
 

 

A novel, internally structured stainless steel 

implant with titanium characteristics 

 

 

 

A thesis submitted for the degree of Doctor of Philosophy 
By 

 

Mohammadreza Yazdifar 

 

 

 

 

 
 

 

 

 

 

College of Engineering, Design and Physical Sciences 

Brunel University 
February 2018



 

i 

 

Table of Content 
Table of Content ......................................................................................................................... i 

Table of Figures ........................................................................................................................ vi 

Table of Tables ......................................................................................................................... xi 

Abstract .................................................................................................................................... xii 

List of Publication ................................................................................................................... xiv 

Acknowledgment ..................................................................................................................... xv 

Abbreviation ........................................................................................................................... xvi 

Notations .............................................................................................................................. xviii 

1 Introduction ........................................................................................................................ 1 

1.1 Background and motivation for the study ................................................................... 1 

1.2 Biomedical devices ..................................................................................................... 3 

1.3 Hollow porous spherical structure............................................................................... 4 

1.4 The aim and objectives of the study ............................................................................ 4 

1.5 Structure of the thesis .................................................................................................. 5 

2 Literature Review............................................................................................................... 7 

2.1 Bone ............................................................................................................................ 7 

2.1.1 Bone structure ...................................................................................................... 7 

2.1.2 Bone biomechanics and strength ......................................................................... 8 

2.1.3 Mechanical properties of bone ........................................................................... 10 

2.2 Hip replacement ........................................................................................................ 11 

2.2.1 Hip anatomy and symptoms for surgery ............................................................ 11 

2.2.2 Total hip replacement devices ........................................................................... 13 

2.2.3 Stem material ..................................................................................................... 15 

2.2.4 Stem geometry ................................................................................................... 19 

2.2.5 Stem surface finish ............................................................................................. 20 

2.2.6 Failure after THR ............................................................................................... 21 



 

ii 

 

2.2.7 Price of Implants ................................................................................................ 24 

2.3 Factors in THR .......................................................................................................... 25 

2.3.1 Effect of bone geometry and quality .................................................................. 26 

2.3.2 Effect of implant material, design and positioning ............................................ 26 

2.4 Stress Shielding ......................................................................................................... 28 

2.4.1 Bone loss ............................................................................................................ 31 

2.4.2 Implant materials ............................................................................................... 32 

2.4.3 Implant stiffness ................................................................................................. 33 

2.4.4 Optimising implants ........................................................................................... 34 

2.5 Steel foams ................................................................................................................ 35 

2.5.1 Advantages ......................................................................................................... 35 

2.5.2 Steel foam manufacturing .................................................................................. 36 

2.5.2.1 Powder metallurgy ...................................................................................... 36 

2.5.2.2 Hollow spheres ........................................................................................... 37 

2.5.2.3 Lotus-type ................................................................................................... 38 

2.5.3 Foams vs structures in this study ....................................................................... 38 

2.5.4 Auxetic materials ............................................................................................... 38 

2.5.5 Tantalum ............................................................................................................ 39 

2.6 3D printing ................................................................................................................ 39 

2.6.1 Stereolithography (SLA) .................................................................................... 39 

2.6.2 Digital light processing (DLP) ........................................................................... 40 

2.6.3 Fused deposition modelling (FDM) ................................................................... 40 

2.6.4 Selective laser sintering (SLS) ........................................................................... 40 

2.6.5 Selective laser melting (SLM) ........................................................................... 41 

2.6.6 Electronic beam melting (EBM) ........................................................................ 41 

2.6.7 Laminated object manufacturing (LOM) ........................................................... 42 

2.6.8 Direct metal laser sintering (DMLS) ................................................................. 42 



 

iii 

 

2.7 Finite element analysis in a biomedical study ........................................................... 43 

2.7.1 ABAQUS Software ............................................................................................ 44 

2.7.2 Material properties ............................................................................................. 44 

2.7.3 Mesh element type and size ............................................................................... 45 

2.7.4 Modelling the interface between bone and implant ........................................... 47 

2.7.5 Applying boundary conditions such as muscle loads and constraints ............... 48 

2.7.6 Solution .............................................................................................................. 54 

2.7.7 Validation of results ........................................................................................... 54 

2.7.8 Interpretation of the results ................................................................................ 55 

2.8 Conclusion ................................................................................................................. 55 

3 Research Method ............................................................................................................. 58 

3.1 Rule of mixtures ........................................................................................................ 63 

3.2 Finite element method ............................................................................................... 63 

3.3 Compression test ....................................................................................................... 63 

4 Investigation of cylinder with hollow spheres close to the surface behaviour ................ 64 

4.1 Introduction ............................................................................................................... 64 

4.2 Study of 3-dimensional designs ................................................................................ 65 

4.3 Method ...................................................................................................................... 67 

4.3.1 Rule of mixtures ................................................................................................. 67 

4.3.1.1 Upper bound ............................................................................................... 68 

4.3.1.2 Lower Bound .............................................................................................. 69 

4.3.2 FEA Simulation ................................................................................................. 70 

4.3.2.1 Cylinder Modelling..................................................................................... 71 

4.3.2.2 Cylinder material ........................................................................................ 71 

4.3.2.3 Cylinders boundary conditions ................................................................... 72 

4.3.2.4 Force and pin area ....................................................................................... 72 

4.3.2.5 Cylinder mesh accuracy .............................................................................. 73 



 

iv 

 

4.3.3 Experiment to validate the FEA results ............................................................. 73 

4.4 Results ....................................................................................................................... 75 

4.4.1 Results of the rule of mixtures ........................................................................... 75 

4.4.2 Finite element analysis ....................................................................................... 77 

4.4.3 Compression Results .......................................................................................... 84 

4.5 Minimising stress shielding by changing the volumetric ratio ................................. 85 

4.6 Conclusion ................................................................................................................. 91 

5 Investigation of cylinders with evenly distributed hollow spheres within a constant mass 

behaviour.................................................................................................................................. 93 

5.1 Introduction ............................................................................................................... 93 

5.2 Study of 3-dimensional designs ................................................................................ 94 

5.3 Method ...................................................................................................................... 96 

5.3.1 Rule of mixtures ................................................................................................. 96 

5.3.2 FEA simulation .................................................................................................. 96 

5.3.2.1 Cylinder modelling ..................................................................................... 97 

5.3.2.2 Cylinder material ........................................................................................ 97 

5.3.2.3 Cylinder boundary condition ...................................................................... 98 

5.3.2.4 Force and pin area ....................................................................................... 98 

5.3.2.5 Cylinder mesh accuracy .............................................................................. 98 

5.3.3 Experiment to validate the FEA results ............................................................. 99 

5.3.3.1 3-D model ................................................................................................... 99 

5.3.3.2 Samples measurements ............................................................................... 99 

5.3.3.3 Compression test....................................................................................... 100 

5.4 Results ..................................................................................................................... 100 

5.4.1 Results of the rule of mixtures ......................................................................... 100 

5.4.2 Finite element analysis ..................................................................................... 102 

5.4.3 Compression results ......................................................................................... 113 



 

v 

 

5.5 Minimising stress shielding by changing the volumetric ratio ............................... 114 

5.6 Conclusion ............................................................................................................... 121 

6 Investigation of hollow sphered implant behaviour ....................................................... 122 

6.1 Introduction ............................................................................................................. 122 

6.2 Methodology ........................................................................................................... 123 

6.2.1 FEA analysis .................................................................................................... 123 

6.2.1.1 Part module ............................................................................................... 123 

6.2.1.2 Property module ....................................................................................... 127 

6.2.1.3 Implant boundary condition...................................................................... 129 

6.2.1.4 Force and pin area ..................................................................................... 129 

6.2.1.5 Implant mesh accuracy ............................................................................. 130 

6.2.2 Rule of mixtures ............................................................................................... 131 

6.3 Implant finite element results .................................................................................. 132 

6.4 Conclusion ............................................................................................................... 140 

7 Discussion and Conclusion ............................................................................................ 141 

7.1 Discussion ............................................................................................................... 141 

7.2 Final Conclusion ..................................................................................................... 147 

7.3 Recommendations for future works ........................................................................ 148 

Bibliography .......................................................................................................................... 149 

Appendix ................................................................................................................................ 165 

  



 

vi 

 

Table of Figures 
Figure 1-1 Reported hip procedures in Australia per year based on Australian Orthopaedic 

Association (NJRR, 2017) ......................................................................................................... 3 

Figure 2-1 Bone shapes: Long bones, such as the femur (left); short bones, such as the 

vertebra (centre); and plate-like bones, such as the skull (right) (Fratzl & Weinkamer, 2007) 8 

Figure 2-2 The spongy structure of trabecular bones found in the vertebra or the femoral head 

(Fratzl & Weinkamer, 2007) ...................................................................................................... 8 

Figure 2-3 Illustration of bone architecture (Pierce, et al., 2004) .............................................. 9 

Figure 2-4 Typical values of stiffness (Young’s modulus) and toughness (fracture energy) for 

tissues mineralised with hydroxyapatite (Ashby, et al., 1995) .................................................. 9 

Figure 2-5 Difference between the ultimate stress of cortical and cancellous bone (Nigg & 

Herzog, 1999) .......................................................................................................................... 10 

Figure 2-6 Schematic of total hip replacement (English, et al., 2015) .................................... 11 

Figure 2-7 Components of the natural hip (Anon., 2014) ........................................................ 12 

Figure 2-8 Phases of the human gait (Kernozek & Willson, 2015) ......................................... 13 

Figure 2-9 (a) Femoral bone structure and (b) typical hip implant (Yongtae & Kuiwoon, 

2010) ........................................................................................................................................ 14 

Figure 2-10 A cemented and un-cemented implant (Schmidler, 2016) ................................... 15 

Figure 2-11 Load transfer patterns (a) within the natural femur (b) around the C stem (Zhang, 

2009) ........................................................................................................................................ 19 

Figure 2-12 Various causes of implant failure (Geetha, et al., 2009) ...................................... 24 

Figure 2-13 Simple schema of stress shielding zone (Surin, 2005) ......................................... 29 

Figure 2-14 Stress distribution along medial and lateral sides when a 4,000 N applied load 

was given onto proximal head (Ridzwan, et al., 2007) ............................................................ 30 

Figure 2-15 Preoperative femoral bone loss among the 35 hips is graded based on the 

American Academy of Orthopaedic Surgeons (AAOS) classification system (Engh, et al., 

2002) ........................................................................................................................................ 32 

Figure 2-16 Implant designed proposed by (Chang , et al., 2001)........................................... 35 

Figure 2-17 Typical stress–strain curve for metal foams in compression (Smith, et al., 2012)

.................................................................................................................................................. 36 

Figure 2-18 Electronic beam melting (EBM) .......................................................................... 42 

Figure 2-19 Direct metal laser sintering (DMLS) (whiteclouds, 2015)................................... 43 

Figure 2-20 Illustration of simplex, complex and multiplex elements (Fagan, 1992) ............. 46 



 

vii 

 

Figure 2-21 Two rectangular elements with the same aspect ratio with different behaviours 

(Fagan, 1992) ........................................................................................................................... 47 

Figure 2-22 The force components in x,y,z directions. The axis x is parallel to the dorsal 

contour of the femoral condyles in the transverse plane and z is parallel to the idealised 

midline of the femur (Bergmann, et al., 2001) ........................................................................ 49 

Figure 2-23 Muscles of the hip (González, 2009) ................................................................... 50 

Figure 2-24 Average, minimum and maximum values for hip contact force (Bergmann, et al., 

2001) ........................................................................................................................................ 51 

Figure 2-25 Top: muscle sets included in the analysis. Bottom: oblique view of the femur 

solid model showing the location of node constraints for each configuration (Speirs, et al., 

2007) ........................................................................................................................................ 52 

Figure 2-26 Deflected femur (solid) under walking loads in the anterior (top) and medial 

(bottom) views compared to the undeflected shape (outline) (Speirs, et al., 2007) ................ 53 

Figure 2-27 Unacceptable element combinations (Fagan, 1992) ............................................ 54 

Figure 3-1 Schematic view of the logics behind each chapter of this thesis ........................... 59 

Figure 3-2 Contents of the chapters for this thesis .................................................................. 60 

Figure 3-3 Summary of chapters 4 and 5 ................................................................................. 61 

Figure 3-4 Summary of chapter 6 ............................................................................................ 62 

Figure 4-1 Schematic view of a hollow shell cylinder ............................................................ 65 

Figure 4-2 Hollow shell cylinder views a) defined parameters; b) examples of hollow shell 

cylinder dimensions ................................................................................................................. 66 

Figure 4-3 The matrix and fibres in the composite materials .................................................. 68 

Figure 4-4 Force and pin area .................................................................................................. 72 

Figure 4-5 Compression machine used to carry out stress-strain tests .................................... 74 

Figure 4-6 ABS models of solid and hollow shell cylinders ................................................... 75 

Figure 4-7 Von Mises stress and displacement for different distance from each other 

vertically: a) 4mm; b) 5mm ..................................................................................................... 78 

Figure 4-8 Von Mises stress and displacement for different distance from the side-surface: a) 

2mm; b) 5mm ........................................................................................................................... 79 

Figure 4-9 Von Mises stress and displacement for different numbers of spheres in each row 

(different distance horizontally): a) 24 spheres; b) 12 spheres ................................................ 80 

Figure 4-10 Von Mises stress and displacement for different sphere radius sizes: a) 1mm; b) 

2mm ......................................................................................................................................... 81 

Figure 4-11 Von Mises stress and displacement of solids: a) titanium; and b) stainless steel 82 



 

viii 

 

Figure 4-12 Von Mises stress and displacement for the experiment case ............................... 83 

Figure 4-13 Stress-strain graph of solid and hollow spheres close to the surface of the 

structure.................................................................................................................................... 85 

Figure 4-14 The relationship between the radius of the spheres in (mm) and their number ... 87 

Figure 4-15 The relationship between hollow shell thickness (mm) and the height of the 

cylinder (mm)........................................................................................................................... 89 

Figure 4-16 Relationship between the number of spheres and radius of the cylinder (mm) ... 90 

Figure 4-17 Relationship between hollow shell thickness (mm) and radius of the cylinder 

(mm) ......................................................................................................................................... 91 

Figure 5-1 Uniformly hollow sphere in the cylinder samples ................................................. 94 

Figure 5-2 The other two specimens with different porous structures .................................... 97 

Figure 5-3 Pin and force area of the hollow cylinder .............................................................. 98 

Figure 5-4 One of the samples between compression anvils ................................................. 100 

Figure 5-5 Solid stainless steel FEA results: a)von Mises stress distribution (MPa); 

b)displacement (mm) Solid Titanium FEA results; c) von Mises stress distribution (MPa); d) 

displacement (mm)................................................................................................................. 102 

Figure 5-6 R1 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm) 103 

Figure 5-7  R1/2 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm)

................................................................................................................................................ 104 

Figure 5-8  R1.5 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm)

................................................................................................................................................ 105 

Figure 5-9  R1.5/2 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm)

................................................................................................................................................ 106 

Figure 5-10  R2 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm)

................................................................................................................................................ 107 

Figure 5-11  R2/2 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm)

................................................................................................................................................ 108 

Figure 5-12  R3 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm)

................................................................................................................................................ 109 

Figure 5-13 R3.5 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm)

................................................................................................................................................ 110 

Figure 5-14 R4 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm)

................................................................................................................................................ 111 



 

ix 

 

Figure 5-15 FEA results for four cylindrical holes (new design/2): a) von Mises stress 

distribution (MPa); b) displacement (mm) ............................................................................ 111 

Figure 5-16 FEA results for four hollow ellipsoids (new design/1): a) von Mises stress 

distribution (MPa); b) displacement (mm) ............................................................................ 112 

Figure 5-17 The relationship between the radius of spheres (mm) and their number ........... 116 

Figure 5-18 Relationship between the number of spheres and the radius of the cylinder (mm)

................................................................................................................................................ 117 

Figure 5-19 Parameter of a cylinder with 38mm height and 6mm radius ............................. 118 

Figure 5-20 Relationship between 𝒓𝒂𝒊𝒓and 𝒅 when 𝟐𝒓𝒂𝒊𝒓 + 𝟐𝒅 > 𝒓𝒂𝒍𝒍 ........................... 119 

Figure 5-21 Relationship between 𝒓𝒂𝒊𝒓and 𝒅 when 𝟐𝒓𝒂𝒊𝒓 + 𝟐𝒅 < 𝒓𝒂𝒍𝒍 ........................... 120 

Figure 6-1 Hip stem dimensions ............................................................................................ 123 

Figure 6-2 Wireframe vs shaded view of the stem ................................................................ 124 

Figure 6-3 Wireframe vs shaded view of the bone shaped design ........................................ 127 

Figure 6-4 Schematic diagram of bone material .................................................................... 128 

Figure 6-5 Force and pin area ................................................................................................ 130 

Figure 6-6 Mesh of the implant ............................................................................................. 131 

Figure 6-7 Relationship between the number of spheres in an implant and their radius (mm)

................................................................................................................................................ 132 

Figure 6-8 Von Mises stress for solid stainless steel: a) bone; b) bone and implant; c) implant

................................................................................................................................................ 133 

Figure 6-9  Von Mises stress for solid titanium: a) bone; b) bone and implant; c) implant .. 134 

Figure 6-10 Von Mises stress in implant containing spheres with 1mm radius: a) bone; b) 

bone and implant; c) implant ................................................................................................. 135 

Figure 6-11 Von Mises stress in an implant containing unlimited hollow spheres with 1.5mm 

radius: a) bone; b) bone and implant; c) implant ................................................................... 136 

Figure 6-12 Von Mises stress in an implant containing limited spheres with 1.5mm radius: a) 

bone; b) bone and implant; c) implant ................................................................................... 137 

Figure 6-13 Von Mises stress in an implant containing limited spheres with 2mm radius: a) 

bone; b) bone and implant; c) implant ................................................................................... 138 

Figure 6-14 Von Mises stress in an implant containing unlimited spheres with 2mm radius: a) 

bone; b) bone and implant; c) implant ................................................................................... 139 

Figure 7-1 Transferred stress to bone from two specimens ................................................... 142 

Figure 7-2 Stress distribution in implants for titanium, stainless steel and hollow structure 

sample .................................................................................................................................... 145 



 

x 

 

Figure 7-3 Stress distribution in bone for titanium, stainless steel and hollow structure sample

................................................................................................................................................ 146 

Figure 7-4 Stress distribution in bone for titanium and stainless steel implants containing 

different hollow sphere sizes ................................................................................................. 147 

  



 

xi 

 

Table of Tables 
Table 1-1 Summary of annual statistics of hip replacement in the UK based on National Joint 

Registry (Registry, 2017) ........................................................................................................... 3 

Table 2-1 Comparison of mechanical properties of metallic biomaterials with bone (Ratner, et 

al., 1996) .................................................................................................................................. 10 

Table 2-2 Comparison of metallic biomaterials used in the human body (Hussein, et al., 

2015) ........................................................................................................................................ 18 

Table 4-1 Various designs used for this chapter based on distribution and sphere size .......... 67 

Table 4-2 Mechanical properties of common biomaterials (Sabatini & Goswami, 2008) ...... 72 

Table 4-3 Calculation results according to the rule of mixtures .............................................. 77 

Table 4-4 Von Mises stress results for the different study cases ............................................. 84 

Table 5-1 Twelve samples of hollow cylinders ....................................................................... 95 

Table 5-2 Weight and dimension of the samples measured by scale and a digital Vernier 

caliper ....................................................................................................................................... 99 

Table 5-3 Calculation results for different hollow cylinder designs...................................... 101 

Table 5-4 Finite element results for sphered cylinders .......................................................... 113 

Table 5-5 Experimental results for hollow cylinders ............................................................. 114 

Table 6-1 Implant samples information ................................................................................. 125 

Table 6-2 Schematic view of the designed implants with 2 mm and 1.5 mm sphere radius . 125 

Table 6-3 Results of calculations for the implants................................................................. 140 

Table 7-1 Comparison of the modulus in different samples for computational, the rule of 

mixtures and experimental results ......................................................................................... 143 

Table 7-2 Percentage reduction in Young’s modulus compared to the solid model ............. 144 

  



 

xii 

 

Abstract 
There are many aspects that have direct effects on total hip replacement performance (THR), 

such as material properties, applied loads, surgical approach, femur size and quality, 

prosthesis design, bone-implant interface etc. Bone mechanics and traditional implant 

materials cause a frequent problem for patients of total hip arthroplasty (THA): the bone 

becomes shielded from the loading. Bone structure follows what is called “Wolff’s Law”, 

meaning it has an adaptive structure, which alters its geometry when experiencing forces over 

its life (Goldstein, 1987); (Pearson & Lieberman, 2004). The improved femoral stems act 

weakly in transferring stress onto the remnant bone and bone tissue atrophies at the interface, 

which will result in loosening of the implant, pain and thus, revision surgery will need to take 

place to correct the issue ( Feldt, 2011).  

For the current study, an innovative hollow spherical structure is developed for femoral hip 

stems. The aim is to extract volume in the spherical shape from the stainless steel hip implant 

stems, in order to focus solely on correlating with titanium behaviour. Internal geometry for 

the femoral stem is optimised in order to transfer more stress onto the bone. Moreover, the 

approach involves extracting volume in the spherical shape from internal structure to reduce 

stress shieling. New novel implant is proposed that demonstrated reduction in stress 

shielding.   

A new structure has been developed in this study for biomedical applications, such as 

implants, with the aid of the rule of mixtures and finite element analysis was applied to 

various models with different complex internal structures. Firstly, the rule of mixtures was 

used as finite element could not handle the simulation due to the large number of elements 

created, and also helped developing the designs analysed in this study. Secondly, 

computational analysis was applied to simplified finite elements containing hollow spheres in 

their outer shell.  Moreover, a compression test was applied to a solid sample and the 

experimental case. This approach was adopted to investigate the effects of a hollow structure 

near the side surface and the bone-implant interface. The same method was applied to 

samples containing uniformly distributed hollow spheres. In the both scenarios, the 

specimens were designed differently based on the sphere size, their distance from wall and 

that from each other. Finally, finite element was applied to actual implant samples containing 

hollow spheres.  
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The sphered models have a smaller Young’s modulus and strength than the solid stainless 

steel sample. The spheres in hollowed structures reduce the stress shielding and they transfer 

more stress onto the bone when compared to the solid stainless steel models. This approach 

also involves restructuring a hard material, such as stainless steel, to enhance 

osseointegration. The reduction of the Young’s modulus and stress directly depends on the 

volume of the hollow spheres in the models; however, there is certain volume that can be 

extracted from solid. 
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1 Introduction  

1.1 Background and motivation for the study  

Introducing new materials or optimising current materials or their structures is an important 

aspect in biomedical engineering to improve functionality of biomedical devices. 

Furthermore, new biomaterials with enhanced materials properties or structure could be 

developed. These improvements in biomedical devices will result in disappearing issues and 

existing problems that current devices have. This research focuses on new controlled porous 

structure in closed volumes for biomedical device applications. Total hip replacement (THR) 

is one of the most successful and usual operations implemented hundreds of thousands of 

times each annum worldwide to improve daily activities. In THR, the hip joint is replaced 

with artificial femoral stem and acetabular shell. The importance of designing a new structure 

for a better performance of the implants for THR lies in the fact that, as above mentioned, 

many of these surgeries are accomplished every year all over the world.  

Figure 1-1 shows the number of hip procedures performed in Australia for each year. It can 

be observed that, between 2006 and 2016, the number of hip procedures increased by over 

15,000. As can also be seen, the number of hip procedures increased year on year and hence, 

the need for an adequate hip implant would appear to be growing. Table 1-1 illustrates the 

number of operations implemented by NHS and independent hospitals in the UK. As is 

shown, the number of hip replacements performed by the NHS is approximately twice that of 

independent hospitals. Furthermore, these operations are very costly for the NHS, not only in 

terms of the operation, but also regarding the cost of implant production. In sum, the rates for 

hip procedures for Australia and the UK have been exhibiting an upward trend. Moreover, 

according to the National Joint Registry, most patients have a revision risk of 5% or less at 12 

years after their first surgery. However, these results are slightly higher for younger patients, 
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especially those under 55 years of age. Therefore, implants may be replaced within the first 

year due to fracture, dislocation or infection or it could be after five years due to implant 

loosening or pain (National joint registry, 2016).     

Whilst the biological joint may require replacement, the replacement joint could also need 

revision surgery when facing complications. Finite element analysis (FEA) is a common tool 

used to solve complicated problems at the lowest cost possible. That is, this method can be 

used without prototyping to reduce the costs significantly. In addition, FEA can be performed 

for the analysis of hip implants to avoid in vivo testing, if the implant is going to have 

negative impact.   

It has to be mentioned that there are uncertainties in THR constructs, which will influence the 

performance of the implanted hip. These uncertainties could relate to external factors such as 

temperature, surgeon’s skill, patient collaboration in the recovery, etc. On the other hand, it 

could be due to the surgical interposition process such as patient geometry, implant selection, 

insertion method, etc (González, 2009). However, most FEA research to date has looked into 

specific matters, instead of including random factors. Moreover, it could also be deployed to 

recognise the factors that are the most salient causes of failure, thereby guide researchers in 

providing new solutions.  
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Figure 1-1 Reported hip procedures in Australia per year based on Australian Orthopaedic Association (NJRR, 

2017) 

 

Table 1-1 Summary of annual statistics of hip replacement in the UK based on National Joint Registry (Registry, 

2017) 

Provider 
Number of operations (Hip procedures) 

2016 Year to date:2017 

NHS 67,374 32,356 

Independent 

Hospitals 
36,853 20,496 

Total 104,227 52,852 

 

1.2 Biomedical devices 

A biomedical device can take many forms, such as an instrument, apparatus, implement, 

machine, appliance or implant, used on its own or in combination, to diagnose, prevent, 

monitor, treat or alleviate disease as well as to replace or modify the human anatomy (Goad 

Number of hip operations performed per year 
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& Goad, 2002). However, in this study, the focus is on hip implants in terms of improving 

their material properties.  

Designing a biomedical device requires knowledge in various fields such as human anatomy 

and physiology, material science, device engineering and different engineering disciplines. 

Additional knowledge in other areas may be needed depending on the specific application. 

Such other fields could include immunology and neurology, or biomedical materials 

properties which could be used in certain biological applications.  

1.3 Hollow porous spherical structure 

Having structure like spheres within a mass will force the stress to distribute. Specially, 

having the right number of spheres based on the material’s property and its volume, will 

decrease the Young’s modulus, whilst having the same strength as the solid form. This type 

of porous structure could be used widely in biomedical applications to improve the implant 

models by reducing stress shielding. Stress shielding is a phenomenon that occurs in the 

femur after implanting, which results in bone density reduction.    

 There are many types of porous stainless steel, such as steel foams, that are widely used in 

different applications, such as aerospace, civil engineering, automobiles and etc. Having 

porous structure will improve the material properties of metals without weakening them. In 

sum, the idea of having hollow spheres within a closed and controlled mass will enhance 

current hip implant designs, in terms of improved stress distribution.  

1.4 The aim and objectives of the study  

The main aim of this project is to develop cost-effective implants by creating a novel hollow 

spherical structure within a stainless steel femoral stem to mimic the behaviour of titanium 

implants. In addition, the structure would be ideal for stress shielding reduction in 

comparison to titanium.   

The price of raw titanium is 14 times more expensive than the price of raw stainless steel. 

Considering the manufacturing technique for the proposed structure (additive manufacturing) 

being better in comparison to the conventional method (subtractive manufacturing); not only 

it is more cost-effective, it is also efficient in terms of detailed and complex geometries. 

Therefore, mass production could be less wasteful, cost-effective and more detailed while 

using the additive manufacturing.  
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It is proposed that having hollow spheres, not only reduces the Young’s modulus and 

stiffness of the material, for it also decreases stress shielding and prevents bone resorption, 

thereby improving the life of the implant.  

In order to achieve this aim: 

 Simplified cylindrical specimens containing hollow spheres near the surface are 

modelled; 

 Finite element analysis is used for every model in Abaqus environment; 

 Solid cylinders and others with hollow spheres are printed in ABS plastics to test 

under compression; 

 Rule of mixtures is used at every step to design the samples as simulation was 

impossible due to the high number of elements; 

 The study involves developing uniformly distributed spheres within a constant 

cylindrical volume based on compression testing standard to illustrate the wider 

principles of a hollow structure;  

  Stainless steel 3D printing is used to create simplified uniformly distributed sphered 

samples to conduct compression tests; 

  The hollow sphered structure is applied to a model of hip prosthesis based on rule of 

mixtures to carry out finite element analysis.   

1.5 Structure of the thesis 

This research is set out as follows:  

Chapter 2 provides a review of the background literature on hip anatomy, hip implants, 

porous structures and foams, the price of hip implants, different types of three dimensional 

printing, total hip replacement and stress shielding.   

Chapter 3 presents the methods used for this study and the process to achieve the aim of the 

study. 

Chapter 4 presents finite element analysis (FEA) of having hollow spheres in the outer shell 

of a cylinder and using plastic printing for experimentation. The difference that hollow shell 

spheres makes to the stress distribution is demonstrated using stress-strain graphs. 

Chapter 5 describes FEA on cylinders with even hollow spheres distribution based on a 

British Standards compression test. It also looks at the results for compression tests 
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accomplished on printed samples. It also provides the stress-strain relationship graphs for 

further analysis. 

Chapter 6 contains FEA of actual implant designs and how the spheres effect the stress 

distribution. It also subjects the stress-strain graphs to further detailed analysis.  

Chapter 7 includes discussion and conclusion of this thesis along with how the present work 

could be improved and developed in the future works towards actual applications.  
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2 Literature Review 

2.1 Bone  

An introduction to bone is provided here to understand the structure and mechanical 

properties of the femur. Structural support and protection for internal organs are contributed 

by the bones in our body, which comprise dense and hard tissue.  

2.1.1 Bone structure 

Bones are split into two main categories, Long bones, such as the femur or tibia and short 

bones, such as vertebra or the head of the femur, which are filled with spongy material and 

are known as trabecular or cancellous bone. Stability is provided by bones against bending 

and bulking. Another bone category is plate-like bones, such as the skull. There are also 

bones that do not undergo fit into any category, such as the flat bones of the cranium and 

irregular bones. In addition, the morphology of bones at the organ, tissue and cellular levels is 

fairly stable. The classification of the bone is related to the size and shape of it (Fratzl & 

Weinkamer, 2007). Figure 2-1 displays different types of bone and Figure 2-2 shows their 

molecular structure.  
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Figure 2-1 Bone shapes: Long bones, such as the femur (left); short bones, such as the vertebra (centre); and plate-

like bones, such as the skull (right) (Fratzl & Weinkamer, 2007) 

 

Figure 2-2 The spongy structure of trabecular bones found in the vertebra or the femoral head (Fratzl & Weinkamer, 

2007) 

 

2.1.2 Bone biomechanics and strength  

The biomechanics of bone should be firm enough to avoid bulking and bending when force is 

applied. It should also be flexible enough not to break when the load is more than normal 

activity. These two combinations of mechanical properties are designed in bone material such 

that it consists of two types: cortical and trabecular. Figure 2-3 demonstrates a long bone 

structure in detail, with the two ends called the metaphyseal regions, being in contact with 

cartilage. Whilst the area between these ends is known as the diaphyseal region, which has a 

hollow tube structure surrounding the medullary cavity (Pierce, et al., 2004).  
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Figure 2-3 Illustration of bone architecture (Pierce, et al., 2004) 

Bones consist of two important characteristics: stiffness and toughness. They are stiff to 

avoid bending and buckling, whilst they also need to be tough to avoid breaking when under 

higher load than the normal range. Proteins (collagen in the case of bone and dentin) are 

tough and the mineral is stiff. Based on a-map, as provided in Figure 2-4, bone and dentin can 

be seen as having good properties in relation to both (Ashby, et al., 1995).  

 

Figure 2-4 Typical values of stiffness (Young’s modulus) and toughness (fracture energy) for tissues mineralised with 

hydroxyapatite (Ashby, et al., 1995) 
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Trabeculae position themselves in the direction of the forces applied to the bone (Mittra, et 

al., 2005). The volume of cortical and cancellous bone in each individual is different, but 

about 80% of the total skeletal volume in an adult human skeleton comprises the former (Jee, 

2001).  

2.1.3 Mechanical properties of bone 

Bone strength can vary under different circumstances, such as age, sex, location, orientation 

of the load and test condition. Furthermore, bone is a living organ and has a basic stress-strain 

relationship. Figure 2-5 shows the difference in cortical and cancellous bone, where it can be 

seen that the former has higher strength than the latter (Nigg & Herzog, 1999). It is now clear 

that bone is stiff and also soft. In addition, this combination makes bones a non-homogeneous 

and anisotropic material.  

 

Figure 2-5 Difference between the ultimate stress of cortical and cancellous bone (Nigg & Herzog, 1999) 

There are many ways of determining bone properties. In past studies, various mechanical 

testing was in use, such as uniaxial tensile, compressive and three-point bending. In contrast, 

nowadays, techniques like ultrasound and nano-indentation are being applied, as less material 

is used and the directional effects can be measured. Table 2-1 compares the mechanical 

properties for metallic biomaterials with bone.  

Table 2-1 Comparison of mechanical properties of metallic biomaterials with bone (Ratner, et al., 1996) 

Material 

Young’s 

Modulus, 

E(GPa) 

Yield strength, 

(MPa) 

Tensile Strength, 

(MPa) 

Fatigue Limit, 

(MPa) 

Stainless steel 190 221-1213 586-1351 241-820 

Co-Cr alloys 210-253 448-1606 655-1896 207-950 

Titanium (Ti) 110 485 760 300 

Ti-6Al-4V 116 896-1034 956-1103 620 

Cortical bone 15-30 30-70 70-150  



 

11 

 

2.2 Hip replacement   

Total hip replacement (THR) is one of the most common and effective orthopaedic 

procedures accomplished worldwide. In this part, the hip anatomy and disorders that result in 

THR are discussed. In addition, surgical procedure and failure after the replacement is 

discussed. Figure 2-6 shows the schematic of total hip replacement.  

 

Figure 2-6 Schematic of total hip replacement (English, et al., 2015) 

 

2.2.1 Hip anatomy and symptoms for surgery  

The hip anatomy consists of many parts, including bones, ligaments, muscles, cartilage and 

tendons, which are in contact with one another so as to make daily activities, such as walking, 

sitting, bending and turning, possible. In addition, the hip carries most of the body’s weight 

during daily activities.  
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In hip structure, there are three main bone parts: A ball positioned at the top of the femur 

(thighbone), which fits into a rounded socket or cup-like cavity (acetabulum) in the pelvis; 

ligaments, which are tough bundles of fibre forming a capsule connecting the ball to the 

socket together and keeping bones in place; and cartilage, which is positioned at the surface 

of the bones to ease the rotation of the ball in the socket and decrease friction between the 

bones. The area that is covered by muscles or tendons across the bone is filled with fluid sacs 

known as bursae and there is an oily liquid called synovial fluid that lies in a lining 

(synovium) that exists in the capsule surrounding the joint. This fluid helps to make daily 

activities easier and frictionless, acting as a lubricant (González, 2009). Figure 2-7 shows the 

components of the natural hip.  

 

Figure 2-7 Components of the natural hip (Anon., 2014) 

In experimental or computer simulations for lower limb models, the gait cycle becomes very 

important, because this is one of the most common human activities. Figure 2-8 shows the 

various phases of the human gait cycle, which pertain to the time between consecutive foot 

contact of the same limbs (González, 2009). 
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Figure 2-8 Phases of the human gait (Kernozek & Willson, 2015)  

“Hip replacement is one of the most successful and cost effective interventions in medicine” 

(González, 2009). The purpose of these operations is to improve the quality of life for the 

patients suffering from a hip disorder, such as osteoarthritis, rheumatoid arthritis or avascular 

necrosis. At the present, there are 50,000 hip replacements implemented across the United 

Kingdom yearly and this number reaches 300,000 worldwide. The main symptoms for hip 

replacements are pain and functional limitations, which are caused by deformation of joints 

and capsular contractions. Furthermore, these will result in a reduction in the range of motion 

(González, 2009). The replacement procedure can lead to instant relief from the constant pain 

from daily activities, especially for older patients with arthritic hips. Performing such surgery 

is not age dependent. However, most of the patients for THR are aged 60 years or more, who 

have osteoarthritis and rheumatoid arthritis. Rheumatoid arthritis usually occurs in young 

adults; however, osteoarthritis happens as age advances. There are other hip disorders, such 

as avascular necrosis, congenital dislocation, Paget’s disease, ankylosing spondylitis and 

traumatic arthritis (González, 2009). 

2.2.2 Total hip replacement devices 

Total hip replacement (THR) is one of the common operations that is used when the cartilage 

has degenerated. In this surgery, the hip is replaced with an implant and mostly, it is 

successful (Savilahti, et al., 1997). Hip implants contain three parts: the stem, the ball and the 

cup. The hip stem is the part that goes into the femur, whilst the ball is placed on the stem and 

the cup is placed in the acetabulum cartilage position. The cup is an empty semi-sphere. 

Furthermore, the cup and the ball move against each other to control the movement of the 

joint (Jinno, et al., 2004). Figure 2-9 displays femoral structure and when it is implanted.  
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Figure 2-9 (a) Femoral bone structure and (b) typical hip implant (Yongtae & Kuiwoon, 2010) 

Hip stems are made of three different materials: steel, Co-Cr-Mo and Ti-6Al-4V. The 

structures of these metals should be the same as the bone structure. However, the current 

metals do not have the exact same mechanical properties of the bone. Ceramics and polymers 

are not suitable materials for the stem; the former are very hard materials, strong in 

compression, but with low fracture resistance, whilst the latter have low stiffness and 

reasonable fracture toughness, but poor strength (Thielen, et al., 2009). All the materials used 

in THR should have resistance to corrosion, biocompatibility, degradation and wear, with the 

highest standards of fabrication and quality control at a reasonable cost. 

Cementless implants have a porous surface for new bone growth instead of bond creation 

using cement, with these designs being larger and longer than cemented ones, generally 

(Sotereanos & Engh, 1995). In cemented implants, cement is used to fix the femoral and 

acetabular components; however they can crack over time, which results in loosening of the 

prosthetic stem (Jeffers, et al., 2007). When the microscopic debris particles are absorbed, 

inflammation occurs around the implant, which results in the removal of fragments of bone 

(Nikolaus, et al., 2007). Figure 2-10 shows the difference between a cemented and 

uncemented implant. 
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Figure 2-10 A cemented and un-cemented implant (Schmidler, 2016) 

There are several possibilities for the choice of bearing surface between ball and socket, 

including: polyethylene, ceramic and metal-on-metal bearings. The upper part of the 

thighbone becomes weaker when an implant is placed in the femur, which is due to the load 

being carried by the implant. Most of the body weight is carried by the implant due to being 

stiffer than bone. On the other hand, the skeleton around the end of the femoral component is 

overloaded, which results in stronger and thicker bone, often ending up with significant pain 

(Boyle & Yong, 2011).  

2.2.3 Stem material 

Metals have been used have been used for many in the biomedical field for a variety of 

applications. They have been used extensively for internal support and biological tissue 

replacements, such as dental roots, orthopaedic fixation, joint replacement and stents (Park & 

Lakes, 2007). The main metals and alloys that are used in this field are stainless steel, Co 

alloys and Ti alloys (Niinomi, 2008) (Karanjai, et al., 2007). All biomaterials have to meet 

specific criteria, such as high resistance to corrosion, adequate strength, bio adhesion, bio 

functionality, high wear resistance, low friction and biocompatibility in order to achieve the 

best outcome (Patel & Gohil, 2012). However, placing all the mentioned requirements in a 

single implant has been impossible so far. Moreover, all implants used inside human bodies 

must be biocompatible to avoid rejection and possible toxicity. The environment of the 

human body is extremely corrosive, which makes it important to choose the right material for 

the longevity of implants. 

There are many important factors involved when designing a femoral stem, including the 

material, surface finish, geometry, etc. The material that is used for an implant must, as 

abovementioned, be biocompatible and have similar mechanical properties to bone. Stem 
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material should also have optimum tribological properties and be strong enough in the 

complicated loading and human body environment (Semlitsch & Willert, 1980). Most 

materials used in biomedical engineering are stronger than expected for fatigue and yielding, 

thus the strength of the material is not a critical subject. However, stress shielding is 

extremely important when designing a hip stem. As it has been explained before, stress 

shielding refers to the reduction in bone density around the hip stem, which is due to body 

weight being carried by the implant. This could result in discomfort and pain for the patients. 

To conclude, it is essential to use materials with similar mechanical properties, such as 

strength, stiffness and density, as bone. This will decrease the stress shielding between the 

cancellous bone and the lower part of the femur. There are three main alloys used in 

biomedical engineering nowadays, namely: stainless steel, cobalt chrome alloys and titanium. 

These are the most used materials due to their biocompatibility and strong mechanical and 

tribological properties. Femoral stems made with titanium alloys were notorious for failure 

prior to the cobalt chrome and stainless steel alternatives, which is due to its susceptibility to 

crevice corrosion. This is caused by the generation of a gap between the stem and the cement 

as well as between the head and the taper. In sum, titanium alloys used in femoral stems have 

raised certain concerns, while manufacturing and titanium articulating surfaces are not 

recommended for biomedical use anymore (Zhang, 2009).  Table 2-2 shows the advantages 

and disadvantages of metallic biomaterials.  

There are several key desired properties for biomaterials that can be summarised as follows. 

 Mechanical properties: if the modulus of elasticity of a biomaterial matches the 

bone which is between 4 to 30 GPa, stress shielding could be prevented (Lawrence, 

1980) (Black & Hastings, 1998). Furthermore, despite having low modulus, the 

material should also have adequate strength to increase the life period of the implant 

and prevent loosening. As a result, revision surgery could be avoided. 

 Biocompatibility: the material used for the human body must be compatible with 

human organs and reduce the harm to the smallest possible. A non-biocompatible 

material could result in infection and hence, have a negative effect on body organs 

and tissues (Walowit, et al., 1997).    

 High wear resistance: another positive property a material could have is high wear 

resistance and a low friction coefficient when sliding against body tissues. Moreover, 

reduction in wear resistance or a high friction coefficient could cause loosening 
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(Alvarado, et al., 2003); (Ramsden, et al., 2007). The friction could generate debris 

particles causing inflammation that is harmful for the supporting bone.  

 High corrosion resistance: a low corrosion resistance material could cause toxicity 

when the metal ions are released (Hallab, et al., 2005).  

 Osseointegration: Osseointegration is described as “a direct structural and functional 

connection between ordered, living bone and the surface of a load-carrying implant” 

(Branemark, 1983). The surface properties of the implant, such as the roughness, 

topography and chemistry, play an important role in good osseointegration (Geetha, et 

al., 2009). A non-integrated implant surface could result in implant loosening and 

revision surgery (Viceconti, et al., 2000). There are some studies that say 

osseointegration is not necessary due to the risk of not being able to take out the 

implant after use. On the other hand, other studies that the implant can be removed 

safely (Wennerberg, et al., 2015). Therefore, osseointegration is an essential 

biomedical property for implants. In addition, the implant has to integrate properly 

with the bone and surrounding tissues to avoid loosening (Barfeie, et al., 2015).  

 Non-toxic: the material used for implant should not be either genotoxic (change the 

DNA of the genome) or cytotoxic (can damage individual cells) (Hussein, et al., 

2015).  

 Long fatigue life: failure due to fatigue occurs with hip prostheses. Hence, the 

material should have high resistance to fatigue failure to avoid implant failure and 

stress shielding from fatigue fracture (Teoh, 2000).  
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Table 2-2 Comparison of metallic biomaterials used in the human body (Hussein, et al., 2015)  

Metals and 

alloys 

Selected 

examples 
Advantages Disadvantages 

Principal applications 

(Williams, 1990) 

Titanium-based 

alloys 

CP-Ti, 

Ti-Al-V, 

Ti-Al-Nb, 

Ti-13Nb-13Zr, 

Ti-Mo-Zr-Fe 

High biocompatibility 

(Henriques, et al., 2010) 

(Niespodziana, et al., 2008) 

(Ribeiro, et al., 2009). Low 

Young’s modulus, excellent 

corrosion resistance, low 

density 

Poor tribological properties 

(Ohidul Alam & Haseeb, 2002), 

toxic effect of Al and V over the 

long term 

Bone and joint replacement, 

fracture fixation, dental 

implants, pacemaker 

encapsulation 

Cobalt and Cr 

alloys 

Co-Cr-Mo, 

Cr-Ni-Cr-Mo 

High wear resistance 

(Wennerberg, et al., 2015) 

Allergy consideration with Ni, Cr 

and Co (Niinomi, 2008) much 

higher modulus than bone 

Bone and joint replacement, 

dental implants, dental 

restorations, heart valves 

Stainless steel 
316L stainless 

steel 

High wear resistance 

(NIINOMI, 2002) 

Allergy consideration with Ni, Cr 

and Co (Niinomi, 2008) much 

higher modulus than bone 

Fracture fixation, stents, 

surgical instruments 
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2.2.4 Stem geometry 

Another important factor regarding the femoral stem is the geometry of the implant, which is 

because this may have an impact on in vivo behaviour. Many femoral stem designs have been 

removed from the market, such as the 3M Capital hip, due to its short term survival rate. The 

most successful femoral stem is the one that transfers the body weight, axial and torsional to 

the bone cement. In addition, this load should be transferred without causing destructive peak 

stresses and with no extreme micro-motion. There are also many important factors when 

designing the stem. These factors are the general shape (symmetrical or anatomical), the 

presence or absence of a collar and a flange, the cross section (oval or square), the length of 

the stem and the shape of the stem tip. There are three different symmetrical stem designs 

with a good clinical track record: Charnley, Exeter, and Müller stems. In contrast, anatomical 

stem designs, such as Lubinus SP2, can create various strains in the cement mantle due to 

their specific shape. The cross-section is also important as it effects the stress distribution 

surrounded by the cement mantle, the rotational strength of the implant and the distribution of 

the cement within the mantle. The difference between the stems with oval and square cross-

sections is their rotational stability. A square cross-section offers more rotational stability. On 

the other hand, sharp edges generate peak stresses, which could result in micro cracks 

(Scheerlinck & Casteleyn, 2006). Finally, the number of hip implants ready to be used by the 

surgeons is going up. Figure 2-11 shows the load transfer pattern in a natural hip and when it 

is implanted. 

 

Figure 2-11 Load transfer patterns (a) within the natural femur (b) around the C stem (Zhang, 2009) 
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2.2.5 Stem surface finish 

Another important factor in designing femoral stem is the surface finish. There are many 

different ways of finishing the surface of the femoral stem as it can be seen by considering 

various designs. There is much debate regarding the matt surface finish, regarding whether it 

could solve permanent fixation of the femoral stem during long term in vivo service. The 

surface of the stem is very important due to its direct effect interaction with bone. The bond 

created at the interface is determined by the surface texture and the strength of it. It should 

also be mentioned that a matt surface creates better bone-stem interface bonding than a 

polished one in regards to mechanical prospective (Zhang, 2009). “Shape closed design” is 

the name given to a matt femoral stem with a collar and a flange. In addition, this type of 

surface finish keeps its stability through its created bone between the stem and the cement. 

“force closed design” is the name given to a polished femoral stem with a collarless design 

(Huiskes, et al., 1998). The Exeter femoral stem design is one of the most used femoral stems 

and was extremely polished before 1976. After 1976, the Exeter femoral stem surface was 

matt until 1985 due to the cost of polishing. A matt surface in the stem causes more loosening 

than a polished one and that is the reason that the polished surface was reused again at the 

beginning of 1986 (Anthony, et al., 1990). In addition, a matt femoral stem tends to create 

more debris and causes intense damage to the cement mantle. Nowadays, there have been so 

many articles published proving the advantages of a polished femoral stem over a matt one. 

In addition, it has been ascertained that in some cases a matt surface fails earlier than 

polished surface, such as with the Exeter stem and the Iowa stem (Howie, et al., 1998). 

Hip implants are placed in the hip by two methods: cemented and uncemented, with which 

being used depending on the surgeon’s experience. 

Cemented implants rehabilitate faster compare to uncemented ones. However, fatigue 

fracture in cemented implants, over time, may result in loosening of the prosthetic stem. 

Another problem with them is that the cement could be absorbed by cells and result in 

initiating an inflammatory response from the body. In addition, this may also result in 

osteolysis, which refers to resorption of bone around the cement.  People over 60 years old 

mostly have cemented THRs, which are more stable as they are less likely to have high stress 

on the cement, which can result in fatigue fractures  (Nelson, 2002). A study stated 90% 

success rate for the patients at 25 years of Charnley total hip replacement implemented with 

cement (Callaghan, et al., 2000). There is a relationship between the thickness of cement and 

stress levels and micro movements. That is, the greater the cement thickness, the more shear 
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stress and micro movements over the bone-cement interface. “Slipping of the implant causes 

osteolysis, which is due to the releasing of cemented particles” (Willert, et al., 1990).  

Uncemented fixation has also been studied to stop implant loosening problems (El-warrak, et 

al., 2004) and they have coating or texture with different porous material structure for bone-

growth. They take longer to heal (6-12 weeks) and to become stable due to new bone in-

growth. The gap between the new bone growth and implants must be within 0-2 mm, for, 

bone cannot grow into the implant if the distance is more than this. 

If a bond between the bone and implant is not achieved, it may result in loosening. 

Nowadays, uncemented implants are recommended by most surgeons and patients under the 

age of 50 have uncemented THR depending on their bone quality. Uncemented stems are also 

better for patients with an active life style. The new bone in-growth cannot fill gaps wider 

than 1 to 2 mm. Therefore, the initial bond is important in uncemented stems to allow bone 

in-growth (Sanami, 2015).   

307 patients over two years and 89 patients over five years were studied for their THRs 

implemented with porous coated. It was elicited that a good press fit at the isthmus of the 

femur and the medullary canal can reduce the pain and results in better bone-ingrowth. It was 

also elicited that the stress shielding for 88% of the cases was small as the diameter for the 

stem was smaller. In addition, more bone loss is more likely to happen in larger diameter 

stems (Engh & Bobyn, 1988); (Engh, et al., 1987). 

Cemented fixation in younger patients proved to be less adequate (Sancez-Sotelo, et al., 

2002), involving some intense problems such as “the release of toxic monomers and heat 

necrosis” (Gough & Downes, 2001); (Moreau, et al., 1998). On the other hand, uncemented 

implants are better in terms of osseointergration into the porous stem surface with strong 

connection for long term survival. It has also been reported as providing successful result 

with resistance to osteolysis when compared to a cemented fixation (LaPorte, et al., 1999); 

(Sancez-Sotelo, et al., 2002). 

2.2.6 Failure after THR  

Failure of THR occurs even with the most advanced designs and the original prosthesis 

device has to be replaced with a new one, which is known as revision surgery and is less 

likely to be as successful as the primary surgery (González, 2009).  
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There are several factors that lead to such failure related to the femoral stem, such as 

loosening of the joint components, migration of the implant, infection of the joint, fatigue 

failure and accumulated damage, dislocation and deep vein thrombosis (González, 2009).   

Dislocation occurs when the femoral head, the ball, comes out of the joint, the socket in the 

pelvis. This is a very painful state, which may be caused by loosening of the surrounding 

tissues, like the muscles, hip joint capsule and ligaments, after THR. Furthermore, as head-

neck ratios reduce, the angle of motion allowed before the neck-acetabulum decreases, and 

dislocation occurs (González, 2009). There were 62,175 THRs recorded by the Scottish 

National Arthroplasty from April 1989 to March 2004 and the rate of dislocation incidence 

was 0.9% per annum (Meek, et al., 2008).  

Aseptic loosening is another failure condition in which any form of loosening is accountable 

except for that due to infection. This condition will lead to losing component fixation and 

removal. The reason for such incidents is the lack of bone in-growth or when wear particles 

around the prosthesis access the interface and create weak pockets of bone around the implant 

(osteolysis). Stress shielding of the cortical bone could be another cause of aseptic loosening. 

A stiffer component will carry most of the load, which results in the reduction of the load 

transferred and thinning of the femoral cortex around the prosthesis. Stress bypass is another 

condition for failure in which the fixation of stem in the proximal region is poor and there is 

good fixation at the distal end. This will result in load transferred down to the distal end 

causing the proximal femur to go under lesser stress and become subject to bone resorption 

(González, 2009). Prevalence of aseptic loosening has been reported to be between 32 and 

62% over 10 years, depending on the type of implant used (Dattani, 2007).  

Infection may occur in the first twelve weeks after THR, which is caused by intra-operative 

contamination. However, it could occur after twelve weeks, which could be from distant 

sources, such as skin, ulcers, dental caries or the urinary tract. Furthermore, in cases like 

these, antibiotics have difficulties intervening due to the environment formed around the 

infected area (Puolakka, et al., 2001). 

Migration is a displacement that occurs mostly in uncemented implants between the host 

bone and implant, permanently, one year after THR. The gait cycle load could eventually 

result in crack growth within the femur (González, 2009). Furthermore, micro-cracking of the 

trabeculae extracts a portion of the implant support, letting it to sink down within the bone, 
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and this is noticeable where there is high stress such as the end part of the femoral stem 

(Glyn-Jones, et al., 2004).   

Another failure condition is fatigue and accumulated damage caused by cyclic loading. In 

addition, this damage could gradually build up and harm materials and interfaces. This 

condition in uncemented implants is unlikely to occur due to their strong bond with the host 

bone and the lack of a weak cement link (González, 2009).  

The last condition of failure is deep vein thrombosis, where blood clots may form in larger 

veins in the thigh after THR. The way to treat this condition is through blood thinning 

medication, compression stockings to assist circulation and early mobilisation (González, 

2009).  

When failure occurs, revision surgery must take place, which is complex and as 

aforementioned, the success rate is lower than with primary replacement. In addition, it also 

costs more than primary replacement, with more discomfort and pain for patients. Failure, 

after the expected lifetime of implants, which is 10 to 15 years, is termed fairly successful 

and under this duration is called premature failure. Figure 2-12 displays the reported causes 

of implant failure. 
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Figure 2-12 Various causes of implant failure (Geetha, et al., 2009) 

 

2.2.7 Price of Implants 

The price of implants differs across countries depending on their manufacturing costs. For 

instance, in Asia, they cost $150 to manufacture, whereas in the United States, this rises to 

$350. These differences in price could be due to low labour costs; however, some 

orthopaedists believe that there may also be some “corner cutting” to improve the quality of 

the components. These prices will be inflated regardless of the place of manufacture once 

they are ready to be used. For instance, in the US, $7,000 needs to be paid for just the implant 

regardless of surgery cost. The basic design for an implant has not changed significantly, yet 

every year the price continues to increase substantially. Many people consider having their 
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hip replacement in other countries for a cheaper price (for instance $4,000 in Belgium) 

(trip4care.com, 2014). 

2.3 Factors in THR 

Studies about the reasons for THR can be classified in two ways: experimental and finite 

element analysis. There are many factors playing a failure role after operations that need to be 

taken into consideration. Many of these failures are due to abnormal stresses and strains 

caused by inadequate component design and imprecise implantation. Validation of results 

using an experimental approach to THR is limited, which is due to difficulties presented 

when simulating components in a laboratory. Furthermore, the experimental approach in a 

laboratory requires many scenarios that cover combinations of alignment, geometries, bone 

density and quality and etc. In addition, experimental examinations will be unpractical soon 

due to the complex biological environment. On the other hand, computational modelling of 

THRs takes much less time to process and many scenarios can be speedily investigated. 

Validation of results using FEA can be as straight forward as two components being 

investigated in the same environment. There are some factors below that have an effect on 

THR performance.  

The first is the surgical approach, which affects soft tissues directly during the operation and 

there are two types: posterolateral and anterolateral (Kennon, et al., 2003). With the 

posterolateral approach, the rate of dislocation is at its highest due to straightening of the 

spine and flexing of the pelvis in the side-lying position used on the operating table, which 

may result in an improper socket position. The chance of dislocation with this approach 

decreases the more experienced the surgeon (González, 2009). The anterolateral approach 

involves using the intermuscular plane between the tensor fascia latae and the gluteus medius. 

The patient is positioned supine on the operating table, with a moveable (kidney rest) 

segment to let the buttock skin hang smoothly (Kelmanovich, et al., 2003).  

Other examples of variables are prosthetic component design and orientation. The most 

important variable to stop future dislocation failure is having proper component orientation. 

The position of the femoral stem depends on the surgical approach. A misplaced prosthesis 

can be saved from dislocation after the early stages of the operation, because of soft tissue 

and capsular healing (González, 2009). 

It is also important to mention patient features, whereby if enough precaution is not taken, 

this may result in dislocation. Other variables that can be contributory are femur geometry 
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and quality as well as bone properties. These factors are different in patients and bone 

properties may differ even within the same bone (González, 2009). 

2.3.1 Effect of bone geometry and quality  

It is important to be extra cautious after THR, in particular, for those with greater height and 

weight, as these can have a negative impact through loading. For instance, for two patients 

with the same femur size, but different body weights, having THR done, the heavier one will 

experience higher stresses on the femur, which may result in deformation. Internal forces 

could be predictable, if muscle forces were the same; however, these vary in each individual 

significantly. Bones are living organs in our body and their properties differ for each 

individual. When the variability of bone geometry is considered, the force is transferred in 

different directions and hence, differing stresses and deformations are created. Furthermore, 

regarding bone quality, every individual internal point of the bone has certain material 

properties, which differ from person to person. Moreover, bone has specific properties in 

each individual at different periods of her/his life and it is unwise to associate an obtained 

femur simulation result the whole population. In addition, the outcome from a simulation 

must quantify the effect of the variability (González, 2009).   

2.3.2 Effect of implant material, design and positioning 

THR is one of the most successful operations in medical science history; however, the 

variability of different implants remains a major issue. There is strong evidence showing 

different survival rates of various prostheses and the effect of the implant material on THR 

performance (González, 2009). A study by Sarmiento and Gruen, showed differences 

between a low-modulus titanium alloy femoral stem and a Charnley prostheses. That is, in 

this research, the former showed fewer tendencies to incidences, such as loosening, calcar 

resorption and cortical hypertrophy than the latter (Sarmiento & Gruen, 1985). 

In another study conducted by Weinans et al. (1992), cobalt-chrome and titanium alloy 

materials for cemented and uncemented THR were compared as well as an additional 

hypothetical uncemented implant, termed isoelastic. Implant material was found to have a 

direct influence on the bone in the femur around the femoral stem. Specifically, in their study, 

cemented stems showed lower bone resorption and interface stresses than uncemented 

implants created from the same material (Weinans, et al., 1992). Interface stresses and bone 

growth were investigated for fully bonded situations and a little bone resorption was observed 
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around the isoelastic femoral stem. However, proximal interface stresses went up 

dramatically compared to other uncemented prostheses (González, 2009).  

It has been demonstrated how the position between the cup and head of a femoral stem is 

important so as to avoid the risk of dislocation (Barrack, 2003). Interface contact stress levels 

have shown a decrease under the proximal neck with full length femoral stems when 

compared to shorter ones (González, 2009).  

Femoral stems have many types of surface finishes, but these variations do not have a 

significant impact on the cortical strain distribution of the bone or the steadfastness of the 

implant. Regarding which, six cadaveric uncemented titanium femoral stems were studied to 

investigate whether there was any impact of the design features on the cortical strain 

distribution, with this involving one intact femur and five implanted ones (Gillies, et al., 

2002). The design characteristics identified were as follows: distal flutes, a distal coronal slot, 

proximal steps and a proximal porous bead layer and a blank implant with no features on. 

The results showed greater strain distribution in the proximal anterior than the intact one. In 

addition, there were no significant differences in the cortical bone strain distributions (Gillies, 

et al., 2002). In another study conducted by Biegler et al, two designs with different surface 

finishes were investigated: smooth and porous coated surfaces. These two designs were 

investigated in two situations, namely, a one-legged stance and stair climbing. Micro-motion 

and the amount of contact at the implant-bone interface were calculated and the results show 

load type plays a more important role than the implant geometry or surface coating type. In 

these studies, it was concluded that surface finishes may not have a substantial impact on 

THR performance when compared with other characteristics (Biegler, et al., 1995).  

There have been many studies that have analysed the impact of implant geometry on THR. In 

2006, Decking et al. worked on the impact that three varying femoral stems had on in-vitro 

strains in the proximal femur: alloclassic (a straight stem), optan (anatomically adapted 

implant) and a stemless femoral neck prosthesis.  The results showed a reduction in the 

longitudinal strains in the proximal femur. On the other hand, the femoral neck implant 

showed a growth of calculated strains on the lateral side of the greater trochanter. The medial 

strain of the stemless prosthesis showed closer values to physiological than the other full-

stem implants. Furthermore, this may result in better bone growth in the inferior base of the 

neck. In sum, the implant geometries used in this study had a noticeable impact on the strain 

distribution (Decking, et al., 2006).     
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To summarise all the above studies, the surface finish of a femoral stem does not have a 

significant impact on THR performance. However, it has been evidenced that the material 

and geometric factors, such as the dimensions, shape and relative position with the bone, 

should be taken into consideration as this can lead to better performance of THR. 

2.4 Stress Shielding 

Stress shielding refers to the reduction of bone density, which usually occurs when the 

implant is placed inside a bone, such as the femur, with the entire load being carried by the 

implant. This will result in weaker and less dense bone. The upper part of the femur receives 

less load when implanted and thus, is shielded from the stress, whereas the distal end of the 

femur is overloaded when this is done (Huiskes, 1990). When body is in its natural form, the 

entire load is on the femurs, whilst when THR takes place and a stem is implanted, the 

implant and bone will share the load. The bone is subjected to reduced stresses, that is, the 

stress is shielded. Based on Wolff’s Law, the bone remodels itself by reducing its mass 

internally (becoming porous) or externally (getting thinner) in its natural situation. In other 

words, the bone improves its structure based on the force upon it (Roesler, 1987).  

Stress shielding is the stress difference in the femur before and after the implant is placed. In 

one study, the stress of an element was measured before and after implantation, with the 

difference being divided by the stress at that element in the before state (Joshi, et al., 2000). 

There are other studies that focused on the specific volume of the femur before and after 

implantation. These studies considered the average stress in that volume, with the difference 

before and after implantation being taken as the stress shielding of that volume (Weinans, et 

al., 2000). Figure 2-13 displays stress shielding zone in a femur.  
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Figure 2-13 Simple schema of stress shielding zone (Surin, 2005) 

As aforementioned, choosing the implant material is one of the most important factors in 

THR as this can impact on the bone resorption of the surrounding bone. The higher the 

rigidity of the implant, the more chance of getting bone resorption, because the implant will 

transfer a smaller amount of load to the bone (Bitsakos, et al., 2005). That is, rigid stems 

deliver greater stress shielding. In contrast, femurs fitted with flexible stems have 

demonstrated less bone resorption than stiff ones (Sumner & Galante, 1992). Titanium, 

amongst all the alloys used in THR, is the most suitable due to its low modulus and high 

fatigue strength.   

Huiskes et al. (1992) discovered that, there is a non-linear relationship between the proximal 

interface stresses and stress shielding. That is, this study showed that when the stem becomes 

less stiff, it gradually raises interface stresses and gradually decreases stress shielding. FE 

modelling was used in this study with different elastic moduli for the stem. In addition, it 

emerged that stiff stems result in bone resorption, whereas flexible stems decrease resorption, 

if the interface bond is strong. It was concluded that flexible stems are the solution to bone 

resorption, but this may also result in increased loosening rates (Huiskes, et al., 1992). 

Where stress shielding occurs can also be observed in finite element analysis. Figure 2-14 

shows the position where stress distribution happened in intact and post implantation 

situations along the medial and lateral sides at 16 different points. As is shown, the stress at 
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each point was decreased after the implant had been placed, which can be observed in both 

the lateral and medial sides (Ridzwan, et al., 2007).  

 

Figure 2-14 Stress distribution along medial and lateral sides when a 4,000 N applied load was given onto proximal 

head (Ridzwan, et al., 2007) 

Comparing the strain distribution on a human cadaver for a hip with and without an implant, 

showed the strain in the calcar in the former case increases by 30-40% than with the normal 

hip. A hollow stem implant decreases the stress peak beneath the tip of the prosthesis and 

raises the stress in the proximal cortical bone by about 20 percent (Mattheck, et al., 1990). 

Having a mesh structure in the stem has been proposed lately to reduce stress shielding after 

implantation (Cansizoglu, 2008). 

As abovementioned, revision surgery refers to the procedure where the existing THR or a 

component (head or stem) has to be replaced. It is needed when the patient is in pain, where 

the implant has been infected or it is not functioning. In the year 2012, 80,000 THR were 

implemented in the UK, whilst revision surgery was performed on approximately 8600 of 

them and there is evidence that says the number regarding this is increasing (Sood, 2013). 

A study in 2004 worked on three femoral stems with various cement fixation configurations. 

These stems were configures as follow: cementless, proximally-cemented and fully-

cemented. Stress shielding occurs regardless of cement fixation configurations, which is 

mostly to occur at the proximal femur. The case with fully cemented fixation showed less 

stress shielding. However, the cementless fixation had the most stress shielding. The purpose 

of bone cement was to generate more external force transmission uniformly, which result in 

the decrease of stress shielding (Chen, et al., 2004).  
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The aforementioned study demonstrated higher compressive strains on the proximal femur 

with cemented fixation in comparison to those with cementless fixation. Regardless of which 

cement fixation configuration is used in the process of the stem replacement, implanted 

femurs encountered a noteworthy reduction in axial normal strains at both medial and lateral 

sides of the proximal region. The most substantial reduction in strain was observed in the 

femur with cementless fixation, which resulted in bone loss in the proximal femur for long 

period application. On the other hand, the cemented fixation configurations demonstrated a 

less strain reduction. The outcome proved that bone cement might conduct more uniform 

stress distribution on the proximal femur over a long period. One important factor to mention 

is that the axial normal strains increase at the distal end of the femur once implanted. 

Furthermore, this is due to the compacting of bone at the distal end of the femur which might 

increase bone density at the distal end over long-time application (Chen, et al., 2004). 

2.4.1 Bone loss 

As it has been described earlier, stress reduction in implanted bones causes bone loss. There 

is a way of measuring bone mass and bone mineral density (BMD) at the lumbar spine, 

proximal femur, distal radius and other skeletal sites, called dual energy x-ray of 

absorptiometry (DEXA). A study in 2001, determined bone loss as the variance between the 

operated and non-operated sides. If this is observed through x-ray film, there will be small 

gaps along the bone/implant interface (Niinimäki, et al., 2001). In 1996, a study was 

conducted to work out the bone mineral content (BMC) and bone mineral density (BMD) of 

the proximal femur in necropsy recovered from cemented femoral stems. Specifically, DEXA 

was used to measure bone content and bone density in 13 femurs having cemented implants 

for 12-191 months. The results showed significant bone loss in the proximal region, of 40% 

on average (Lozynsky, et al., 1996). Furthermore, another study looked at 426 patients with 

uncemented stems and 24% of them demonstrated a loss of BMC on average (Ridzwan, et al., 

2007). In another study conducted in 2002, 34 patients (35 hips) out of 275 femoral revisions 

were recognised as the most difficult cases due to significant femoral bone loss at least 10 cm 

below the lesser trochanter. Figure 2-15 demonstrates how in the metaphysis (level 1) and the 

proximal diaphysis (level 2), all the patients involved in the study had cancellous deficits. In 

level 1 and level 2, the cortical deficits were 91% and 100%, respectively. At the mid-

diaphysis (level 3), 80% had cancellous deficits and 54% had cortical ones (Engh, et al., 

2002).  
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Figure 2-15 Preoperative femoral bone loss among the 35 hips is graded based on the American Academy of 

Orthopaedic Surgeons (AAOS) classification system (Engh, et al., 2002) 

All of the above studies prove that there will be a fall in femur volume and mass in the post 

operation period, but stress shielding will take a few years to occur due to its slow reaction to 

the surrounding environment (Bagge, 2000). That is, the stability of implant will reduce after 

a certain period of time due to the lack of support caused by stress shielding. In addition, this 

may result in implant loosening. The impacts from implant loosening and micromotion can 

result in pain while performing routine activities. At this stage, revision surgery could 

become a significant help in pain relief (Ridzwan, et al., 2007).  

When the femoral stem is removed, a significant reduction will be observed in the bone 

stock. Hence, a thicker and longer implant is required for replacement due to the bone loss. 

However, stress shielding may occur again. In other words, the new replaced implant will 

possibly function for couple of years before loosening starts to happen due to stress shielding. 

These revision surgeries could continue depending on the patient’s bone density and after 

reaching the limit, bone grafting could be considered to improve a patient’s bone stock 

(Ridzwan, et al., 2007).  

2.4.2 Implant materials 

There are two main problems when considering devices replacing bone and body tissues: 

biocompatibility and mechanical properties (Katti, 2004). Biocompatibility can be defined as 

the reaction of body tissues to the biomaterial, which refers to man-made material for 

replacing the function of living tissues or an organ (Katti, 2004). To decrease the chance of 
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hip implant rejection due to a body auto-immune response, the right material must be chosen, 

thus improving the success rate.    

As previously explained, different materials have been used to make hip implants, including 

metals, ceramics, polymers and composites. In the early sixties, the stainless steel femoral 

stem was assembled with a polytetrafluoroethylene (PTFE) acetabular cup. Subsequently, the 

stainless steel was replaced by Cobalt-chromium-molybdenum (Co-Cr-Mo) alloy, because of 

inadequate wearability (Ridzwan, et al., 2007).  In addition, the PTFE was also replaced by 

ultra-high molecular weight polyethylene (UHMWPE). Both materials have demonstrated 

good wear resistance and ceramics, such as alumina and zirconia are extensively used for the 

femoral head. The wear rates for alumina on UHMWPE are 20 times less than with metal on 

UHMWPE (Katti, 2004). Co-Cr-Mo and alumina are, respectively, about 10 and 19 times 

stiffer than a femur. These differences are a sign of stress shielding which is a result of high 

stiffness in comparison to femur (Ridzwan, et al., 2007). Titanium alloy, in comparison to 

Co-Cr-Mo alloy and alumina, has a lower elastic modulus. Moreover, improvements have 

been observed in the wear properties of Titanium alloy and it has the highest fatigue strength 

among all the extant alloys (Ridzwan, et al., 2007).  

2.4.3 Implant stiffness 

If the stiffness of an implant decreases, an increase in load transfer from the femoral stem to 

the proximal femur will occur, which results in decreasing of the stress shielding (Diegel, et 

al., 1989). Implant stiffness depends on the implant material and its cross sections. The elastic 

modulus of implant material has a significant impact on load transferring from the implant to 

the surrounding bone. The elastic modulus of femoral stems is usually higher (e.g. Cobalt 

Chronium is 100 GPa) than the cortical bone (20.3 GPa) (Bitsakos, et al., 2005). Stress 

shielding will increase if the rigidity of femoral stem increases. Which will result in bone 

density reduction in the proximal femur. Reducing the implant elastic modulus could help in 

load transferring at the bone-implant interface and decreasing stress shielding.  Improving 

femoral stem cross sections is important to help decreasing their flexural stiffness and the 

thicker the stem, the more bone resorption will occur in the femur. Jergesen and Karlen 

(2002) looked at patient data covering large, medium and small stems. They found greater 

stress shielding in patients with large stems those with smaller ones. Nowadays, most of the 

stem designs are aimed at improving the load-transfer mechanism through the femur 

(Jergesen & Karlen, 2002).  
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2.4.4 Optimising implants 

A study in 1990, focused on a hollowed stem prosthesis using FEM and it was discovered 

that a hollowed structure reduces the stress peak below the end of the prosthesis. In addition, 

in the proximal cortical bone, stress is increased by about 20% (Mattheck, et al., 1990). In 

another study, 40 patient data, of those who had their hip replaced with hollow structure 

implants were analysed. The results obtained from their clinical records after one year, 

showed adequate improvements and no thigh pain being reported. This could all be the result 

of the increased elasticity and better stem fitting (Schmidt & Hackenbroch, 1994). 

A study in 2001, focused on optimising a hollow structure stem to decrease stress shielding as 

well as reducing the maximum stress in cement. In this research, the inner diameter was the 

variable and cement stress was defined as the design constraint. The obtained results were 

compared with a solid structure stem, but the implant was only cylindrical with simple 

boundary conditions. The stem with hollow structure showed an increase in proximal bone 

stress of about 15% and it was 32% for the case with high strength cement (Gross & Abel, 

2001). In another approach in 2001, a new thin mid-stem design was introduced. Figure 2-16 

shows the introduced design with a thin mid-stem diameter to improve stability of the implant 

within the femur. Another variable in this design is the distance from distal end, which is 

provided in Figure 2-16. These variables help to increase load transfer by decreasing the 

cross-sectional area of the stem (Chang , et al., 2001). Topology optimisation refers to 

achieving the best design to distribute stress within a fixed body, while the boundary 

conditions are applied. Optimised implants have been more successful in passing the load on 

to the femur, thereby decreasing stress shielding, than traditional femoral stems (Ridzwan, et 

al., 2007).  

Hips play a very important role in our body as we need them in our daily activities, such as 

walking, going up and down stairs, getting up from a seat, cycling etc. Hips can get damaged 

either by accident, through osteoporosis or other hip diseases, such as rheumatoid arthritis 

(Ridzwan, et al., 2007).   
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Figure 2-16 Implant designed proposed by (Chang , et al., 2001) 

 

2.5 Steel foams  

The properties of steel have been unchanged for many years. Changing the modulus of 

elasticity and yield stress have been proven to be impossible, however, yield stress has 

increased slightly lately (Smith, et al., 2012). Foaming the metal is a way of changing the 

properties of the material. Foaming can be accomplished by creating voids in the 

microstructure, which results in a reduction in density and increase in the apparent thickness. 

Once the method was introduced, the applications were limited. As the costs decrease and 

mass production increases, a variety of applications will be possible using metal foams. That 

is, steel applications could grow substantially in future with density as a variable. In addition, 

if the process is carried out with precision, the outcome foamed object could have higher 

plate bending stiffness (∝Et3) and will be lighter than solid steel (Smith, et al., 2012).  

2.5.1 Advantages 

Utilising steel foams is rapidly growing in various applications and once their advantages 

become widely known, the demand to use them will increase significantly. Among the most 

important advantages are the reduction in weight, increase in stiffness, energy dissipation and 

mechanical damping. Other advantages that should be mentioned are deduction in thermal 



 

36 

 

conductivity, electromagnetic and radiation shielding, tune vibration frequency, improvement 

in acoustical performance and providing air/fluid transport within materials (Smith, et al., 

2012).  

2.5.2 Steel foam manufacturing  

Figure 2-17 demonstrates the stress-strain curve for steel foam, which consists of three 

regions: an elastic region; a plateau region, where the voids start plastic deformation; and a 

densification region, where cell walls come into contact with one another and compressive 

resistance immensely escalates (Smith, et al., 2012).   

 

Figure 2-17 Typical stress–strain curve for metal foams in compression (Smith, et al., 2012) 

There have many studies conducted regarding optimal manufacturing methods for metal 

foams, such as aluminium, titanium, and copper; however, steel raises unusual challenges due 

to its high melting point. Steel foams with varying regularity, isotropy and density can be 

created in two forms using current manufacturing methods: open-celled (permeable voids) or 

closed-cell (sealed voids) and there are three main methods to make them (Smith, et al., 

2012).  

2.5.2.1 Powder metallurgy 

This was one of the first methods used for producing metal foams and primarily, it was for 

aluminium. It creates closed-cell foams and can develop highly anisotropic cell morphologies 

(Smith, et al., 2012). Powder metallurgy pertains to the combination of metal powders with a 

foaming agent, then the outcome mixture is compressed, and subsequently, the compressed 
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blank is sintered at pressures of 900-1000 MPa (Muriel, et al., 2009). The metal reaches its 

melting point and is held there for about 15 minutes. The final product may receive heat 

treatment to make the most effective crystal structure of the base metal. In addition, the range 

of densities is from 4% to 65% (Smith, et al., 2012).  

2.5.2.2 Hollow spheres 

In this method, which is the second most popular, closed-cell or mixed open and closed cell 

morphologies are possible with the densities from 4% to 20%, but high relative densities are 

not.  In this method, the void sizes are controllable, which makes the material properties 

predictable and highly stable (Friedl, et al., 2008). The processes for this method use pre-

manufactured hollow spheres to combine them using an adhesive matrix, compressing 

through powder metallurgy techniques, or sintering the spheres (Brown, et al., 2010). A 

difference that should be mentioned, is manufacturing spheres using blowing agent within 

and then letting the spheres expand and sinter into the final shape (Smith, et al., 2012).   

A main assortment of porous metals is between open-cell and closed-cell. In open cell foams, 

each cell is interconnected, letting tissue to enter and integrate the foam and anchor it into 

position. Whereas, in closed cell foams, each cell is surrounded by a thin wall or a membrane 

of metal (Ryan, Pandit, & Apatsidis, 2006).  

Mainly, there are three different types of porous implants: 

 partly or fully porous-coated solid substrates 

 fully porous materials 

 Porous metal segment joined to a solid metallic part (Ryan, Pandit, & Apatsidis, 

2006).  

These porous structures are mostly suitable for use as coatings due to not having the adequate 

mechanical properties for use as bulk structural materials for implantations, bone 

augmentation, or replacement for bone graft (Balla, Bodhak, Bose, & Bandyopadhyay, 2010). 

In addition, the porous coated titanium implants demonstrate 50 to 75% smaller fatigue 

strength in comparison to their conventional fully dense implants. Other limitations of these 

porous structures to mention is the tendency for controlled porosity features, moderately high 

modulus of coatings, also hard to create independent structures and limited part geometries 

and sizes (Balla, Bodhak, Bose, & Bandyopadhyay, 2010). Some of these issues could be 

resolved by development of manufacturing procedure that consist of forming a reticulated 
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skeleton with deposition of a metal onto the surface (Matassi, Botti, Sirleo, Carulli, & 

Innocenti, 2013).  

The hollow shell structure or the one that was introduced in this study, could be used either in 

matt surfaced implants or the polished ones. The voids in comparison to foams are 

controllable and significantly larger than the voids in metal foams.  

2.5.2.3 Lotus-type 

The lotus-type or gasar method can produce high density foams from 35% to 100%, with 

highly anisotropic, closed morphology. The great advantage of this method is manufacturing 

by continuous production techniques (Smith, et al., 2012). In this method, hydrogen or a 

hydrogen-helium mixture are the two gases used to spread into molten steel and as the steel 

solidifies, pores will be created within the body. There are two other similar methods for 

achieving the same results: continuous zone melting and continuous casting (Smith, et al., 

2012).   

2.5.3 Foams vs structures in this study  

Metal foams (metal-air composites) could be a solution to stress shielding as well as bone 

resorption and reduction in the elastic modulus of an implant. A study was conducted in 2002 

on the functionality of a cellular metallic alloy implant. When porosity goes up, Young’s 

modulus will decrease. In that study, the cellular implant has a structure like a spongy bone 

and it acts almost like a solid femoral stem. The cellular implant demonstrated a rise in the 

load-transfer mechanism in comparison to a solid one. Hence, metal foams may result in it 

taking a longer time for stress shielding to happen (Rahman & Mahamid, 2002). In contrast, 

having a porous structure could result in considerable strength reduction of the implant.  

2.5.4 Auxetic materials 

Auxetic materials were introduced in 2014 for impact protector devices, such as pads, gloves, 

helmets and mats. These have a negative Poisson ratio or when they are under one directional 

force, they are thicker in one or more perpendicular directions (Sanami, et al., 2014). 

Furthermore, honeycomb geometries were added to the stem design in new total hip 

replacement implants. These geometries were analysed using the finite element method and 

the auxetic stems showed a reduction in the stress shielding effect (Sanami, 2015).   
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2.5.5 Tantalum 

Tantalum is an element with the symbol Ta, which has been used in the form of a porous 

structure in the biomedical industry. It has outstanding strength with anticorrosion properties. 

A tantalum open cell structure is created by chemical vapour accumulation on an interlaced 

carbon foam layer and porous tantalum implants could be a solution to the bone resorption 

issue. This type of metal could slow down the stress shielding process significantly. This 

lightweight metal has a long history of being used as an implant material in bone and soft 

tissue (Eldridge, et al., 2014); (Steven, et al., 2007). The porous structure mimics the 

microstructure of natural cancellous bone, providing optimum penetrance with a large surface 

area to expedite the ingrowth of living tissue inside the pores. Moreover, the ingrowth 

interface enhances the mechanical anchorage of the implant (Kaplan, 1994). The Young’s 

modulus of tantalum in the compression of the foams was studied in 2007 and it was found to 

be very similar to that of cancellous bone. This similarity could help minimising the effects of 

stress shielding in the load transfer at the bone-implant interface (Sevilla, et al., 2007). 

 

2.6 3D printing 

In 3D printing, objects are printed by adding layer-upon-layer of material. Additive 

manufacturing (AM) is the term used to define technologies that create 3D objects. Materials 

for AM vary; however, every 3D printing technology requires a CAD (computer aid design) 

file to print. The obtained data from the CAD file will be structured layer by layer from 

printing material, such as plastic, liquid, powder filaments or even sheets of paper. Different 

types of 3D printing are as follows, 

2.6.1 Stereolithography (SLA) 

The first type of 3D printing in the history of AM was stereolithography, which is still in use 

today. With this method, liquid plastic is converted into 3D solid objects using a 3D printing 

machine knows as stereolithograph apparatus (SLA), with the objects being printed using the 

layer-by-layer technique. In additive manufacturing, the Standard Tessellation Language 

(STL) format is usually used and for stereolithography, STL file format is deployed. The 

CAD file must contain enough information for each layer and there could be 10 layers in each 

millimetre. When all the layers are completed, the object needs to be rinsed with a solvent 

and then, placed in an ultraviolet oven to achieve the best result. The time required to print an 

object depends on its size, which can vary from 6 hours for small pieces up to a few days for 
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large ones. This type of 3D printing method is good for prototyping, because it is cheap and 

the production time is quicker when compared to other methods (3D printing from scratch, 

2017).  

2.6.2 Digital light processing (DLP) 

This type of method was created in 1987 and it is very common in projectors, cell phones and 

3D printing production. DLP and SLA are almost identical methods; they both work with 

photopolymers. However, what makes them different is their source of light, for DLP uses 

more conventional sources of light, such as arc lamps. The material used in this method for 

printing is liquid plastic resin, which hardens quickly owing to the large amount of light. DLP 

uses less material in comparison to SLA, which makes it cheaper and it produces more 

detailed products (3D printing from scratch, 2017).    

2.6.3 Fused deposition modelling (FDM) 

Fused deposition modelling (FDM) can print functional prototypes as well as concept 

models, high performance, adequate and engineering-grade thermoplastic products for 

engineers. Parts printed with FDM contain high quality thermoplastic material, has proved 

beneficial to industry and manufacturing. FDM uses almost the same technique as 

stereolithography by creating the object layer by layer using a thermoplastic filament. 

Thermoplastic is extruded onto the base when it is melted with support material, which can 

be removed after the job is complete. This technique is slower than stereolithography in terms 

of processing. Furthermore, FDM is easy to use and environment-friendly, being utilised for 

complex geometries due to its accuracy in detailed printing. There are different types of 

thermoplastic, but the most common ones are ABS (acrylonitrile butadiene styrene) and PC 

(polycarbonate) filaments, whilst the support materials are water-soluble wax or PPSF 

(polyphenylsulfone) (3D printing from scratch, 2017).   

2.6.4 Selective laser sintering (SLS)  

Selective laser sintering (SLS) is another 3D printing technology, where a laser is used as the 

power source to create objects. This technique is very similar to SLA, with the only 

differences being the base material and SLS uses powder material in the vat, whereas SLA 

uses liquid resin. There is no support material in this technique, as the object is supported 

constantly by unsintered powders surrounding it. The method can be used to print many 

materials such as nylon, ceramics and glass, including some metals, like aluminium, steel or 
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silver. It is also more widely employed than other methods due to this variety materials that 

can be used and its precision is high (3D printing from scratch, 2017).  

2.6.5 Selective laser melting (SLM)  

The selective laser melting (SLM) method uses a high - power laser beam to fuse and melt 

metallic powders to form a 3D object, with it melting the metal material into a solid part. 

Like the other methods a CAD file is needed for the process and the file is converted into 2D 

layers, with the 2D layer images then being fused by high laser energy. The energy of the 

beam is so high that it melts the metal powders intensely to create a solid object. This is a 

layer-by-layer process and stainless steel, titanium, cobalt chrome and aluminium can be used 

as the powder for printing. This technology is good for complex geometries with thin walls 

and hidden voids or channels. Furthermore, it is extensively used in many different industries, 

such as medical orthopaedics, aerospace and the automotive industry (3D printing from 

scratch, 2017).  

2.6.6 Electronic beam melting (EBM) 

Electronic beam melting (EBM) is another method similar to SLM, but with a different 

power source. It is a technology where metal powders are fused by an electron beam layer by 

layer. EBM is slow and expensive, with the materials used being pure titanium, inconel 718 

and inconel 625. The difference between EBM and SLS is the high temperature that is 

accomplished by the former of up to 1000oC to achieve full melting of the metal powder. It is 

mostly used for medical implants and the aerospace field (3D printing from scratch, 2017). 

Figure 2-18 shows the different parts of an EBM machine and how it works.   
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Figure 2-18 Electronic beam melting (EBM) 

2.6.7  Laminated object manufacturing (LOM) 

The process of this technology is different to the above methods, for which sheets coated with 

an adhesive are moved across a substrate with a heated roller. The heated roller melts the 

adhesive material and then, a laser beam is used to cut the part dimensions. When the layer 

cutting is accomplished, the platform is lowered by about one-sixteenth of an inch and the 

process is repeated until the part is fully printed. LOM is not as commonly used as the other 

methods; however, it is capable of working with cheap raw materials and fast (3D printing 

from scratch, 2017).  

2.6.8  Direct metal laser sintering (DMLS)  

Metal additive manufacturing (AM) is quick, precise and cost effective for creating 

prototypes, test parts or even final components. In this technique, metal powders are fused by 

a focused laser beam to create complex structures, which may not be possible by traditional 

manufacturing techniques. There is a platform where objects are attached to carry out the 

process and a support material (a liquid phase) is needed when powders are being scanned by 

a laser (3trpd, 2015). This technique was used to print samples for this study in order to run 

tests on them. Figure 2-19 shows the steps of direct metal laser sintering (DMLS).  
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Figure 2-19 Direct metal laser sintering (DMLS) (whiteclouds, 2015) 

 

2.7 Finite element analysis in a biomedical study 

Finite element analysis (FEA) is a numerical technique for obtaining approximate results to 

boundary value problems for partial differential equations. With this method, the structure is 

divided into limited elements. FEA has eased the study of the human body and it has helped 

much research about loading, such as gait and muscle forces. Specifically, it involves using 

partial differential equations to solve any loading situation, where the stress is distributed and 

where it reaches its maximum value. The first time that FEA was used for orthopaedic 

biomechanics was in 1972 to evaluate human bone stresses (Brekelmans, et al., 1972). At the 

moment FEA is being used widely in industry and the research environment. Strain gauge 

results are also used to validate them. 

Mechanical testing when compared to FEA is more expensive and time consuming. Under 

this method, a specific point is considered using strain gauges, or on the outer layer of the 

structure, as in photoelasticity, whilst FEA is less invasive, cheaper and faster to analyse. 

Moreover, it offers analysis for a wide range of prostheses designs. It also demonstrates the 

full effects of stress over the structure with varying patient situations. 

There have been major improvements since then in creating more precise models of humans. 

The relationship between bone resorption and stress shielding around hip stem was 

discovered using FE modelling in 1991. It was also elicited that by using flexible stems, the 

stress shielding around the stem will decrease. However, the proximal interface stresses go 

up. In addition, high proximal interface stresses can result in interface debonding and 

micromotion (Huiskes, et al., 1992).  
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Moreover, it was determined that the reduction of stress regarding stress shielding causes 50 

% of mass bone reduction after 4 to 7 years after operation (Sumner & Galante, 1992). 

Many studies have been carried out on the relationship between material flexibility and bone 

resorption. These have demonstrated that as the flexibility of the material increases the bone 

resorption will decrease. Similar results were obtained when solid stems were replaced with 

more flexible hollow stems (Bobyn, et al., 1990).  

2.7.1 ABAQUS Software 

ABAQUS/CAE 6.14-1 was used in this research, which is software suitable for FEA and 

computer-aided engineering. It was originally released in 1978. ABAQUS. Abaqus/CAE, 

Abaqus/Standard, Abaqus/Explicit, Abaqus/CFD and Abaqus/Electromagnetic are the five 

core software products.  

Abaqus/CAE is a complete Abaqus environment that provides a simple, consistent interface 

for creating, submitting, monitoring, and evaluating results from Abaqus/Standard and 

Abaqus/Explicit simulations (ABAQUS/CAE USER’S GUIDE, 2014). There are different 

modules needed to be completed before simulation, with each defining a logical aspect of the 

modelling process. For example, the geometry and material properties can be determined as 

well as a mesh generated. When these modules are completed, the model is built from which 

Abaqus/CAE generates an input file submitted to the Abaqus/Standard or Abaqus/Explicit 

analysis product (ABAQUS/CAE USER’S GUIDE, 2014). The analysis product performs the 

analysis, sends information to Abaqus/CAE to allow for monitoring of the progress of the 

job, and generates an output database. Finally, the visualisation module of Abaqus/CAE (also 

licensed separately as Abaqus/Viewer) can be used to read the output database and view the 

results of the analysis. Abaqus/Viewer provides graphical display of Abaqus finite element 

models and results, being incorporated into Abaqus/CAE as the visualisation module 

(ABAQUS/CAE USER’S GUIDE, 2014).  

2.7.2 Material properties 

The material properties for bone are complex and it is hard to define the interface relation 

between the implant and the bone. Consequently, the material property of the bone has been 

simplified in many studies (Ramos & Simoes, 2006). That is, cancellous bone has been 

assumed as being homogeneous for simplicity, but bone is non-linear, heterogeneous and 

anisotropic. Most researchers have specified bone as a linear elastic material in FEA. This 

material property is rational when bone is under non-impact loading (Biewener, 1992). 
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However, bone material properties can differ significantly from one location to another. 

Furthermore, the microstructural organisation of the bone affects it stiffness and strength in 

both the cancellous and cortical bone. This usually results in different stiffness and strength 

characteristics in various directions known as anisotropy (Biewener, 1992). The two most 

popular anisotropic material models for bone are transverse isotropy (five independent 

material constants) and orthotropy (nine independent material constants) (Biewener, 1992).  

In contrast, isotropy has two independent material constants: Young’s modulus, E and 

Poisson’s ratio, ν. As an example, Haversian cortical bone from the diaphysis of a long bone 

is specified as a transversely isotropic material. Sometimes, cancellous bone is specified as an 

orthotropic material due to its directional material behaviour (Biewener, 1992).  

Different studies have used different Poisson’s ratios and Young’s moduli. This is 

exemplified in work undertaken by Walker et al. in 2000, who used Young’s moduli and 

Poisson’s ratio in three orthogonal directions for cortical bone as follows: E1 = 20 GPa, E2 = 

13.4 GPa, E3 = 12 GPa and ν1 = 0.24, ν2 = 0.22, ν3 = 0.38.  E = 1 GPa and ν = 0.3 were assign 

as the material property for cancellous bone and it was assumed to be isotropic (Walker, et 

al., 2000). 

2.7.3 Mesh element type and size 

It is up to the user to decide, firstly, whether to use a 1D, 2D or 3D representation. In the real 

world, all structures are three dimensional, but simple stress analyses can be made for 

approximation. Furthermore, the physics of the problem can help users in choosing the right 

type of element (Biewener, 1992). Moreover, opting for meshing in FEA settings and 

choosing the element size as well type is down to the user. In biomechanics, using 1D 

representation is not sufficient, but a two dimensional demonstration can be suitable. That is, 

sometimes, deformation and stress occur mainly in a specific direction. Hence, analysing the 

stress and strain in such a direction is very effective. A similar principle applies when 

analysing the structure in 2D; however, in biomechanics these situations rarely occur 

(Biewener, 1992).  

Meshing is a process where the model is divided into nodes and elements. These elements 

can be linear or quadratic. Linear is where the elements have two nodes per side and with 

quadratic there are three (Biewener, 1992). A fine mesh increases the simulation time and 

accuracy when compared to a coarse one. Tetrahedral elements are usually the number one 
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choice when it comes to meshing as they are automatically generated and they also provide 

high quality mesh due to their shape (Chang , et al., 2001).  

The number of equations and calculations in FEA increases when the interpolation order 

increases. Moreover, the time and accuracy of the simulation is enhanced by increasing the 

interpolation order. Interpolation order could add extra nodes between two ends of elements. 

Elements are divided into three different categories (simplex, complex and multiplex) based 

on their interpolating function (Biewener, 1992).  

 

Figure 2-20 Illustration of simplex, complex and multiplex elements (Fagan, 1992) 

As it is demonstrated in Figure 2-20, simplex elements have polynomials with constant and 

linear terms, with their nodes being positioned at the corners. Complex elements have the 

same shape as simplex ones, but with more nodes, whereas higher order interpolation 

polynomials are used in complex elements, which are the same as multiplex ones. However, 

multiplex elements have their sides parallel to the coordinate system (Fagan, 1992). The 

linear eight-node brick and the quadratic twenty-node one are the most used 3D elements 

(Biewener, 1992).     

FEA subdivides the whole geometry into fine elements and applies boundary conditions as 

well as load variables across the model by distributing them along the elements, one by one 

(Fagan, 1992). The deformation of the elements should not be excessive as it causes false 
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results. There are a few methods for controlling deformation of the elements and checking 

whether they are reliable. As shown in the Figure 2-21, the first, is the ratio of the longest 

side of an element to the shortest. The second, is the measure of skew and taper to quantify 

element distortion. In addition, the internal angles of the elements can also be used as a way 

of assessing element distortion. Triangular elements should have angles near 600 and the 

corner of the rectangular elements should be close to 900 (Fagan, 1992). 

 

Figure 2-21 Two rectangular elements with the same aspect ratio with different behaviours (Fagan, 1992) 

The effect of mesh density in bonded and debonded cemented hip implants was studied by 

Stolk et al. in 1998, when it was observed that the former are not sensitive to mesh density, 

but the debonded cemented implants showed high sensitivity to this (Stolk, et al., 1998).  

In other studies on the mesh, two typical element types on the femur have been compared, 

with the typical elements being hexahedral (8 and 20 node bricks) and tetrahedral (4 and 10 

node tetrahedrons). The obtained results from these two elements were von-Mises stresses 

and principal strains. These results were also compared to theoretical von-Mises stress 

distribution. In sum, tetrahedral elements demonstrated closer results to the theoretical ones, 

whilst hexahedral elements appeared to be more steady (Ramos & Simoes, 2006).  

2.7.4 Modelling the interface between bone and implant 

Defining the interface between the bone and implant is very important due to its role in 

passing the load through the two. There are elements in bone and implant that are not always 

connected and another type of element is needed to reach load transfer across the interface, 

which is particularly significant when an uncemented implant is used. Uncemented implants 

form a fibrous interface between the bone and implant. There are two issues that result in 

loosening of the prosthesis, one is by wear particles in bone osteolysis and other is a fibrous 
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tissue formation process (Pioletti, et al., 1999). There are no biological factors illuminated for 

the fibrous interface (Fernandes, et al., 2002). In some studies, it has been suggested that the 

mechanical environment of the bone cells is more effective in causing the fibrous tissue than 

wear particles (Aspenberg & Herbertsson, 1996). Some other factors may play a role in 

formation of fibrous material, such as hydrostatic compression (Skripitz & Aspenberg, 2000), 

fluid pressure (Van der Vis, et al., 1998) and fluid flow velocity (Yuan, et al., 2000).   

There are ways of defining the interface between bone and the implant. In the FE software, 

parameters have been developed to describe the interface between the two.  Moreover, in 

some studies, laws have been created to model the dynamic behaviour of the tissues around 

implants (Nuno & Amabili, 2002) and in some cases a series of bone-implant interface 

parameters were set (Fernandes, et al., 2002). There are many parameters for defining non-

linear behaviour in FE software. Parameters such as contact elements are node to node, node-

to-surface and surface-to-surface. Node-to-surface or surface-to-surface, which are usually 

selected for bone-implant interface due to their accuracy (Viceconti, et al., 2000). In the 

current study, fully bonded and friction contact are defined at the interface between bone and 

the implant. 

A study 2001 demonstrated that parameters, such as convergence tolerance and contact 

stiffness are important in the precision of finite element results (Bernakiewicz & Viceconti, 

2001).  

2.7.5  Applying boundary conditions such as muscle loads and constraints 

One of the other steps before simulation is applying boundary conditions and loads to the 

components. For example, when designing parts of the skeletal system, loads that exist during 

the gait cycle are usually joint, ligament and musculotendon forces. The constraints in FEA 

are controlled by defining displacement for the models in terms of the nodal behaviour and 

controlling it. These displacements will cause stress in the nodes. For instance, a rigid body 

means that displacement is zero in any direction. In addition, selection of the constraint 

should be carefully defined as this may result in artefact stress (Biewener, 1992). For 

implant-bone simulation, it is crucial to apply load at the centre of the femur head. There are 

various conditions when applying load. That is, loads on the implant will differ with walking, 

fast walking, downstairs walking, stair climbing and so on. Bergmann et al. (2001) calculated 

parameters for boundary conditions for different activities (Bergmann, et al., 2001). Figure 

2-22 shows different direction of forces and moments on the femur, which are useful when 
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applying load and boundary conditions for FEA. Figure 2-24 demonstrates the average of the 

contact forces for different activities, which can be used to simulate the hip analysis for each 

of them. 

 

Figure 2-22 The force components in x,y,z directions. The axis x is parallel to the dorsal contour of the femoral 

condyles in the transverse plane and z is parallel to the idealised midline of the femur (Bergmann, et al., 2001) 

Muscle load plays an important role in joint movement.  Results have shown that the internal 

joint load reduces by 50% when compared to models that ignore the effect of muscle load 

(Duda, et al., 1997). Cristofolini et al. (1995) also studied the impact of muscles on the femur. 

Specifically, they looked at the impact of each muscle group on the femur in relation to axial 

and hoop strains. Furthermore, this study also showed the significant impact of muscle loads, 

especially the three glutei (Cristofolini, et al., 1995). For another study, in 1997, an FE model 

of a femur was developed to look at the stresses and strains for all thigh muscles and the joint 

contact forces involved. Four phases of a gait cycle were considered in this study. It was 

shown that, by having all the thigh muscles attached, the surface strains were closer to in vivo 
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recordings. The difference existed in results, were reduced to 5% when having adductors 

added to a loading regime (Duda, et al., 1997).  

The importance of the muscles’ role was also established by Stolk et al., who investigated the 

minimum number of muscle forces needed for pre-clinical tests in a cementless THR. The 

highest effect of the muscles on joint load is when they abduct. That is, of all the forces 

created by the different muscles, the abductors had the most significant impact (Stolk, et al., 

2001). In sum, by having the hip joint contact force and all the muscle forces, especially the 

abductors, more sufficient results can be obtained that are closer to in-vivo recordings. Figure 

2-23 displays the muscles of the hip. 

 

Figure 2-23 Muscles of the hip (González, 2009) 

Constrained rigid body motion and defining the degree of freedom have an important effect 

on FE simulation in that they control the behaviour of the nodes. Defining the constraints and 

degrees of freedom at the nodes in the mid diaphysis (Easley, et al., 2007) or nodes on the 

distal condyles (Polgár , et al., 2003) is a common criterion.  

Speirs et al. applied five different load conditions in FEA on a femur and compared them 

with a physiological model to study the effect of different load and boundary conditions on 

the bone. The results showed that the model with every muscle force applied is close to the 

physiological reality. Also, it was elicited that the mid-diaphysis constrained model has lower 

strain and the distally constrained model has higher strain on the femur compare to the 

physiological one (Speirs, et al., 2007). 
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Hence, choosing the constraints plays an important role in FE simulation, which has 

previously been largely ignored. Studies thus need to be conducted to estimate the best 

constraints to use and to analyse the sensitivity of the output regarding the constraints.  

 

Figure 2-24 Average, minimum and maximum values for hip contact force (Bergmann, et al., 2001) 

A study in 2007 considered three different cases under various displacement constraints to 

avoid rigid body motion as shown in figure … in the first two cases, all three nodes were 

fully constrained at the mid-diaphysis or distal condyles, respectively similar to previous 

studies. The third case, node constraints were chosen to approximate joint constraints at the 

knee and hip: a node at the knee centre was selected to be constrained in three translational 

degrees of freedom (DOFs). The node at the hip contact where the force for instance was 

applied, was constrained in two DOFs in a way that this node could only deflect along an axis 

towards the knee centre. The sixth node to be constrained was on the distal lateral epicondyle 

to prevent any rigid body motion of the model around the hip-knee axis (Speirs, et al., 2007).  
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Figure 2-25 Top: muscle sets included in the analysis. Bottom: oblique view of the femur solid model showing the 

location of node constraints for each configuration (Speirs, et al., 2007) 

The total deflection of the femur depended significantly on the applied boundary conditions 

(fig2). A significant posterior and medial deflection of the hip centre was observed up to 15 

and 11 mm, respectively in the cases A to D.  Whereas in case E, deflection occurred in the 

distal direction which made the femoral shaft to bow laterally. In addition, the deflection 

magnitude of the latter case was less than 2 mm under human gait loads, in comparison to the 

other cases which were 8-19 mm. A follower hip contact force caused reduction in 

deflections to between 6 and 7.5 mm (Speirs, et al., 2007).  

In the case E, when the shaft bending was examined in the local distal coordinate system, a 

displacement of 2.5 mm at the mid-shaft and 3.2 mm at the femoral head were observed.  

When the bending of the shaft was tested in the local distal coordinate system, a displacement 

of 2.5 mm at the mid-shaft and 3.2 mm at the femoral head were determined (case E). This 

compared to 5.8 mm at the femoral head for case D (Speirs, et al., 2007). 
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Figure 2-26 Deflected femur (solid) under walking loads in the anterior (top) and medial (bottom) views compared to 

the undeflected shape (outline) (Speirs, et al., 2007) 

The contact pressure goes up when a wedge-shaped implant is fixed, but, friction coefficients 

is measured under constant contact pressure. Plastic deformation and abrasion of the bone 

while implantation is taking place are hardly reported, although they state the effective 

interference, by decreasing the nominal interference between implant and bone cavity 

(Damm, Morlock, & Bishop, 2015). In a study in 2015 Analysed radial forces during 

simulated implantation and explantation of angled porous and polished implant surfaces 

against trabecular specimens, to define the corresponding friction coefficients. The effective 

interference after implantation was defined by analysing permanent deformation. For porous 

surface structure that was tested, the friction coefficient primarily augmented while normal 

contact stress during implantation was increasing, however, it reduced at higher contact 

stresses. For a lower porosity surface, the friction coefficient augmented with normal contact 

stress during implantation, however, it did not attain the peak magnitude measured for 

rougher surface. For the polished surface, the friction coefficients were independent of 

normal contact stress and lower in comparison to the porous surfaces. Friction coefficients for 

pull-out were slightly lower in comparison to push-in for the porous surfaces, but not for the 

polished surface. For the porous surfaces, the efficacious interference was 30% of the 

nominal interference (Damm, Morlock, & Bishop, 2015).  



 

54 

 

 

2.7.6 Solution 

The computer time that is essential for simulation completion depends upon the number of 

nodes and degrees of freedom per node. The property of data format, element definitions, 

adequacy of the boundary conditions and the appropriateness of the material properties are 

checked by the FE program (Biewener, 1992).      

2.7.7 Validation of results 

The validation of any FEA results comprises an assessment of two distinct issues: model 

validity and model accuracy. The validity of the model in FEA depends on geometry, loads, 

material properties, interface and the boundary conditions. The closer the definitions of these 

are to the real structure, the more reliable and valid results can be obtained. The accuracy of 

the model in FEA can be assured by a convergence test once a valid model has been defined 

(Biewener, 1992). This test comprises refinement of the mesh, which can be accomplished 

either by decreasing the size of the elements or increasing the number of nodes and elements 

in important areas. The purpose of mesh refinement is to increase the precision of the results 

and in order to minimise the effect of the mesh on the simulation, its size should be refined. 

That is, its size should be refined until the simulation result is not affected significantly. In 

other words, the mesh size of a model has a direct relationship with the results and hence, 

mesh refinement should reach a level such that these are not affected significantly (Fagan, 

1992). Figure 2-27 shows how errors occur in results due to unsuitable mesh choice. As can 

be seen, when a combination of linear variation and quadratic variation is used, this causes a 

gap in the model. The suggestion for sorting out this problem is to use either transition 

elements or to impose a constraint equation on the mid-side nodes (Fagan, 1992). 

 

Figure 2-27 Unacceptable element combinations (Fagan, 1992) 
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2.7.8 Interpretation of the results 

The visualisation of results is known as the first step of the interpretation process. The 

displacements, stresses and strains within the structure of hard tissue biomechanics are the 

main variables when analysing a model. Stress or strain on a surface or plane of a model is 

visualised by contour and fringe plots. In addition, the graphical vision of displacements is 

usually analysed by looking at the mesh in the deformed configuration (Biewener, 1992). The 

stress and strain when studying biomedical results can be overestimated in FEA. Finally, the 

results in FEA can be used to understand the mechanical behaviour of the model in general.  

2.8 Conclusion 

The surface finish of a hip implant is important due to the interaction between the bone and 

the implant. There have been so many studies aimed at demonstrating the advantages of a 

polished femoral stem over a matt surface. Regarding which, it has been elicited that in the 

same cases a matt surface failed earlier than polished, such as with the Exeter and Iowa stem 

(Howie, et al., 1998). 

The current materials used in biomedical engineering cannot compete with the material 

properties of bone (Thielen, et al., 2009). The main biomedical metals used for medical 

applications are stainless steel, Co alloys and Ti alloys (Niinomi, 2008); (Karanjai, et al., 

2007). 

As it was explained, one type of biomaterials extensively used are titanium alloys, which are 

exceptionally known for failure previous to Cobalt chrome and stainless steel. Furthermore, 

the reason is that titanium is sensitive to fracture corrosion. Femoral stems manufactured 

using titanium alloys have certain concerns, and titanium articulating surfaces are no longer 

recommended for biomedical applications (Zhang, 2009).  

One of the most important failure aspects that all implants face is stress shielding. The higher 

the rigidity of the implant, the more chance of getting bone resorption, as the implant will 

transfer a smaller amount of load to the bone (Bitsakos, et al., 2005). Rigid stems show 

greater stress shielding than flexible ones and the latter have demonstrated less bone 

resorption (Sumner & Galante, 1992). Titanium compared to all the alloys used in THR is the 

most suitable due to its low modulus and high fatigue strength.  Whilst stiff stems result in 

bone resorption, flexible ones decrease it, if the interface bond is strong. It can be concluded 

that flexible stems are the solution to bone resorption, but it may also result in increased 

loosening rates (Huiskes, et al., 1992). If the stiffness of an implant decreases, an increase in 
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load transfer from the femoral stem to the proximal femur will occur, which will result in a 

decrease in the stress shielding (Diegel, et al., 1989). Implant stiffness depends on the implant 

material and its cross sections. 

There have been studies investigating what factors could lead to stress shielding reduction.  

In a study in 1990, a hollowed stem prosthesis using FEM was worked on and it was 

discovered that a hollowed structure reduces the stress peak below the end of the prosthesis. 

In addition, in the proximal cortical bone, stress is increases about 20% (Mattheck, et al., 

1990). In other research, the data for 40 patients who had had their hip replaced with a hollow 

structure implants were analysed. The results obtained from their clinical records after one 

year, showed adequate improvements and no thigh pain had been reported, which was 

attributed to the increased elasticity and better stem fitting (Schmidt & Hackenbroch, 1994). 

A study in 2001, was focused on optimising a hollow structure stem to decrease stress 

shielding and also decreasing the maximum stress in the cement. In this research, the inner 

diameter was the variable and cement stress defined as the design constraint. The obtained 

results were compared with a solid structure stem, but the implant was only cylindrical with 

simple boundary conditions. The stem with the hollow structure showed an increase in 

proximal bone stress of about 15% and this was 32% for the case with high strength cement 

(Gross & Abel, 2001). 

Regarding another approach in 2001, a new thin mid-stem design was introduced, which was 

aimed at improving the stability of the implant within the femur. Another variable in this 

design is the distant from distal end which is demonstrated below. These variables help to 

increase load transfer by decreasing the cross-sectional area of the stem (Chang , et al., 2001). 

A study in 2007 demonstrated how topology optimisation is to achieve the best design to 

distribute stress within a fixed body, while boundary conditions are applied. Optimised 

implants have been more successful in passing the load onto the femur to decrease the stress 

shielding when compared to traditional femoral stems (Ridzwan, et al., 2007). 

There have been two approaches regarding the relation between porosity and Young’s 

modulus such that when the former goes up, the latter will decrease. In these studies, the 

cellular implant had a structure like a spongy bone and it acted nearly like a solid femoral 

stem. The cellular implant demonstrated a rise in the load-transfer mechanism in comparison 
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to the solid one. Hence, it was concluded that metal foams will lead to a longer period before 

stress shielding happens (Rahman & Mahamid, 2002); (Smith, et al., 2012). 

Finally, honeycomb geometries were added to the stem designs in new THR implants. These 

geometries were analysed using the finite element method and the auxetic stems showed a 

reduction in the stress shielding effect (Sanami, 2015). 

As the above studies have shown, stress shielding is a major problem and that reducing 

Young’s modulus could solve the issue.  One of the ways to reduce the young modulus is to 

have a porous structure. 
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3 Research Method 

 

As discussed in the previous chapter, titanium is the bench mark material used in biomedical 

fields due to its outstanding strength despite having a low modulus. Previous studies have 

worked on optimising the design of implants with different materials to reduce stress 

shielding. 

For this study, a new structure for implants, such as stainless steel, to mimic titanium, has 

been developed.  The structure was applied to stainless steel due to its abundance and its 

price. This could be ideal for third world countries and also people with lower budgets for 

their hip replacement. The idea is doable based on 3D printing capability and the new 

structure also reduces stress shielding rapidly. 
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Figure 3-1 Schematic view of the logics behind each chapter of this thesis 

 

This chapter contains summary of the structure of this study conducted to achieve the 

objectives of the thesis. Figure 3-1 provides an outline of chapters four, five and six. These 

chapters are conducted to approve the reduction in stress shielding post placing hollow 

spheres within the implant. These improving steps led to the optimum design. Initially, 

hollow spheres creation in the actual implant resulted in failure due to the high number of 

elements, which made the problem unsolvable. Another problem faced was regarding the 

meshing, whereby the spheres could not be recognised by the Abaqus meshing module. 

Hence, different software (3-matic) was used to tackle the issue.  In addition, creating implant 

samples containing spheres of various sizes and at different places was not easy to program.  

Finally, to distinguish the optimum case practically, printing implant samples would have 

been expensive. Consequently, cylinder samples were created to investigate the impact of 

hollow spheres within a structure. In regards to the idea, two chapters were dedicated to 

discussing these effects in localised and uniformly distributed phases.   

 

Chapter 4: investigating 
that the structure 
containing hollow 

spheres near the surface 
will work

Chapter 5: investigating 
that the structure 

containing uniformly 
distributed hollow 
spheres will work

Chapter 6: based on 
gained knowledge in 

chapter 4 and 5, actual 
implants with hollow 

spheres within its 
structure were designed
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Figure 3-2 Contents of the chapters for this thesis 

 

Figure 3-2 displays how the chapters are structured to achieve the aim of thesis. Each 

contains an introduction, methods and results, with each making a specific contribution to 

achieving this aim. The purpose of chapter 4 is to prove that structures containing hollow 

spheres close to their surface (hollow shell) reduce stress shielding. This was accomplished 

by the increase that occurred in the load transfer. The aim for chapter 5 is to investigate how 

structures containing uniform distributed hollow spheres will behave. This was pursued by 

comparing the reduction of Young’s modulus with the samples containing close to surface 

hollow spheres. Finally in chapter 6, these design characteristics are implemented on femoral 

implants to investigate the effect of hollow spheres in the hip prostheses field. 
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distributed in 
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Figure 3-3 Summary of chapters 4 and 5

To prove hallow 
structure will 
reduce stress 

shielding

Chapter 4: 
Investigation of 

cylinder with 
hollow spheres 

close to the 
surface behaviour 
(hallowed shell)

FEA
Use FEA for different sphere sizes  and sphere distances from each other  to see 

stress distribution in samples with hallow shell

Rule of mixtures Using Rule of mixtures for the same samples as used in FEA

Experiment
3D print of solid and one of the sample in plastic to check if the structure works 

or not

Effective range Using rule of mixtures to find out what is the optimum design 

Chapter 5: 
Investigation of 
cylinders with 

evenly distributed 
hollow spheres 

within a constant 
mass behaviour

FEA
Use FEA for different sphere sizes  and sphere distances from each other to see 

Young's modulus in samples with spheres all over

Using rule of mixtures Using rule of mixtures for the same samples as used in FEA

Experiment Do compression tests for all of the samples

Optimum range Using rule of mixturesto find out what is the optimum design 

 

Chapter 6: 

Implant 

designs 
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Figure 3-4 Summary of chapter 6 

The first approach was to investigate the effect of localised hollow spheres near the surface. 

The samples were created in Solidworks as cylindrical objects. The idea was applied to a 

smaller scale due to the high number of elements when the actual implant contained spheres. 

Firstly, the cylindrical models containing spheres near their surface were analysed using 

FEA. That is, a cylindrical solid design with bone specifications was used as bone in FEA. 

The rule of mixtures was also used for these cylindrical samples (only for the shell area) to 

calculate the strength and Young’s modulus. The best cases of these samples and a solid one 

were then 3D printed in plastic using the machines at the University. A compression test was 

carried out to ascertain whether the idea also works on a structure.  The second approach was 

to use ASTM Standards to design the samples and try to distribute hollow spheres uniformly 

throughout the structure. The cylindrical models containing uniformly distributed hollow 

spheres were simulated using FEA. The rule of mixtures was used, because FEA could not be 

accomplished due to the high number of elements. The rule of mixtures was also used to 

estimate how much volume could be extracted from the model without weakening the 

structure and it was also utilised to calculate the Young’s modulus of each specimen. Then, 

the samples were 3D printed using stainless steel for a compression test, which Figure 3-3 

summarises. The final approach was to add hollow spheres to the actual implant to 

investigate the outcome of this new structure. FEA was applied and the rule of mixtures to 

calculate the Young’s modulus. Figure 3-4 provides a summary of chapter 6.  

The following criteria are a summary of the main methods used in the empirical chapters of 

this study, with, as aforementioned, each chapter containing its own objectives and aim. 

Hence, they include their separate methods and results.  

Chapter 6

FEA
Use FEA for different sphere sizes  and sphere distances from each 
other  to see stress distribution in implant and bone wile spheres 

are distributed all over implants

Using rule of 
mixtures

Using rule of mixtures for the same samples as used in FEA to 
calculate young modulus and strength of implants

Effective 
range

Using rule of mixtures to find out what is optimum design 
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3.1 Rule of mixtures 

Having established that meshing in the presence of small hollow spheres generates over 

15,000,000 elements, conventional approach FEA proved to be impossible, and in fact mesh 

generation failed to operate. Due to this, the only way to conduct this research is to resort to 

the rule of mixtures. As a part of this research, the rule of mixtures was used to work out the 

volume fraction for the specimens in this study. That is, the models were considered to be 

composite and the rule of mixtures aided the estimation of the volume that could be extracted. 

It was also deployed to work out the Young’s modulus. In the analysis chapters, the rule of 

mixtures was also used as comparison element alongside the computational and experimental 

analysis.  

3.2 Finite element method 

Finite element analysis (FEA) was used to ascertain, computationally, how the stress 

distributes over a structure containing hollow spheres. It was also used to obtain stress-strain 

graphs of the specimens and to see how much stress was transferred to the bone.  

In order to understand the impact of hollow spheres within a structure, the FEA method was 

applied to the samples containing localised hollow spheres near the surface, samples having 

uniformly distributed hollow spheres and actual implants. When designing the specimens 

including hollow spheres, three main variables were taken into consideration for the analysis: 

sphere size, the distance from the surface and the distance from each other.  

3.3 Compression test 

A compression test was applied to two sets of samples. The samples were printed in plastic, 

with the hollow spheres were placed near the surface. Those that had uniformly distributed 

hollow spheres were sintered and printed in stainless steel. The compression test was applied 

to obtain strain by strain gauges in the plastic samples. Then, the results were converted into 

stress to analyse the stress differences at the surface of the samples, as provided in chapter 4. 

Whilst a compression test was applied to stainless steel specimens to obtain the compression 

modulus and stress-strain curve in chapter 5. Moreover, this was undertaken to ascertain the 

differences between the various sphere specifications in a mass. 
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4 Investigation of cylinder with hollow spheres close 

to the surface behaviour 

 

This chapter includes details of the applied materials, calculations, meshing strategies, 

different composite scenarios and the simulations that helped to analyse models. SolidWorks 

2014 SP 4.0 was used to create the samples in this chapter. These samples were designed 

cylindrically with similar height and radius; however, their internal structures differ. Then, 

Abaqus/CAE 6.14-1 was used to analyse imported 3-D models by finite element analysis and 

the results were obtained using the Abaqus result module. This chapter also provides details 

of the calculations using the rule of mixtures, which were obtained using PTC Mathcad 3.1. 

Furthermore, details of the compression test that was applied to two samples are included in 

this chapter.  

4.1 Introduction 

The aim of this chapter, is to develop the idea of having hollow voids near the surface (outer 

layer) of the samples, as shown schematically in the Figure 4-1, so as to reduce the localised 

Young’s modulus. This chapter basically focuses on weakening the structure at the bone-

cylinder interface to reduce stiffness at the skin.  This chapter also focuses on verifying 

whether a hollow sphered structure near the surface will decrease stress shielding. In 

addition, it also identifies the best configuration in terms of the sphere size and distribution 

within the mass. Having a reduced Young’s modulus will improve displacement, for as this 

increases, more stress will transfer onto the surrounding area, which in this study is bone. The 

purpose of having the spheres near to the surface is to transfer the stress to the surrounding 

areas to reduce stress shielding, whilst at the same time having a solid centre so as to 
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maintain the strength of the structure. Furthermore, having empty spheres near to the surface 

will help the stress inserted to be distributed evenly to the surrounding bone. FEA, the rule of 

mixtures and experiments were used to investigate these effects under specific load. In sum, 

this chapter is set out to evaluate whether these hollow structures decrease stress shielding by 

altering the size and distribution of spheres. The spheres in each sample have been placed 

uniformly in each row close to the surface.  

 

Figure 4-1 Schematic view of a hollow shell cylinder 

 

4.2 Study of 3-dimensional designs  

Cylindrical samples with a radius of 30mm and height of 20mm were created. As shown in 

Figure 4-2, the outer layer of the cylinder contains empty spheres, whilst the centre of the 

cylinders is solid with a radius of 20 mm. Previous studies (Chait, 1971); (Tuninetti, et al., 

2012); (Fan, et al., 2017); (Auvray, et al., 2016); (Khan, et al., 2014); (Williams & 

Gamonpilas, 2008) have mentioned that the size of samples does not have any impact on the 

modulus for a compression test. Furthermore, these studies have defined an aspect ratio 

between the height of the sample and its diameter to be from 0.3-3. Several cases were 

defined based on the distance from the surface, distance from each other as well as the 

number and size of spheres. These parameters were defined to see the effect of them on the 

Young’s modulus of an implant as well as stress in the bone and implant. 

The first case involved considering different gaps vertically between the spheres. In one 

scenario, 4mm was the difference in distance between the spheres, whilst in the other it was 
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5mm. In addition, in this condition, one cylinder had one more layer of spheres than the other 

one.  

The gap between the centre of the spheres and the surface of the wall was the second case to 

be modelled. Two scenarios were defined, one with a 2mm gap and the other with one of 

5mm gap. Furthermore, the outer layer of the cylinders differed in both scenarios. 

The number of spheres or different gaps between spheres horizontally was another case that 

was investigated. In one example, each layer consisted of 24 spheres, whilst for the other, 

there were 12.  Finally, the last condition modelled was sphere size, with the radius of the 

spheres in the first case being 1mm and the other it was 2mm. Table 4-1 summarises the 

different cases according to the hollow sphere distributions and size that are studied in this 

chapter. 

 

Figure 4-2 Hollow shell cylinder views a) defined parameters; b) examples of hollow shell cylinder dimensions 

ℎ 

a 

b 
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Table 4-1 Various designs used for this chapter based on distribution and sphere size 

Different cases 

Size of 

spheres 

(𝒓𝒂𝒊𝒓) mm 

No of 

Spheres 

(𝒏) 

Width of hollow 

spheres close to 

surface (𝒅) 

Distance 

from each 

other 

vertically 

Distance 

from 

surface 

(mm) 

Sample 1 

Sample 2 

1 4x24 10 mm 4 mm 3 

1 3x24 10 mm 5 mm 3 

Sample 3 

Sample 4 

1 3x24 10 mm 5 mm 2 

1 3x24 10 mm 5 mm 5 

Sample 5 

Sample 6 

1 3x24 10 mm 5 mm 3 

1 3x12 10 mm 5 mm 3 

Sample 7 

Sample 8 

1 3x24 10 mm 5 mm 5 

2 3x24 10 mm 5 mm 5 

Experimental 

sample 
1 4x12 10 mm 4 mm 5  

 

4.3 Method 

4.3.1 Rule of mixtures 

Various composite properties of composite materials can be predicted using a weighted mean 

technique known as the rule of mixtures. It is introduced to calculate Young’s modulus and 

the strength of the composite materials. That is, the rule of mixtures is a calculation method 

to work out mechanical and physical properties of composites using the matrix and fibre 

mechanical and physical properties. These calculations are based on an even distribution of 

fibres within a uniformed matrix. In addition, the matrix is a solid, homogenous alloy with no 

additional material, as demonstrated in Figure 4-3. In the current chapter, the outer region is 

where the rule of mixtures is used, and this region is designed starting with radius = 20 mm to 

outer radius, 30 mm. Having stablished that meshing in the presence of small hollow spheres 

generates over 15,000,000 elements, conventional approach FEA proved to be impossible, 

and in fact mesh generation failed to operate. Due to this, the only way to conduct this 

research is to resort to the rule of mixtures.  
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Figure 4-3 The matrix and fibres in the composite materials 

Composite stiffness can be predicted using a micro-mechanics approach termed the rule of 

mixtures. The two main derivation from elastic modulus in rule of mixtures are the upper 

bound and the lower bound. For this study, upper bound was used and the derivation is 

demonstrated in detail.  

Fibres are evenly distributed within the matrix that is free of voids. Completed bonding 

between fibres and matrix are achieved and applied loads are either parallel or normal to the 

fibre direction. Fibres and matrix behave as linearly elastic materials. For effective 

reinforcement, the particles should be small and uniformly distributed within the matrix.  

4.3.1.1 Upper bound 

Imagine a composite structure under uniaxial tension 𝜎∞. If the structure is to stay intact, the 

strain of the fibres,  𝜀𝑓 must be similar to the strain of the matrix, 𝜀𝑚. Therefore, invoking 

hooke’s law for uniaxial tension gives  

 
𝜎𝑓

𝐸𝑓
=  𝜀𝑓 =  𝜀𝑚 =  

𝜎𝑚

𝐸𝑚
 (1)  

 

1 − 𝑓 

𝑓 

Composite structure showing 

aligned fibres within the 

matrix 

The approximation used in 

the rule of mixtures 



 

69 

 

Where 𝜎𝑓 and 𝐸𝑓 are the stress and elastic modulus for the fibre and 𝐸𝑚and 𝜎𝑚 are for the 

matrix. Considering stress to be a force per unit area, a force balance gives that 

 𝜎∞ = 𝑓𝜎𝑓 + (1 − 𝑓)𝜎𝑚 (2)  

 

If the assumption is that the composite structure behaves as a linear-elastic material, i.e, 

invoking hooke’s law 𝜎∞ = 𝐸𝑐𝜀𝑐 for elastic modulus of the composite and strain of the 

composite, equation 1 and 2 could be combined to achieve 

 𝐸𝑐𝜀𝑐 = 𝑓𝐸𝑓𝜀𝑓 + (1 − 𝑓)𝐸𝑚𝜀𝑚 (3)  

 

Finally, due to all the strains being equal to each other, the overall elastic modulus of the 

composite could be demonstrated as 

 𝐸𝑐 = 𝑓𝐸𝑓 + (1 − 𝑓)𝐸𝑚 (4)  

 

4.3.1.2 Lower Bound  

When the composite material is loaded perpendicular to the fibres, assuming that all the 

stresses  𝜎∞, 𝜎𝑓 , 𝜎𝑚 are equal. The total strain in the composite is distributed between the 

materials in a way that  

 𝜀𝑐 = 𝑓𝜀𝑓 + (1 − 𝑓)𝜀𝑚 (5)  

 

The overall modulus in the material is then presented by  

 𝐸𝑐 =
𝜎∞

𝜀𝑐
=

𝜎𝑓

𝑓𝜀𝑓 + (1 − 𝑓)𝜀𝑚
= (

𝑓

𝐸𝑓
+

1 − 𝑓

𝐸𝑚
)−1 (6)  

 

Since 𝜎𝑓 = 𝐸𝜀𝑓, 𝜎𝑚 = 𝐸𝜀𝑓.  

The rule of mixtures is used for composite materials to calculate Young’s modulus, according 

to equation 7 (Cambridge, 2015).  In this study upper bound was used for the proposed 

structure.  

 𝐸𝑐 = 𝑓𝐸𝑓 + (1 − 𝑓)𝐸𝑚 (7)  
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Where: 

𝑓 =
𝑉𝑓

𝑉𝑓+𝑉𝑚
 is the volume fraction of the fibres  

𝐸𝑓 is the material property of the fibres  

𝐸𝑚is the material property of the matrix 

 

4.3.2 FEA Simulation 

There are many ways to create a part in ABAQUS/CAE. It could be imported from design 

software, it could be imported as a meshed part from an ABAQUS input file or as an output 

database. It can also be created, using the tools available in the parts module. This section 

shows the development of 3D models to enhance hip implant design. Eight different cylinders 

were created with various internal composite structures and the parameters used to design the 

samples are explained.  

Abaqus is powerful finite element analysis (FEA) software extensively used for 

linear/nonlinear structures, CFD models, electromagnetic models and standard/explicit model 

simulations. It is also widely used for various applications, such as the industrial, biomedical, 

automotive and aerospace domains. FEA allows for the development of new ideas with new 

structures or analysing existing components. It converts complex geometries into 

subdivisions and mathematical equations are used to solve problems. Meshing involves 

creating elements that are subdivided in geometrical sections for simulation and the sum of 

these elements forms an entire geometry that needs to be analysed. The size and types of 

these elements are usually selected by the user depending on accuracy of the solution. Coarse 

meshing converts the components into larger elements, whilst fine meshing transforms them 

into smaller ones.  

A group of nodes creates an element, and the sum of the elements builds a complex 

geometry. The interactions between nodes create a nodal solution and the interactions 

between the elements generate an elemental solution, because of the implemented boundary 

conditions. FEA is an important technique, not least because time and cost can be saved when 

compared to laboratory set-ups. Moreover, FEA produces flexible and precise results as well.  

The parts were imported from SolidWorks after being meshed in 3-matic for this study.  
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4.3.2.1 Cylinder Modelling 

Prior to adding spheres to the actual implant, spheres were added to several cylinders with a 

radius of 30 millimetres and height 20 millimetres. Various scenarios were defined for these 

cylinders to investigate the impact of this structure. Different distances from each other, 

different distance from surface and sphere sizes were examined and allocated to the cylinders.  

These models were created in SolidWorks 2014 and they were meshed using 3-matic 10. 

They were exported from 3-matic into Abaqus using inp format to analyse using finite 

element. In addition, these cylinders were assembled with an empty cylinder as bone in 

SolidWorks. Surface meshing was applied in 3-matic as it was compatible with Abaqus and it 

could be transferred into volumetric mesh in Abaqus. These conversions appeared to provide 

higher accuracy especially with more complex geometries.   

First, a cylinder with hollow spheres was created to see if the concept of stress distribution 

would work. This achievement led to creating more samples with different conditions as a 

composite in the same volume. The cylinder dimensions, the height and radius were chosen 

randomly to see how the concept reacts under the same volume with various composite 

structures on a smaller scale. The parameters that were changeable in the samples were not 

observable from outside, these being: spheres radius, sphere distances from each other 

vertically and horizontally as well as their gap from the wall surface. These factors were 

changed to find out the optimum sphere positions in a cylindrical environment.    

Running simulation for these samples required material properties that needed to be assigned 

in Abaqus. It contains different modules to assign the material properties to the objects, 

which include: the part module, the property module, the assembly module, the step module, 

the interaction module, the load module, the mesh module, the optimisation module, the job 

module and the sketch module. Each module is designed for a specific area of the objects to 

be looked at and assigned their right properties. 

In the property module, the material property for each part is defined, including: density, 

Young’s modulus, ultimate tensile strength and Poisson’s ratio, which are inserted for each 

part.  

4.3.2.2 Cylinder material 

Three different material properties have been used for running the simulations. The 

mechanical properties used in simulations for two cylinders and bone are listed in Table 4-2. 
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Table 4-2 Mechanical properties of common biomaterials (Sabatini & Goswami, 2008) 

Material 
Elastic 

modulus (GPa) 

Ultimate tensile 

strength (Mpa) 
Poisson’s ratio Density (g/cm3) 

Ti6Al4V 114 900 0.32 4.4 

316L SS 200 1000 0.3 7.9 

Cortical bone 20 130 0.3 2.0 

 

4.3.2.3 Cylinders boundary conditions 

Assignment of material properties in FEA is an important step, which defines the 

characteristics of the solid components to be analysed. These cylinders were assembled into 

an empty cylinder acting as a foam material and the material property of the bone was 

assigned to this material. Pressure was exerted on the top surface of the cylinders with a 

magnitude of 5 MPa. Then, the sample was pinned at the bottom of the bone type material.  

 

4.3.2.4  Force and pin area  

Figure 4-4 shows where the stress was exerted and where the model was pinned. The figure 

also demonstrates the pinned area, which is at the bottom of the empty cylinder.   

 

Figure 4-4 Force and pin area 
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4.3.2.5 Cylinder mesh accuracy  

These models were imported into Abaqus from 3-matic, where they had been surface meshed 

and then, they were into volumetric mesh. These simulations were performed as explicit 

dynamic analysis.  As the mesh density increases, the time to solve the problem increases and 

fine mesh yields very accurate results. Furthermore, small element size will also increase the 

complexity of the FE models. The right element size must be selected base on how complex 

the component is and choosing the appropriate one will result in obtaining accurate outcomes 

and saving as much computing time as possible.  

There have been numerous studies on finite element analysis performance with different 

element size and types. One study concluded that as the curve and surface boundary of a 

higher-order element can precisely approximate the boundary, the calculation accuracy 

accomplished by a hexahedral element is higher than a tetrahedral. Furthermore, by 

increasing the number of nodes, the calculation accuracy of model analysis also increases 

(Liu, et al., 2011).  In another approach, the performance of linear and quadratic tetrahedral 

elements and hexahedral ones in different structural problems was analysed. It was concluded 

that the accuracy of the results were the same for both types of elements (Raut, 2012).   

4.3.3 Experiment to validate the FEA results 

Two cylinders were printed using ABS plastic in the University’s 3D printing lab. One 

cylinder contained hollow spheres close to the surface and the other one was solid. ABS 

stands for Acylonitrile Butadiene Styrene, which is an oil-based plastic; it is a strong material 

that is widely used in various industries, for it has good structural integrity. The experiment 

was carried out to compare and contrast stress-strain graphs of hollow shell structures with 

solid ones. Furthermore, these tests were carried out to justify the structure. 

These two samples were tested using Instron machine for compression tests, as shown in 

Figure 4-5. A strain gauge was attached to each cylinder to calculate the strain and the stress 

inserted into the surrounding areas.  
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Figure 4-5 Compression machine used to carry out stress-strain tests  

As explained in subsection 2.6.3, Fused deposition modelling (FDM) was used to model 

both, solid and hollow shell cylinders. Figure 4-6 shows the ABS samples after being printed 

using the Fused deposition modelling (FDM) technique.  
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Figure 4-6 ABS models of solid and hollow shell cylinders 

4.4 Results 

4.4.1 Results of the rule of mixtures 

In this study, the rule of mixtures was used as the structure was assumed to be composite. 

The metals are the matrix and the hollow spheres are assumed to be fibre. The rule of 

mixtures was used to calculate the Young’s modulus and strength of the structures. 

𝐸𝑠𝑡𝑒𝑒𝑙 = 200 𝐺𝑝𝑎, 𝜎𝑠𝑡𝑒𝑒𝑙 = 1000 𝑀𝑃𝑎      

where, 𝐸𝑠𝑡𝑒𝑒𝑙 is the Young’s modulus of steel and 𝜎𝑠𝑡𝑒𝑒𝑙 is its strength. 

𝐸𝑎𝑖𝑟 = 0.14 𝑀𝑃𝑎 ≈ 𝑍𝑒𝑟𝑜, 𝜎𝑎𝑖𝑟 ≈ 0 𝑀𝑃𝑎 

where, 𝐸𝑎𝑖𝑟 is the Young’s modulus of the spheres and 𝜎𝑎𝑖𝑟 is their strength. 

where, 𝑟𝑎𝑖𝑟is the radius of a sphere: 

𝑟𝑡𝑜𝑡𝑎𝑙𝑙 = 30 𝑚𝑚, ℎ = 20 𝑚𝑚 

Figure 4-2 shows all of the above parameters schematically. 

 𝑉𝑎𝑖𝑟 =
4

3
𝜋. 𝑟𝑎𝑖𝑟

3 . 𝑛 (8)  

Where, 𝑉𝑎𝑖𝑟 is the volume of the spheres and 𝑛 is their number. 

 𝑉𝑡𝑜𝑡𝑎𝑙𝑙 = 𝐴𝑟𝑒𝑎𝑠ℎ𝑒𝑙𝑙. ℎ (9)  
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 𝑓 =
𝑉𝑎𝑖𝑟

𝑉𝑡𝑜𝑡𝑎𝑙𝑙
 (10)  

Where, 𝑓 is the function: 

 𝐸𝑐 = 𝑓. 𝐸𝑎𝑖𝑟 + (1 − 𝑓). 𝐸𝑠𝑡𝑒𝑒𝑙 (11)  

 𝜎𝑐 = 𝑓. 𝜎𝑎𝑖𝑟 + (1 − 𝑓). 𝜎𝑠𝑡𝑒𝑒𝑙 (12)  

 

The equations for Young’s modulus and strength were applied according to the rule of 

mixtures, which is shown in equation 11 and 12. 

Table 4-1 demonstrates the different conditions under which the cylinders were calculated 

with the rule of mixtures. Table 4-3 shows the calculated outcomes for Young’s modulus and 

strength for all the specimens. The results of the calculations show that if the total sphere 

volume increases then the Young’s modulus and strength are reduced. Hence, there is an 

optimum volume of voids that can reduce stress shielding in the bone regardless of 

weakening of the strength. 

In the first scenario, the vertical distance between each sphere was considered; in one case 

4mm and the other one 5mm, with the former providing the better results.  

Another scenario was to consider the distance from the centre of each sphere to the wall 

surface of the cylinder for one case when the space was 2mm and the other when it was 5mm. 

That further away from the wall surface proved to have superior performance.  

A further condition that was considered was the number of spheres within the cylinder; in one 

case this was 36, whilst in the comparator it was 72. Whilst there was not much difference in 

the results of these two conditions, the structure with 36 spheres did perform slightly better.  

Sphere size is the last scenario to be looked at in this section, with one cylinder consisting of 

spheres with 1mm radius and one with 2mm ones. The cylinder which contained the smaller 

spheres was a better performer when compared that with larger spheres.  
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Table 4-3 Calculation results according to the rule of mixtures 

Different cases 𝑬𝒄(GPa) 𝝈𝒄(MPa) 

Sample 1 

Sample 2 

197.44 987.2 

198.08 990.4 

Sample 3 

Sample 4 

196.51 982.54 

198.8 990.4 

Sample 5 

Sample 6 

198.33 991.66 

198.51 992.59 

Sample 7 

Sample 8 

198.8 990.4 

184.64 923.2 

Experimental sample 198.72 993.6 

 

4.4.2 Finite element analysis  

To find out that how the stress transfers from an implant to bone, FEA was run and in this 

section, the results of this simulation are presented.  
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Figure 4-7 Von Mises stress and displacement for different distance from each other vertically: a) 4mm; b) 5mm 

Figure 4-7 a shows Von Mises stress distribution and displacement when spheres are at a 

distance from each other of 4mm vertically, whereas Figure 4-7 b shows this distance as 

being 5mm. The stress transferred into the bone through sphered samples is greater in the 

4mm hollow sphered shell cylinder than in the 5 mm one. The load-transferred onto the bone 

for the sample containing closer spheres is between 1.45-2.34 MPa, whereas in the other case 

it is 1.1 MPa. The displacement in Figure 4-7 a is also slightly higher than in Figure 4-17 b. 

As the displacement increases, the load-transfer onto the bone will also increase. Figure 4-7 a 

performs slightly better due to its closer distanced spheres and an extra layer of them. The 

maximum displacement occurring in Figure 4-7 a is 0.049 mm, whilst it is 0.048 mm in 

Figure 4-7 b.  

Von Mises Displacement 

a 

b 
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Figure 4-8 Von Mises stress and displacement for different distance from the side-surface: a) 2mm; b) 5mm 

Figure 4-8  shows the differences between the two scenarios where the spheres were placed at 

different distance from the side-surface, with Figure 4-8 illustrating when this was 2mm, 

whilst  Figure 4-8 b demonstrates when it was 5mm. The stress transferred to the bone is 

higher in Figure 4-8 a in comparison to Figure 4-8 b. As shown in Figure 4-8 a, the Von 

Mises stress level transferred onto the bone is approximately between 1-2.65 MPa, whereas 

in Figure 4-8 b, it is between 1-2 MPa. Furthermore, Figure 4-8 a shows that larger stress is 

being carried by the bone, the displacement of which is also slightly larger in this figure when 

compared to Figure 4-8 b. Figure 4-8 a portrays a maximum displacement as 0.04888 mm, 

whilst that of Figure 4-8 b is 0.04882 mm. The larger the displacement, the more load will be 

transferred onto the bone.   

Von Mises Displacement 

a 

b 
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Figure 4-9 Von Mises stress and displacement for different numbers of spheres in each row (different distance 

horizontally): a) 24 spheres; b) 12 spheres 

Figure 4-9 demonstrates different numbers of spheres placed in each row or a difference in 

their horizontal distance. Figure 4-9 a shows the case with 24 spheres in each row and  Figure 

4-9 b shows 12. The stress-transfer apears to be slightly higher in the cylinder with more 

spheres. Furthermore, Figure 4-9 a shows a clear distribution of stress to the sides, with a 

range of between 1.08-2.1 MPa but Figure 4-9 b demonstrates slightly smaller stress being 

transferred, i.e. 0.9-1.3 MPa. These differences could be due to the number of spheres and 

their distance from each other.  Figure 4-9 a also portrays a larger displacement compared to 

Figure 4-9 b. In addition, the maximum displacement for the sample with more spheres is 

0.0492 mm and for the one with fewer spheres, this is 0.0487 mm.  

Von Mises Displacement 

a 

b 
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Figure 4-10 Von Mises stress and displacement for different sphere radius sizes: a) 1mm; b) 2mm 

Figure 4-10 shows Von Mises stress distribution and displacement for different sphere sizes. 

Figure 4-10 a portrays the specimen containing spheres with 1mm radius, Figure 4-10 b 

shows the case containing spheres modelled with 2mm radius. The stress-transferred into the 

bone is slightly greater in the sample containing spheres with 1 mm radius that containing 

spheres with 2 mm radius. In addition, it can be observed from Figure 4-10 that the load-

transfer is almost similar in both cases, with approximately just 0.39 MPa difference in their 

maximum Von Mises stress. The displacement is also very similar for the two cases, Figure 

4-10 a showing a marginally larger displacement of 0.018 mm.  

a 

b 

Von Mises Displacement 
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Figure 4-11 Von Mises stress and displacement of solids: a) titanium; and b) stainless steel 

Figure 4-11 shows one similar case with different material properties. Figure 4-11 a shows 

titanium’s behaviour, whilst Figure 4-11 b illustrates that of stainless steel and the stress 

passed on to the bone is higher in titanium cylinder. Moreover, the stress in the cylinder itself 

is lower in the titanium one. It can be observed that the Von Mises stress transferred onto the 

bone in Figure 4-11a is between 4 and 5.3 MPa, whereas in Figure 4-11b, it is between 1-2.2 

MPa. The maximum displacement occurring in the titanium sample is 0.00306 mm, which is 

larger than that for stainless steel, at 0.000839 mm.  

Von Mises Displacement 

a 

b 
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Figure 4-12 Von Mises stress and displacement for the experiment case 

Figure 4-12 shows the Von Mises stress and displacement for the experiment case, which is 

the experimental sample, printed containing hollow spheres. The displacement for the 

experiment case is larger than that for solid stainless steel. That is, the maximum 

displacement occurring in the latter case is 0.000839 mm, whilst in the experimental case 

containing hollow spheres this is 0.05 mm. The load-transfer onto the bone is also larger in 

sphered sample Figure 4-12 when compared to the solid stainless steel structure. The stress in 

the bone in experimental sample is between 2 and 3 MPa, whereas it is between 1 and 2.2 

MPa in the solid stainless steel sample.  

Table 4-4 summarises the results of FEA based on Von Mises stress distribution in the bone 

and cylinders. It is shown that the Von Mises stress reduces in comparison to the solid one; 

Von Mises 

Displacement 
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however, it is still higher than for titanium. In addition, the results indicate that the stress at 

the bone-implant interface increases more compared with solid stainless steel, but this is still 

lower than for titanium. Furthermore, it can be observed that having hollow spheres within a 

structure close to its surface would appear to reduce its Young’s modulus and stress shielding 

through an increase in load-transfer.   

Table 4-4 Von Mises stress results for the different study cases 

Different cases 
Cylinder 

conditions 

Bone  

(MPa) 

Bone near 

cylinder 

(MPa) 

Cylinder (MPa) 

Sample 1 

Sample 2 

4mm 1.45-2.34 2.8-3.9 10-15 

5mm 1.1 1.59 6-11 

Sample 3 

Sample 4 

2mm 1-2.65 2.65-3.5 10-15 

5mm 1-2 2-4 7-12 

Sample 5 

Sample 6 

3x24 1 1.7 7-13 

3x12 1 1.7 4-10 

Sample 7 

Sample 8 

1mm 0.8-2 2-4 6-10 

2mm 1.1-1.7 1.7-2.5 3-10 

Sample 9 

Sample 10 

Titanium 2-4 4-5.3 3.6-7 

S Steel 0.05-1 1.1-2.2 4.3-10 

Experimental sample  2-3 2.24 6-9 

 

One case, which was a combination of other cases, was modelled as the experiment 

specimen. It was printed using 3D plastic lab to indicate whether the experimental results 

confirm that the hollow structure has a greater impact on Young’s modulus compared to the 

completely solid model. 

4.4.3 Compression Results 

Figure 4-13 demonstrates the stress-strain graph obtained from the experimental results. 

These cylinders were sintered and printed using ABS material. A solid and a hollow shell 

cylinder were printed to go through a compression test and Figure 4-13 indicates that the 

gradient of stress over strain is higher for the solid structure than for the hollow shell 

structure.  
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Figure 4-13 Stress-strain graph of solid and hollow spheres close to the surface of the structure 

 

4.5 Minimising stress shielding by changing the volumetric ratio 

To conclude, this chapter has shown that having hollow spheres close to the surface reduces 

Young’s modulus and the stiffness. Moreover, there is an optimal amount of hollow spheres 

to be created for a Young’s modulus reduction, for exceeding that amount will result in 

weakening the structure. Furthermore, having hollow spheres in the outer layer of the 

cylinder (close to the surface) will also increase the load-transfer to the surrounding bone. 

However, the centre of the cylinder remains solid and stiff. As a result, the hollow spheres are 

distributed everywhere within the volume uniformly in the next chapter, as this could result 

in a lower Young’s modulus throughout the structure. In addition, having uniformly 

distributed hollow spheres within a closed volume with no solid centre could increase load-

transfer onto the bone. 

So, there is no exact number to put forward as number of spheres, distance from the wall, 

distance from each other and sphere size. However, there is a relationship between all of 

these parameters. 𝑓 could be calculated as a function of a composite Young’s modulus by 

using equation 11, which is named as 𝑓1, as demonstrated in equation 13. In addition, 𝑓 could 

also be calculated as a function of composite strength by using equation 12, which is named 

as 𝑓2, as shown in equation 14. If the Young’s modulus of stainless steel (200 GPa) is 

reduced to that of titanium (114 GPa), then the outcome of equation 13, i.e.  𝑓1, must be 0.4. 

However, the strength of the material also decreases rapidly and thus, equation 14 is useful to 

determine how much strength reduction is appropriate for composites. 900 MPa was chosen 
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as the ultimate tensile strength for composites due to titanium’s strength. A study in 2016 

mentioned that, the stress applied to hips when climbing down is 312 MPa (Colic, et al., 

2016). In another approach in 2007, when a part is under cyclic load, such as the hip, a safety 

factor is suggested, which is between 2.5 and 2.9 (Sivasankar, 2007). If the safety factor is 

multiplied by the cyclic load, the outcome will approximately be 900 MPa and hence, 𝜎𝑐 was 

considered to be this value for this study.  

 𝑓1 =
𝐸𝑐 − 𝐸𝑠𝑡𝑒𝑒𝑙

𝐸𝑎𝑖𝑟 − 𝐸𝑠𝑡𝑒𝑒𝑙
 (13)  

 𝑓2 = (
𝜎𝑐 − 𝜎𝑠𝑡𝑒𝑒𝑙

𝜎𝑎𝑖𝑟 − 𝜎𝑠𝑡𝑒𝑒𝑙
) (14)  

where, 𝜎𝑐 is assumed to be 900 𝑀𝑃𝑎 

𝜎𝑐 = 900 𝑀𝑃𝑎, 𝜎𝑠𝑡𝑒𝑒𝑙 = 1000 𝑀𝑃𝑎, 𝜎𝑎𝑖𝑟 ≈ 0 𝑀𝑃𝑎 

 𝑓2 = (
900 − 1000

−1000
) = 0.1 (15)  

According to equations 10 and 15, the relationship between the volume of a sphere and that 

of a composite are as follows:   

If 𝑓is replaced with 𝑓2, which is 0.1 in equation 16, then:  

 
𝑉𝑎𝑖𝑟

𝑉𝑡𝑜𝑎𝑙𝑙
= 0.1 (16)  

Equation 16 shows the ratio between the extracted volume and total volume, which is 10% of 

the latter. In order to have a general view of the effective parameters, such as 𝑟𝑎𝑖𝑟, 𝑑, ℎ and 

etc., the relationships between them were defined, which came of use when designing the 

samples.  

A relationship that can be obtained from equation 16, is that between the radius of a sphere 

and their number. It is shown in equations 17 and 18 how this relationship is calculated.  

 
4
3

(3.14)(𝑟𝑎𝑖𝑟
3 ) ∙ 𝑛

3.14(20)(302 − 202)
= 0.1 (17)  

 

 𝑛 =
3000

4𝑟𝑎𝑖𝑟
3  (18)  
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 𝑛(𝑟𝑎𝑖𝑟) = 750𝑟𝑎𝑖𝑟
−3  (19)  

At the beginning of this chapter, hollow spheres were added to see if the stress shielding can 

be reduced. There was no theoretical logic to run simulation at the start of this chapter, 

neither was mesh creation of so many samples as it was time consuming. Later in this 

chapter, the only way to conduct this research and overcome the mentioned issues, was to use 

rule of mixtures. Moreover, rule of mixtures was also used to determine volume fraction of 

the samples. In this part, relationships between geometrical parameters of the samples were 

created to have a better understanding for future designs. Equation 19 was used to define the 

relationship between the radius of spheres and their number. Figure 4-14 is the curve drawn 

based on equation 19, and also helped to visualise equation 19. It also shows how the 

relationship between these two parameters work instead of setting 𝑟𝑎𝑖𝑟 = 1, 2, 3, … and 

calculating 𝑛.  

According to Figure 4-14, which shows the relationship between the number of spheres and 

their radius, if the radius decreases to less than 1 mm, then, the number of them should be 

increased significantly. However, if the radius of the spheres increases to 2mm or more, the 

number of them stays steady and hence, any size between 1 and 2 mm will be more effective. 

 

Figure 4-14 The relationship between the radius of the spheres in (mm) and their number 

 

(mm) 

𝑛
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Another relationship that can be obtained from equation 16, is that between hollow shell 

thickness and the height of the cylinder. Based on equation 19, if the radius of the spheres is 

1mm, the number of them will be 750. Equations 20 and 21 show how the relationship 

between hollow shell thickness (𝑑) and the height of the cylinder (ℎ) is calculated.  

 
4
3 (3.14)(13)(750)

(3.14)(ℎ)(𝑟𝑎𝑙𝑙 + 𝑟𝑠𝑜𝑙𝑖𝑑)(𝑟𝑎𝑙𝑙 − 𝑟𝑠𝑜𝑙𝑖𝑑)
= 0.1 (20)  

 

 1000

(ℎ)(60 − 𝑑)(𝑑)
= 0.1 (21)  

As it was mentioned earlier in this part, relationships between geometrical parameters of the 

samples were created to have a better understanding for future designs. Equation 21 was used 

to define the relationship between the hollow shell thickness and the height of the cylinder. 

Figure 4-15 is the curve drawn based on equation 21, and also helped to visualise equation 

21. It also shows how the relationship between these two parameters work instead of setting 

𝑑 = 1, 2, 3, … and calculating ℎ. 

Figure 4-15 demonstrates the relationship between hollow shell thickness and the height of 

the cylinders. The results prove that as the hollow shell decreases, the height of the cylinders 

increases, until this increase and thickness become steady. It can also be observed that when 

the thickness reaches 3 mm, the height stays almost steady with a minor gradient. The curve 

provides a general idea about the relationship between 𝑑 and ℎ, if 𝑟𝑎𝑖𝑟is 1 mm, which could 

well be also of use when designing the structure.  
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Figure 4-15 The relationship between hollow shell thickness (mm) and the height of the cylinder (mm) 

Furthermore, another relationship can be concluded is between the number of spheres and the 

radius of cylinder, from equation 16. The radius of a sphere is 1 mm and the height of the 

cylinder is considered to be 20 mm in this relationship. Equations 22 and 23 show how the 

relationship between the number of spheres and the radius of cylinder is calculated.  

 
4
3

(3.14)(13) ∙ 𝑛

(3.14)(20)(𝑟2)
= 0.1 (22)  

 

 𝑛(𝑟) = 1.5𝑟2 (23)  

 

As it was mentioned earlier in this part, relationships between geometrical parameters of the 

samples were created to have a better understanding for future designs. Equation 23 was used 

to define the relationship between the number of spheres and radius of the cylinder. Figure 

4-16 is the curve drawn based on equation 23, and also helped to visualise equation 23. It also 

shows how the relationship between these two parameters work instead of setting 𝑟 =

1, 2, 3, … and calculating 𝑛. 

Figure 4-16 demonstrates the association between the number of spheres and the radius of the 

cylinder, which reveals that as the radius increases, the number of spheres goes up as well. As 

the radius increases, the size of sample also gets larger, which makes the volume larger. The 

larger the total volume, the more that needs to be extracted.  

 

ℎ
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Figure 4-16 Relationship between the number of spheres and radius of the cylinder (mm) 

From equation 16, another relationship can be found between the hollow shell thickness and 

the radius of the cylinder. Based on equation 19, if the radius of the spheres is 1mm, then 

their number will be 750. Equations 24-27 provide the calculations for this relationship.  

 
4
3 (3.14)(13)(750)

3.14(20)(𝑟𝑎𝑙𝑙 + 𝑟𝑠𝑜𝑙𝑖𝑑)(𝑟𝑎𝑙𝑙 − 𝑟𝑠𝑜𝑙𝑖𝑑)
= 0.1 (24)  

 

 
3
4 (3.14)(750)

(3.14)(20)(2𝑟𝑎𝑙𝑙 − 𝑑)(𝑑)
= 0.1 (25)  

 

 (2𝑟𝑎𝑙𝑙 − 𝑑)(𝑑) = 500 (26)  

 

 𝑟(𝑑) =
500

2𝑑
+

𝑑

2
 (27)  

As it was mentioned earlier in this part, relationships between geometrical parameters of the 

samples were created to have a better understanding for future designs. Equation 27 was used 

to define the relationship between the radius of the shell and radius of the cylinder. Figure 

4-17 is the curve drawn based on equation 27, and also helped to visualise equation 27. It also 

shows how the relationship between these two parameters work instead of setting 𝑑 =

1, 2, 3, … and calculating 𝑟. 

𝑛
 

(mm) 
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Figure 4-17 Relationship between hollow shell thickness (mm) and radius of the cylinder (mm) 

Figure 4-17 shows the relationship between the hollow shell thickness and the radius of the 

cylinder, illustrating how as the thickness of the hollow shell decreases, so too does the radius 

of the cylinder. However, it remains steady after 10mm. It can also be observed that when the 

thickness increases the radius of the cylinder decreases. 

These relationships have been defined in this section to obtain an overall view of the effective 

parameters on this particular structure. However, the mathematical equations remain the 

same.  For example, the number of spheres is proportionally related to750𝑟𝑎𝑖𝑟
−3 in equation 19. 

If the dimensions of the structure change, the constant number 750 will change as well. 

However, the number of spheres will still have a proportional relationship with𝑟𝑎𝑖𝑟
−3. 

4.6 Conclusion 

This chapter has demonstrated that having hollow spheres in a solid volume reduces Young’s 

modulus. However, the reduction is not considerable. Moreover, the hollow shell structure 

improves the stress at the cylinder-bone interface, but this improvement is not significant. As 

the extracted volume is similar in all the cases, FEA results visualisation were almost similar. 

However, the sphered samples were not as sufficient as titanium, but better than solid 

stainless steel. Moreover, the samples 1 and 3 demonstrated larger stress-transfer into the 

surrounding bone, the stress in sample 1 is 3.9 MPa and in sample 3 is 3.5 MPa. Whereas, the 

stress in solid titanium is 5.3 MPa, and in solid stainless steel is 1 MPa. To conclude, it is 

𝑟 
(m

m
) 

(mm) 
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observed that in sample 1, the spheres are closer to each other in terms of their horizontal 

distance, and the spheres are closer to the surface in sample 3. Therefore, closer spheres to 

each other and surface result in larger stress-transfer into the surroundings. In the next 

chapter, uniformly distributed hollow sphered structure behaviour within a constant mass is 

investigated in depth.  
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5 Investigation of cylinders with evenly distributed 

hollow spheres within a constant mass behaviour 

 

In this chapter, details about materials, meshing strategies, and the different loading 

conditions that were applied to the samples for analysis, are provided. SolidWorks 2014 SP 

4.0 was used to design the samples for FEA analysis, which were based on ASTM standards 

and previous study (Sugimoto, et al., 2017); (ASTM E9, 2000). In this chapter, metal 3D 

printing is also discussed, which was used to create samples to run compression tests on. 

Twelve different cylinders were designed in SolidWorks for stress analysis in order to see the 

difference in stress distribution over a constant volume. The compression test was also 

applied to the samples and the rule of mixtures was used to measure Young’s modulus and 

the strength of each sample. 

5.1 Introduction 

The height and diameter used in this chapter were obtained from the standard (ASTM E9, 

2000) and previous study (Sugimoto, et al., 2017) for the compression testing. This standard 

states that test specimens must be cylindrical. Specifically, based on this standard, the height 

and diameter were modelled as 38 mm and 12 mm, respectively.  In the previous chapter, the 

spheres were only created close to the surface and the results obtained showed the transfer of 

stress onto the bone. However, the load-transfer was not significant, which led to the work for 

this chapter having hollow spheres spread evenly throughout the structure. That is, the aim of 

this chapter is to develop the idea of having hollow voids throughout the samples distributed 

uniformly close to the surface, as shown in Figure 5-1, to reduce the Young’s modulus. 

Reducing this, will reduce the stiffness of the materials and the less this is, the more 
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deformation occurs and more stress is transferred to the surrounding area. FEA, the rule of 

mixtures and experiments were used to find out about the effects of hollow voids on Young’s 

modulus.  

 

 

Figure 5-1 Uniformly hollow sphere in the cylinder samples 

5.2 Study of 3-dimensional designs 

The dimensions used to model these cylinders were obtained from the ASTM standards and 

previous study (Sugimoto, et al., 2017), with the height being 38 mm and the radius 6 mm. 

The hollow spheres were evenly distributed in identical volumes to consider different 

scenarios. There were twelve different scenarios precisely analysed using computational and 

experimental methods. Table 5-1 illustrates a plan view of each sphered cylinder, which has 

been modelled based on their distance from each other and from the cylinder side surface as 

well as the sphere sizes.   
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Table 5-1 Twelve samples of hollow cylinders 

R1.5n32 R1.5n32/2 

  
R1n96 R1n96/2 

  

R2 R2n12/2 

  
R3n4 R3.5n3 
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R4n2 Solid 

  
 

5.3 Method 

5.3.1 Rule of mixtures 

As explained in subsection 4.3.1, the rule of mixtures was used to calculate the Young’s 

modulus and strength of the composite. These were calculated using equations 10, 11 and 12, 

according to the volume of cylinders. Having stablished that meshing in the presence of small 

hollow spheres generates over 15,000,000 elements, conventional approach FEA proved to be 

impossible, and in fact mesh generation failed to operate. Due to this, the only way to 

conduct this research is to resort to the rule of mixtures. The rule of mixtures is applied to the 

whole mass for this chapter.  

5.3.2 FEA simulation 

FEA was used to analyse twelve different porous cylindrical models. These differences 

pertained to the sphere sizes, their distance from wall surface and their distance from each 

other. In addition, the spheres were distributed evenly in these specimens to find out how 

they would affect the stress distribution over a controlled volume. SolidWorks 2014 SP 4.0 

was used to model the parts and they were exported into CREO for FEA. The aim of the 



 

97 

 

numerical approach was to evaluate stress on the outer surfaces through different internal 

structural designs in a controlled volume.  

5.3.2.1 Cylinder modelling  

As aforementioned, there are twelve different models used in this chapter that were designed 

based on standards. The dimensions for the main structure (diameter and height) were 

obtained from these, with the porous structure or hollow spheres being the variable in the 

specimens. Two of the specimens have a different kind of porous structure, the first contains 

four hollow cylinder within a constant volume, whilst the second one has four hollow 

ellipsoids, demonstrated in Figure 5-2. The reason to have these two designs along with other 

specimens was to have a design where no debris is left inside and the other one containing 

four hollow ellipsoids was to try larger voids and their effects in comparison to hollow 

spheres. The four hollow ellipsoid example was termed new design/1, whilst with four 

cylindrical holes was named new design/2.  

 

Figure 5-2 The other two specimens with different porous structures 

 

5.3.2.2 Cylinder material 

The material used for this work was only stainless steel with the properties illustrated in 

Table 4-2 (Sabatini & Goswami, 2008).  
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5.3.2.3 Cylinder boundary condition 

The boundary condition was applied in CREO using stainless steel properties. Figure 5-3 

shows where the force was applied and where the specimen was pinned. Regarding which, all 

the specimens were pinned at the bottom of the cylinder, which was set due to the standards 

of the compression test condition for metals. A force of 10 KN was inserted at the top of each 

specimen vertically to see how the hollow spheres affected stress distribution within the 

structure.  

5.3.2.4 Force and pin area 

As it is shown in Figure 5-3, the force and pinned area of cylinders are similar to the chapter 

three conditions. Loads can be defined in many forms, such as displacements, forces, 

pressures, velocities, thermal, gravity etc. They are defined at certain time intervals 

depending on the situation. That is, the results are recorded at given time durations by defined 

sub steps in finite element analysis. The force is applied to simulate the strains that are caused 

and also to investigate the stress distribution. As abovementioned, a force of 10 KN was 

applied in the Y direction to the top surface of the cylinders. After the load was applied, static 

analysis was selected based on desired simulation characteristics. Figure 5-3 shows the pin 

and force area in the cylinder.  

 

Figure 5-3 Pin and force area of the hollow cylinder 

5.3.2.5 Cylinder mesh accuracy  

The twelve samples were modelled in SolidWorks as CreoPart (.prt) format and were 

imported into CREO for meshing and FEA. As the complexity of objects increases, the 

chances for a perfect FEA decreases. The volumetric mesh used for these samples was 
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tetrahedral and this meshing helps to divide objects into smaller elements for FEA. The 

accuracy of the mesh was checked based on the stress-mesh size to achieve precise results.  

5.3.3 Experiment to validate the FEA results 

All the samples were printed to carry out a compression test for modulus and strength 

measurements, with the weight, diameter and height of each being measured for calculation 

purposes.  

5.3.3.1 3-D model 

As mentioned in the subsection 2.6.8, the Direct metal laser sintering (DMLS) technique was 

used to print these hollow sphere cylinders. 

5.3.3.2 Samples measurements 

Samples weights were measured by scale to confirm the reduction in mass when containing 

hollow spheres. The height and diameter of the samples were also measured by a digital 

Vernier caliper to calculate their volume. Table 5-2 displays the mass and dimensions of the 

samples. 

 

Table 5-2 Weight and dimension of the samples measured by scale and a digital Vernier caliper 

Samples Mass (g) r (mm) h (mm) Vol (mm3) 

New design/1 34 6.113 38.16 4479.887 

New design/2 32 6.13 38.13 4501.297 

R1.5n32 34 6.1183 38.096 4480.132 

R1.5n32/2 34 6.143 38.113 4518.393 

R1n96 34 6.13 38.11 4498.936 

R1n96/2 34 6.1283 38.116 4497.148 

R2n12 34 6.126 38.116 4493.773 

R2n12/2 34 6.13 38.14 4502.477 

R3.5n3 34 6.125 38.14 4495.135 

R3n4 33 6.1283 38.126 4498.328 

R4n2 33.6 6.1316 38.143 4505.182 

Solid 35 6.1316 38.126 4503.174 
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5.3.3.3 Compression test 

A compression test was applied to all the samples under the same conditions at room 

temperature. Figure 5-4 demonstrates one of the samples between the compression anvils. 

The stress-strain graphs were extracted from the tests for each sample. Furthermore, 

compression modulus and ultimate compression stress were obtained from the tests, the 

results of which were compiled in a stress-strain graph. 

 

Figure 5-4 One of the samples between compression anvils 

5.4 Results 

5.4.1 Results of the rule of mixtures 

Table 5-3 demonstrates the results of the Young’s modulus and strength after calculations 

based on the rule of mixtures. As it can be observed, the Young’s modulus of all the samples 

containing spheres was less than for the solid structure. The volume of cylinders is similar 

and the extracted volume of each sample is approximately the same, these volume extractions 

being based on equation 16. As Table 5-3 shows, 𝑓 is between 0.09-0.12. Furthermore, Table 

5-3 proves that the Young’s modulus of all of the sphered cylinders is approximately similar 

due to the 𝑓 values. Hence, this shows that the size of spheres and how far they are positioned 

from each other or the surface do not affect the Young’s modulus according to the rule of 

mixtures.   
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Table 5-3 Calculation results for different hollow cylinder designs 

samples Number of sphere 
Radius of sphere 

(mm) 

Volume of 

cylinder (mm3) 

Volume of 

sphere(mm3) 
f E (GPa) Strength (Mpa) 

Solid cylinder 0 0 4295.52 0 0 200 1000 

R1n96 96 1 4295.52 401.92 0.093567251 181.28 906.43 

R1n96/2 96 1 4295.52 401.92 0.093567251 181.28 906.43 

R1.5n32 32 1.5 4295.52 452.16 0.105263158 178.94 894.73 

R1.5n32/2 32 1.5 4295.52 452.16 0.105263158 178.94 894.73 

R2n12 12 2 4295.52 401.92 0.093567251 181.28 906.43 

R2n12/2 12 2 4295.52 401.92 0.093567251 181.28 906.43 

R3 4 3 4295.52 452.16 0.105263158 178.94 894.73 

R3.5 3 3.5 4295.52 538.51 0.125365497 174.92 874.63 

R4 2 4 4295.52 535.893 0.124756335 175.04 875.24 

samples Number of sphere 
Radius of sphere 

(mm) 

Volume of 

cylinder (mm3) 

Volume of hollow 

(mm3) 
f E (GPa) Strength (Mpa) 

New design/1 None N/A 4295.52 416.7 0.097 180.59 902.99 

New design/2 None N/A 4295.52 475.34 0.11 177.86 889.34 
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5.4.2 Finite element analysis 

The Von Mises stress and displacement of the samples are presented in this section. Figure 

5-5 shows the stress distribution and displacement in the solid stainless steel cylinder. Figure 

5-5 a demonstrates that the Von Mises stress is very low on the side surfaces in comparison 

to the bottom of the structure. Specifically, it is between 43.83 and 68.33 MPa, whilst at the 

bottom, it ranges from 190-215 MPa. Figure 5-5 b shows the displacement and the maximum 

is 0.016 mm.  

 
Figure 5-5 Solid stainless steel FEA results: a)von Mises stress distribution (MPa); b)displacement (mm) Solid 

Titanium FEA results; c) von Mises stress distribution (MPa); d) displacement (mm) 

a b 

c d 
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Figure 5-5 c shows the stress distribution and Figure 5-5 d displays the displacement in solid 

titanium. It can be seen that displacement is higher than for solid stainless steel, whilst the 

stress distribution is lower.  

Figure 5-6 demonstrates the stress distribution and displacement in uniformly distributed 1 

mm radius spheres within the cylinder. Figure 5-6 a shows von Mises stress distribution, 

where it can be observed that the range is between 80 and 120 MPa close to the surface. 

Around the hollow spheres, higher stress is found as it is concentrated and this reduces as the 

surface is reached. Hence, the hollow spheres within the structure create localised stress 

concentration. Figure 5-6 b demonstrates displacement, in which it can be seen that the 

maximum displacement is 0.019 mm, this being 0.003 mm greater than for the solid structure.  

 

 
Figure 5-6 R1 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm) 

Figure 5-7 also shows the computational results for a cylinder containing spheres with a 1 

mm radius. The difference is the hollow spheres’ distance to the surface, which is further in 

this case. In addition, the stress distribution and displacement are shown in the figure, with 

the stress distribution range being between 80 and 120 MPa near the surface. Around the 

hollow spheres, higher stress appears, as it is concentrated and diminishes as it reaches the 

surface. Hence, it is evidenced that hollow spheres within the structure create localised stress 

concentration. The displacement shown is approximately similar to Figure 5-6 b, which is 

a b 
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still greater than for solid stainless steel and larger displacement causes more load-transfer to 

the surrounding area.  

 

 

Figure 5-7  R1/2 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm) 

Figure 5-8 displays the stress distribution and displacement for a cylinder containing 

uniformly distributed spheres with 1.5 mm radius. In Figure 5-8 a, the stress distribution is 

between 96 and 127 MPa close to the surface, which is similar to the stress distribution of the 

samples containing spheres with 1mm radius at this location. Around the hollow spheres, 

higher stress appears as it is concentrated, which reduces as it reaches the surface. That is, the 

hollow spheres within the structure create localised stress concentration. The stress 

concentration near the spheres is also lower than for the samples with a 1 mm radius. Figure 

5-8 b displays the displacement, which is 0.020 mm and it is larger in comparison with that of 

the samples containing spheres with 1mm radius.  

 

a b 
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Figure 5-8  R1.5 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm) 

Figure 5-9 also indicates the stress distribution and displacement in uniformly distributed 1.5 

mm radius spheres in a cylinder. The difference in this case to the previous case is the hollow 

spheres distance to the surface, which is closer. Figure 5-9 a demonstrates the stress 

distribution range, which ranges from 100-126 MPa near the surface. This is similar to the 

stress distribution range for the cases containing hollow spheres with 1 mm radius at that 

location. Around the hollow spheres, higher stress appears as it is concentrated, which 

reduces as it reaches the surface. That is, the hollow spheres within the structure create 

localised stress concentration. The stress concentration near the spheres is also lower than for 

the samples with a 1 mm radius and maximum displacement is almost the same as that in 

Figure 5-8 b, with the latter being slightly larger.   

 

 

a b 
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Figure 5-9  R1.5/2 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm) 

Figure 5-10 displays the stress distribution and displacement in evenly distributed 2mm 

radius spheres within a cylinder. Figure 5-10 a shows a stress distribution range that is 

between 94 and 126 MPa close to the surface. Around the hollow spheres, higher stress can 

be seen as it is concentrated, which reduces as it reaches the surface. That is, the hollow 

spheres within the structure create localised stress concentration. Furthermore, the stress 

concentration near spheres is also lower than the samples with 1 mm and 1.5 mm radius.  It 

can be observed that hollow spheres cause the stress to be distributed evenly. Figure 5-10 b 

demonstrates displacement within the specimen and the maximum occurring is 0.02 mm, 

which is slightly larger than the sample containing hollow spheres with 1 mm radius.  

 

a b 



 

107 

 

 

Figure 5-10  R2 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm)  

Figure 5-11 demonstrates the stress distribution and displacement in another cylinder 

containing equally distributed spheres with 2 mm radius. The difference to the previous 

sample is in the spheres distance from the surface, which is further away and they are closer 

to each other. The stress distribution in Figure 5-11 a is between 92 and 130 MPa near the 

surface. Around the hollow spheres, higher stress appears as it is concentrated, which reduces 

as it reaches the surface. Therefore, the hollow spheres within the structure create localised 

stress concentration. The stress concentration near the spheres is also lower than for the 

samples with 1 mm and 1.5 mm radius.  The maximum displacement in Figure 5-11 b is 0.02 

mm, which slightly smaller than the previous sample. Hence, the larger the displacement, the 

greater load-transfer onto the surrounding object.   

a b 
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Figure 5-11  R2/2 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm) 

Figure 5-12 displays the stress distribution and displacement within a cylinder, where spheres 

with 3 mm radius are distributed evenly. Figure 5-12 a shows the stress distribution and 

Figure 5-12 b displays displacement for this case. There are precisely four hollow spheres 

placed at even gaps from each other. The stress distribution range is between 107 and 134 

MPa close to the surface. In addition, the stress concentration close to the spheres is smaller 

than for the samples with 1 mm, 1.5 mm and 2 mm radius. The maximum displacement is 

0.021 mm, which is bigger than for all the previous samples so far discussed.  

 

 

a b 
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Figure 5-12  R3 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm) 

Figure 5-13 demonstrates the simulation for a cylinder that contains spheres with 3.5 mm 

radius. In addition, it shows the stress distribution and displacement within the specimen. 

There are exactly three hollow spheres within the cylinder. As it can be observed, the stress 

distribution ranges from 107 to 134 MPa close to the surface of the cylinder, which is 

approximately in the same range as for the sample containing 3 mm radius spheres. 

Moreover, the stress concentration close to the spheres is smaller than for the samples with 1 

mm, 1.5 mm, 2 mm and 3 mm radius. The maximum displacement is 0.022 mm, which is 

slightly larger than for the previous sample.  

a b 
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Figure 5-13 R3.5 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm) 

Figure 5-14 shows the stress distribution and displacement for a cylinder containing spheres 

with 4 mm radius and there are precisely two hollow spheres placed evenly within the 

structure. Figure 5-14 a displays how the stress is distributed within the structure and this is 

between 88.44 and 140 MPa close to the surface of the cylinder. Furthermore, the magnitude 

is slightly higher than in Figure 5-13 a, which contains hollow spheres with 3.5 mm radius. In 

addition, the stress concentration close to the spheres is smaller than for the samples with 1 

mm, 1.5 mm and 2 mm radius. Figure 5-14 b shows displacement and the maximum value is 

0.022 mm, which is again slightly higher than with the previous case.  

a b 
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Figure 5-14 R4 FEA results: a) von Mises stress distribution (MPa); b) displacement (mm) 

Figure 5-15 demonstrates the stress distribution and displacement for a cylinder with a 

hollow cylinder within. This case has four cylindrical holes within the same volume as the 

other cases. The stress distribution range is between 81.87 and 123.68 MPa, whilst the 

maximum displacement is 0.018 mm.  

 

 

Figure 5-15 FEA results for four cylindrical holes (new design/2): a) von Mises stress distribution (MPa); b) 

displacement (mm) 

a b 

a b 
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Figure 5-16 shows the stress distribution and displacement for a cylinder containing four 

hollow ellipsoids within the mass. Figure 5-16 a displays stress distribution, whilst Figure 

5-16 b shows displacement. The stress distribution ranges from 99.39-164.67 MPa and the 

maximum displacement is 0.018 mm.  

 

Figure 5-16 FEA results for four hollow ellipsoids (new design/1): a) von Mises stress distribution (MPa); b) 

displacement (mm) 

Figure 5-5 to Figure 5-16 show the stress distribution and displacement under a compression 

force to measure Young’s modulus and displacement. The displacement of the specimens 

remains approximately similar between 0.018-0.022 mm due to the similar volume extraction 

from the solid stainless steel. The specimens containing spheres with 1, 1.5 and 2 mm radius 

have two different designs each, with the difference being the distance to the side surface of 

the cylinders to the spheres. Their analysis has elicited that the samples containing spheres 

closer to the side surface have lower stress compared to those closer to each other. Moreover, 

the other two cylinders that have different designs without hollow spheres have less stress 

distribution. In addition, the size of sphere affects the stress concentration near to it and the 

larger ir is, the lower the stress concentration close to the surface. However, once the size of 

sphere reaches 4 mm, the stress concentration remains constant, being also similar to those 

with a 3 mm and 3.5 mm radius. The stress close to the surface remains approximately 

similar in all of the hollow sphered samples and the size of spheres also affects the 

displacement in, i.e. the bigger the size of the sphere is, the higher is the displacement. 

a 
b 



 

113 

 

Therefore, it will result in higher load-transfer onto the bone to decrease the effect of stress 

shielding.  

The simulation results show the displacement of samples when a 10 KN force is applied. The 

Young’s modulus of each model has been calculated using their stress and strain. Stress is 

force divided by the area and strain is displacement over the height.  

Table 5-4 Finite element results for sphered cylinders 

Samples Displacement (mm) Force applied (N) E (GPa) 

Solid 0.01668 10000 201 

R1 0.0199 10000 169 

R1/2 0.01997 10000 168 

R1.5 0.02053 10000 164 

R1.5/2 0.02049 10000 164 

R2 0.02043 10000 164 

R2/2 0.02048 10000 164 

R3 0.02167 10000 155 

R3.5 0.02226 10000 151 

R4 0.02265 10000 148 

New design/1 0.01871 10000 179 

New design/2 0.01876 10000 179 

 

Table 5-4 demonstrates the results of Young’s modulus in FEA. As can be observed, a 

reduction occurs in this modulus when spheres are included within the volume when 

compared to the solid model. Furthermore, as the size of spheres increases, the reduction in 

Young’s modulus is greater. These finite element results also prove that the distance of the 

spheres from each other and the surface do not make a big difference in the outcome.  

5.4.3 Compression results 

The results obtained from experimental and manual measurements are represented in Table 

5-5. The weight of the samples is calculated using equations 10 and 16. 𝑉𝑎𝑖𝑟was replaced by 

𝑉𝑎𝑙𝑙 − 𝑉𝑠𝑎𝑚𝑝𝑙𝑒𝑠and as is known, volume is density multiplied mass. Table 5-5 also displays 

how the mass reductions in the calculated and experimental results are approximately similar 

and that the samples containing spheres weigh less than the solid one. Furthermore, it is also 



 

114 

 

shown that the UTSC
 of the samples containing spheres are approximately similar to each 

other, that for solid stainless steel being just slightly higher. However, the reduction is 

significant in the cylinder containing spheres with 4 mm radius. It can also be observed that 

the EC magnitude in the samples containing spheres is smaller compared to the solid one. In 

addition, EC in the samples containing spheres is almost similar; however, the reduction in 

sphere size of radius 4 mm is significant. Furthermore, the compression modulus for the 

samples pertaining to new designs (two samples) is similar to that of the solid sample.  

Table 5-5 Experimental results for hollow cylinders 

Samples 

Weight of 

sample/g 

(experiment) 

Weight of 

sample/g 

(calculation) 

UTSC(MPa) EC(GPa) 

New design/1 32 35.56 530.77 42.99 

New design/2 34 35.39 510.73 45.68 

R1n96 34 30.75 453.61 41.05 

R1n96/2 34 30.75 476.02 43.52 

R1.5n32 34 30.36 499.78 40.24 

R1.5n32/2 34 30.36 497.88 41.68 

R2n12 34 30.75 506.40 38.98 

R2n12/2 34 30.75 500.92 39.40 

R3n4 33 30.36 494.24 39.91 

R3.5n3 34 29.68 448.07 37.93 

R4n2 33.6 29.70 402.76 35.15 

Solid 35 33.93 574.30 45.03 

 

5.5 Minimising stress shielding by changing the volumetric ratio 

To conclude, this chapter has demonstrated that having evenly distributed hollow cylinders 

decreases Young’s modulus and stiffness. There is certain number of spheres that can be 

created based on total volume that avoids weakening the structure. In addition, an excessive 

number of spheres, i.e. beyond the optimum, will result in failure of the structure. In this 

chapter, spheres are evenly distributed in cylinders and an exact number of spheres and the 

distance from each other and surface could not be defined. However, there is a relationship 

between all of these factors, as presented in section 4.5 equation 16.  
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A relationship that can be obtained from equation 16, is that between the radius of a sphere 

and their number.  This relationship is worked out using the equations 28, 29 and 30 using the 

rule of mixtures.  

 

4
3

(3.14)(𝑟𝑎𝑖𝑟
3 ) ∙ 𝑛

3.14(38)(62)
= 0.1 (28)  

 

 𝑛 =
410

4𝑟𝑎𝑖𝑟
3  (29)  

 

 𝑛(𝑟𝑎𝑖𝑟) = 102𝑟𝑎𝑖𝑟
−3  (30)  

 

As it was mentioned earlier in this part, relationships between geometrical parameters of the 

samples were created to have a better understanding for future designs. Equation 30 was used 

to define the relationship between the radius of sphere and their number. Figure 5-17 is the 

curve drawn based on equation 30, and also helped to visualise equation 30. It also shows 

how the relationship between these two parameters work instead of setting 𝑟𝑎𝑖𝑟 = 1, 2, 3, … 

and calculating 𝑛. 

According to Figure 5-17, if the radius of a sphere goes down to 0.9 mm or smaller, 

significant numbers should be added to the cylinder based on equation 16. However, if the 

radius reaches 3 mm or larger, the number of spheres will be approximately constant, with a 

slight gradient. As the radius of spheres increases, their volume increases accordingly, which 

results in a significant reduction in their total number. On the other hand, as the radius gets 

smaller, their individual volume also decreases, which leads to a rapid increase in the total 

number of spheres. Hence, spheres sizes could differ from 0.9 to 3 mm to achieve the most 

effective outcome.  
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Figure 5-17 The relationship between the radius of spheres (mm) and their number 

There could be another relationship concluded as that between the number of spheres and the 

radius of the cylinder when 𝑟𝑎𝑖𝑟 = 1 𝑚𝑚 and below, is the calculation for this relationship.  

 

 

4
3

(3.14)(1) ∙ 𝑛

(3.14)(38)(𝑟2)
= 0.1 (31)  

 

 𝑛(𝑟) =
11.4𝑟2

4
 (32)  

As it was mentioned earlier in this part, relationships between geometrical parameters of the 

samples were created to have a better understanding for future designs. Equation 32 was used 

to define the relationship between the number of sphere and the radius of the cylinder. Figure 

5-18 is the curve drawn based on equation 32, and also helped to visualise equation 32. It also 

shows how the relationship between these two parameters work instead of setting 𝑟 =

1, 2, 3, … and calculating 𝑛. 

Figure 5-18 demonstrates the relationship between the number of spheres and the radius of a 

cylinder. The graph shows as the radius increases, the number of spheres goes up as well. 

When the radius of the cylinder increases, the total volume of the object also increases 

𝑛
 

(mm) 



 

117 

 

rapidly. This will result in a vast increase in total number of hollow spheres. Based on 

equation 16, as the number in the denominator (total volume) gets larger, the numerator 

(extracted volume) must increase as well. 

 

Figure 5-18 Relationship between the number of spheres and the radius of the cylinder (mm) 

 

 

𝑛
 

(mm) 
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Figure 5-19 Parameter of a cylinder with 38mm height and 6mm radius 

Figure 5-19 demonstrates the number of spheres in a row and a column that were used in 

calculations.  

 (2𝑟𝑎𝑖𝑟 + 𝑑)𝑚 = 2 ∙ 3.14(𝑟𝑎𝑙𝑙 − 𝑑 − 𝑟𝑎𝑖𝑟)                         (33)  

 

where, m is the number of spheres in a row, if 2𝑟𝑎𝑖𝑟 + 2𝑑 > 𝑟𝑎𝑙𝑙 

 𝑚 =
2∙3.14(𝑟𝑎𝑙𝑙−𝑑−𝑟𝑎𝑖𝑟)

2∙𝑟𝑎𝑖𝑟+𝑑
                        (34)  

where, m is the number of spheres in a row, if 2𝑟𝑎𝑖𝑟 + 2𝑑 < 𝑟𝑎𝑙𝑙 

 𝑚 =
2∙3.14(𝑟𝑎𝑙𝑙−𝑑−𝑟𝑎𝑖𝑟)

2∙𝑟𝑎𝑖𝑟+𝑑
+

2∙3.14(𝑑+𝑟𝑎𝑖𝑟)

2∙𝑟𝑎𝑖𝑟+𝑑
=

2∙3.14(𝑟𝑎𝑙𝑙−𝑑−𝑟𝑎𝑖𝑟+𝑑+𝑟𝑎𝑖𝑟)

2∙𝑟𝑎𝑖𝑟+𝑑
                        (35)  

 

 ℎ = (2 ∙ 𝑟𝑎𝑖𝑟 + 𝑑) ∙ 𝑚′ + 𝑑                      (36)  

where, 𝑚′ is the number of spheres in a column 

 𝑚′ =
ℎ − 𝑑

2 ∙ 𝑟𝑎𝑖𝑟 + 𝑑
 (37)  

 

 𝑚 ∙ 𝑚′ = 𝑛                                        (38)  

 

𝑚=number of spheres in each row  

 𝑚′=number of spheres in each column 

𝑟𝑡𝑜𝑡𝑎𝑙𝑙 

ℎ 

𝑑 

𝑑 



 

119 

 

In equation 38, 𝑛 can be replaced by equation 30, 𝑟𝑎𝑙𝑙 = 6𝑚𝑚, ℎ = 38𝑚𝑚, 𝑚′ could be 

replaced by equation 37 and m can be replaced by equation 34 for 2𝑟𝑎𝑖𝑟 + 2𝑑 > 𝑟𝑎𝑙𝑙. 

 (
2 ∙ 3.14 ∙ (𝑟𝑎𝑙𝑙 − 𝑑 − 𝑟𝑎𝑖𝑟)

2𝑟𝑎𝑖𝑟 + 𝑑
) ∙ (

ℎ − 𝑑

2𝑟𝑎𝑖𝑟 + 𝑑
) = 102𝑟𝑎𝑖𝑟

−3 (39)  

 

 (
2 ∙ 3.14 ∙ (6 − 𝑑 − 𝑟𝑎𝑖𝑟)

2𝑟𝑎𝑖𝑟 + 𝑑
) ∙ (

38 − 𝑑

2𝑟𝑎𝑖𝑟 + 𝑑
) = 102𝑟𝑎𝑖𝑟

−3 (40)  

 

 (
(2∙3.14∙(6−𝑑−𝑟𝑎𝑖𝑟))∙(38−𝑑)

(2𝑟𝑎𝑖𝑟+𝑑)2 ) = 102𝑟𝑎𝑖𝑟
−3                   (41)  

 

Equation 41 shows the relationship between 𝑟𝑎𝑖𝑟 and 𝑑, if 2𝑟𝑎𝑖𝑟 + 2𝑑 > 𝑟𝑎𝑙𝑙. 

 

Figure 5-20 Relationship between 𝒓𝒂𝒊𝒓and 𝒅 when 𝟐𝒓𝒂𝒊𝒓 + 𝟐𝒅 > 𝒓𝒂𝒍𝒍 

Figure 5-20 displays relationship between 𝑟𝑎𝑖𝑟and d when 2𝑟𝑎𝑖𝑟 + 2𝑑 > 𝑟𝑎𝑙𝑙. It can be 

observed that, as the radius of the hollow spheres increases to 2.25 mm, their distance from 

each other will go up to 2.10 mm. However, this distance decreases when the radius of the 

spheres gets to being larger than 2.25 mm. Figure 5-20 provides an overview of the 

relationship between d and 𝑟𝑎𝑖𝑟 when the hollow spheres are spread uniformly.  
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In equation 38, 𝑛 can be replaced by equation 30, 𝑟𝑎𝑙𝑙 = 6𝑚𝑚, ℎ = 38𝑚𝑚, 𝑚′ can be 

replaced by equation 37 and m can be replaced by equation 35 for 2𝑟𝑎𝑖𝑟 + 2𝑑 < 𝑟𝑎𝑙𝑙. 

 (
2 ∙ 3.14 ∙ (𝑟𝑎𝑙𝑙 − 𝑑 − 𝑟𝑎𝑖𝑟 + 𝑑 + 𝑟𝑎𝑖𝑟)

2𝑟𝑎𝑖𝑟 + 𝑑
) ∙ (

ℎ − 𝑑

2𝑟𝑎𝑖𝑟 + 𝑑
) = 102𝑟𝑎𝑖𝑟

−3 (42)  

 

 (
2∙3.14∙6

2𝑟𝑎𝑖𝑟+𝑑
) ∙ (

38−𝑑

2𝑟𝑎𝑖𝑟+𝑑
) = 102𝑟𝑎𝑖𝑟

−3                   (43)  

 

 (
1431−38𝑑

(2𝑟𝑎𝑖𝑟+𝑑)2) = 102𝑟𝑎𝑖𝑟
−3                   (44)  

Equation 44 shows the relationship between 𝑟𝑎𝑖𝑟 and 𝑑 in a hollow sphered cylinder, if 

2𝑟𝑎𝑖𝑟 + 2𝑑 < 𝑟𝑎𝑙𝑙. 

 

Figure 5-21 Relationship between 𝒓𝒂𝒊𝒓and 𝒅 when 𝟐𝒓𝒂𝒊𝒓 + 𝟐𝒅 < 𝒓𝒂𝒍𝒍 

Figure 5-21 demonstrates the relationship between 𝑟𝑎𝑖𝑟and 𝑑 when 2𝑟𝑎𝑖𝑟 + 2𝑑 < 𝑟𝑎𝑙𝑙. Figure 

5-21 displays that as the radius of the hollow spheres increases, their distance of hollow 

spheres from each other will increase accordingly. Furthermore, it gives an overview of the 
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relationship between 𝑟𝑎𝑖𝑟and 𝑑 when the hollow spheres are spread uniformly and 2𝑟𝑎𝑖𝑟 +

2𝑑 < 𝑟𝑎𝑙𝑙.   

As it was mentioned earlier in this part, relationships between geometrical parameters of the 

samples were created to have a better understanding for future designs. Equations 41 and 44 

were used to define the relationship between the radius of the spheres and their distance. 

Figure 5-20 and Figure 5-21 are the curve drawn based on equations 41 and 44, and also 

helped to visualise equations 42 and 44. It also shows how the relationship between these two 

parameters work instead of setting 𝑟𝑎𝑖𝑟 = 1, 2, 3, … and calculating 𝑑. Moreover, these two 

figures demonstrate as 𝑟𝑎𝑖𝑟increases from 0.3 mm to 2.25 mm, their distance (𝑑) also 

increases. Their distance (𝑑) starts to decrease once the radius of spheres, 𝑟𝑎𝑖𝑟 enlarges more 

than 2.25 mm.  

5.6 Conclusion 

In conclusion, this chapter has presented the designs and results for cylinders with hollow 

spheres being distributed evenly in a controlled mass. Regarding the results, these prove that 

samples with hollow spheres have a smaller Young’s modulus in comparison to solid 

samples. Experimental results showed that as the radius of hollow spheres increases, the 

compression modulus for the sphered sample decreases, but, titanium compression modulus 

is still the lowest. The compression modulus for solid titanium is 30 GPa and for solid 

stainless steel is 45 GPa. However, it is 35 GPa for sphered samples, which is smaller than 

solid stainless steel and larger than solid titanium. The FEA results also displayed that the 

Young’s modulus for hollow sphered samples decrease depending on the size of the hollow 

spheres, the larger the size of hollow spheres, the more the reduction in the Young’s modulus 

is observed. In addition, the Young’s modulus for solid titanium is 114 GPa, Solid stainless 

steel is 200 GPa and hollow sphered sample is 148 GPa. The rule of mixtures displayed 

similar reduction in all hollow sphered samples Young’s modulus, 175 GPa, due to the 

constant extracted volume from all the samples. Finally, it can be concluded that having 

hollow spheres uniformly distributed within a mass is better towards the aim of this study. In 

the next chapter, the behaviour of uniformly distributed hollow sphered stainless steel 

implants is investigated and compared with solid stainless steel and titanium structure. 
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6 Investigation of hollow sphered implant 

behaviour 

 

6.1 Introduction 

Finite element analysis (FEA) is a powerful tool for measuring the biomechanical changes 

that occur during routine everyday activities. Stress distribution and displacement can be 

obtained by applying FEA. Having a model that can facilitate accurate analysis of the 

complex biomechanical behaviour of the human gait cycle is crucial for this project, 

particularly regarding hip implants, due to their load-carrying in daily activities.     

In this chapter, a hollow spheres structure is used for actual hip implants, according to the 

knowledge obtained from previous chapters. Five different implants with two different 

materials were modelled, namely titanium and stainless steel. The internal structure for 

stainless steel contained hollow spheres with various sizes in each case. The samples were 

designed by adding 1 mm, 1.5 mm and 2 mm hollow spheres for the different cases. These 

models were simulated using Abaqus and the results were compared. The rule of mixtures 

was also used to determine the relationships between the effective factors. The aim was to 

decrease the Young’s modulus to an effective level to reduce stress shielding. It was also the 

intention to identify a material that is much cheaper than titanium, which by altering the 

internal structure, could biomechanically behave close to titanium.  

The purpose of modelling theses internal structure on the same stem body was to compare the 

stress distribution and displacement under pressure. The stress distribution and displacement 

were analysed by using finite element method.  
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6.2 Methodology 

In this section, two methods are described in depth. Finite element analysis and the rule of 

mixtures are used to analyse the designed models comprehensively.  

6.2.1 FEA analysis 

6.2.1.1 Part module  

The actual implant was designed in solidworks 2014; Figure 6-1 shows the dimensions used 

to design hip stem. Two solid hip stems and five different hip stems containing various 

sphere sizes within the stem were modelled. These stems were then fitted inside a bone 

shaped component, as shown in Figure 6-5. The stems were designed and assembled in 

SolidWorks 2014, and then, the components were exported into 3-matic Research 10 to apply 

a surface mesh. Furthermore, they were saved as “Inp” format for transfer into Abaqus/CAE 

6.14 for FEA. In addition, volumetric mesh and boundary condition and interface were 

applied to the models in Abaqus.             

 

Figure 6-1 Hip stem dimensions 
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Figure 6-2 Wireframe vs shaded view of the stem 

As it was explained in section 4.5, a study in 2016 mentioned that the stress applied to the 

hips when climbing down is 312 MPa (Colic, et al., 2016). In another approach in 2007, a 

part under cyclic load, such as a hip, a safety factor of between 2.5 and 2.9 was suggested 

(Sivasankar, 2007). If the safety factor is multiplied by the cyclic load, the outcome will 

approximately be 800-900 MPa and hence, in equation 14, 𝜎𝑐 was considered to be within 

this range. Therefore, in equation 15, 𝑓2 will be between 0.1 to 0.2, which makes the total 

volume of the hollow spheres between 0.1 and 0.2 of the total implant volume. 

Designing implants with spheres was accomplished by creating five different hollow sphered 

implant models. Three out of the five were designed according to equation 16, where only 

10% of the total volume was extracted based on rule of mixtures. Specifically, the stems with 

different sphere sizes are as follows; hollow spheres implant with 1mm radius spheres; 

hollow sphere implant with 1.5mm radius spheres; and hollow sphere implant with 2mm 

radius spheres. The other two hollow sphere implants, containing spheres with 1.5 mm and 2 

mm radius are not designed according to the equation 16. In addition, the total volume of 

spheres is more than one tenth of the total implant volume and Table 6-1 shows the sample 

dimensions. As demonstrated in Figure 6-2, the spheres are modelled evenly close to the 

surface of the stem. Table 6-2 displays all designed implants except for the one containing 

spheres with 1 mm radius which is shown in Figure 6-2. As the sphere size enlarges, the 
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number of spheres decreases. The rule of mixtures was used for calculating the input number 

of spheres within the stem. This mathematical method was explained in detail in chapter 4.  

 

Table 6-1 Implant samples information 

Samples 
Radius of the 

spheres 
Number of spheres 

Calculation based on 

equation 16 

Hollow Stainless Steel 

R1 
1 416 Yes 

Hollow Stainless Steel 

R1.5 limited 
1.5 123 Yes 

Hollow Stainless Steel 

R1.5 unlimited 
1.5 299 No 

Hollow Stainless Steel 

R2 limited 
2 56 Yes 

Hollow Stainless Steel 

R2 unlimited 
2 196 No 

Solid Stainless Steel None None N/A 

Solid Titanium None None N/A 

 

 

 

Table 6-2 Schematic view of the designed implants with 2 mm and 1.5 mm sphere radius 

Implant containing spheres with 2 mm radius (unlimited) 
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Implant containing spheres with 2 mm radius (limited) 

 

Implant containing spheres with 1.5 mm radius (unlimited) 

 

Implant containing spheres with 1.5 mm radius (limited) 

 

 

A 3D model of the bone was created in SolidWorks and the implants placed in the bone using 

the assembly command in SolidWorks. Figure 6-3 shows the modelling for the bone used in 
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this chapter that was inspired from studies conducted on finite element analysis of hip stem 

designs (Spinelli, et al., 2012); (Bennett & Goswami, 2008). 

 

Figure 6-3 Wireframe vs shaded view of the bone shaped design 

6.2.1.2 Property module 

The main constituent of the skeletal system is bone, which is different in rigidity and 

hardness to the connective tissues. This rigidity and hardness comes from inorganic salts 

impregnating the matrix, which contain collagen fibres, a large range of non-collagenous 

proteins and minerals. Figure 6-4 shows a schematic diagram of bone material.   
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Figure 6-4 Schematic diagram of bone material 

In this study, bone was assumed to be an isotropic for computational efficiency and linear 

elastic material (Geraldes & Phillips, 2014). The values inserted for material properties for 

bone are show in Table 4-2 (Sabatini & Goswami, 2008). The material properties used in this 

study were taken as estimations and the actual manufacturing material properties could be 

slightly higher or lower than those used in this research.  

In this study, a titanium alloy (Ti6Al4V) and low-carbon type 316 stainless steel (316L SS) 

were the alloys used for FEA. The properties of these two materials are listed in Table 4-2. 

Five different hip stems were designed, being modelled as a linear, homogeneous and 

isotropic material (Singh & Harsha, 2014); (Anguiano-Sanchez, et al., 2016).  

The materials used for this section are the titanium alloy, 316L stainless steel and cortical 

bone as described in subsection 4.3.2.2. Titanium on its own has poor mechanical properties, 

but it is biocompatible. Alloyed with aluminium (Al), vanadium (V) and niobium (Nb), as 

mainly Ti6Al4V and Ti6Al7Nb, it is mainly suitable for uncemented femoral stem 

production. In addition, the mechanical properties of titanium alloys will improve, whereas 

the biocompatibility will reduce due to the toxic elements, such as aluminium and vanadium. 

On the other hand, the weak shear strength and wear resistance of titanium alloys have 

affected the usage of them in biomedical fields (Long & Rack, 1997) and the metal is also 

very expensive.   
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6.2.1.3 Implant boundary condition 

To conduct FEA, all parameters must be defined. That is, boundary conditions, initial 

conditions and material properties need to be assigned for FEA as it is very important and 

effective.  

In this study, Abaqus/explicit was set to run simulations on the samples, which is capable of 

handling non-linear behaviour and is a strong software capable of solving many problems 

involving contact interaction between many bodies.   

FEA provides multiple set of contact behaviour options to specify the non-linear behaviour at 

the interface. The contact surfaces of the femoral stem and femur were defined as surface-to-

surface contact to increase the accuracy of the results. These parameters are defined for 

objects having large interfaces, such as femur and stem. In similar studies to the current one, 

either node-to-node or node-to-surface or surface-to-surface are defined, which are more 

precise (Viceconti, et al., 2000); (Mann , et al., 1995).  

6.2.1.4 Force and pin area 

The mathematical aspect of this chapter shows how the spheres react to the applied loads and 

constraints. Loads can be assigned in many forms, such as displacements, forces, pressures, 

velocities, thermal, gravity etc. The load application is defined by the load steps at certain 

time intervals and the results are recorded at these given time durations in static analysis. 

Pressure was applied to the implants, as shown in Figure 6-5, which were pinned at the distal 

and proximal epiphysis. Specifically, pressure was applied at an angular direction on femoral 

stem with a magnitude of 86.34 MPa (Bennett & Goswami, 2008); (Sabatini & Goswami, 

2008). The distal epiphysis was pinned for the boundary condition, that is the distal end of the 

femur (Dudaa, et al., 1998). 
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Figure 6-5 Force and pin area  

6.2.1.5 Implant mesh accuracy 

The bodies are converted into volumetric mesh prior to the simulation. As the radius of 

spheres decreases, the mesh elements on the implants have to be smaller to create those 

spheres as accurately as possible. Meshing must be uniform and refinement can be used for 

sharp edges and to ensure the integrity of mesh, it must be as fine as possible. In the present 

study, the maximum number of elements reached was 5,271,103. These values relate to the 

implant containing spheres with 1 mm radius, which increases the number of elements and 

nodes in that mass. To achieve a complete volumetric mesh, the surface mesh imported 

previously from 3-matic software converts into volumetric mesh in Abaqus (from triangular 

to tetrahedral elements). The volumetric mesh was verified using some defined parameters, 

such as the mesh aspect ratio and an analysis check was accomplished to check the mesh 

quality. Figure 6-6 shows a view of mesh in Abaqus.   
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Figure 6-6 Mesh of the implant 

6.2.2 Rule of mixtures 

The calculation for the implant was carried out according to equation 16 for 3 hollow samples 

as explained in Table 6-1. As described in the chapter 4, there should be a limited number of 

hollow spheres in a mass.  

 𝑓 =
(
4
3 ∙ 𝜋𝑟3 ∙ 𝑛)

𝑣𝑜𝑙𝑢𝑚𝑒𝑖𝑚𝑝𝑙𝑎𝑛𝑡
 (45)  

 

 𝑓 =
(
4
3 ∙ 𝜋𝑟3 ∙ 𝑛)

20665.15
 

(46)  

 

 𝑓 = 0.0002𝑟3 ∙ 𝑛 (47)  

 

 𝑓 = 0.1 (48)  

 

 0.1 = 0.0002𝑟3 ∙ 𝑛 (49)  

 

 500 = 𝑟𝑎𝑖𝑟
3 ∙ 𝑛 (50)  
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There were two other designs containing unlimited spheres with 1.5 and 2 mm radius, which 

were not based on the equation 16. Equations 11 and 12 were used to calculate the Young’s 

modulus and UTS of these structures.  

 

Figure 6-7 Relationship between the number of spheres in an implant and their radius (mm) 

In this part, relationships between geometrical parameters of the samples were created to 

have a better understanding for future designs. Equation 50 was used to define the 

relationship between the number of spheres in an implant and their radius. Figure 6-7 is the 

curve drawn based on equation 50, and also helped to visualise equation 50. It also shows 

how the relationship between these two parameters work instead of setting 𝑟𝑎𝑖𝑟 = 1, 2, 3, … 

and calculating 𝑛. 

Figure 6-7 shows the relationship between the number of spheres in an implant and their 

radius. The X axis is the radius of spheres in mm and Y axis displays their number. If the 

radius of sphere decreases to under the 1 mm, then their number increases significantly. 

However, when the radius of the spheres increases to 3mm or more, their number stays 

almost steady and hence, any size between 1 and 3 mm will be more effective. 

6.3 Implant finite element results  

Figure 6-8 shows the von Mises stress of solid stainless steel in bone, implant and as an 

assembly. As can be observed in Figure 6-8 a, the stress distribution in bone is between 0.5 

and 3 MPa. Figure 6-8 c displays the stress distribution within the solid implant, where it can 

be seen that the range is 10.01-20 MPa and that the maximum stress is at the distal end of the 

implant. Figure 6-8 b shows the transferred stress from the implant onto the bone.  

𝑛
 

(mm) 
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Figure 6-8 Von Mises stress for solid stainless steel: a) bone; b) bone and implant; c) implant 

Figure 6-9 shows the von Mises stress of solid titanium in bone, implant and as an assembled 

model. Figure 6-9 a demonstrates stress distribution in the bone, which varies from 1.00 to 

4.00 MPa. As can be observed, this is distributed more evenly in the titanium sample in 

comparison to the solid stainless steel. Figure 6-9 c displays the stress distribution in the solid 

titanium implant, with the range being 8.01-18 MPa, which is smaller than for stainless steel, 

meaning that more stress has gone onto the bone. Figure 6-9 b shows the bone and the 

implant as assembled objects and the stress transferred onto the bone from the implant.  

a b c 
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Figure 6-9  Von Mises stress for solid titanium: a) bone; b) bone and implant; c) implant 

Figure 6-10 displays the von Mises stress for stainless steel containing spheres with 1 mm 

radius in three different states. This sample contains the greatest number of spheres of all the 

specimens. Figure 6-10 a demonstrates the stress distribution in bone, which is between 0.75 

and 3.25 MPa and so, is larger than that in solid stainless steel. Figure 6-10 c displays the 

stress distribution in the implant containing hollow spheres with 1 mm radius, where it can be 

seen that the range of stress is between 8.01 and 19 MPa. In addition, Figure 6-10 b shows 

the stress distribution when the implant and bone are assembled and how the stress is 

transferred. Figure 6-10 b also confirms that the stress close to the hollow spheres is greater; 

however, more stress is transferred onto the bone in comparison to the solid structure. It can 

also be observed that where hollow spheres do not exist, the stress is lower, but, the stress in 

implant is still larger compared to that in bone.  

 

a b c 
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Figure 6-10 Von Mises stress in implant containing spheres with 1mm radius: a) bone; b) bone and implant; c) 

implant 

Figure 6-11 demonstrates the von Mises stress of a stainless steel implant containing 

unlimited hollow spheres with 1.5 mm radius in three different situations. The stress 

distribution within bone is between 0.75 and 4 MPa ,as demonstrated in Figure 6-11 a, which 

is larger than in the solid structure case. Figure 6-11 c displays the stress distribution in an 

implant containing hollow spheres with 1.5 mm, being created unlimitedly, i.e. not based on 

equation 16. The range is between 8.04 and 18.01 MPa, which is smaller in comparison to the 

solid stainless steel implant. Moreover, Figure 6-11 b displays the stress distribution when 

assembled and how the stress is transferred. Figure 6-11 b also confirms that the stress close 

to the hollow spheres is greater; however, more stress is transferred onto the bone in 

comparison to the solid structure. It can also be observed that where hollow spheres do not 

exist, the stress is lower, but the stress in the implant is still larger compared to the stress in 

bone. 

a b c 
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Figure 6-11 Von Mises stress in an implant containing unlimited hollow spheres with 1.5mm radius: a) bone; b) bone 

and implant; c) implant 

Figure 6-12 shows the von Mises stress for a stainless steel implant that has limited spheres 

with 1.5 mm radius. The hollow spheres have been created based on equation 16 in this 

sample, with only 10 % of the total volume of the implant having been extracted. Figure 6-12 

a shows the stress distribution in bone, which ranges from 2.5 to 4 MPa and this is larger than 

for the solid stainless steel sample. Figure 6-12 c displays the von Mises stress in the actual 

implant, which is from 8.06 to 17.01 MPa and this is smaller than for the solid stainless steel 

structure. Figure 6-12 b shows how the stress is transferred when they are both assembled. 

Figure 6-12 b also confirms that the stress close to the hollow spheres is greater; however, 

more stress is transferred onto the bone in comparison to the solid structure. It can also be 

observed that where hollow spheres do not exist, the stress is lower, but, the stress in the 

implant is still larger compared to that in bone. 

a b c 
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Figure 6-12 Von Mises stress in an implant containing limited spheres with 1.5mm radius: a) bone; b) bone and 

implant; c) implant 

Figure 6-13 displays the von Mises stress for a stainless steel implant that holds limited 

hollow spheres with 2 mm radius in three different states. The hollow spheres were added 

based on equation 16 and as their size increases, the number of them decrease, accordingly. 

Figure 6-13 a displays stress distribution within the bone and this ranges from 1.25 to 3.75 

MPa, which is slightly higher than for the solid structure. Figure 6-13c demonstrates the 

stress distribution in the implant and it can be observed that it is in the range of 9.03-17.01 

MPa, which is smaller than for solid stainless steel. Figure 6-12 b displays the stress in 

assembled form. It also confirms that the stress close to the hollow spheres is greater; 

however, more is transferred onto the bone in comparison to the solid structure. It can also be 

observed that where hollow spheres do not exist, the stress is lower, but the stress in implant 

is still larger compared to that in bone. 

a b c 
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Figure 6-13 Von Mises stress in an implant containing limited spheres with 2mm radius: a) bone; b) bone and 

implant; c) implant 

Figure 6-14 demonstrates the von Mises stress for a stainless steel implant that has unlimited 

hollow spheres with 2 mm radius in three various situations.  The stress distribution within 

bone is between 1.75 and 4 MPa as shown in Figure 6-14 a, which is larger than for the solid 

structure case. Figure 6-14 c displays the stress distribution in an implant containing hollow 

spheres with 1.5 mm radius, being created unlimitedly, i.e. not based on equation 16. The 

stress distribution range is between 8.04 and 18.01 MPa, which is smaller than that for the 

solid stainless steel implant. Figure 6-14 b displays the stress distribution when assembled 

and how the stress is transferred. It also confirms that the stress close to the hollow spheres is 

greater; however, more stress is transferred onto the bone than with the solid structure. It can 

also be observed that where hollow spheres do not exist, the stress is lower, but the stress in 

the implant is still larger compared to that in bone. 

a b c 
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Figure 6-14 Von Mises stress in an implant containing unlimited spheres with 2mm radius: a) bone; b) bone and 

implant; c) implant 

Figure 6-8 to Figure 6-14 display the stress distribution in bone and implants with different 

materials and structures. That in implants containing hollow spheres, is lower than for solid 

stainless steel, but it is still higher than with a titanium implant. The stress distribution in 

bone for the samples containing hollow spheres is greater than for solid stainless steel; 

however, it is still lower than the titanium sample. The highest stress in bone occurs with the 

implant that contains hollow spheres of 2 mm radius and this is similar to that for the titanium 

implant. There are two separate designs for the implants that contain hollow spheres of 1.5 

and 2 mm radius. That is, in one case the spheres are added based on the total volume, i.e. 

they are limited, whilst in the other they are added unlimitedly. The implants with limited 

hollow spheres have a higher stress distribution in bone when compared to the unlimited 

hollow spheres implants.  

Table 6-3 displays the results of the calculations for the implants. These outcomes are 

entirely based on the total volume of the spheres. The implants containing spheres with 1 

mm, 1.5 mm and 2 mm radius, which are limited, have the same Young’s modulus and 

strength. This is less than for solid stainless steel, but higher than for titanium.  

Furthermore, the Young’s modulus and stiffness of the implant containing unlimited spheres 

of 2 mm radius, is lower than that with the unlimited 1.5 mm ones due to its higher extracted 

volume. The Young’s modulus for the unlimited samples is less than for solid stainless steel, 

a b c 
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but higher than for titanium. However, the strength of the unlimited samples is less than for 

both solid stainless steel and titanium.  

Table 6-3 Results of calculations for the implants 

samples Young modulus 

(GPa) 

Strength (MPa) 𝑓 

R1 182 910 0.09 

R1.5 limited 182 910 0.09 

R1.5 unlimited 160 800 0.2 

R2 limited 180 900 0.1 

R2 unlimited 140 700 0.3 

Solid Stainless Steel 200 1000 1 

Solid Titanium 114 900 N/A 

 

6.4 Conclusion 

To summarise, the implant samples with uniformly distributed spheres reduce the Young’s 

modulus of stainless steel. Moreover, these spheres also have a direct effect on reducing the 

stress shielding by transferring more stress onto the supporting bone than the solid models. 

Moreover, the hollow sphered implant improves the stress at the implant-bone interface. FEA 

results showed as the size of hollow spheres enlarges, the amount of stress transferred onto 

the bone also increases. The implant containing hollow spheres with the size of 2 mm was as 

sufficient as titanium in terms of transferring stress to the bone. The stress in hollow sphered 

implant with the size of 2 mm is 4 MPa and in solid stainless steel implant is 3 MPa and in 

solid titanium is 4 MPa.  

 

 

 

 

  



 

141 

 

 

7 Discussion and Conclusion 

 

In this chapter, a summary of all of the previous chapters is provided. A final conclusion is 

also made and future possible studies that could be carried out are proposed. 

7.1 Discussion 

In chapter 4, hollow spheres close to the surface were designed with consideration of 

different specifications in order to reduce stress shielding in bone. A reduction in the Young’s 

modulus was observed when hollow spheres of air were added to the solid mass. Reduction 

of the modulus leads to higher stress being transferred onto the bone in comparison to the 

solid model. Theoretically, according to the rule of mixtures, the volume of hollow spheres 

has a relationship with the Young’s modulus: the greater the number of hollow spheres 

created, the smaller that of the implant. As the extracted volume is similar in all cases, the 

Young’s modulus will reduce to a similar magnitude as well regardless of sphere size and 

distance from each other and wall surface. Figure 7-1 displays finite element analysis for 

hollow spheres close to the surface and the solid structure. At each node, the stress is 

compared and as is shown, the stress in bone for the solid structure is less than for the hollow 

sphered structure. This provides evidence that a hollow structure can lead to less stress 

shielding.  
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Figure 7-1 Transferred stress to bone from two specimens 

 

Table 7-1 displays Young’s modulus for different samples obtained from computational, 

experimental and rule of mixtures results. These results were obtained from chapter 5, where 

hollow spheres were distributed evenly within the objects. There is a relationship between the 

extracted volume and the Young’s modulus of the sample; the greater the volume of hollow 

spheres, the smaller that of the implant will be. As has been mentioned before, regardless of 

the sphere configuration, the Young’s modulus will reduce based on how much volume is 

extracted. However, there is an optimum number and size for spheres, as explained in chapter 

4 too, thereby obtaining the most effective outcome. The Young’s modulus calculated for 

solid structures using a computational method and the rule of mixtures is similar. Moreover, 

the computational results for hollow sphered samples are lower in comparison to the 

calculation of their modulus due to the effect of the sphere size and their position. Whilst 

regarding the rule of mixtures, the extracted volume is always similar, which results in 

approximately the same outcomes. However, a reduction in the Young’s modulus is observed 

in cylinders containing spheres when compared to the solid structure. The computational and 

rule of mixtures results also show that increasing the size of spheres will cause more 

reduction in the Young’s modulus.  

For the experimental results shown in Table 7-1, the compression modulus was measured and 

that for hollow structure cylinders decreased. However, the modulus for new design 2 

increases when compared to hollow sphered structures and remain approximately similar to 
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the solid structure. The modulus for new design 1 decreases compared to the solid structure, 

which could be due to uneven extracted volume.  

Table 7-1 Comparison of the modulus in different samples for computational, the rule of mixtures and experimental 

results 

Samples 
E (Rule of mixtures) 

GPa 
E (FEA) GPa Ec (Experiment) GPa 

Solid stainless steel 200 200 45.03 

R1 181.28 169 41.05 

R1/2 181.28 168 43.52 

R1.5 178.94 164 40.24 

R1.5/2 178.94 164 41.68 

R2 181.28 164 38.98 

R2/2 181.28 164 39.40 

R3 178.94 155 39.91 

R3.5 174.92 151 37.93 

R4 175.04 148 35.15 

New design/1 177 179 42.99 

New design/2 180 203 45.68 

 

Table 7-2 demonstrates the percentage reduction in the compression modulus in comparison 

to the solid model. The reduction observed in the rule of mixtures results is approximately 

10% in all of the hollow spheres samples due to the constant volume extraction. However, the 

reduction of this modulus for the FEA results is much greater, being 15-26% for hollow 

spheres and about 10% for new designs 1 and 2. The decrease of it for the experimental 

values is much smaller than with the rule of mixtures and FEA results, which range from 

1.5% - 21% for the structures with hollow spheres, whilst these values increase for new 

designs 1 and 2. In sum, the experimental results confirm a drop in compression modulus for 

hollow sphered cylinders, but not in the new design samples. Moreover, as the size of the 

spheres increases, the modulus reduction will increase in comparison to the samples with 

smaller spheres. With the last two cylinders (new design 1 and 2) that contain hollow 

cylinders within their structure, one being open ended and the other closed, were assumed to 

be composites in the calculation and FEA analysis. However, experimental outcome for the 

new design 2 demonstrates otherwise, whereby it mimics solid stainless steel. This is due to it 
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not having a hollow structure within the volume and thus, could not be counted as a 

composite material.  

Table 7-2 Percentage reduction in Young’s modulus compared to the solid model 

Samples E (calculation) E (FEA) Ec (Experiment) 

R1 9.35% 15.92% 8.83% 

R1/2 9.35% 16.41% 3.35% 

R1.5 10.52% 18.4% 10.62% 

R1.5/2 10.52% 18.4% 7.43% 

R2 9.35% 18.4% 13.42% 

R2/2 9.35% 18.4% 12.49% 

R3 10.52% 22.88% 11.36% 

R3.5 12.5% 24.87% 15.76% 

R4 12.47% 26.36% 21.93% 

New design/1 11.5% 10.94% 4.51% 

New design/2 10% -1.5% -1.45% 

 

Figure 7-2 displays the stress distribution in implants for titanium, solid stainless steel and 

hollow spheres with 1 mm radius. As is observed, the stress in the implant containing hollow 

spheres is lower than that for solid stainless steel, but slightly lower for titanium. Figure 7-3 

displays the stress distribution for these three specimens in their surrounding bone. It is 

demonstrated that the stress in bone increases in the hollow sphered sample (radius of 1 mm) 

in comparison to the solid one, whilst a reduction is observed when this is compared to the 

titanium sample. The stress transferred onto the bone for solid stainless steel is between 0.5-1 

MPa, for hollow sphered sample is 1.5-3 MPa and for solid titanium is 2-4 MPa. Moreover, 

these values prove the advantage of hollow sphered structure over solid stainless steel. Figure 

7-2 and Figure 7-3 provide evidence of a reduction of stress shielding in hollow sphered 

stainless steel implants in comparison to the solid structure. However, the titanium sample is 

still slightly better than the hollow sphered implant. Nevertheless, it should be stressed that 

stainless steel is much cheaper than titanium, whilst also being more available. Hence, this 

could be an option for the NHS to cut down the cost of implant production and also be made 

available for poor people, all over the world, who cannot afford the current expensive 

implants.  
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Figure 7-2 Stress distribution in implants for titanium, stainless steel and hollow structure sample 
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Figure 7-3 Stress distribution in bone for titanium, stainless steel and hollow structure sample 

Figure 7-4 displays the stress transferred onto the bone from implants at different nodes. The 

R1 (f=0.09) has the lowest stress-transfer onto the bone among other samples. As can be 

observed, the bone in the titanium sample is carrying more stress in comparison to the 

stainless steel samples containing hollow spheres, such as for R1 (f=0.09), R1.5 (f=0.09) and 

R2 (f=0.3). On the other hand, the implants containing R1.5 (f=0.2) and R2 (f=0.1) hollow 

spheres transferred more stress onto the bone compared to the titanium sample, which can be 

seen in Figure 7-4. The best outcome and the most stress transferred, is for the R2 (f=0.1) 

implant, where the maximum stress approximately reaches 25 MPa. As can be seen, the 

samples containing larger spheres transfer more stress than those with smaller spheres, which 

is due to the lower stress concentration that the former have. Moreover, when the size of the 

spheres is larger, more volume can be extracted. It was also mentioned in subsection 6.2.1.1 

that 𝑓 should be between 0.1 and 0.2, whilst the stress distribution is lower for R2 (f=0.3) 

than for R2 (f=0.1). Having a hollow sphered structure helps to reduce the Young’s modulus, 

which leads to an increase in displacement and hence, results in more stress transfer.  
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Figure 7-4 Stress distribution in bone for titanium and stainless steel implants containing different hollow sphere 

sizes 

7.2 Final Conclusion 

For this study, finite element stress analysis of the femoral stem in a hip joint prostheses has 

been carried out by considering the design of hollow sphere structures. The design geometric 

parameters were the size of spheres, number of spheres as well as their distance from each 

other and the surface. It was found that the new structure introduced in this study can 

decrease the Young’s modulus, thereby leading to stress shielding reduction. According to 

these designs, an optimum zone was identified for an optimal outcome, which can reduce the 

maximum stresses significantly and enhance the mechanical properties of the femoral stem. 

Moreover, it was also found that these can only be sintered and printed for production.   

 It was found that by accommodating one tenth hollow spheres of the total volume 

within traditional solid stems, stress shielding can be reduced in the femur. 

 This study outcomes have demonstrated that the mechanical stiffness of sphered 

implants is lower in comparison to solid implants, thus leading to the claim that it will 

be potentially more beneficial in terms of reducing stress shielding and bone loss.  
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 A hollow sphered structure reduces the Young’s modulus of the model, thus resulting 

in stress shielding reduction. This reduction is proportional to the volume of the pores, 

for instance, if one tenth of the total volume is extracted; the Young’s modulus is also 

reduced by 10%.  

 A hollow sphered stainless steel implant is an option for replacing an expensive and 

limited titanium implant, as it correlates with titanium’s mechanical properties. 

 Hollow sphered samples close to the surface demonstrated 3.5 Mpa stress-transfer 

into the surrounding bone. Whereas, the stress in solid titanium is 5.3 MPa, and in 

solid stainless steel is 1 Mpa. 

 The compression modulus for solid titanium is 30 GPa and for solid stainless steel is 

45 GPa. However, it is 35 GPa for sphered samples in uniformly distributed hollow 

sphered samples. In addition, the Young’s modulus for solid titanium is 114 GPa, 

Solid stainless steel is 200 GPa and hollow sphered sample is 148 GPa. 

 The average stress transferred to the cortical bone is: 1.5-3 MPa for titanium; 1-2 MPa 

for solid Stainless steel; 1.2-2.5 MPa for a stainless steel implant containing hollow 

spheres.  

7.3 Recommendations for future works 

 Use the structure in different applications, such as aerospace and the automotive 

industry. 

 Extend the simulations carried out in this study to include anisotropic materials. 

 This structure can be applied to titanium implants as well.  

 Conduct the experimental analysis to validate the finite element modelling results for 

the actual implants. 

 Improvement in 3D modelling production is required as there is a little powder debris 

remaining inside each sphere. 

 Study the micromotions of hollow sphered implants in depth. 

 Study the effect of sphered geometry on the cemented type of hip prostheses. 
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Appendix 

Appendix A 

 A.1 Mathcad rules of mixture relationship for chapter 4  

 

Figure A1: Relationship between radius of spheres (mm) and number of spheres for f=0.2 
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Figure A2: Relationship between number spheres and radius of the cylinder (mm) for f=0.2 

 

Figure A3: Relationship between hollow shell thickness (mm) and the height of the cylinder 

for f=0.2 

 

Figure A4: Relationship between radius of shell (mm) and radius of the cylinder for f=0.2 
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Figure A5: Relationship between radius of spheres (mm) and number of spheres for f=0.3 

 

Figure A6: Relationship between number spheres and radius of the cylinder (mm) for f=0.3 
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Figure A7: Relationship between hollow shell thickness (mm) and the height of the cylinder 

for f=0.3 

 

 

Figure A.8: Figure A4: Relationship between radius of shell (mm) and radius of the cylinder 

for f=0.3 
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Figure A9: Figure A5: Relationship between radius of spheres (mm) and number of spheres 

for f=0.4 

 

 

 

 

Figure A9: Relationship between number spheres and radius of the cylinder (mm) for f=0.4 
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Figure A9: Relationship between hollow shell thickness (mm) and the height of the cylinder 

for f=0.4 

 

Figure A9: Figure A4: Relationship between radius of shell (mm) and radius of the cylinder 

for f=0.4 
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Appendix B 

 B.1 Maximum principle stress and strain for chapter 5 samples 

 Max principal strain Max principal stress (MPa) 
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Table B1: Maximum principle stress and strain for chapter 5 samples 

 

B.2 Experimental results of Stress-Strain graphs for chapter 5 samples 
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Figure B2: Experimental results for solid and hallowed spheres samples 

 

Figure B3: Experimental results for solid and hallowed spheres samples 

 

 

B.3 Mathcad rules of mixture relationship for chapter 5 
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Figure B4: Relationship between radius of spheres (mm) and number of spheres for f=0.2 

 

Figure B5: Relationship between radius of samples (mm) and number of spheres for f=0.2 

 



 

179 

 

 

Figure B6: Relationship between radius of spheres (mm) and number of spheres for f=0.3 

 

Figure B7: Relationship between radius of samples (mm) and number of spheres for f=0.3 
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Figure B8: Relationship between radius of spheres (mm) and number of spheres for f=0.4 

 

Figure B9: Relationship between radius of samples (mm) and number of spheres for f=0.4 
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 C.1 Displacement results in FEA for different implant for chapter 6  

Solid Stainless steel Solid Titanium 

  

1.5 mm (limited) 1.5 mm (unlimited) 

  

2 mm (limited) 2 mm (unlimited) 
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Figure C1: Displacement results in FEA for different implants 
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C.2 Mathcad rules of mixture relationship for chapter 6 

 
Figure C2: Relationship between radius of spheres (mm) and number of spheres for f=0.2 
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Figure C2: Relationship between radius of spheres (mm) and number of spheres for f=0.3 

 
Figure C2: Relationship between radius of spheres (mm) and number of spheres for f=0.4 

 

 

 

 

 

 

 

 

 

 

 

 


