 60-100 μm, thicker 

than as-sprayed Al coating, which is also facilitated by the melting and reaction diffusion. The surface of the 

formed TiAl3 bond coat permitted the deposition of a YSZ top coat, and subsequent high temperature oxidation 

test showed that this coating system improves the oxidation resistance of TiAl substrate. 

(3) Wang et al.97,232 deposited Fe-Al composite coatings and XRD results showed that with increasing 

annealing temperature, the content of the intermetallic compound increases (Figure 32a). The differential 

scanning calorimetry (DSC) analysis showed that Fe2Al5 was the first intermetallic phase formed upon heating 

at 625°C. The deposit transformed to mainly FeAl phase with a trace of remaining Fe phase as the temperature 

reached 900°C, as indicated by XRD in Figure 32b. Note that the melting of Al under this condtion greatly 

facilitates the reaction diffusion of Fe atoms. It was found that the formation of Fe2Al5 intermetallic compound could 

take place even at 450°C, far below the Fe-Al eutectic temperature (640°C), due to metastable interfaces that are 

produced by intensive deformation of deposited particles during CS.232 They also reported the phase 

transformations in nanostructured Fe-Al143 and Fe(Al)-Al2O3 coatings12. The metastable nanostructured Fe(Al) 

solid solution is retained in the coating without phase transformation. However, apart from FeAl, there is no 

trace of other intermetallics formed during PSHT. An annealing temperature of around 600°C is adequate to 

complete the intermetallic transformation, and strong interface diffusion can take place when the temperature 

reaches 950°C because of the melting, which further improves the adhesive strength of the coating.12 Jan et al.233 

reported similar intermetallic phase change as Wang et al.97, and they found that coating porosity increased with 

PSHT temperature, and these pores can be filled with molten metal to form a metallic-intermetallic composite. 

(4) Therefore, the fabrication of metal-intermetallics composites through the CS + PSHT method should be 

carefully operated at a temperature range where expected intermetallics could form and it has less Kirkendall effect. 

Besides, researchers have also identified intermetallics in the heat-treated Al-Cu,51 Ni-Ti,224 Ni-Sn,234 Al-Sn,235 

Al-Mg236 and Ni/Al-Al2O3
228 composite coatings. Figure 33 shows coatings that have undergone intermetallic 

formation after heat-treatment, with a reaction layer, and even multi-layers, at the interface of the components. It 

should be noted that an intermetallic phase transformation also takes place at the interface between the coating and 

the substrate as indicated in Figs. 33. Therefore, by controlling the annealing time and temperature, one may get pure 

intermetallic coatings provided the possible useful melting of one metal. 

4.3.2 Directly cold-sprayed metal-intermetallic composites 

There are a very limited number of studies on directly cold-sprayed metal-intermetallic blend powders. With 

this method, one can clearly know the obtained intermetallic, while with the CS+PSHT method one can not 
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absolutely ensure the expected intermetallics.  

Cinca et al.223 deposited Fe40Al intermetalics onto 304 stainless steel and Ti substrates. It was found that 

coating thickness decreases with the increase of spraying distance. Dense coatings were obtained on stainless 

steel while coatings on Ti substrate contained cracks, which may be due to the larger difference in the thermal 

expansion coefficients between the Ti substrate and iron aluminide. Chandanayaka et al.237,238 sprayed Ni-Ni3Al 

blends with two kinds of Ni3Al sizes. The smaller sized Ni3Al results in a stronger interlocking and the slightly 

increased mechanical properties due to its higher particle velocity than coarse one. Bu et al.180 reported that the 

Al-Mg17Al12 composite coating has a comparable anti-corrosion performance to pure Al bulk material, and the 

corrosion current density is reduced by more than one order of magnitude for the Mg substrate. Cherigui et al.239 

found that the CS FeSiBNbCu-Al coatings have a soft magnetic character (Hc<1000A/m), and the 

FeSiBNbCu-25 wt.% Al powder mixture is ideal to produce a homogenous coating with suitable magnetic 

properties. Steenkiste et al.240 applied CS to deposit composite coatings of Terfenol-D ((Tb0.3Dy0.7)Fe1.9) and 

SmFe2 in a ductile matrix of Al, Cu, Fe or Mo to avoid constituent reaction. An induced magnetic coercivity was 

measured for the composite coatings with Mo and Fe, and the addition of Mo yielded the largest value 

(Hci=3.7kOe).  

However, in this method the bonding between metal matrix and intermetallic seems not good as that formed 

with the CS+PSHT, which possibly limits its applications. 

5. Nanostructured coatings  

It is well known that nano-materials have many advantages over conventional materials such as high 

mechanical strength, excellent thermal and electrical properties, and superior optical and magnetic performance. 

But it is difficult to produce bulk nano-materials, and especially nano metallic materials, to use as structural 

materials. As mentioned above, CS shows great potential in fabricating nanostructured coatings or bulk 

components due to its low processing temperature, which enables the deposition of nanostructured materials 

without noticeable oxidation or grain growth.  

5.1 Nanostructured metallic coatings 

The research on this kind of coatings is mainly focused on Al or Al alloys, and the powder preparation 

method is ball milling (mostly cryomilling) or agglomerating commercial nano-powders to form micro-powders. 

A nanostructured Al coating was firstly reported by Mondoux et al.241 in 2004. Using conventional and 

agglomerated nanostructured powders as feedstocks to deposit coatings, it was found that the microstructure of 

the powder was retained in the coating with hardness twice that of conventional coatings, which is attributed to 
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the smaller grain size (Hall-Petch effect). Following that, nanocrystalline Cu242 and Ni243 coatings by CS 

cryomilled powders were successfully produced as shown in Figure 34. The nanocrystalline coatings generally 

present a dense, crack-free microstructure, and have a higher hardness than coarse-grained coatings. The low 

porosity, absence of cracks, indistinguishable particle interfaces, and absence of spallation and delamination 

indicated that the CS nanostructured coatings may demonstrate good cohesion and adhesion.244 Ajdelsztajn et 

al.144 cryomilled Al5083 powder and acquired particles with nano grain size (20-30 nm). The deposited coating 

had a grain size distribution of the same order of magnitude as the cryomilled Al5083 powder, while its hardness 

(261±8 HV0.3) was higher than any other values reported for Al5083 consolidated with other techniques. Rokni 

et al.245 used the high-energy milled nanocrystalline Al5083 alloy powder (grain size: 40-50 nm) as feedstock, 

and found that the resultant coating retained the nanocrystalline structure of the powder in the range of 50-100 

nm. Elongated grains were also observed due to high velocity impact as shown in Figure 34b. Ajdelsztajn et 

al.144 also found elongated grains in the coatings deposited by cryomilled Al5083 powders, which proves that 

the deposition of nanocrystalline metallic particles are still based on their plastic deformation. 

In contrast, Ghelichi et al.146 deposited both micro and nanocrystalline Al7075 powders on Al5052 substrate, 

and found that the cryomilled powder yields a porous coating structure, while the coating with a micron-sized 

powder shows almost no pores as shown in Figure 35. This is possibly due to the poor deformability of the 

prepared nano-sized powder and the unsuitable process parameters that were drawn from micro-particles 

experiments. A similar phenomenon was also observed for CS cryomilled Al2618.246  

It should be pointed out that although the nanostructures of feedstocks are totally retained in the resultant 

coatings and the hardness is greatly increased, the cohesion of the nanostructured coatings is still not clear 

because of less data on it.  

5.2 Nanostructured metal-metal composite coatings 

In addition to elemental powders, nanostructured metal-metal composite coatings are also studied. 

Bacciochini et al.247 produced gasless reactive energetic materials with CS high-energy ball-milled Ni-Al 

powder (atom ratio of 1:1). The coating showed a dense microstructure with a porosity of about 1%. Pitchuka et 

al.18 studied the dry sliding wear behavior of Al amorphous/nanocrystalline alloy powder 

(Al-4.4Y-4.3Ni-0.9Co-0.35Sc (at.%)). It was found that the as-sprayed coatings exhibit higher steady state 

coefficient of friction (COF) of 0.55 compared to that of 0.38 for heat-treated coatings. Wear volume loss in the 

as-sprayed condition is 68% higher than that of heat-treated coatings, which is attributed to the micro-abrasion 

and delamination of the weak splats. However, micro-scratch tests showed that the as-sprayed coatings have a 
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lower COF than that of heat-treated coatings, because these have a denser microstructure with embedded 

intermetallic phases, which results in higher scratch wear resistance. The scratch induced deformation 

mechanism changes from the shear-band dominated brittle mode in the as-sprayed coatings to the plowing type 

in the heat-treated coatings. Zhang et al.147 applied a mixture of 30 wt.% as-atomized and 70 wt.% as-cryomilled 

Al2009 powders as feedstock to produce a coating without obvious pores and denser than that produced with 

pure nanocrystalline powder as shown in Figure 36. The extensively deformed as-atomized particles act as a 

binder in the coating to link the nanocrystalline particles, tamp the cracks and fill in pores between layers and 

particles, forming a dense coating.147 This is similar to the co-deposition mechanism of the metal-hard phase 

composite coatings described above. 

Besides nanostructured Al or Al alloy based composite coatings, researchers have also investigated other 

nanostructured coatings with CS. Li et al.142 ball-milled Fe and Si powders to produce nanocrystallites. As 

shown in Figure 37a, the grain size of the feedstock decreases with milling time and there is no grain growth 

during the CS process. Observations under TEM showed that the grains had a size of several tens of nanometers 

(Figure 37b). It should be noted that although grain size slightly decreases with increasing milling time, the 

coating hardness is little affected,142 possibly because the hardness of the milled powders has been saturated 

during ball-milling, so no further significant increase will yield for coatings. Wang et al.143 deposited ball-milled 

nanostructured Fe-Al alloy powder on stainless steel substrate. The metastable Fe(Al) alloy powders exhibit a 

lamellar structure (Figure 38a) and the lamellae are continuously refined with increasing ball-milling time. XRD 

results and TEM micrographs indicated that the phase structure of the as-sprayed coating was just a Fe-based 

solid solution, which transformed into the FeAl intermetallic phase during heat-treatment at 500°C for 25h, 

similar to that indicated in Figure 31. The grain size was in the range of 10-50 nm (Figure 38b), thus 

nanostructured FeAl intermetallic compound coatings were achieved. Kumar et al.249 deposited a 250 μm thick 

nano Ni-20Cr coating on SA 516 boil steel with the ball-milled feedstock. High temperature oxidation tests at 

900°C for 50 cycles showed that the coating reduced the weight gain of the base metal by 94% because Ni and 

Cr react preferentially with oxygen, forming NiO and Cr2O3, respectively. Compared with micro-sized CS 

Ni-20Cr coating, the weight gain of specimen is reduced by 64%, and by 71% when the substrate was 

SA213-T22 steel,250 proving the high oxidation resistance of the nano Ni-20Cr coating.  

In summary, by ball-milling of metal ingredients, nanostructured metal-metal composite coatings could be 

obtained with fine or metastable structures. The resultant coatings have higher hardness, but with a questionable 

cohesion, though some other properties are also superior. 
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5.3 Nanostructured metal-ceramic composite coatings 

Similar to common metal-ceramic composites, CS also showed potential in the fabrication of nanostructured 

metal-ceramic coatings. One typical example is nanostructured WC-Co coatings. Though the CS of micro-sized 

WC-Co coatings showed poor deposition efficiency than that by HVOF,244 the use of nanostructured feedstock 

significantly improves the deposition efficiency and density of CS coatings. This is possibly because the critical 

velocity is lowered and there is a higher surface area for contact between the binder phase and hard ceramic 

particles for effective deposition of nanostructured particles. Researchers21,154,155,158,169,251 found that a dense 

WC-Co coating can be deposited with CS without phase transformation or decarburization, with the 

nanostructures retained in the deposits. Shukla et al.20 initially reported on a nanostructured WC-10Co coating 

without decarburization in 2000. Later in 2002, Lima et al.21 prepared nanostructured WC-12Co coatings with 

agglomerated and sintered particles as shown in Figure 39. Though the coating thickness is only 10 μm, it shows 

a dense microstructure without pores, cracks or phase transformation. Li et al.158 and Kim et al.154,155 produced 

high quality nanostructured WC-Co coatings with low porosity and hardness comparable to the bulk. Li et al.158 

also found that heat-treatment has little effect on coating hardness but can improve the coating bonding strength. 

Besides, Li et al.158 observed a broader WC peak in the XRD pattern of coating compared to the original powder, 

due to the grain refinement caused by high velocity impacts as shown in Figure 40. A similar phenomenon was 

also found in nanostructured WC-17Co coating.169  

Figure 41 compares cermet coatings deposited with agglomerated nanostructured WC-12Co feedstocks of 

various porosities.169 From the obvious change of coating thickness, it is interestingly found that deposition 

efficiency increases with particle porosity. This is possibly because the non-uniform deformation leads to the 

increased density at the lower part (impact zone) of the particle while retaining the porous structure at the upper 

part (far away from the impact zone) (Figure 41h). The particle retains the pseudo-deformability when the 

following particles impact on it, permitting thick nanocrystalline WC-12Co coatings to be fabricated. Research 

by Lioma et al.252 WC-12Co-xNi also indicated that the porous structure favors particle deposition. However, 

Yandouzi et al.156 deposited both nano-sized and microcrystalline WC-Co coatings, and the nanostructured 

coating showed higher porosity and the lower hardness due to lack of plastic deformation, as in nanocrystalline 

Al coatings.246 These results mean that tailoring particle porosity seems a possible approach to acquire dense 

WC-Co coating with high deposition efficiency. 

As reported by Yang et al.168, the coating toughness decreases with the increase of coating hardness. It is 

therefore a serious challenge to achieve strengthening and toughening at the same time. In order to overcome 
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this problem, possible solutions include alloy phase toughening through plastic deformation, deviating the 

cracking path by reinforcement particles and increasing the interface bonding strength between the matrix phase 

and the ceramic particle. Yang et al.168,253 designed a bi-modal WC-12Co powder that possesses both high 

hardness and high toughness, as indicated by the square symbol in Figure 42a. The reinforcement phase is both 

micro-WC and nano-WC particles dispersed in the Co binder phase (Figure 14b). Fracture toughness can reach 

up to 18.9 ± 4.0 MPa·m1/2 after annealing at 1000°C for 6h in a hydrogen atmosphere, which is comparable to 

the conventional WC-12Co bulk. This is due to the larger area of the bi-modal-sized fracture surface and the 

crack bridging caused by the micro-sized strengthening WC particles as indicated in Figure 42b. Crack bridging 

increases fracture toughness as it increases the fracture surface area and the energy consumption during cracking. 

The zigzag feature is encountered at both the micro WC particles and the nano WC particles, producing high 

fracture toughness. Meanwhile, the bi-modal WC-Co possesses a hardness as high as 1683 ± 176 HV, which is 

similar to nano WC-12Co having a mean free path of the Co binder phase of 36 nm. PSHT further increases the 

coating toughness and doubles the wear resistance of the CS WC-(Nano WC-Co) coating.253  

It should be pointed out that although the grain size dose not get into nano-scale, the coating properties could 

be improved by powder design. Luo et al. [130] developed a core-shelled structured WC-Co powder as 

mentioned above (Figure 19), and the deposited coating is shown in Figure 43. The coating has a porosity of 

0.7% and the hardness of this WC-10Co core is 1493±76.7 HV0.1. The total WC content in the core-shell 

structured WC-Co coating was calculated to be 57.6 vol.%. After annealing at 900°C for 2h, fracture toughness 

was increased by 70.6% (from 21.2±3.8 MPa m1/2 to 35.7±5.2 MPa m1/2) due to the improved deformability of 

the Co-rich WC-Co binder matrix as well as the enhanced bonding between WC-10Co cores and Co-rich 

WC-Co binder, where cracks were only observed in the WC-10Co cores of relatively low deformability. 

Another interesting reinforcement can be obtained by carbon nanotubes (CNTs). The CNTs possess excellent 

strength, elastic modulus and stiffness, high thermal and electric conductivity while having low thermal 

expansion. All these make them a promising candidate for reinforcements to synthesize light weight, high 

strength structural MMCs.100,254 Low process temperature can avoid the unwanted reaction between the metal 

and CNTs.255 CNTs distribute homogeneously in the CS coatings100,254,255 as indicated in Figure 44a. The 

porosities of Al-0.5 wt.% CNTs and Al-1 wt.% CNTs coatings are (1.6±0.5) % and (2.3±0.9) %, respectively. 

Nanoindentation of the composite yields a range of elastic modulus values between 40 and 120 GPa, whereas 

some regions had elastic modulus as high as 229 GPa for Al-0.5 wt.% CNTs, and 191 GPa for Al-1 wt.% CNTs 

coating. This is attributed to the reinforcement effect of CNTs and the local concentration of CNTs.149 Chen et 
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al.254 reported that the CNTs retain their graphitic structure in Al-CNTs coatings as shown in Figure 44b, and 

nano scratch measurements showed that the addition of CNTs into Al matrix contributes to the increase in elastic 

modulus, hardness, yield strength, shear strength and nano scale wear resistance. The wear resistance is 

increased by 40% with the addition of 1.0 wt.% CNTs, while the COF remains unchanged. The higher hardness 

can be attributed to the fact that the MWCNTs inhibit plastic deformation that results in dislocation 

accumulation and intersection.255  

For the CS Cu-CNTs coating,100 the CNTs dispersed uniformly in the Cu matrix, maintaining their tube 

structure as shown in Figure 44c. The composite coating had a higher thermal diffusivity than pure Cu coating, 

due to the dispersion of MWCNTs within the clean and closed CNT/Cu interfaces, which is the effect of high 

compressive stress during CS.100 Pialago et al.256 deposited Cu-CNTs composite coating with CNTs contents of 

up to 15 vol.%. It was found that the particle size and deposition efficiency decreased with increasing CNTs 

content. The inner coating showed a lamellar structure while the surface layer showed a rough morphology 

containing 1.0-2.5 vol.% micropores as shown in Figure 44d. They256,257 applied the Cu-CNTs composite 

coatings for boiling heat transfer, and found that the coating decreased the superheat and increased the 

maximum heat transfer coefficient by 1.21-1.74 times than that of the plain Cu plate. Besides, the addition of 

ceramics (SiC, AlN, and BN) in Cu-CNTs further increases boiling heat transfer, and a combination of (5 vol.% 

CNT + 95 vol.% Cu) + 20 vol.% AlN yields the highest enhancement ratio of 2.57.258 

In literature there are certain works on other metal-ceramic nanostructured composite coatings. Cavaliere et 

al.259 found that addition of ceramics (Al2O3, SiC, BN) into metal matrix (Al, Ni, Cu) has strong effect on grain 

refinement, coating porosity and adhesion strength as shown in Figure 45. The presence of reinforcement phase 

affects the adiabatic shear instability governed recrystallization, as well as local plastic deformation, which 

accounts for the decrease in grain size and coating porosity. However, coating adhesion is decreased with 

increasing ceramics.259 Poirier et al.136 added 5 vol.% nano-sized Al2O3 in an Al matrix, which lowers the 

powder and coating nano-hardness because the poor milling parameters were selected, leading to cracked 

particles with insufficient Al2O3 embedding in Al. Hodder et al. [140] deposited commercially pure Al mixed 

with either 10 μm or agglomerated 20 nm Al2O3 in weight fractions of 25 to 95 wt.%, with the highest ceramic 

contents in the coating being 48 wt.% and 38 wt.%, respectively. However, the maximum microhardness of the 

latter was higher than that of the former due to the increased spreading of the nano particles in the coating, 

which increases load-bearing capability of the reinforcement particles. Yandouzi et al.260 fabricated the 

nanocrystalline Al5356-20 wt.%B4C coating with pulsed cold spraying (PCS), and the coating showed a low 
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porosity with B4C uniformly distributed in the nanostructured Al5356 matrix, which greatly improves the 

coating dry sliding wear resistance. Nanostructured Fe-Cu-Al-Al2O3 exhibited lower COF and wear rate than 

their constituting elements and/or to benchmark materials due to the appropriate balance of soft and hard phases, 

and to the nanostructuring of the matrix. High amounts of grain boundries hinders the formatiuon and motion of 

dislocations, thus, the deformation of nanostructured materials is restrained.261 Luo et al.14 fabricated a cubic BN 

particle-reinforced NiCrAl nano-composite coating by CS. A Ni-based amorphous layer with a thickness 

ranging from 3 to 8 nm was located at the cBN/NiCrAl interface and was surrounded with crystalline Ni-based 

alloy. These Ni-based alloy crystals exhibited a preferred orientation with the {111} plane frequently parallel to 

the interfaces of cBN/NiCrAl as shown in Figure 46. They also reported that the as-sprayed 20 vol.% 

cBN/NiCrAl nano-composite coating yields a hardness of 1063 HV0.3. Both hardness and wear resistance are 

comparable to that of the high velocity oxygen fuel (HVOF)-sprayed WC-12Co coating. After heat-treated at 

750°C for 5h, the coating wear resistance is increased by 33% due to the enhanced particle bonding.13 

In addition, Phani et al.153 studied the effect of high temperature heat-treatment on porosity, thermal 

conductivity and grain size of Cu-Al2O3 nano-composite coating. It was found that heat-treatment has little 

effect on porosity. In the meantime, conductivity rises a little with the increase of temperature. The grain growth 

was restrained due to the presence of Al2O3 even when heat-treated at 950°C, which is close to the melting point 

of copper owing to the presence of fine Al2O3.  

In summary, the nanostructured metal-ceramic coatings are one of the most promising composites because of 

their excellent properties. The careful tailoring of powder and processing parameters will make these kinds of 

coatings very attractive in applications. However, again, the cohesion, ductility and toughness of the composite 

are the crux. PSHT can help improve them with the retaining of their nanostructures. 

5.4 Nanostructured ceramic coatings 

It is interesting that CS can also be used to deposit nanocrystalline ceramic coatings, although initially it 

appears impossible as CS requires plastic deformation to work. The key requirement for deposition is a vacuum 

chamber and a specially designed nozzle, and it is therefore named as vacuum cold spraying (VCS). It was 

initially developed by Akedo and his coworkers263 and initially termed as aerosol deposition (AD), in which 

nano-particles are sprayed in a vacuum chamber using a propellant gas flow of helium or air. Although the 

velocity reached is lower than that of usual CS, this process reduces significantly the bow shock effect, making 

it possible to deposit very small particles. It has been used to fabricate lead-zirconate-titanate (PZT), -Al2O3, 

Y2O3, YSZ, AlN, MgB2, and other nanocrystalline ceramic films of high transparency, high hardness, and 
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high-breakdown voltage at room temperature.62,262,263 Hanft et al. detailedly summarized the materials that could 

be deposited by AD and applications.264 

As indicated in Figure 47, dense -Al2O3 coating with a thickness of about 3 μm was deposited on a SiO2 

substrate. XRD results confirmed that there is no phase transformation during deposition. The broadening of the 

spectral peaks indicates the reduction of grain size. Figure 47c indicated randomly oriented polycrystalline 

nanostructure with crystal grains smaller than 20 nm in length. It is worth pointing out that the ceramic particles 

seem to have experienced some extent of plastic deformation.263,265 The fracture and the multiple impacts of fine 

particles during deposition induce the generation of active surfaces of particles, allowing the bonding of 

particles and forming a dense ceramic layer.62 Cao et al.266,267 identified that lattice collapse and damage, internal 

dislocation, brittle fracture, and inelastic crack nucleation near dislocations are the main factors responsible for 

particle deformation at high impact velocities. Thus, as Park et al.268 elaborated, plasticization and fragmentation 

are the main deposition mechanisms of VCS. 

Because of the very low process temperature and the ability to deposit thin ceramic films on various 

substrates, even curved surfaces, VCS has been applied in the fabrication of electro-ceramic for piezoelectric 

devices and electro-optic materials for optical devices. In the case of PZT, for example, in order to eliminate 

structure defects and the reduction of the crystallite size during deposition, PSHT is necessary to improve the 

ferroelectric properties. As shown in Figure 48, the PSHT temperature for the coating deposited by AD is lower 

compared with traditional methods. After annealing at 600°C, the dielectric constant and the piezoelectric 

constant of layers were comparable to the values of conventional thin-film formation methods.263 

Following Akedo et al., researchers have investigated other nanostructured ceramic coatings by VCS, such as 

HA,106 TiO2,269-272 TiN273,274. The photocatalytic efficiency of CS nanostructured anatase (TiO2) coating is 

comparable to the one obtained by competitive technologies like dip-coating P25® photocatalysts.103 The solar 

cells assembled by VCS nanocrystalline TiO2 powders yielded a short-circuit current density of 7.3 mA/cm2 and 

an energy conversion efficiency of 2.4%, which are comparable to those by other methods such as mechanical 

compression and hydrothermal crystallization.269,270 After post-sintering at 450°C for 30mins, these values 

increased to 14.0 mA/cm2 and 4.9%, respectively, due to the improvement of intimate contacts between 

nano-TiO2 particles in the coating. In addition, applying nano-TiO2 as a blocking layer on fluorine-doped tin 

oxide glass can increase the open-circuit voltage and short-circuit current density due to the blocking of electron 

leakage from the fluorine-doped tin oxide surface to the electrolyte, hence, the photon-to-current conversion 

efficiency was increased from 3.3% to 5.6%.275 Moreover, Yang et al.271 found that the short-circuit photocurrent 
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density of the cell increases with accelerating gas flow due to the improved coating compactness. The VCS TiN 

coating exhibits a low hardness of 279-490 HV with a porosity ranging from 58.3 to 67.6% and the pore size 

mainly ranging from 2 to 8 nm, which results in a relatively good fracture toughness of about 3.12 MPa·m1/2. It 

was also found that the sheet resistance and electrical resistivity of the TiN coatings decrease in a dramatic way 

with increasing coating thickness because of the higher tamping effect, which results in fewer defects, and in 

turn decreases the electron transfer resistance. The minimum sheet resistance (127 Ω) is lower than that of the 

TiN film deposited by CVD (186.7 Ω), and a minimum electrical resistivity of 3×10-3 Ω·m is achieved.273,274 

5.5 Nanostructured ceramic composite coatings 

A few researchers have also investigated nanostructured ceramic composite coatings by VCS, such as 

hydroxyapatite (HA)-graphene nanosheet (GN),105,106 SiC-TiN276 and graphene-TiO2
277 composite coatings. 

Cross sections of the nanostructured ceramic composite coatings are shown in Figure 49. The coatings also 

present a relatively dense structure with the presence of micro-cracks and micropores. Liu et al.105,106 found that 

nanocrystalline GN homogeneously embedded in the HA matrix and certain nano HA particles experienced 

plastic deformation (Figure 62b), which is similar to the phenomenon reported by Akedo et al.263 and Cao et 

al.266,267. The HA-GN composite coating markedly enhanced the attachment and proliferation of the osteoblast 

cells, which has great potential in bio-application.105 

Kim et al.277 found that the optimal concentration of 0.3 wt.% graphene in TiO2 feedstock increased the 

energy conversion efficiency from 3.14% of pure TiO2 to 5.02%. Further, the electrical resistivity of 

nanocrystalline SiC-TiN composite coating decreases with increasing TiN content, from the order of 1014 Ω·m 

of the undoped-SiC to the minimum 1.82 Ω·m with 50 mol% TiN in the coating,276 which is contributed to the 

electron-transporting of the conductive TiN phase. 

By forming a composite film, properties can be adjusted, for instance, electrical parameters like conductivity 

or permittivity, as well as mechanical characteristics like hardness, porosity, or adhesion to the substrate. 

Depending on the mixing ratio and relative particle sizes of the powders, one can obtain either a dispersion of 

one phase in a continuous matrix of the other, or two interpenetrating continuous phases.264,278 

6. Potential applications of composite or nanostructured coatings 

Based on the above results, CS is expected to be applied to most fields where thermal spraying has been 

already used because CS can produce metallic or composite coatings with properties superior or comparable to 

thermal sprayed ones. Its applications can be summarized as follows. 

6.1 Protective coatings 
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The basic use of CS is to fabricate coatings providing resistance to corrosion environment, elevated 

temperatures and wear. 

(1) Corrosion resistant coatings. It is well known that TS coatings with post-sealing treatment seem to 

provide good protection for the substrates by dual functions, i.e. physical isolation and electrochemical 

protection acting as a sacrificial anode to the substrate. However, the excessive heat input to the substrates 

may lead to distortion and more residual stresses. Therefore, CS emerges as a better choice to protect the 

substrate. For components which work in corrosive environments such as sea water or acid atmosphere, 

anti-corrosion coatings are necessary. CS can be used to fabricate anti-corrosion coatings, such as Zn, Al, Ni and 

their alloys based composite coatings such as Al-Al2O3, Ni-Al2O3, Al-Zn and Al-Si-Zn,88,90,91 without the 

oxidation of the metallic powders. Cu-Al-bronze composite coatings can enhance the corrosion and cavitation 

resistance of ship propellers in marine environments.279 In contrast to the relatively porous and oxidized thermal 

sprayed protective coatings, such as Zn, Al and their alloys, CS coatings have higher resistance to corrosive 

media and longer service life. The key problem for these CS protective coatings is to develop industrial 

equipment and techniques to economically and easily deposit coatings on large and complex surfaces.280(2) 

High-temperature oxidation resistant coatings. This kind of coatings is widely used in high-temperature parts, 

such as aero engines, turbines and boilers. For examples, Ni-Cr oxidation resistant coatings for boilers,99 

Cu-Cr-Nb deposits281 for high thermal and electrical conductivities at elevated temperatures in rocket engines, 

intermetallics including Al-Ni,98 Fe-Al,97 nanostructured NiCrAlY alloy282,283 and CoNiCrAlY284,285 bond coat 

for thermal barrier coatings.  

(3) Wear resistant coatings. To increase the wear resistance of industrial components, wear-resistant 

coatings can be deposited by CS, such as cermet coatings, ceramic reinforced MMC coatings and anti-friction 

alloy coatings (Al-Si alloy,90 bronzes,286 WC-Co157 and stellite coatings288,289). In addition, abradable sealing 

coatings are designed to preferentially abrade when contact is made with a mating part. A patent on CS 

nickel-graphite abradable coating has been granted,290 and it is promising to expand to coatings with other 

materials such as Al-12Si alloy, Al-bronze, Ni-Cr-Al alloys and their composites with polymer or graphite 

additions.280 

6.2 Functional coatings 

CS has also been applied to non-traditional fields, e.g. energy, photovoltaic, electronics, medical, 

catalytic.291,292 One such is the fabrication of nanostructured functional coatings. For examples, CS TiO2 films 

on glasses with mesoporous microstructure can be used in applications of photocatalytic degradation and 
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dye-sensitized solar cells.269,270 TiO2 and TiO2-Zn coatings can also be used as catalytic coatings.102,103 Moreover, 

nanostructured TiO2 may also be used as bioactive coatings.109,293,294 Ag-SnO2 and Ag-Ni coatings can be used 

as industrial electrical contacts for contactors and circuit breakers.101,104 Cu-CNTs composite coatings are used 

for boiling heat transfer.100,256-258 FeSiBNbCu-Al coatings are used as soft magnetic materials.239,240 HA-GN and 

HA-Ti composite coatings are deposited on titanium substrates as load-bearing implant materials for biomedical 

applications.105-107,212,295 Forthemore, cold sprayed coatings, particularly Cu or Ag coatings, have showed 

excellent electrical conductivity which is comparable to their bulk state.296-298 In some cases, CS may gradually 

replace expensive and not flexible techniques such as physical vapor deposition (PVD) and silver frit screen 

printing.299  

6.3 Near-net forming or additive manufacturing 

As a spray forming process similar to thermal spraying, CS can also be used to directly fabricate components 

because of its high deposition rate and ability to combine many dissimilar materials to produce a single 

component without obvious melting or oxidation of the feedstock,112 which is similar to near-net shape 

manufacturing technology. As such it is possible to construct components with freeform surfaces, internal 

channels and embedded devices.111 Recently, General Electric Co. (GE) reported that a new additive 

manufacturing technology, named Cold Spray 3D Printing, was developed aiming at building a part or adding 

material to repair an existing part. Although it is not new in the thermal spray community, it is a novel 

application of CS. CS components can be easily machined to a final shape. CS has been demonstrated to 

manufacture large parts, sputtering targets or large rotating targets (e.g. Zn-Al and Zn-Sn), and fin arrays,190,300 

as shown in Figure 50.  

6.4 Component repair 

When compared to forming a part, CS seems more suitable for the quick repair by spraying powders onto 

damaged parts, such as turbine blades, aircraft skin, helicopter mast support, gearbox, panel fastener hole, 

pistons, cylinders, valves rings, bearing components, sputtering targets and pump elements,305-307 and most of 

them can be fulfilled with composites. As a result, the life of a component is extended, and this is especially 

important for expensive parts. In addition, with portable CS equipment, on-site repairing can be attempted 

without having to remove damaged parts out of the machine. For examples, CS has been used to repair military 

hardware such as the engine block,308 the flight control module of the gear box.309 Lots of patents on restoration 

with CS have been granted and it is also worth noting that the Air Force Research Laboratory of the US and the 

United Technologies are improving CS to repair major components of the UH-60 Black Hawk helicopters.310 
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Besides, CS can also be used to restore corroded areas of the Steyr engine with the Cu-Zn-Al2O3 composite 

coating,311 and for repairs on corrosion sensitive materials such as magnesium and aluminum alloy components 

(Figure 51),9,299,312-314 worn surface of aluminum mold,315 degraded areas of titanium alloy turbine components 

and martensitic stainless steel components,305,315 in-situ repairing of the eroded bellows by using the Ni/Al2O3 

coating.91 Furthermore, it has been found that a CS patch can enhance the damage tolerance of structural 

components and restrain crack growth, thus showing great potential in restoring the airworthiness and 

functionality of aging aircraft structures.316 Therefore, CS composites can have a wide use in repair and 

improvement of metal structures. 

7. Summary and outlook 

Based on the literature review and above discussion, it is clear that CS is a promising technique to fabricate 

advanced metallic, composite and nanostructured coatings, as well as near-net-shape components and repairs. It 

is gradually moving out of lab research to industrial applications because of the deeper understanding of the 

process, the advancement of technology, and the upgrading of spray equipment. The following concluding 

remarks could be made. 

7.1 Importance of powder preparation 

Powder preparation prior to spraying takes an important role in deposition of composites. The methods 

currently applied mainly include mechanical blending, ball-milling, spray drying, agglomerating and sintering, 

coating or cladding. Each method has its advantages and disadvantages. Mechanical blending is an easy and 

simple way to mix the powders, and the resultant coatings show all-right properties but the distribution of hard 

phase is difficult to control. Ball-milling is proved to be a good way to prepare well-dispersed composite and 

nanostructured powders, and the obtained coatings usually have good properties, but the flowability of the 

milled powders is poor, even for cryomilling, not well suitable for spraying. A following powder treatment may 

be needed to help powder feeding. In addition, the podwers are ready to be polluted by the mill jar and balls, or 

by oxidation when exposed to air. Another good method is the coating or cladding process, which will yield a 

controllable volume fraction of hard phase. However, it is difficult to get a thick coated metal layer or small 

sizes of powders. As for spray drying or agglomerating and sintering, they are employed for some special 

materials, e.g. cermets. Spray drying can also be used to treat the milled fine powders. In order to increase the 

deposition efficiency of hard reinforcement particles and precisely control of its content and distribution in the 

deposits, as well as to prepare nanostructured powders, these methods should be carefully selected. With 

properly prepared feedstocks, one can produce coatings according to specification. The tendency is to design 
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composite powders by a combination of methods to produce coatings with desired properties for complicated 

working conditions. The main problems to be solved are as follows. 

(1) to find economic and efficient methods for micro- or nano-sized powder preparation. 

(2) ball-milling parameters take important roles in the quality of prepared powders, how do they influence the 

coating quality? 

7.2 Co-deposition of composite powders 

The bonding mechanisms of the composite particles lie largely on the co-deposition mechanism of metal and 

hard phases besides the conventional metal-metal bonding mechanisms. The severely deformed soft metal phase 

acts as a binder, while the hard phase embedded in the matrix acts as reinforcement. Further to that, the hard 

particles have an “activation” effect on the substrate or previously deposited metals, cleaning oxide films on 

particles and/or substrate surfaces and increasing their activity for metallurgical bonding at the same time. 

Another factor may be the “tamping effect” of hard phase. However, the collision between ceramic particles will 

take the leadership when its content is relatively high, and its erosion effect will lower the deposition efficiency. 

7.3 Optimization of composite coatings 

CS is a relatively easy and cost-effective technique to deposit composite coatings with comparable or 

improved properties than as compared other methods. Presence of ceramic particles in feedstock enhances the 

coating by creation of a composite structure, densifies the coating, increases the coating adhesion, and improves 

the process stability. The tamping effect of hard phase contributes to the increase of coating compactness and 

adhesion. The addition of ceramics generally has no negative effect on coating corrosion behavior, but can 

greatly increase coating hardness, possibly lower COF and enhance coating wear resistance if the hard phase 

content is appropriate. However, when the content of hard phase is too high, the deposition efficiency will 

significantly decrease by its erosion effect, and thus the coating adhesion is degraded. Generally speaking, the 

content of hard phase in the coating increases with the increase of that in the feedstock until a maximum value, 

and then decreases. Consequently, the coating hardness also increases with the content of hard phase. While for 

coating adhesion, it presents a tendency similar to deposition efficiency as increasing the hard phase content. By 

controlling the composition of the original feedstock, it is possible to deposit coatings with specified properties. 

Preliminary studies have also shown that CS together with PSHT is a promising technique to fabricate 

metal-intermetallic coatings or even pure intermetallics coatings. Careful selection of heat treatment temperature 

(e.g. 500-580 °C for Ti/Al deposit) could avoid the obvious pores formed by the Kirkendall effect. There are still 

some important issues to be solved for CS composites. 
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(1) the most important thing is how to optimize the size, concentration, and distribution of ceramic phase in 

metal-ceramic composite coatings to tailor composite properties;  

(2) effect of process parameters as well as PSHT on composite coating microstructure and properties; 

(3) how to control the degree of phase transformation in forming the intermetallics during PSHT to obtain the 

desired phase? 

7.4 Optimization of nanostructured coatings 

As for nanocrystalline materials, CS is also a promising coating technique for its low process temperature. 

The characteristics of nanocrystalline feedstock can be retained in the deposits, producing coatings with good 

properties such as high hardness, excellent wear resistance, high electrical and thermal conductivity, high 

dielectric constant and piezoelectric constant, which are difficult to acquire through other conventional methods. 

When spraying with nanostructured Al alloy powders, the coating usually presents a relatively high porosity 

compared to the micron-sized powders, possibly because the spray parameters are not well in the deposition 

window to make the particles deform extensively. As for WC-Co, the deposition efficiency of nano powders is 

higher than that of micron-sized powders, and a good toughness of nanostructured coating could be obtained by 

designing the feedstock powders. During annealing of the nano-particles reinforced composite coatings, the 

grain growth is restrained due to the presence of nano-ceramic-particles, for example, nano Al2O3 in the 

Cu-Al2O3 coating will keep the small grain size even heat-treated at 950°C. The current challenge to deposit 

nanocrystalline materials lies in the control of nanostructures in the coating via powder preparation and 

processing parameters. Some important issues to be solved are:  

(1) as mentioned above, the preparation of appropriate powder is necessary. 

(2) to optimize the process parameters including nozzle design for nanostructured coatings to ensure compact 

coating. 

(3) how to ensure the deposition of thick, uniform and large-area coatings through process optimization. 

(4) lack of data on the properties of nanostructured coatings, e.g. adhesion/cohesion. 

7.5 Expanding the applications 

In order to expand the applications of CS, some general aspects should also be considered. 

(1) refer to thermal spraying, establishment of standards to quantitatively characterize the coatings 

microstructure and properties will be very helpful. 

(2) the performance of coatings in service, e.g. corrosion, fatigue and wear, when exposed to industrial 

environments, is also an important aspect to be explored. 
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(3) how to improve the toughness of as-sprayed coatings, which is important in order to use in spray forming 

and restoration? 

(4) develop high-performance portable CS equipment to extend range of open applications. 

(5) develop laser assisted CS (or hybrid CS), where the necessary thermal energy is provide to soften the high 

strength materials, e.g. superalloys, intermetallics. 
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