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Abstract 

In this thesis, a novel framework for dynamic congestion control has been 

proposed. The study is about the congestion control in broadband communication 

networks. Congestion results when demand temporarily exceeds capacity and leads to 

severe degradation of Quality of Service (QoS) and possibly loss of traffic. Since traffic 

is stochastic in nature, high demand may arise anywhere in a network and possibly 

causing congestion. There are different ways to mitigate the effects of congestion, by 

rerouting, by aggregation to take advantage of statistical multiplexing, and by discarding 

too demanding traffic, which is known as admission control. This thesis will try to 

accommodate as much traffic as possible, and study the effect of routing and aggregation 

on a rather general mix of traffic types. 

 

Software Defined Networking (SDN) and Network Function Virtualization 

(NFV) are concepts that allow for dynamic configuration of network resources by 

decoupling control from payload data and allocation of network functions to the most 

suitable physical node. This allows implementation of a centralised control that takes the 

state of the entire network into account and configures nodes dynamically to avoid 

congestion. Assumes that node controls can be expressed in commands supported by 

OpenFlow v1.3. Due to state dependencies in space and time, the network dynamics are 

very complex, and resort to a simulation approach. The load in the network depends on 

many factors, such as traffic characteristics and the traffic matrix, topology and node 

capacities. To be able to study the impact of control functions, some parts of the 

environment is fixed, such as the topology and the node capacities, and statistically 

average the traffic distribution in the network by randomly generated traffic matrices. The 

traffic consists of approximately equal intensity of smooth, bursty and long memory 

traffic. 

 

By designing an algorithm that route traffic and configure queue resources so that 

delay is minimised, this thesis chooses the delay to be the optimisation parameter because 

it is additive and real-time applications are delay sensitive. The optimisation being studied 

both with respect to total end-to-end delay and maximum end-to-end delay. The delay is 
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used as link weights and paths are determined by Dijkstra’s algorithm. Furthermore, 

nodes are configured to serve the traffic optimally which in turn depends on the routing. 

The proposed algorithm is a fixed-point system of equations that iteratively evaluates 

routing – aggregation – delay until an equilibrium point is found. 

 

Three strategies are compared: static node configuration where each queue is 

allocated 1/3 of the node resources and no aggregation, aggregation of real-time (taken 

as smooth and bursty) traffic onto the same queue, and dynamic aggregation based on the 

entropy of the traffic streams and their aggregates. The results of the simulation study 

show good results, with gains of 10-40% in the QoS parameters. By simulation, the 

positive effects of the proposed routing and aggregation strategy and the usefulness of the 

algorithm. The proposed algorithm constitutes the central control logic, and the resulting 

control actions are realisable through the SDN/NFV architecture.  
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Chapter 1 

INTRODUCTION 

1.1 Background and Context 

5G networks are often characterised by a set of strict performance criteria. The 

reference to 5G networks is an example where architectures built on SDN/NFV and 

optical fibre transmission are expected. To cater for vastly diverse traffic and quality of 

service to various Use Cases, a network is required to have;  

• Massive system capacity 

• Very high data rates 

• Low latency 

• Extremely high reliability and availability 

• Energy efficient and secure operation 

 

A fairly new paradigm in communication networking is network elasticity, which 

can be interpreted as an optimal utilisation of resources and – as far as possible – a 

demand-driven allocation of capacity. The justifications for a flexible resource allocation 

are at least twofold. From a capacity point of view, resource pooling is always more 

efficient than distributed resources in term of utilisation. Secondly, dynamic functional 

allocations through Network Function Virtualisation (NFV) improves the resilience 

approaching that of a distributed logic. To achieve these goals cost effectively, 

mechanism to achieve high resource utilisation and resilience are imperative. Of 

fundamental important is a novel approach to congestion control, which must be able to 

cater for a wide range of traffic sources from applications such as massive sensor 

networks, telemedicine and virtual reality (VR). Furthermore, it is widely known that 

aggregation of many types of traffic [13][32][38][54] leads to self-similar behaviour, 

often leading to starvation of some traffic types by others. Another incentive is that user 
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mobility has been tackled by system over-provisioning in traditional networks, which 

becomes inviable as traffic demands and mobility tends to increase further. 

 

 The present study addresses congestion control in communication networks, 

where the improvements in network performance and functional resilience of a virtual 

hierarchical congestion controller has been exploited. In this work, the meaning of 

congestion control is a set of functions having the purpose of ensuring service quality for 

diverse traffic types and demands with high robustness and flexibility. In principle, 

congestion control can be viewed from two different angles – distributed or centralised 

control. A distributed control, on the other hand, is very resilient allows fast decisions for 

packet processing and routing, but the logic is for the same reason based on simple 

policies and limited network status information. In the centralised view, assuming that 

the Software-Defined Networking (SDN) Controller possesses full network information 

and can therefore determine network optimal policies. A centralised function also ensures 

consistency and minimises control message overhead. The disadvantages of a single 

controlling function are its vulnerability to failure and communication latency caused by 

processing load or transmission delay. 

 

 On a node level, congestion control amounts to traffic aggregation and fast routing. 

Such controls have no or limited possibility to adapt to changing network conditions. It 

can be viewed as a heuristic, node centric approach that may result in network states far 

from the global optimum. On the network level, on the other hand, traffic routes can be 

assigned so that the network-wide end-to-end performance is optimised. A novel 

framework for congestion control is being proposed, taking advantage of both the 

centralised and the distributed views through functionality separation by means of SDN 

and NFV. The functionality is separated into computationally intensive determination of 

optimal traffic aggregation strategies and routing policies, traffic measurement, and 

reporting, and local resource scaling, traffic aggregation and routing. By adopting SDN 

and NFV, a hierarchical implementation on three levels to ensure both high resilience and 

resource utilisation is assumed. 

 

The network optimal congestion control is implemented in three hierarchies 

(Figure 1.1) consisting of; 
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(1) SDN Controller, responsible for network monitoring, assignment of orchestrator 

virtual machines, and acts as direct interface to network managements systems; 

(2) SDN Orchestration, responsible for global optimisation and policy creation, 

traffic collection, statistical analysis and network state reporting to the controller, 

as well as updating policies and coordinating routing tables on the router level; 

(3) Aggregation and routing, responsible for real-time traffic aggregation and route 

selection in accordance with policies. 

 

 
Figure 1.1: Schematic Architecture of Proposed Framework Model based on 

SDN/NFV Environment 

 

This function separation allows reduction of control plane communication 

overhead, resilience on concentrator level and efficient use of resources. In effect, this 

framework aims at improving all five main requirements on 5G networks. Congestion 

control implemented using available resources more flexibly leads to a substantially 

improved quality of service. By showing in the simulation, dynamic traffic aggregation 

improves resource utilisation on individual router level, whereas optimal routing takes 

advantage of the router load levels to distribute the traffic throughput in the network, 

improving quality of service. The experimental set-up includes a simulator generating 
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three and resource scaling on node level, and a network route optimiser. An optimal 

strategy of control function allocation is also presented. 

1.2 Motivation 

Motivated by the empirical success of the previous studies, literately discussed in 

Chapter 2, this thesis provides few motivations that have driven this research.  

(1) Regarding the most common debate nowadays, centralised and separation 

network, SDN which promising the ability to handle real network programmable 

and more agile, to provide fast changing to the virtualisation of the resources in 

data centre and as a balancing as well to the cloud computing [51].  

(2) There are some motivations concerning in developing or increasing the Quality 

of Service (QoS) issues in congestion control traffic aggregation.  

(3) Another concern regarding the traffic aggregation issues in centralised control is 

static aggregation (in preliminary results) proves to have no better results than 

dynamic aggregation. 

(4) Lastly, to proves of having higher energy consumption when assigning the Virtual 

Machine (VM) to another host with larger free capacity by keeping the allocation 

of network function in virtualisation. 

1.3 Aim and Objectives 

The aim of this thesis is to improve the resource utilisation which is throughput 

and QoS that represent delay and packet loss by the mean of network programmable SDN 

in congestion control. The research aim is adopted through the following objectives.  

 

(1) The state of the arts of the previous research studies related to the problem of 

congestion control of heterogeneous traffic in a network has been studied. Traffic 

of equal intensities of Poisson process (Po), Markovian Additive Process (MAP) 

and fractional Brownian motion (fBm) are generated means processes with the 

same expected arrival rate. The variances and scaling properties under 

aggregation, however, are very different. Both the processing power and the 

buffer size can be scaled independently by the central control logic. 
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(2) SDN and NFV related works are being investigated so that it can be applied to the 

current research studies. The studied logic needs SDN/NFV to work, which means 

having the ability to configure nodes (switches) dynamically and in real time. This 

has been assumed as a condition. 

(3) Designing and building a novel framework for congestion control, both in node 

level and network level through functionality separation by means SDN/NFV. 

The function separation allows reduction of control plane communication 

overhead, elasticity on concentrator level and effective use of resources. 

(4) Simulating the SDN controlled traffic aggregation and optimal routing, both in 

terms of resource utilisation (throughput) and QoS represented by delay and 

packet loss so that the traffic can be controlled to take routes through the network 

to minimised the end-to-end delay. 

(5) Implementing the allocation of network function based on Ant Colony 

Optimisation (ACO) using CloudSim simulation is to measure a cloud operator’s 

cost by reducing the energy function. 

1.4 Research Contributions 

There are three research contributions that have been assumed as a hierarchical 

performance on three levels in this thesis which are summarised in the following: 

(1) Proposing a novel framework for congestion control regarding the traffic 

aggregation in the node level. The development of the proposed framework is 

based on the logic that can be implemented on SDN where the intelligence and 

logic are embedded into the control function. Conceptually, this research is using 

entropy as a single traffic aggregation decision parameter as it is convenient due 

to some parsimonious characterisation of the traffic which is also suitable in a Big 

Data context, since it can be estimated from streaming data, which then would 

allow for truly real-time congestion control. 

 

(2) Implementing an optimal routing for congestion control taking advantage of SDN 

technology in the network level and comparing the difference aggregation and 

routing strategies and showed (by simulation) that aggregation in combination 
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with min-max optimal routing gives substantial gain in all performance metrics, 

and was better than any other combination of studied actions. 

 

(3) Discovering a strategy for on-line assignment policy of VM on hosts that 

minimises the energy (to reduce the cost effectively) in allocation of network 

functions using ACO. For the purpose of congestion control, the most important 

is to have a mechanism that ensures the resilience of the allocation of the 

controller, which is enabled through NFV. 

1.5 Thesis Structure 

This thesis contains 7 chapters which is related to SDN and NFV which briefly 

explained below: 

 

⇒ Chapter 1: Introduction 

This chapter introduces the research study briefly, the aim and objectives of the 

studies, motivations under this studies, some additional knowledge and the thesis 

outlines. 

 

⇒ Chapter 2: Literature Review 

In this chapter, the current state of arts being discussed including the technology 

of SDN and NFV, the previous research which related to traffic aggregation, 

traffic types like Po, MAP, and also fBm. This chapter also elaborates about ACO 

and the CloudSim simulation that had been used in this research. As for the current 

state of the literature, it is clear that there is scope for the development of an 

allocation of network function system on CloudSim that limits the amount of 

energy consumed while endeavouring to sphere the performance of applications.  

 

⇒ Chapter 3: Traffic Aggregation for Congestion Control 

Chapter 3 describes work on traffic aggregation which including three traffic 

types; Po, MAP, and fBm. In this chapter also explains the mathematical tools; 

wavelet analysis that analysing time series or images by decomposing them with 

respect to different scales. 
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⇒ Chapter 4: Optimal Routing for Congestion Control 

This chapter elaborates the workload management process, where traffic routes 

can be assigned so that the network-wide end-to-end performance is optimised.  

 

⇒ Chapter 5: Simulations and Results 

This chapter is explaining the simulation for traffic aggregation and optimal 

routing and showing the results for both simulations. 

 

⇒ Chapter 6: Allocation of Network Function using Ant Colony Optimisation 

This chapter evaluates the allocation of network function by comparing three 

policies for assigning VMs to hosts: round-robin, a customer greedy heuristic, and 

an optimised allocation policy derived from an ACO algorithm to measure a cost 

for cloud operator by using an energy function. The main objective for this chapter 

is to find an assignment policy that minimises this energy. 

 

⇒ Chapter 7: Conclusion and Future Work 

The final chapter is discussing about the conclusion of this research and the future 

works that could expand for the next research to improve the current research. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

Congestion in the network generally is described when the load on the network is 

greater than the capacity of the network can handle. Congestion control meanwhile, refers 

to mechanisms and techniques used to control congestion and keep the traffic below the 

capacity of the network. The investigation focuses on the effects of congestion control in 

a network subject to self-similar traffic implemented using SDN and NFV frameworks. 

2.2 Distributed and Centralised Control 

 In principle, network control functions can be either distributed or centralised. At 

present time, network control is typically decentralised and residing in the routers due to 

its fast reaction time and resilience against failure. The control actions, however, are only 

based on network state information in a small neighbourhood of the node itself. 

Distributed control functions are also based on rather simple logic, which may not lead 

to flow control which is optimal for the entire network. Meanwhile, the advantage of a 

centralised control is the ability to apply a control policy taking the state of the entire 

network into account. The disadvantage is delay in receiving information updates and 

applying control actions, and the risk of overload or failure of a single centralised control 

function. With the introduction of SDN, control functions can be separated into fast flow 

control and routing functions, which are decentralised and implemented locally in routers 

and switches, and longer term control strategies residing in a network entity referred to 

as a SDN Orchestrator. Figure 2.1 illustrates the difference between distributed and 

centralised network. 
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Figure 2.1: Traditional Network vs SDN Architecture [52] 

2.3 Software Defined Networking 

The concept of SDN, which originated in the mid 1990s, is a framework to 

manage network behaviour dynamically via programmable applications using open 

interfaces to the network. This allows for a flexible utilisation of network resources in 

contrast to a static allocation of resources in traditional networks. In such networks, the 

control of a packet flow is realised by a node forwarding packets to the best destination 

according to the packet header information and a set of more or less static rules. In effect, 

routers try to accommodate the quality of service on a per flow basis, mostly agnostic of 

the states in other parts of the network. In this case, the control of the packet flow and the 

flow itself are fundamentally linked together. As a result, some parts of the network may 

be overloaded whereas others may be under-utilised. 

 

 SDN allows decoupling of the control from the flow, referred to as the control 

plane and the data plane, respectively. Figure 2.2 shows the SDN architecture. A 

consequence of this decoupling is the possibility to create resource and flow control logic 

that is based on more information that is contained in individual flows. The logic may 

thus depend on the state of different parts of the networks, the characteristics of various 

flows, or external factors (for example, dynamic reservation of resources). As a matter of 

fact, the separation between the control plane and the data plane was implemented for 
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Synchronous Digital Hierarchy (SDH) (connection-oriented) networks already in the mid 

1990s. The implementation was facilitated by the fact that the routes in such networks 

already were semi-static, and the relative few nodes constituting the networks [15]. 

 

 
Figure 2.2: Software-Defined Network Architecture [49] 

 

The architectural and structural properties of SDN are described in, for example, 

[3][27]. D’souza et al.[11] note that QoS is a relatively new feature in SDN. Using three 

QoS parameters: delay, packet loss and throughput, the delay is given by the average 

queue length in the system, while the packet loss is the proportion of lost packets when a 

queue is full to the total number of arriving packets and the throughput is the number of 

delivered packets to the number transmitted packets. The main difference between the 

delay and the throughput QoS is that delay is determined per queue, and the values are 

added to give a total end-to-end delay, whereas throughput is given by the de facto 

delivered packets and therefore is defined for an origin-destination pair or generalised for 

the whole network. There are several incentives for SDN. Firstly, traffic characteristics 

change much more rapidly today than the past through the fast development of new 

services. Secondly, traffic flows depend on an increasingly cloud-based service 

distribution. Thirdly, with rapidly increasingly traffic volumes and big data, resources 
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need to be managed cost efficiently. The investigation is based on the capabilities of 

OpenFlow as part of the SDN/NFV framework, which ensures necessary resilience and 

scalability. Mills et al. [34] evaluate different heuristic strategies of allocation of virtual 

machines in clouds. Considered as a strategy based on initial placement – known as 

consolidation – where new requests are allocated subject to available resources and a new 

request may modify existing allocation to achieve lower cost, or a trade-off between 

Service Level Agreements (SLA) and cost. Several papers also consider optimisation 

with respect to geographically distributed clusters [22][34], and include network 

bandwidth as a system parameter. Another view is to divide requests into tasks, and 

schedule the tasks optimally [46]. Both consolidation and scheduling requires the 

possibility of migration or resizing of tasks. Lee et al. [30] propose using a vector of 

different resources to describe the state of the system state economically. The system 

variables can be stored in a central database for easy retrieval of cloud state data by the 

resource allocation function. 

2.3.1 OpenFlow-enable Switches 

In this research, network consists of OpenFlow-enabled switches and routers. The 

congestion control logic triggers queue settings and forwarding tables using OpenFlow. 

It should also be possible to collect traffic traces and destination addresses from the nodes. 

The queues should have configurable rates, which could be specified as a 

minimum/maximum rate pair [39]. Version 1.3 of OpenFlow supports slicing, that is, 

multiple configurable queues per port, which could be used in the implementation of this 

research congestion control. A physical switch or router typically has several queues 

which are served by a common processing unit with one or more processors. There is also 

a memory bank that can be used by the queues. The resources, processors and memory, 

can either be shared or partitioned between the queues. For memoryless traffic, sharing 

is the most efficient since it is fair. For traffic mixtures with long memory, however, 

resource sharing is not optimal, and one traffic type can exacerbate the performance of 

other traffic types. When resources are partitioned, the queues are isolated from each 

other and each queue protects its workload from the influence from the load in other 

queues. In this investigation, partitioning which is dynamically controlled, and the 

resources allocated depend on the actual load per traffic type is used. Similarly, the buffer 
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sizes assigned to the queues should be configurable. In principle, it is sufficient to be able 

to specify a maximum buffer size per queue. This is particularly important to limit the 

impact of self-similar traffic on the rest of the network [38]. Figure 2.3 illustrates the 

OpenFlow-enabled switch architecture [50]. 

 

 
Figure 2.3: OpenFlow-enabled Switch 

 

 The update of packet forwarding tables in switches and routers is a standard 

operation, where the routes are determined by the central logic by assuming that traffic 

traces are available, either via OpenFlow or some other means. Full traces rather than 

statistics are required, since the entropy is determined based on traces and then used to 

control the aggregation. OpenFlow also implements the Orchestrator-Forwarder interface 

for manipulating flow tables, and requesting traffic statistics and network state 

information from the nodes to model the network topology and for load monitoring. For 

large networks, multiple orchestrators, and the OpenFlow is used to share information 

between these entities by classifying traffic efficiently, and ideally use lower-order 

protocol header fields to extract this information. Examples are traffic class header field 

in Multiprotocol Label Switching (MPLS), the type of service field in Internet Protocol 

version 4 (IPv4), traffic class in IPv6, and possibly the source IP address, source and/or 

destination ports. 

2.4 Network Function Virtualisation 

NFV is essentially decoupling of software from hardware. It provides a layer 

between the hardware with its operating system and software applications, which are 

known as hypervisors. Thus, NFV represents the physical implementation of functions as 
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virtual machines or virtual servers on given hardware platforms. In the past, when 

traditional network functions (Network Address Translation, Load Balancer, Firewall) is 

mentioned, referred to functions by the physical devices. As this functions need to be 

programmed by hand to those devices, this procedure will create some issues when any 

novelty or updates in the system deployment is needed. Whereas, Virtualised Network 

Function (VNF) is a software-based and decouple from hardware. In VM cases, the 

software image of network function can be deployed. By being highly flexible and 

dynamic, these networks can decrease Capital Expenditure (CAPEX) and Operating 

Expenditure (OPEX) significantly [52]. The differences are shows in Figure 2.4 [53].  

 

 
Figure 2.4: Differences between Traditional Network with NFV and without NFV 

 

To distinguish between SDN and NFV, (see Figure 2.5 and Figure 2.6), note that 

SDN refers to the decoupling of network logic from data transport, whereas NFV is the 

rapid provisioning and control through virtualisation [27]. The resilience concerns of a 

centralised logic is addressed by NFV, that can be seen as resource sharing on platform 

level (Platform-as-a-Service). This approach allows for efficient scaling and utilisation of 

network resources, and a robust and resilient implementation of a centralised control logic. 

Furthermore, the SDN/NFV concept supports open interfaces, such as OpenFlow, 

reducing the implementational complexity of a centralised intelligence in complex 

networks.  
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Figure 2.5: SDN vs NFV in OSI Layer 

 

 
Figure 2.6: Differences between SDN and NFV  

 

 In this research set-up, NFV is mainly used to ensure resilience of the control 

logic. Assumed that there are a number of nodes that can host the SDN orchestrator, 

without specifying exactly where or how, since the architecture is not the focus of this 

study. The VM allocation algorithm described in this paper is adapted to the initial 
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placement problem for the reservation type of cost and allocation in a single cluster. 

Consolidation and scheduling are not considered. The algorithm as such, however, is 

sufficiently general to be extended to more general resource allocation problems. The 

optimisation uses the ACO, described in [10][17], where it is used on the travelling 

salesman problem (TSP) and bin packing problems. This research proposed strategy is to 

reformulated as a dynamic program for on-line optimisation. 

2.5 Congestion Control 

A number of congestion control mechanisms are investigated by Gerla and 

Kleinrock [19] and Jacobson and Karels [26]. The definition of congestion used as an 

over-demand of resources, leading to a performance decrease when compared to states 

with lower demand [23]. It is therefore imperative to assume that network resources are 

sufficient to cater for the offered traffic most of the time. Resource planning aspects are 

discussed in [48] for MPLS and [18] in access networks. In the latter, macroscopic traffic 

characteristics are generated by superposition of a number of simple Markovian on-off 

sources. The drawback with this method of traffic generation is that it is an asymptotic 

result, and the number of simple sources therefore need to be very large. Congestion 

control under self-similar traffic is also studied by Tuan and Park [45], Abbasi et al. [2] 

and others [37]. 

 

Most congestion control algorithms in the literature are flow-based in general and 

the Transmission Control Protocol (TCP) in particular. TCP is a feedback congestion 

control on flow-level where the transmission rate is based on a sliding window. Packets 

are acknowledged by the receiving side, and when congestion is detected by the sender 

not receiving an acknowledgement before a set time elapse, or receiving duplicate 

acknowledgement, it retransmits the unacknowledged packets [28]. In [45], the authors 

investigate the predictability of self-similar and how this can be used in congestion 

control to improve the throughput of TCP by proposing a feedback congestion control, 

using the throughput as a control variable, and adjusting the bandwidth from the client to 

maximise the throughput. In [11], the authors propose using Type of Service (ToS) and 

Differentiated Service Code Point (DSCP) to distinguish between traffic types, and can 

therefore be characterised as a priority-based control. Some authors highlight the need for 
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more efficient detection of network congestion. Huang et al. [25] note that TCP is 

suboptimal for high-speed networks and suggest using free router capacity, ingress 

aggregate traffic and queue length as decision variables to make TCP converge faster and 

achieve fairness, and Haas and Winters [23] suggest probing for congestion with test 

packets. An alternative algorithm to Random Early Detection (RED) using Explicit 

Congestion Notification (ECN) is presented in [16], where packet loss and link utilisation 

are used, rather than queue length, to detect congestion. The result is a faster detection of 

congestion and more adequate rate adjustment to mitigate the congestion. 

 

 Using the method classification in [19], this research proposes a congestion 

control scheme which works on hop level and measures flow quality of service, 

disregarding admission control and transport protocol functions. The effect of end-to-end 

performance is studied – delay, packet loss and throughput – by dynamic traffic 

aggregation at the nodes and optimal routing with respect to delay. A theoretical 

investigation of feedback congestion control strategies can be found in [44]. It discusses 

the differences between feedback from aggregate traffic and individual flows. It is also 

shown, that the transmission rate resulting from a feedback congestion control can be 

expressed as a fixed-point equation, a technique used in this approach to determine 

optimal routes. Fixed-point equations have also been studied in simulation contexts for 

TCP controlled networks [21]. It should be noted, however, that there may be more than 

one stable solution, and care must be taken to avoid oscillatory network behaviour. This 

type of network instability effects has been studied in loss networks as well [20]. 

2.6 Traffic Aggregation 

The potential advantages of centralised routing as compared to distributed routing 

in terms of QoS is studied in [27][35]. The presence of long-range dependence and self-

similarity in data networks has been thoroughly established and studied [31][7][8]. Self-

similarity and long-range dependence may be caused by heavy-tailed file size 

distributions, aggregation of a large number of short-memory traffic sources [38], certain 

protocols TCP or human interaction [7][8]. Modelling of bursty and self-similarity traffic 

types have also been studied extensively [38][4][29][2][1]. Smooth traffic is modelled by 

a Po, which is the traditional model for plain telephony. Many models have been 
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suggested for video traffic [40][42][36]. We have chosen a short-memory process - 

typically modelled by a Markov modulated process - as proposed in [5][12]. The chosen 

model is referred to as a MAP and self-similar traffic is modelled by a fBm [32][31][4][2]. 

This process is modified to reflect packet generation by assuming positively correlated 

arrivals and selecting sample paths (reflected at 𝑋 𝑡 = 0) so that 𝑋(𝑡) ≥ 0 for all 𝑡, 

since traffic load must be positive. Wavelets have shown to be very useful in analysis of 

self-similar traffic [42][41]. We use wavelet multi-resolution analysis to visualise 

composite traffic. 

 

 In [9], Dolzer et al. investigate various traffic aggregation strategies, and conclude 

that aggregation of audio and video sources reduce the need for resources, indicating that 

aggregation into two traffic classes – denoted real-time and non real-time traffic – gives 

the best result. In a SDN context, Nguyen et al. [35] optimise the assignment of 

forwarding rules to nodes with limited memory in the network, with the objective to 

maximise delivered traffic. This approach, however, does not cater for dynamic traffic 

aggregation at the nodes or optimised routes with respect to a network wide QoS measure. 

Wallner and Cannistra [47] use the ToS or DSCP fields in the IP header to map traffic to 

a queue port with properly set queueing parameters, and in [43], it is shown that a dynamic 

allocation of buffer size lead to an increase in throughput. 

 

 Egilmez et al. [14] analyse dynamic routing of multimedia flows. By avoiding 

using resource reservation or prioritisation due to the adverse effects such QoS 

provisioning methods may have on flows not subjected to QoS, such as packet lost and 

latency. The authors propose traffic classification based on the traffic header field in 

MPLS, the ToS field in IPv4, and possibly source IP address, source and/or destination 

ports. In contrast to the approach in [14], this research proposes a much simpler 

optimisation method, somewhat trading speed for accuracy, since forecasting future load 

based on past load by necessity is associated with prediction errors. 

 

 As for algorithm, entropy is being used as a traffic descriptor. Classification of 

traffic using entropy to identify traffic patterns is discussed in [6][13][24][45]. In [24], 

the authors identify traffic clusters for aggregation using a priority parameter. The 

clustering is based on a parameter vector, including source and destination IP addresses. 

Two of the objectives for traffic clustering is to identify abnormal traffic and identifying 
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the largest flows. Thus, the algorithm is on flow level, whereas in this research, the study 

is focused on the effect of aggregation with respect to the overall offered traffic intensity. 

In [13], the authors suggest that the entropy can be used to estimate asymptotic properties 

of network queues, such as packet loss and delay. In this simulation approach, the 

determination of these properties are directly from the queues, as differences between 

queues are important in order to determine optimal routes, and these figures therefore 

need to be more exact. It can be shown that entropy is closely related to the scaled 

Cumulant Generation Function (CGF) in large deviations theory [6][33], a technique used 

for queueing analysis in Asynchronous Transfer Mode (ATM) networks. 

2.7 Chapter Summary 

Network traffic is expected to be heterogeneous, showing dissimilarity on various 

time scales. It has been extensively acknowledged that many traffic types are self-similar 

(long-range dependent), which may lead to starvation of traffic with shorter memory, just 

as prioritising of short-memory traffic may normalise long-range dependent traffic. Even 

if the control is implicit to be much slower than the traffic processing speed, the analysis 

of existing traffic and network load should be miserly and fast enough to capture 

dissimilarities on, say, time scales of seconds or fractions of seconds. 
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Chapter 3 

TRAFFIC AGGREGATION FOR CONGESTION 

CONTROL 

3.1 Introduction 

The requirements on the service and network capabilities are dependent on traffic 

type. Traditionally, traffic has been classified in real-time and non real-time types of 

services, where real-time services tend to be more delay sensitive, whereas non real-time 

services are more sensitive to packet loss. A typical distinction in IP are services using 

User Datagram Protocol (UDP) and TCP, respectively. In ATM, this roughly correspond 

to Constant bit rate (CBR) or Real-Time Variable Bit Rate (RT-VBR) and Non-Real-

Time Variable Bit Rate (NRT-VBR) or Available bit rate (ABR) services.  

 

To describe the vast range of communication services available today, many 

having different characteristics, many models have been suggested in the literature. In the 

simulations, three traffic types are used – smooth, bursty, and long-range dependent 

traffic. Rather than trying to model traffic directly, this thesis tries to approximate traffic 

aggregates by mixing stochastic processes with different characteristics. The aim is to 

approximate aggregates by different proportions of the constituent stochastic processes. 

These roughly correspond to the services telephony (audio), streaming video, and Internet 

traffic. These three traffic types can for be described on a high level by three quantities –

intensity, burstiness, and autocorrelation. Traditional plain voice traffic is often modelled 

as arriving according to a Po with exponential duration. Such traffic is also known as 

Markovian, or memoryless. It is well known that this model is inappropriate to model 

bursty video traffic or data traffic exhibiting a non-negligible memory. Therefore, the use 

of MAP is to model bursty traffic, and a fBm is to represent aggregate Internet traffic. 

These models are described below. 
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 The main characteristic of traffic is its intensity, which is defined as 

 𝜌 = )
*
 , (3.1) 

where 𝜆 is the number of packet arrivals per time unit and 𝜇-. is the mean processing 

time of a packet, so that 𝜇 is the average number of processed jobs per time unit. Traffic 

intensity is a measure of the average occupancy of a server or resource during a specified 

period of time. This is defined by ITU-D [54]. The traffic intensity represents the mean 

number of requests in progress per time unit, or equivalently, the work load on in a queue. 

The intensity is used to describe traffic at any point in the network, that is, offered traffic, 

carried traffic and blocked traffic (as a percentage of offered traffic). It should be pointed 

out, however, that for traffic types with long memory, this quantity is difficult to 

determine.	

 

 Bursty traffic can be characterised by its peakedness factor, defined as 

 

 Z =
Var X
𝐄 X

	. (3.2) 

 

For a Poisson process that 𝐄 X = λ = Var(X), so its peakedness factor is Z = 1. In 

contrast, bursty traffic has a peakedness Z > 1.  It is also useful to define the 

autocorrelation of a process X as 

 𝜌 𝑖, 𝑗 = 𝛾 𝑖, 𝑗 /𝜎@, (3.3) 

where 

 𝛾 𝑖, 𝑗 = 𝑬 𝑋B − 𝜆 𝑋D − 𝜆 , (3.4) 

where 𝑋B and 𝑋D are observations (number of packets) at times 𝑖 and 𝑗, respectively, on 

some time scale. The quantity 𝜆 is the average arrival rate of the process. 

 

 For Poisson (memoryless) traffic, 𝛾 𝑖, 𝑗  is negligible for 𝑖 ≠ 	𝑗 . In fact, this 

property defines lack of memory. Short memory processes have non-zero correlation on 

lags 𝑖 ≠ 	𝑗 which tends to decrease exponentially – at least asymptotically. For long-

memory processes, however, the correlation decreases slower than exponentially and can 

be pronounced on very long time lags. This has the effect of relatively long periods of 

low or high arrival rates, which has a large impact on network performance. 
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3.2 Entropy 

Traffic models have different statistical properties and are described by different 

sets of parameters. This make them hard to compare with traditional statistical methods. 

For example, the mean and variance of long-range dependent traffic is difficult to 

determine on short time scales. A different approach is to use the entropy of the traffic as 

a single parameter characteristic. The entropy measures the “randomness” of an arrival 

process, so it can be interpreted as a measure of the memory and the behaviour of a given 

traffic trace. The entropy 𝐻(𝑋) of a stochastic process 𝑋 is defined as 

 

 𝐻 𝑋 = − 𝑝B 𝑙𝑜𝑔 𝑝B
K

BL.
, (3.5) 

 

where 𝑛 is the number of states and 𝑝B is the probability of the process attaining state 𝑖. 

The states are defined by the number of packets arriving during a time interval 

corresponding to two consecutive sampling times. 

 

The higher the entropy, the more random the process is. Therefore, this thesis 

expects the entropy of the Po to be the highest, which also turns out to be the case. On 

average, the MAP traffic is close to the Poisson traffic, but it has higher variance. The 

fBm traffic has significantly lower entropy on average, but much larger variance. The 

variability in entropy allows fast characterisation of traffic and decision of traffic 

aggregation so that the entropy of the aggregated traffic has lower variance than the fBm 

traffic itself. Along with appropriate resource scaling of the router queues, we show that 

the QoS and/or throughput is improved. Since entropy is not additive, direct scaling is not 

recommended. Both an estimation of mean and of high frequency variability are needed 

to estimate the scaling parameters. During investigation, this thesis uses the resource 

scaling factor 1.75𝐻P (where 𝐻P is the entropy of the traffic aggregate) to the entropy 𝐻Q 

of the remaining traffic. The value is chosen based on empirical investigation. In principle, 

say that the aggregate consists of two traffic streams, one with higher entropy than the 

other. Then the total entropy is < 2 times the highest entropy - since the traffic with highest 

entropy dominates the entropy of the aggregate. 1.75 is chosen as an approximation to 2 

times the mean entropy of the two streams. 
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3.3 Traffic Aggregation 

Network traffic is assumed to be heterogeneous, exhibiting variation on various 

time scales. It has been widely accepted that many traffic types are self-similar (long-

range dependent), which may lead to starvation of traffic with shorter memory, just as 

prioritisation of short-memory traffic may regulate long-range dependent traffic. Since 

long-range dependent traffic may cause congestion where resources are allocated 

statically, it might be possible to improve the network performance by allocating 

resources dynamically based on the characteristics of the traffic. In fact, the long range 

dependence of traffic means that the load it induces can be predicted using its 

autocorrelation structure. The predicted load may serve as a control variable for dynamic 

traffic aggregation, which must be performed on much longer time scales than, for 

example, routing table lookups. 

 

 Even if the control is assumed to be much slower than the traffic processing speed, 

the analysis of offered traffic and network load should be parsimonious and fast enough 

to capture variations on, say, time scales of seconds or fractions of seconds by suggesting 

using entropy of the traffic traces and the resulting aggregation strategies as a single 

measure of their randomness. Given the three traffic types and their different 

characteristics, the focus is in the most efficient way to aggregate the traffic and map it 

onto available resources and use as efficiency measure the statistical performance in 

throughput, packet loss and delay. 

 

 Firstly, it is instructive to look at the scaling properties of these processes and 

define the time aggregated traffic as the average of a time block of size m, so that 

 

 𝑋			Q
R = 	

1
𝑚
	 𝑋QR-RT. + ⋯+ 𝑋QR . (3.6) 

 

 When looking at the sample mean 𝑋 of a traffic process X (where 𝑋 is 

approximating 𝜆  in Equation (3.1) above), a standard result in statistics is that the 

variance of 𝑋  decreases linearly with sample size. That is, if 𝑋., 𝑋@,…, 𝑋K	represent 



 23 

instantaneous traffic with 𝜆 = 𝚬(𝑋B)	and variance 𝜎@ = Var(𝑋B) = 𝚬((𝑋B − 	𝜆)𝟐), then the 

variance of  𝑋	= 𝑛-. 𝑋BK
BL.  equals 

 Var(𝑋)= 𝜎@𝑛-.. (3.7) 

 

 For the sample mean 𝑋, having for large samples that 

 𝜆 ∈ 𝑋 ± 𝑧\/@𝑠. 𝑛-./@ , (3.8) 

 

where 𝑧\/@  is the upper 1 − 𝛼/2  quantile of the standard normal distribution which 

appears only when constructing confidence intervals for the parameter and 𝑠@ =

𝑛 − 1 -. 𝑋B − 𝑋
@K

BL.  is the sample variance estimating 𝜎@ . The condition under 

which Equation (3.7) and Equation (3.8) hold are that; 

(1) The process mean 𝜆 = 𝑬 𝑋B  exists and is finite, 

(2) The process variance 𝜎@ = 𝑉𝑎𝑟 𝑋B  exists and is finite, 

(3) The observations 𝑋., 𝑋@, … , 𝑋K are uncorrelated, that is, 

 𝜌 𝑖, 𝑗 = 0,  for 𝑖 ≠ 𝑗. (3.9) 

 

This thesis assumes that conditions (1) and (2) always hold, but not necessary condition 

(3). 

3.3.1 Smooth Traffic 

Smooth traffic is traditionally modelled by a Po. The Poisson process, also called 

Markovian or memoryless, aggregates in time so that the variance to the mean decreases 

fast. The average magnitude tends to a well-defined limit (that is, the aggregate variance 

tends to zero) as 𝑚 increases. This produces a smoothing effect in time, which is very 

advantageous from a performance point of view. Thus, only one parameter – the intensity 

– is required to characterise a Poisson process, and the same parameter determines the 

server capacities necessary for a given performance.  

 

In contrast, self-similar traffic does not exhibit such behaviour [38][4]. Time 

aggregates does not smooth such processes rapidly, and the large variations can be 

experienced even on large time scales. This phenomenon motivates an adaptive traffic 
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aggregation that allocates resources in proportion to some measure of the load on a 

particular time scale. 

3.3.1.1 The Poisson Process (Po) 

 The traditional traffic arrival model is the Po, which can be derived in a 

straightforward manner. Note that the Po is a discrete process (for example, the number 

of packets) in continuous time. Fixing a time 𝑡 and looking ahead a short time 𝑡 + ℎ, a 

packet may or may not arrive in the interval (𝑡, 𝑡 + ℎ]. If ℎ is small enough and the packet 

arrivals are independent, then the probability of a packet arrival in this interval can be 

assumed to be approximately proportional to length of the interval, ℎ  [54]. The 

probability of two or more arrivals in this interval can be considered negligible by 

defining a Po as follows. 

 

 
Figure 3.1: A Poisson call arrival process [29] 

 

Definition 3.3.1.1. A Poisson process with intensity 𝜆 is a process 𝑋 = 𝑁 𝑡 ∶ 	𝑡 ≥ 0  

taking values in 𝑆 = {0,1,2, … } such that 

(1)  

   𝑁 0 = 0, 𝑎𝑛𝑑	𝑖𝑓	𝑠 < 𝑡	𝑡ℎ𝑒𝑛	𝑁(𝑠) ≤ 𝑁(𝑡), 

 

(2)  

  𝑷(𝑁 𝑡 + ℎ = 𝑛 +𝑚|𝑁 𝑡 = 𝑛 =
𝜆ℎ + 𝑜 ℎ
𝑜 ℎ

1 − 𝜆ℎ + 𝑜 ℎ
			
𝑖𝑓	𝑚 = 1
𝑖𝑓	𝑚 > 1
𝑖𝑓	𝑚 = 0

 

 

(3) if 𝑠 < 𝑡	 then the number 𝑁 𝑡 − 𝑁(𝑠)  of arrivals in the interval (𝑠, 𝑡]  is 

independent of the times of arrivals during [0, 𝑠]. 
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An example of packets arriving according to a Poisson process are illustrated in 

Figure 3.1, showing arrivals in continuous time. In discrete-time, this thesis is concerned 

with the arrivals in a time interval 𝑡, 𝑡 + ℎ , which can be described by the counting 

process related to the Poisson process, where 𝑁(𝑡) represents the  number of arrivals of 

a process 𝑋(𝑡) up to time 𝑡. 

 

Theorem 3.3.1.1. The counting process 𝑁(𝑡)  has the Poisson distribution with 

parameter 𝜆𝑡 that is, 

 𝑷 𝑁 𝑡 = 𝑗 = )Q s

D!
𝑒)Q, 𝑗 = 0, 1, …. (3.10) 

 

 By substituting 𝑡 for ℎ, the length of a discrete-time interval, 𝑁(ℎ) is the number 

of arrivals in each interval. This is the way Poisson traffic is generated in the simulations. 

Note that the Poisson process is one of the simplest continuous-time Markov process, 

which means that it is memory-less, which follows from condition (3) in the definition. 

Figure 3.2 shows the scaling of a Poisson process, where the time interval becomes longer 

as in Equation (3.6) with a scaling factor 𝑚 = 8 in two consecutive steps. 

3.3.2 Bursty Traffic 

It has been shown that video sources exhibit various degree of burstiness and 

autocorrelation [40][40][42]. The autocorrelation can be interpreted as short-range 

memory. This is partly explained by the nature of most movies and their coding. In its 

original form, a movie consists of frames that change in rapid succession. Within a movie, 

it is common that scenes do not change with high frequency. To save bandwidth, video 

coding therefore utilises this fact and encode changes to a reference frame. When a scene 

changes, more data is needed to set up a new scene, whereas within the same scene, only 

updates with lower bandwidth need to be transmitted. The size of these updates also 

depend on the type of scene. 

 

Modelling of video traffic is complicated by a number of possible encodings, 

compression, and source type, such as movies or video conferences. Simply refer to 

bursty traffic as video traffic, without any claim that the chosen model MAP is suitable 

for all video sources. Also note that interactive multimedia, such as video conferencing, 
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is more sensitive to delay, whereas streaming video is more sensitive to delay variation 

(jitter) [14]. By using delay as the optimisation target, the results may be considered more 

relevant for the former type of video source. 

 

 
Figure 3.2: Aggregation of Poisson traffic 

3.3.2.1 The Markovian Additive Process (MAP) 

The MAP has been suggested as a model for traffic types exhibiting burstiness 

and autocorrelation [5][12][37]. The process is generated by creating a jump between two 

states (active and silent) that is controlled by a Markov chain. A Markov chain is 

represented by a matrix where each row sums to unity (probability matrix). The 

simulation of Markov chains is discussed in the cited reference [56]. The parameters are 

set so that the probability of remaining in either state is high if the process was in this 

state immediately before. This generates a bursty arrivals process with autocorrelation 

(memory), contrary to the arrivals following a Poisson process. 
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 To define the MAP, assume that there are 𝑁 independent traffic sources which are 

controlled by the same Markov chain. The chain jumps between the active and the silent 

states, which is represented by 𝑆 = 	 {0,1}, with zero representing the silent state and one 

the active state. The Markov chain is defined by the transition probabilities between the 

silent and the active states 

 𝑎 = 𝑷(𝑋Q = 1|𝑋Q-. = 0) (3.11) 

 𝑑 = 𝑷 𝑋Q = 0|𝑋Q-. = 1 . (3.12) 

 

The Markov chain can now be expressed as 

 𝑀 = 1 − 𝑎 𝑎
𝑑 1 − 𝑑 , (3.13) 

where the steady state probabilities are 𝜋x =
y

PTy
 and 𝜋. =

P
PTy

 , respectively. The 

smaller the parameters 𝑎 and 𝑑 are, the burstier the traffic generated by the model. As 

defined above, the MAP is a discrete time model, which makes simulation straightforward. 

Note that the lengths of a sources remaining in the state is geometrically distributed. Thus, 

the mean duration of an active period is 𝑑𝑛 1 − 𝑑 K-.z
KL. = 1/𝑑 time units, and the 

mean duration of a silence period is 1/𝑎 time units. 

 

 When fed to a queue with service capacity 𝑠, a stability criterion is required to 

have a limited stationary queue length, that is 

 
𝑎

𝑎 + 𝑑
<
𝑠
𝑁
. (3.14) 

Figure 3.3 shows the scaling of a MAP as in Equation (3.6) with a scaling factor 𝑚 = 8 

in two steps. Although bursty, the MAP is still Markovian, which means that even if 

packet arrivals are correlated, the change of states of the source is memoryless. The 

aggregation of a MAP is shown in Figure 3.3. It scales similarly to the Poisson process 

(Figure 3.2), but converges slightly slower to its process mean. 
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Figure 3.3: Aggregation of MAP traffic. 

3.3.3 Long-Range Dependent Traffic 

It may happen that the autocorrelation (3.3) decay very slowly, so that 

 𝜌 𝑘 = ∞z
}L-z , (3.15) 

This is the case when  

 𝜌(𝑘) ≈ 𝐶.|𝑘|-\ as the time lag 𝑘 → ∞, (3.16) 

where 𝛼 ∈ (0, 1) and 𝐶. > 0 is a constant, that is, the autocorrelation decays according 

to a power law distribution. A process for which (3.16) holds is known as a long-range 

dependent process, or a long memory process. The aggregation of such processes is such 

that 

 𝑉𝑎𝑟 𝑋(R) = 𝜎@𝑚-\, (3.17) 

with 0 < 𝛼 < 1, that is, the aggregate converges to the sample mean slower than for a 

short-memory process. 
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 In contrast, for Markovian and short-memory processes, the autocorrelation is 

bounded as 

 𝜌 𝑘 ≤ 𝑏. 𝑎}, (3.18) 

where 0 < 𝑏 < ∞ and 0 < 𝑎 < 1 are positive constants and 𝑘 is the time lag. It follows 

that the sum of autocorrelation 

 𝜌(𝑘)
z

}L-z

= 𝐶@ < ∞ (3.19) 

is finite. 

 

 Long-range dependent traffic shows significant dependence in time on long time 

scales. This type of traffic is generated by superimposing a large number of short-memory 

processes or by certain flow control, such as the bandwidth of TCP-controlled traffic [31]. 

It should be noted that long-range dependence is difficult to ascertain, since it requires 

determination of how correlations converge to zero, and therefore needs investigation of 

traffic measured during long time intervals. Long-range dependent processes have the 

interesting property that can be predicted with better accuracy than short-memory 

processes. The stronger dependence of an observation 𝑋Q and past values 𝑋Q − 1, 𝑋Q −

2,…,	the more certain a future value 𝑋Q + ℎ close to past values is likely to be. This fact 

is used by Tuan and Park [48] for predictive congestion control. 

 

 Long-range dependence is closely related to the concept of self-similarity, where 

the latter describes the scaling properties of a process. The degree of dependence of the 

increments 𝑋 𝑡 = 𝑌 𝑡 − 𝑌(𝑡 − 1) of a process is specified by the Hurst parameter H, 

where 

 𝐻 ∈ 0, 1 . (3.20) 

If 𝐻 = .
@
	,  the process is independent (or memoryless). When 𝐻 > .

@
	,  the process is 

positively correlated, and when 𝐻 < .
@
	,	 it is negatively correlated. Assume that the 

process is positively correlated, so that .
@
< 𝐻 < 1.  This follows from the nature of 

Internet protocols as well as, for example, human browsing behaviour.  
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 A cumulative process in continuous time 𝑌(𝑡) is self-similar with Hurst parameter 

𝐻 if 

 𝑌 𝑎𝑡 = |𝑎|�𝑌(𝑡), (3.21) 

for all 𝑎 > 0 and 𝑡 ≥ 0. Long-range dependence and self-similarity are not equivalent in 

general. However, when .
@
< 𝐻 < 1, self-similarity implies long-range dependence and 

vice versa. In this case, the autocorrelation function expressed in the Hurst parameter 𝐻 

is 

 𝜌 𝑘 ≈ 𝐻 2𝐻 − 1 𝑘@�-@, (3.22) 

and 𝜌 𝑘  behaves asymptotically behaves as (3.16) with 𝛼 = 2 − 2𝐻. 

3.3.3.1 Fractional Brownian Motion (FBM) 

 A parsimonious model for self-similar, long-range dependent traffic is the fBm, 

𝐵�(𝑡), defined on an interval 0, 𝑇 . The fBm is a process such that 

1. 𝐵�(𝑡) is Gaussian on 𝑡 ∈ 0, 𝑇 , 

2. The process starts from zero, that is 𝐵� 0 = 0 almost surely, 

3. 𝐵�(𝑡) has stationary increments, 

4. The expectation is 𝑬 𝐵 𝑡 − 𝐵(𝑠) = 0 for any 𝑠, 𝑡 ∈ 0, 𝑇 , 

5. The autocovariance of 𝐵�(𝑡) is 

𝑬 𝐵� 𝑡 𝐵� 𝑠 = .
@
|𝑡|@� + |𝑠|@� − |𝑡 − 𝑠|@�  for any 𝑠, 𝑡 ∈ 0, 𝑇 . (3.23) 

  

The process is self-similar and long-range dependent for 𝐻 > .
@
. 

 

 Figure 3.4 shows the aggregation of an fBm subject to a scaling factor of 𝑚 = 8. 

The aggregate does not converge to any well-defined mean value, but a noticeable 

variability persists for the aggregate traffic. 
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Figure 3.4: Aggregation of FBM traffic. 

3.4 Congestion Control by Traffic Aggregation 

Congestion control by aggregation uses the statistical multiplexing gain by 

superimposing different traffic types on a single queue. Due to long-range dependence 

inherent in many traffic types and present on long time scales, this type of control logic 

is well suited to be located in the SDN Orchestrator. Considering three traffic types – 

voice, video, and long-range dependent traffic, modelled by a Po, a MAP and fBm, 

respectively. A deterministic queue model G/D/n is considered for simplicity, where X ~ 

G is any traffic aggregate following a general distribution G, s is the deterministic server 

capacity in packets per time unit related to D, and n is the number of queues. For 

comparison, delay, packet loss and throughput are studied in the absence of traffic 

aggregation, where each traffic type is fed to its own queue. The traffic streams have 

similar long-term intensity, and each queue can either be allocated capacity statically or 

dynamically. In the former case, all resources are simply divided into n equal blocks 
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allocated to the queues. In dynamic capacity allocation, a queue is configured for a 

capacity determined by the entropy of the traffic it is fed with. 

 

 By using entropy, an aggregation logic can be formulated based on a single 

parameter. The entropy of a traffic trace is a measure of its information content or, 

equivalently, its “randomness”. The more similar to a uniform distribution the traffic is, 

the higher the entropy. In this thesis scheme, the instantaneous traffic descriptor is 

assumed and available from every node at all times. It is sufficient to let the traffic be 

described by the number of packets arriving at each discrete time instant (of some 

convenient granularity) of each source type. 

 

 The statistical multiplexing gain by aggregation of traffic increases the utilisation 

of the queue resources and thereby likely improves the throughput and the QoS for all 

traffic types. Heuristically, the idea is that short-memory traffic should be allocated 

resources sufficient to provide services with low (but non-zero) overflow probability. At 

the same time, the variability of the self-similar traffic can be expected to be limited by 

the scaled buffer size. The QoS parameters used are the delay and packet loss for each 

queue during the simulation time frame, from which the total and maximum delay and 

packet loss of the node are determined. It is assumed that the SDN Orchestrator can 

measure the traffic intensity of each traffic type so that the control logic can decide which 

two traffic types to aggregate onto a single server, leaving the third traffic type on a 

separate server to avoid bandwidth starvation of any of the traffic types. 

3.5 Wavelet Analysis 

In analysis of communication networks, different characteristics appear on 

different scales. Wavelets are mathematical tools for analysing time series or images by 

decomposing them with respect to different scales. A Wavelet is a “small wave”, which 

essentially grows and decays in a limited time period. A comprehensive exposition on 

wavelet analysis of time series can be found in [39]. See also [38] for wavelet analysis of 

long-range dependent processes. A wavelet transform is a representation of a signal – in 

this case packet arrivals – that allows decomposition into fluctuations on different scales. 

The discrete wavelet transform (DWT) is defined on discrete time instances that 
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correspond to the sampling rate in the system. A multiresolution analysis is such a 

decomposition which is aligned in time. Due to its construction, it is a suitable method to 

analyse self-similar. 

 

 In a continuous time, a wavelet is a transform that satisfies 

 𝜓 𝑢 𝑑𝑢 = 0
∞

-∞
 (3.24) 

 𝜓 𝑢 𝑑𝑢 = 1
∞

-∞
	, (3.25) 

for some kernel (or filter) 𝜓 𝑢 , together with other regularity conditions. The kernel can 

be chosen in many ways and this generates different types of wavelet transforms. The 

discrete wavelet transform can be regarded as an approximation to the continuous wavelet 

transform. Consider the real-valued wavelet filter 𝒲  with filter coefficients {ℎ� ∶ 𝑙 =

0, . . . , 𝐿 − 1} where the width L of the filter is an even integer, so that ℎx ≠ 0, ℎ�-. ≠ 0. 

define ℎ� = 0 for 𝑙 < 0 and 𝑙 ≥ 𝐿. A wavelet filter must satisfy 

 ℎ� = 0
�-.

�Lx

	, (3.26) 

 ℎ�@ = 1
�-.

�Lx

	, (3.27) 

 ℎ�ℎ�T@K

�-.

�Lx

= ℎ�ℎ�T@K

∞

�L-∞

= 0,					𝑛 ≠ 0. (3.28) 

 

An interesting and important fact is that the wavelet coefficients are 

approximately uncorrelated. The DWT therefore uncorrelated even highly correlated 

series. Let 𝑿 be a time series represented by a column vector and let 𝑾 =𝒲𝑿, where 𝒲 

is the discrete wavelet filter. Define the wavelet details as 𝒟D = 𝒲D
�𝑾𝒋,			𝑗 =

1, . . . . , 𝐽	and 𝒮� = 𝒱��𝑽�, where 𝒱 is the scaling filter. Then 

 𝑿 = 𝒟D + 𝒮�

�

DL.

 (3.29) 

is called a multiresolution analysis of 𝑿.  The multiresolution forms an additive 

decomposition where each component can be associated with a particular scale 𝜆D = 2D. 
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 The Daubechies D (4) wavelet filter is based on the filter coefficients 

 ℎx =
1 − 3
4 2

	; (3.30) 

 ℎ. =
−3 + 3
4 2

	; (3.31) 

 ℎ@ =
3 + 3
4 2

	; (3.32) 

 ℎ� =
−1 − 3
4 2

	; (3.33) 

Let 𝒯 be the time shift operator defined by 

 𝒯𝑿 = 𝑋�-., 𝑋x, 𝑋., . . . , 𝑋�-@  (3.34) 

Let 𝒲B  denote the 𝑖Q�	 row in the wavelet filter. Then the rows in the wavelet 

transformation matrix 𝒲 are related by 𝒲BT. = 𝒯@𝒲B and 

 𝒲 =

ℎ. ℎx 0 0 ⋯ 0 0 ℎ� ℎ@
ℎ� ℎ@ ℎ. ℎx ⋯ 0 0 0 0
0 0 ℎ� ℎ@ ⋯ 0 0 0 0
0 0 0 0 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 0 0 0 0
0 0 0 0 ⋯ 0 0 0 0
0 0 0 0 ⋯ ℎ. ℎx 0 0
0 0 0 0 ⋯ ℎ� ℎ@ ℎ. ℎx

 (3.35) 

The pyramid algorithm provides an efficient algorithm to compute the DWT of a 

time series. The pyramid algorithm can be expressed in linear matrix operations as 

follows: 

 

Step 1: Define the 𝑁×�
@
	matrices 

 𝒲. =

ℎx ℎ. ℎ@ ℎ� 0 0 ⋯ 0 0 0 0
0 0 ℎx ℎ. ℎ@ ℎ� ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 ⋯ ℎx ℎ. ℎ@ ℎ�
ℎ@ ℎ� 0 0 0 0 ⋯ 0 0 ℎx ℎ.

 (3.36) 

 𝒱. =

𝑔x 𝑔. 𝑔@ 𝑔� 0 0 ⋯ 0 0 0 0
0 0 𝑔x 𝑔. 𝑔@ 𝑔� ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 ⋯ 𝑔x 𝑔. 𝑔@ 𝑔�
𝑔@ 𝑔� 0 0 0 0 ⋯ 0 0 𝑔x 𝑔.

 (3.37) 

where ℎ. and 𝑔. are found from (3.8) and 𝑔� = (−1)�T.ℎ�-.-�.  
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Step 2: Multiply the time series vector 𝑿 with 𝒲. and 𝒱., respectively, which yields the 

first order wavelet coefficients and scaling coefficients: 

 𝑾. = 𝒲𝟏𝑿 (3.38) 

  𝑽. = 𝒱.𝑿.		  
 

(3.39) 

Divide 𝑁	by 2, goto step 1 and apply the filters to the data vector 𝑽.. 

 

Step j: Let 𝑁 ∶= 	𝑁D = 𝑁/2D, goto step 1 and apply the filters to the data vector 𝑽D-.. 

Repeat wavelet transform of 𝑿 is given by 

 𝑾 =

𝑾.
⋮
𝑾�
𝑽�

		. (3.40) 

Unfortunately, the DWT requires that the number of data points is a power of 2. This 

requirement is relaxed for the Maximum Overlap Discrete Wavelet Transform 

(MODWT), which is well-defined for any sample size 𝑁. The MODWT is also suitable 

for multiresolution analysis. Define the maximal overlap discrete wavelet transform 

wavelet filter, ℎ� ∶ 	 ℎ� ≡ ℎ�/ 2 and the maximal overlap discrete wavelet transform 

scaling filter, 𝑔� ∶ 	 𝑔� ≡ 𝑔�/ 2 so that 

 

 ℎ� = 0
�-.

�Lx

	, (3.41) 

 ℎ�@ =
1
2

�-.

�Lx

	, (3.42) 

 ℎ�ℎ�T@K

∞

�L-∞		

= 0, (3.43) 

 

 

for all nonzero integers 𝑛. This gives the first level MODWT 𝐽x = 1  

 𝑊.,Q = ℎ�𝑋Q-�					R£y	�

�-.

�Lx

	, (3.44) 

 𝑉.,Q = 𝑔�𝑋Q-�					R£y	�

�-.

�Lx

	, (3.45) 
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for 𝑡 = 0, . . . , 𝑁 − 1. By repeating this operation on 𝑉.,Q gives the details on successively 

longer scales. 

 

 In the multiresolution analysis, the partial time series on different scales add up to 

yield the original time series itself. Illustrations of these partial time series show a strictly 

positive result as required. In the following, multiresolution analyses of Markovian, self-

similar and aggregate traffic are illustrated. A Daubechies MODWT of width 𝐿 = 4	is 

used. The figures show, from the top, fluctuations on levels 𝐽 = 1, 2, . . . 5, the details, and 

the smooth on level 𝐽 = 5.	Multiresolution analyses up to level 𝐽x = 5 of Poisson and 

MAP traffic are shown in Figure 3.5 and 3.6, respectively. Note the rapidly decreasing 

amplitudes on large scales. This indicates that the traffic is fairly regular and without 

causing long periods of saturation in a queue, provided that the intensity is less than the 

processing capacity 𝜆 < 𝑠 . 

 

 
Figure 3.5: Multiresolution analysis of Poisson traffic 
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Figure 3.6: Multiresolution analysis of MAP traffic 

 

 For the fBm, the multiresolution analysis (Figure 3.7) shows large variations on 

both short and long scales. Even if the average load is lower than the processing capacity 

in the queue, there are relatively long periods of time where the workload in a queue 

builds up and causes congestion. Comparing the multiresolution analyses of the total 

aggregate traffic shown in Figure 3.8 and some of the Bellcore used in [31] and shown in 

Figure 3.9, reveals similar behaviour on both short and long scales. Notably, the 

amplitude on longer scales does not decrease significantly, but remains between 10-20% 

of the first details. 
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Figure 3.7: Multiresolution analysis of fBm traffic 

 

 
Figure 3.8: Multiresolution analysis of total simulated traffic 
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Figure 3.9: Multiresolution analysis of Bellcore traffic [57] 

3.6 Chapter Summary 

 This chapter conceptually using entropy as a single traffic aggregation decision 

parameter. Entropy is not necessarily the best, but it is a single characterizing quantity 

and therefore convenient to use as a decision parameter. Most importantly, however, is 

that it can be efficiently measured in high-speed networks. At gigabyte rates, packets 

arrive at nanosecond intervals, and therefore streaming data algorithms need to be used 

for its estimation [59][60][62]. Using the entropy is convenient because some 

parsimonious characterization of the traffic which then would allow for truly real-time 

congestion control is needed. The investigation into traffic aggregation is to improve 

throughput and performance. As in the multiresolution analysis, a time series X is 

expressed as a sum of J vectors, each of which contains a time series related to X on a 

particular scale. This decomposition shows variations in X from high to low frequency, 

which is very useful to illustrate the characteristics of different traffic types [58]. 
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Chapter 4 

OPTIMAL ROUTING FOR CONGESTION CONTROL 

4.1 Introduction 

Optimal routing is a network optimisation which provides route optimisation on 

load balancing mechanisms. The routes are chosen so that the aggregation along the 

routes either minimises the total end-to-end delay, or the maximum end-to-end delay. The 

optimal routing provides "fairness", that trading average performance for better worst 

performance. At the end of the day, as long as service level agreements are fulfilled, 

carriers would target the worst performance. 

4.2 The Workload Management Process 

Consider a single server queue in discrete time under a first-come first-served 

(FCFS) queueing discipline. Assume a single class of jobs, which can be justified if 

different traffic types are mixing into a single traffic stream without any priorities 

assigned to any of the traffic types. Now the following two fundamental and rather natural 

assumptions in a system is said to be work conserving if 

(1) No servers are idle when there is at least one job waiting, 

(2) The service times are independent of the queue length. 

For a discrete-time queue, a time stamp 𝑡 represents a time interval between 𝑡 and 𝑡 + 1. 

Thus, let 𝐴Q be the amount of additional jobs arriving at the queue at time 𝑡, and 𝑆Q be the 

amount of jobs processed by the server at this time. Then the delay of jobs in a queue, 

represented by the queue lengths 𝑄Q, can be described by 

 

 𝑄QT. = max 0, 𝑄Q + 𝐴Q − 𝑆Q , (4.1) 

 



 41 

known as Lindley’s equation [38]. This equation is the basis of the simulator, described 

in [Section 5.8]. Note that the queue length never can be negative, so it is not possible to 

save processing power when the queue is idle.  

 

 This thesis defines work load as the content of the queue plus arriving jobs minus 

processed jobs. The net change in work load can be written 𝑈Q = 𝐴Q − 𝑆Q, and Equation 

(4.1) can be expressed as 

 𝑄QT. = max 0, 𝑄Q + 𝑈Q . (4.2) 

Sometimes this recursion is used from a past moment in time up to the present time. Then 

the time index representing the past time is negative. Consider the first step in the 

recursive from 𝑡 = −1 to 𝑡 = 0, 

 𝑄x = max 0, 𝑄-. + 𝐴-. − 𝑆-. . (4.3) 

By letting 𝑈Q = 𝐴-Q − 𝑆-Q,  changing of sign in the index of 𝑈  for convenience and 

iteration (4.3), make 

 𝑄x = max 0, 𝑈. + 𝑄-.  (4.4) 

 							= max 0, 𝑈. + max 0, 𝑄-@ + 𝑈@  (4.5) 

 							= max 0, 𝑈., 𝑈. + 𝑈@ + 𝑄-@ . (4.6) 

 

 The first equation says that the queue length at time 𝑡 is the work arriving minus 

the work processed in one-time step, plus the previous queue length. On the second line, 

the expression for 𝑄 shifted in time by using the recursion, and on the third line, the 

max{.} operator is “moved out” according to the relation 𝑈. + max 0, 𝑈@ + 𝑄-@ =

max 𝑈. + 0, 𝑈. + 𝑈@ + 𝑄-@ .  By continuing the recursion, a sequence with an 

increasing number of terms is obtained, representing the net change in work load at time 

𝑡. Denoting the sum of work load changes by 𝑊Q = 𝑈. + 𝑈@ +⋯	𝑈Q, make 

 

 𝑄x = max 𝑊x,𝑊.,… ,𝑊Q + 𝑄-Q , (4.7) 

 

where 𝑊x	is defined as 𝑊x = 0. 𝑊Q is called the workload process. If there is some finite 

time – 𝜏 in the past when the queue was empty, then 

 𝑄x = max 𝑊x,𝑊.,… ,𝑊« . (4.8) 
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An example of a work load process is shown in Figure 4.1. 

 

 Supposing that the queue has been running for a long time, and that it is stable, 

that is 

 𝑬(𝐴Q) < 𝑬(𝑆Q) (4.9) 

holds. The stability condition implies that the mean arriving work is less than the mean 

processed work. This assumption is necessary – otherwise a queue with a finite buffer 

would constantly overflow. 

 

 
Figure 4.1: The workload process for a GI/G/1 queue [29]. 

 

 If Equation (4.9) holds, then the queue must be empty at some point in time. It 

then follows that the steady state queue length is independent of the initial queue length. 

In this case, the steady state queue length 𝑄 can be written 

 

 𝑄 = max
Q¬x

𝑊Q. (4.10) 

 

provided that the stability condition (4.9) is satisfied. The equation (4.10) is derived in 

the reference. The maximum (or supremum) over t in the limit must be constant when the 

workload W is the aggregation of arrivals minus departures, and the remaining queue 

content carries over from event to event. This reflects the steady-state queue length [33]. 

This is a general result for a GI/G/1 queue (where GI is short for Generally distributed 

and Independent arrivals). For first-come first-served queueing systems the delay is equal 

to the work load function at the time of the arrival of a job. 
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 4.3 Theory of Large Deviations 

This thesis shows that the queue length distribution is related to the work load 

process. Since the events that occur relatively seldom is interested, such as buffer 

overflow, the theory of large deviations can be used to obtain some approximate results. 

Large deviations are used to analyse probability distributions at their tails, far away from 

the distribution mean. Suppose to have a queue with a buffer of size 𝑏 . Taking the 

probability on both sides of Equation (4.10) gives the packet loss probability 

 

 𝑷(𝑄 > 𝑏 = 𝑷 (sup
Q¬x

𝑊Q > 0). (4.11) 

 

Now, the inequality can be used as 

 

 𝑷(sup
Q¬x

𝑊Q > 𝑏 = 𝑷 ∪Q¬x 𝑊Q > 𝑏 sup
Q¬x

	𝑷 𝑊Q > 0 , (4.12) 

which for large 𝑏 leads to the approximation 

 𝑷 max
Q¬x

𝑊Q > 𝑏 ≈ sup
Q¬x

𝑷	 𝑊Q > 𝑏 . (4.13) 

 

 The approximation implies that when the probabilities 𝑷 𝑊Q > 𝑏  decay 

sufficiently fast with increasing 𝑏 , the left-hand side of Equation (4.13) can be 

approximated by its largest term. This probability can be interpreted as the fraction of 

time when then queue length 𝑄 exceeds 𝑏. The asymptotic form of this probability is 

given by Cramér’s theorem. 

 

Theorem 4.2.1.  Let 𝑋., 𝑋@, 𝑋�, …	be a sequence of bounded, independent and identically 

distributed random variables with mean 𝜇, and let 𝑆K be the sum of (the first) n variables, 

and 

 𝑀K =
1
𝑛
𝑆K =

1
𝑛
𝑋. +⋯+	𝑋K  (4.14) 

denote the empirical mean of 𝑆K. The the tails of the probability distribution of 𝑆K decay 

exponentially with increasing n at a rate given by a convex rate function I(x) 

 𝑷 𝑀K > 𝑥 ≍ 𝑒-K³(´)						𝑓𝑜𝑟	𝑥 > 𝜇 (4.15) 

 𝑷 𝑀K > 𝑥 ≍ 𝑒-K³(´)						𝑓𝑜𝑟	𝑥 < 𝜇 (4.16) 
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The sign ≍ (asymptotically equal to) means that the expressions on the left hand side 

tends to the right hand side as 𝑛 tends to infinity. For a proof, see for example [33]. 

 

 There is a close relationship between the rate function and the scaled CGF, 

denoted Λ 𝜃 . The CGF is the logarithm of the moment generation function, 𝑀 𝜃 ,	which 

is defined as 

 𝑀 𝜃 = 𝑬 𝑒·¸ = 𝑒·´𝑓 𝑥 𝑑𝑥, (4.17) 

where 𝑋 is a random variable with probability density function 𝑓(𝑥). The CGF is then 

Λ 𝜃 = ln𝑀(𝜃). These functions can be used to compute the moments or cumulants of 

a distribution. The values at the origin are 

 𝑀 0 = 1 (4.18) 

 Λ 0 = 0, (4.19) 

and the mean and variance can be computes as 

 𝜇 = 𝑬 𝑋 =
𝑑𝑀(𝜃)
𝑑𝜃

|·Lx =
𝑑Λ(𝜃)
𝑑𝜃

|·Lx (4.20) 

 𝜎@ = 𝑉𝑎𝑟 𝑋 =
𝑑@𝑀(𝜃)
𝑑𝜃@

|·Lx =
𝑑@Λ(𝜃)
𝑑𝜃@

|·Lx +
𝑑Λ(𝜃)
𝑑𝜃

|·Lx
@

		. (4.21) 

  
 A convenient property of the scaled CGF is its additivity, 

 𝛬¸T¼ 𝜃 = log𝑬 𝑒·(¸T¼) = log 𝑬 𝑒·¸ 	𝑬 𝑒·¼  (4.22) 

 																		= log 𝑬 𝑒·¸ + log 𝑬 𝑒·¼ = 𝛬¸ 𝜃 + 𝛬¼(𝜃). (4.23) 

 

4.3 The Chernoff Formula 

In order to compute the rate function in Cramér’s theorem (4.2.1) for a sequence 

of independent random variables, Chernoff’s Formula can be used. The formula is 

derived by finding an upper bound on the tail probabilities. Let 𝑋., 𝑋@, …	, 𝑋K	 be 

independent and identically distributed random variables with average 𝑀K =
.
K
𝑋., 𝑋@, …	, 𝑋K . An upper bound on the probability 𝑷 𝑀K > 𝑥  can be defined as 

follows. Let 𝐼À(. ) be the indicator function of a set 𝐴 ⊂ ℝ such that 

 𝐼À 𝑥 ≜ 1
0					

𝑖𝑓	𝑥 ∈ 𝐴
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.24) 
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Consider an interval 𝐴 = 𝑎,∞  on the x-axis. Then 𝐼À 𝑥  is a step function with value 

one if 𝑥 ∈ 𝑎,∞   and zero otherwise. Figure 4.2 shows graphically that for any number 

𝑎  and positive number 𝜃, 𝐼[P,z) ≤ 𝑒·´/𝑒·P.  Note that 𝑬 𝐼 KP,z (𝑛𝑀K) = 𝑷 𝑛𝑀K >

𝑛𝑎 , and 

 𝑷 𝑀K > 𝑎 = 𝑷 𝑛𝑀K > 𝑛𝑎  (4.25) 

 																													= 𝑬 𝐼[KP,z) 𝑛𝑀K  (4.26) 

 																											≤ 𝑬 𝑒·KÅÆ/𝑒·KP  (4.27) 

 																																								= 	 𝑒-·KP𝑬 𝑒· ¸ÇT⋯T	¸Æ  (4.28) 

 																															= 𝑒-·KP 𝑬 𝑒·¸È
K

 (4.29) 

where the random variables 𝑋B are independent and identically distributed is assumed. 

Denoting the scaled cumulant generating function by 𝛬 𝜃 = ln 𝑬 𝑒·¸Ç ,	this thesis 

have 𝑷 𝑀K > 𝑎 ≤ 𝑒-K ·P-É · . Since this holds for each 𝜃 can be optimised over 𝜃 

which gives 

 𝑷 𝑀K > 𝑎 ≤ min
·Ëx

𝑒-K ·P-É · = exp −𝑛max
·Ëx

𝜃𝑎 − 𝛬 𝜃 . (4.30) 

 

If 𝑎 is greater than the mean 𝑚, a lower bound is given by 

 𝑷 𝑀K > 𝑎 ≍ exp −𝑛max
·Ëx

𝜃𝑎 − 𝛬 𝜃 . (4.31) 

The result of this argument is known as Chernoff’s Formula. 

 

Theorem 4.3.1 (Chernoff’s Formula). The rate function can be calculated from the 

cumulant generating function 𝛬 𝜃  using 

 𝐼 𝑥 = max
·

𝑥𝜃 − 𝛬(𝜃) , (4.32) 

with 𝛬(. ) defined by 

 𝛬(𝜃) ≜ 𝑙𝑛 𝑬 𝑒·¸È  (4.33) 
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Figure 4.2: Chernoff’s formula (with 𝜃 = 0.5 and 𝑥 = 10). 

 

 The asymptotic results in Theorem 4.2.1 and Equation (4.32) can now be used to 

estimate the queue length 𝑄 , and find an approximate probability distribution of 

𝑷 𝑄 ≥ 𝑏  for large 𝑏. Figure 4.3 shows log𝑷 𝑄 > 𝑏  for an M/D/1 queue and an M/M/1 

queue. For both queues the traffic load is 𝜌 = 𝑬 ÀÍ
𝑬 ÎÍ

= 0.7 . the packet loss rate is 

asymptotically exponential in 𝑏 for large 𝑏 in both cases, but with different slopes. 

 

 The exponential decay may be expressed as 

 𝑷 𝑄 > 𝑏 ≍ 𝑒-ÏÐ	, (4.34) 

with decay rate 𝛿 determined from the rate function of the workload process by 

 𝛿 = min
´

𝐼(𝑥)
𝑥
	. (4.35) 

There is an important relationship between the rate function, which describes the 

macroscopic properties of the traffic, and entropy, describing its microscopic states. The 

entropy can be interpreted as the information content in a distribution, or its “randomness”. 

The more similar to a uniform distribution, the higher the entropy. Formally, the entropy 

for a discrete distribution 𝑋 is defined as 

 𝐻 𝑋 = − 𝑝B log 𝑝B,
B

 (4.36) 
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where 𝑝B  is the probability of occupying state 𝑖 . In practice, the number of packets 

arriving at any time instant represent a state where 𝑝B is the frequency of occupying a 

particular state divided by the sample size. The entropy has been proposed as a traffic 

descriptor in the literature. Crosby et al. [6] suggest that the entropy is sufficient to 

estimate cell loss and delay in ATM networks. Tuan and Park [48] also uses entropy to 

measure the information content of long-range dependent traffic for classification of the 

traffic into load levels. 

 

 
Figure 4.3: Comparison between an M/D/1 and an M/M/1 queue with the same traffic 

intensity 𝜌 = 0.7 where the M/D/1 queue has the steeper decay. 

4.4 Congestion Control 

The aim of congestion control in communication networks is to provide services 

to its users that meet certain performance criteria, often represented by a set of QoS 

parameters. The performance criteria typically differ between services. One of the 

challenges in meeting QoS requirements is avoiding bandwidth starvation of certain 

traffic types by others. This may happen when one or more traffic types are given 

unconditional priorities. Another cause of congestion is traffic long-range dependence. 

Congestion control by using two fundamental techniques is studied for efficient resource 

utilisation – traffic aggregation and dynamic routing. Traffic aggregation refers to the 
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resource utilisation in the nodes, that is, processing capacity and buffer size. Dynamic 

routing, on the other hand, aims at directing traffic so that the overall network 

performance is maximised. It affects both loads at the nodes and transmission resources. 

In this study, however, the transmission resources are assumed to have sufficient capacity 

for any traffic stream, and do not induce any significant propagation delay. This 

assumption is reasonable in optical Dense Wavelength Division Multiplexing (DWDM) 

backbone networks. WDM is promoted by the industry as the de facto preferred transport 

medium in 4G/5G networks. Several initiatives such as the 5G-XHaul are investigating 

the use of WDM in 5G. 5G-XHaul is a European Union funded project to investigate the 

use of WDM-PON technology for mobile backhaul and mobile fronthaul. The 5G-XHaul 

initiative is part of the EU Horizon 2020 5G Infrastructure Public-Private Partnership (5G 

PPP). For the purpose of the thesis, the assumption of using WDM allows disregarding 

capacity limitations on the links [55]. 

 

 The distinguish between congestion control on flow level, such as TCP (also 

referred to as congestion avoidance), and congestion control on network level, being the 

focus of this investigation. On the network level, the static QoS guarantees implemented 

by resource reservation, or soft QoS guarantees implemented through traffic prioritisation 

and scheduling. As noted in [14], such QoS enforcement may adversely affect traffic not 

subjected to QoS restrictions and lead to bandwidth starvation. The described algorithm 

does not impose any QoS restrictions. It is designed to allocate resources so that it is being 

utilised in the best possible way. The only physical restriction affecting the traffic is the 

scaling of node resources with respect to traffic entropy. 

 

 Letting 𝜆 be the arrival rate and 𝛾 the throughput, a common type of feedback 

congestion control on flow level has the form 

 
𝑑𝜆
𝑑𝑡

= \𝜖,
−𝛼𝜆,			

𝑖𝑓	𝑑𝛾/𝑑𝜆,
𝑖𝑓	𝑑𝛾/𝑑𝜆,

			, (4.37) 

where 𝜖, 𝛼 > 0 are constants. Thus, if an increase in traffic flow rate results in an increase 

in throughput 𝑑𝛾/𝑑𝜆 > 0 , then the flow is increased linearly by 𝜖,  whereas if an 

increase in flow rate leads to a decrease in throughput 𝑑𝛾/𝑑𝜆 < 0 , then the flow rate is 

decreased exponentially. Gerla and Kleinrock [19] describes different effects of 

congestion and propose mechanisms to mitigate these effects. Most notably are variants 

of resource reservation, where a single type of traffic is prevented from fully occupying 
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a network resource (for example, a link or a buffer). Setting rules for resource allocation 

have been shown to be efficient in avoiding congestion and network instability effects. 

Rather than using a protocol-based congestion control like Equation (4.37), we 

investigate how available network resources best can be utilised is investigated and how 

that affects performance on a network level. By pointing it out, however, that combination 

of congestion control methods on different levels need to be implemented to have a robust 

network operation, such as admission control and rate control on flow level (such as TCP-

controlled flows). 

4.4.1 Congestion Control by Optimal Routing 

A natural method for congestion control is using routes involving nodes with low 

load. Such routing achieves load balancing of the network resources. With a central 

knowledge of the load and average delay of each node, an end-to-end minimum delay 

route can in principle be found by solving a shortest path problem for each flow. However, 

shortest path algorithms (for example Dijkstra’s algorithm) are based on link properties, 

whereas here have node properties. Therefore, construct a link cost matrix from the node 

delays as follows.  

 

 Denote the delay incurred by node 𝑖  by 𝛿B . Assuming independence between 

nodes, so that the delays are additive, the delay on path 𝑝 can be written 

 𝛿Ô = 𝛿BÕ

�Õ

BÕ

			, (4.38) 

where the nodes on path 𝑝 are indexed 1,… ,𝑁Ô. If these delays are mapped onto links, 

where each link along path 𝑝 receives a fictitious delay ∆ÔÈ,ÔÈT. 

 ∆BÕ=
𝛿BÕ
2
+
𝛿BÕT.
2

	, (4.39) 

see that 

 𝛿Ô = 𝑁Ô − 1∆BÕ +
BÕL.

𝛿.
2
+
𝛿�Õ
2
	. (4.40) 
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Since the last terms are the delay at the ends of the path, the shortest path has not been 

affected. Applying Dijkstra’s algorithm on this link cost structure then gives the minimum 

delay path. 

4.5 Chapter Summary 

In this chapter, we justify out simulation set-up by some general arguments from queueing 

theory and large deviations theory. Firstly, we may conclude that exact calculation of the 

QoS in a network is hard, or more specifically #P-complete. This follows from the fact 

that finding the exact blocking in a general loss network is #P-complete [34], and that 

blocking, just like delay and packet loss, are related to the properties of queues offered 

traffic that is leaving other queues. Note that #P-complete problem is at least as hard as 

an NP-complete problem, and for such problems even approximations are difficult to find. 

Exact calculation of traffic and QoS parameters in a meshed network with heterogeneous 

traffic and dynamic routing is in practice impossible. We therefore revert to simulation to 

verify the efficiency of dynamic routing, as expressed by the QoS parameters delay, 

packet loss and throughput. These quantities can easily be deducted from the simulated 

queues representing routers or switches. 
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Chapter 5 

Simulation and Results 

5.1 Introduction 

In this study, the end-to-end delay as the main optimisation target parameter and 

performance indicator are used. Two other system characteristics are also measured; 

packet loss and throughput. Packet loss is considered less important than delay due to the 

retransmission capabilities of TCP. Throughput, on the other hand, is a measure of 

resource utilisation rather than service quality. It is therefore of less importance when 

considering end-to-end connections in a network context. In this thesis, the investigation 

will be focus more to performance on network level rather than on flow level. In this 

context, throughput is not an additive measure, since large throughput downstream would 

not be useful when the throughput upstream is lower. 

 

 For the performance analysis, both the total delay and the maximum delay of end-

to-end connections are determined. In addition of being a measure of service quality, the 

delay can also be seen as a measure of the load of the individual queues, since it is directly 

related to the average queue length. There is also an obvious trade-off between delay and 

packet loss. The probability of packet loss increases with decreasing buffer size, but at 

the same time, the delay decreases. Indeed, small buffers have been suggested for self-

similar traffic [38]. The principle is that for such traffic, it is better to discard packets than 

causing overload with large delays as a consequence. 

5.2 Simulation of Congestion Control 

In the simulation, the performance improvements of the proposed traffic 

aggregation and routing strategies is shown. The use of simulation can be motivated by 

two facts. Firstly, an analytic treatment of the strategies is #𝒫-complete and additional 
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complexity is introduced by traffic long-range dependence, which consequently affects 

all routes and performance measures. Secondly, the control logic would be based on 

statistical network properties, so a simulation approach directly gives a realistic 

“blueprint” of the algorithm. To carry out simulation of congestion control strategies, 

several criteria needs to be defined 

(1) Network topology 

(2) Router capabilities 

(3) End-to-end traffic distribution 

(4) Simulated load from the different traffic types 

(5) Aggregation and routing logic, and QoS evaluation 

 

In simulating the effect of the congestion control logic, the network topology fixed 

is kept. In the simulations, a network topology consisting of seven nodes is used. Please 

refer Figure 5.1. These nodes are assumed to be identical for the sake of clarity of the 

performance evaluation results. The end-to-end traffic distribution is randomly sampled 

to allow for maximum flexibility in routing scenarios. Each router is fed with an 

individually simulated traffic load, consisting of Poisson, MAP, and fBm traffic. The 

intensity of the simulated traffic traces is the same for each node, again to simplify the 

interpretation of the simulation results. 

 

 The control logic performs measurements on incoming traffic streams and is 

assumed to possess information of the queue states of the nodes and the traffic distribution 

matrix. Based on this information, it configures the nodes depending on the aggregated 

traffic characteristics and determines end-to-end routes in the network. Finally, the QoS 

parameters delay and packet loss in each node are collected and the end-to-end parameters 

are determined. A comparison of both the total sum of end-to-end delays, packet losses, 

and throughputs, and the sums of maximum end-to-end delays, packet losses and 

throughputs are used for performance evaluation. The logical representation of the 

congestion controlled network is shown in Figure 1.1. It consists of a network of nodes 

(routers and switches) with high-speed optical links connecting to them, and a SDN 

Orchestrator (hosting the central logic) that is able to pull traffic statistics and the states 

of each node from the network, to configure buffer sizes and transmission rates in the 

nodes, and to modify their forwarding tables. For a full flexibility in traffic generation, 

node configuration, route optimisation, and detailed statistics, this thesis developed a 
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simulation framework dedicated to the present study, rather than using SDN development 

platforms like Mininet or NS-3. The simulator is written in Python, and was run on a 64-

bit dual-processor HP 6830s Linux Fedora 25 platform. Each simulation consists of 

generating three traffic traces, each of size 512 (that is, 512 time steps), performing three 

different aggregations, and calculating the resulting entropy for each node in the network. 

Being a power of two, this is a convenient size for wavelet decomposition 

(multiresolution analysis). Based on the entropy, the nodes are configured proportionally, 

and the queues are simulated by feeding them with the computed traffic aggregates.  

 

 Next, the performance measures are calculated and used to determine optimal 

routes. The route optimisation is iterative and uses a fixed-point equation which 

converges in a few iterations. In each step, the traffic aggregation at the nodes has to be 

recalculated. Each iteration on the network runs for approximately 100 seconds on the 

platform used. Each network scenario – route optimisation with respect to total end-to-

end delay or maximum end-to-end delay – is simulated 100 times to generate statistical 

gain figures. The simulation is facilitated by using a G/D/n queue, which means that the 

time steps are equidistant with 𝑡x = 0 and 𝑡K ∈ 𝑛 − 1 ℎ,𝑛ℎ , where ℎ is an arbitrary 

time unit. The packet loss and delay induced in each node is calculated from the simulated 

queue length distributions. 

 

 
Figure 5.1: Dijkstra’s algorithm using delays along a path as cost, mapped onto the 

links (red). 
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5.3 Components of Network Simulation 

In this section, the components used in this research are briefly explained. As 

mention in the subsection below, the reason why the proposed network topology is 

justified, how the router capabilities is being initialised, and the traffic distribution used 

in the simulation. 

5.3.1 Network Topology 

The network topology is chosen so that there are sufficiently many routing 

possibilities to yield interesting results and still small enough to allow for fast simulation. 

The speed of simulation is imperative in generating a large number of cases, which is 

necessary due to the self-similar nature of the traffic. The topology is a 3-connected 

network, which is described in [29]. The 3-connectivity ensures a certain level of 

resilience, which also implies path diversity. The network is modelled by a graph, on 

which shortest paths are determined. Since the network topology is assumed given, the 

shortest paths are determined with respect to delay, rather that distance, only the 

connectivity matrix is used in most of the simulations by assuming that the links have 

infinite capacity and induce zero delay. This is considered a good approximation for 

optical fibre networks carrying moderate data volumes. To be able to compute the shortest 

paths, however, the links are associated with a fictitious delay parameter deduced from 

the router delays, as described in section 5.6. 

 

The network topology is a 3-connected graph, which means that between any two 

nodes there are (at least) 3 edge-disjoint paths. This fact, referred to as path diversity, is 

used in the dynamic routing, where the path with the lowest total delay is chosen to 

transport the traffic. The volume of traffic transported clearly affects the network load. 

The traffic matrix is a random matrix with uniformly distributed entries that is regenerated 

at each simulation run. The matrix is chosen so that for a large number of simulations, 

the effects of the traffic distribution is levelled out even with a very general assumption 

(uniform distribution). The order of flow mapping also influences the performance. The 

effect of this mapping is abated by iteration of a fixed-point equation. 
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5.3.2 Node Capabilities 

The nodes are initially assigned a total processing and buffer capacity that can be 

configured into 𝑛 queues, with the resources dynamically distributed among the queues. 

The number 𝑛 of queues is here either 3, or 2, where 3 queues correspond to no traffic 

aggregation and each traffic type simply is fed onto its own queue, and 2 queues 

correspond to aggregation of two traffic types. Note that the single queue case is trivial 

from the point of view of aggregation strategy, that is, how traffic should be aggregated. 

The traffic separation by queues can in principle be implemented using (for example 

traffic type identification) as discussed in Section 2.3.1. 

 

 Whenever traffic aggregation is disabled, the processing and buffer capacity is 

equally divided onto the three queues. When enabled, resources are divided 

proportionally to the entropy of the aggregates. Traffic is represented by some capacity 

unit, which can be thought of as packets. Simulation is carried out for traffic traces of 

length 𝑛 = 512, following Lindley’s recursion 

 𝑄QT. = max 0, 𝑄Q + 𝐴Q − 𝑆Q 	, (5.1) 

where  𝑄Q  is the buffer content, 𝐴Q  denotes arriving packets and 𝑆Q  serviced packets 

between time 𝑡 and 𝑡 + 1. Whenever the number of arriving packets exceeds the free 

buffer space, so that 𝐴Q > 𝐵 − 𝑄Q , loss of 𝐴Q − (𝐵 − 𝑄Q)  packets occur [33][54]. 

Assuming unit time increments, the queue delay is calculated as the expected queue 

length, determined for each queue. Letting 𝑝(𝑘)  denote the probability of finding 𝑘 

packets in the buffer gives the delay 

 𝑬 𝑑 = 𝑘𝑝(𝑘)
Ø

}L.

 (5.2) 

Packet loss is measured by counting the number of packets exceeding system capacity, 

and throughput are the number of forwarded packets. The first equation can be taken as 

a definition of Lindley’s equation. It means that the queue content at time 𝑡 equals the 

previous queue content plus arrived traffic minus departed traffic, with the condition that 

the queue can never be negative. The second equation is a standard result for the mean 

number in a system [33][54][61]. 
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5.3.3 Traffic Distribution 

For each simulation scenario, the end-to-end traffic distribution matrix – 

expressed as a stochastic matrix – is simulated. For a stochastic matrix, the row sum must 

equal unity. The minimum assumption on the distribution is a uniform distribution 

𝑝BD	~	𝑈(0,1) of end-to-end destination probabilities, ensuring that the row sum is unity. 

The uniform distribution may not be appropriate for real networks, but in order to obtain 

as general results as possible, a minimum of network specific assumptions needs to be 

imposed. The same traffic distribution is used for each traffic type, for simplicity. 

5.4 Traffic Simulation 

The traffic is simulated independently for each type, and new traffic simulations 

are carried out for each new scenario and node. The three traffic types Poisson, MAP and 

fBm are simulated using the same traffic parameters in all cases to make the comparison 

of aggregated traffic more discernable. The time scale is a generic time step reflecting the 

packet arrival intensity and processing capacity of the nodes. To simplify the simulated 

queue characteristics and traffic aggregation, we express the work load as a number of 

packets, each assumed to be of equal length are expressed. These packets are generated 

by one of the three traffic processes (Poisson, MAP, or fBm) the servers are assumed to 

process packets with a constant bitrate, without any priority between traffic types. Using 

such an experimental framework, the traffic in a network is mainly determined by 

§ The intensity of the traffic types, 

§ The traffic distribution on a network level, given by a traffic matrix, 

§ The server capacities, and 

§ Traffic aggregation and routing strategies. 

 

To study the performance gain on a network level as free from market specific 

assumptions as possible, the offered traffic intensity constant and node capacities uniform 

are kept. The traffic distribution is uniform in order to stochastically spread its effect. The 

important quantity is the quotient of the total mean arrival rate to the server processing 

capacity (Equation 3.1), which should be close to the node capacity in order to obtain 

performance measures of interest. 
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5.4.1 Simulation of Poisson Processes 

The Poisson arrivals are simulated using the following algorithm. Let 

𝑁 𝑡 : 𝑡 ≥ 0  be the counting process of a Poisson process with rate 𝜆. Then 𝑁(1) is 

Poisson distributed with mean 𝜆. Let 𝑌 = 𝑁 1 + 1 and 𝑡K = 𝑋. + 𝑋@ +⋯+ 𝑋K denote 

the 𝑛Q�  arrival of the Poisson process, where the 𝑋B  are independent and identically 

distributed according to an exponential distribution with rate 𝜆 . Note that 𝑌 =

min 𝑛 ≥ 1 ∶ 	 𝑡K > 1 = min 𝑛 ≥ 1 ∶ 	𝑋. + 𝑋@ +⋯+ 𝑋K > 1  is a stopping time. 

Suppose the inverse transform method is used to generate independent and identically 

distributed exponential inter-arrival times 𝑋B. Then can represent the variables as 𝑋B =

− .
)
ln	(𝑈B). Re-writing the expression for Y gives 

 									𝑌 = min 𝑛 ≥ 1 ∶ ln 𝑈. + ln 𝑈@ + ⋯+ ln 𝑈K < −𝜆  (5.3) 

 = min 𝑛 ≥ 1 ∶ ln 𝑈.𝑈@ …𝑈K < −𝜆 																										 (5.4) 

 = min 𝑛 ≥ 1 ∶ 	𝑈.𝑈@ …𝑈K > 𝑒-) 																															 (5.5) 

Therefore simulate 𝑌 by generating independent uniformly distributed variates 𝑈B,	and 

taking the product of these variates until it first falls below 𝑒-). The number of uniformly 

distributed variates in the product yields 𝑌. Then get the desired Poisson variate as 𝑋 =

𝑁 1 = 𝑌 − 1. Traffic traces of size 512 are generated in each simulation scenario. 

5.4.2 Simulation of Markovian Additive Processes (MAP) 

The MAP can be used to model and simulate bursty traffic, such as video sources. 

The general model has a number of states, where the transition between the states is 

controlled by a Markov chain. In this study, the MAP have two states only, a silent and 

an active state, denoted 𝑑 and 𝑎, respectively. Denoting the traffic intensity by 𝑋Q, the 

Markov chain controlling the transition between the two states is defined by the transition 

probabilities 

 𝑎 = 𝑷 𝑋Q = 1 𝑋Q-. = 0 , (5.6) 

 𝑑 = 𝑷 𝑋Q = 0 𝑋Q-. = 1 . (5.7) 
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The Markov chain is then represented by the matrix 

 𝑀 = 1 − 𝑎 𝑎
𝑑 𝑑 − 1 , (5.8) 

so that the steady state probabilities are given by 

 𝜋y 	= 	
𝑑

𝑎 + 𝑑
		 (5.9) 

 𝜋P 	= 	
𝑎

𝑎 + 𝑑
	. (5.10) 

The smaller the conditional probabilities 𝑎 and 𝑑, the burstier is the resulting traffic. At 

each time instant, the conditional probabilities of the sources being silent or active are 

given by (5.6)-(5.7), keeping track of the states of the process at each time instant. 

 

 The process simulation uses a training period to “burn in”, and a block of arrivals, 

which amounts to aggregation of individual MAP sources. In the simulation, aggregation 

of size 100 has been used. Traffic traces of size 512 are generated in each simulation 

scenario. During one time step in the queue, this thesis can simulate state change of the 

MAP by comparing the probabilities in the Markov chain with a uniformly distributed 

random number 𝑢 = 𝑈(0,1). If the chain is in active state and 𝑢 < 𝑎, it is switched to 

silent state. When in active state, the total packets of a block, say 𝑘 packets, are added to 

the queue. When fed to the queue, a maximum amount of 𝑠 packets are processed and 

removed from the queue in each time step. Simulation of queues with finite buffers are 

easily accomplished in discrete time, and various performance metrics can be calculated 

by introducing counters into the simulation process. 

5.4.3 Simulation of fractional Brownian motion (fBm) 

 A fBm can be simulated using the Cholesky method. It uses the Cholesky 

decomposition of the covariance matrix, 𝐶 = ∑∑′, where ∑ is a lower triangle matrix of 

the covariance matrix given by Equation (3.23). It can be shown that such a 

decomposition exists whenever the autocovariance matrix is positive definite (and 

symmetric, which is true by its construction). The simulated packet arrivals are then 

obtained by multiplying the matrix ∑ by a vector of independent normal standard random 

variables 𝜂 of suitable size, that is 

 𝑿 = ∑𝜂 (5.11) 
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It is necessary to restrict the resulting values to be equal to or greater than zero, since 

traffic obviously cannot be negative. The traffic load is chosen so that the peak rate 

exceeds the service rate 𝑠 of the queue in order to obtain interesting node performance 

parameters, whereas the mean arrival rate must be slower than 𝑠. The Markov parameters 

are chosen as in [29] with 𝑑 = 0.072 and 𝑎 = 0.028. With a router capacity of 𝑠 = 60 

packets per time unit, this choice of parameters generates traffic with a peak rate 

exceeding 𝑠, but with a mean rate less than 𝑠. This exact method of simulating fBm is 

purely algebraic, based on the Cholesky decomposition of the covariance matrix. The 

simulated process can be negative, but such results are discarded in the simulation.  

5.5 Traffic Aggregation 

The traffic aggregation logic is based on comparing the entropy for aggregated 

and non—aggregated traffic streams. With three traffic types and two queues, two traffic 

types can be aggregated, which can be done in three ways, and compare the resulting 

entropies. The entropy is used in two steps. Firstly, the traffic types to aggregate is 

determined. The decision of which traffic types to aggregate is made so that the aggregate 

has an entropy as close as possible to the entropy of the non-aggregated traffic. The 

entropy of the single traffic types in different simulations is such that for Poisson traffic, 

it is high and nearly constant, whereas for fBm, the average is lower but with high 

variability.  The entropy of MAP traffic is somewhere in between. Therefore, decision of 

aggregation is mainly driven by the behaviour of the fBm traffic. Next, the aggregated 

and non-aggregated traffic is mapped onto two queues in the node. Here, the entropy is 

used as a scaling parameter, where the capacity is allocated in proportion to the entropy. 

This is a simple heuristic, which is applied both to processing capacity and buffer space. 

More sophisticated control logic can be devised, but this simple principle suffices to study 

the effect of traffic aggregation on heterogeneous traffic. 

5.6 Routing Strategy 

For the analysis on a network level, this thesis assumes that paths can be chosen 

optimally with respect to delay. This means that an end-to-end connection is set up on the 

route which incurs the least amount of delay. Note that a shortest path can be defined with 
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respect to any numerical weight, not only physical distance. Such weights may be cost, 

delay or some reliability measure. To find a minimum delay path, this thesis uses the 

algorithm by Dijkstra, see for example [29]. 

 

 In finding an end-to-end optimal path, start from the first end node 𝑠, and scan its 

neighbours 𝑗 for the lowest weight. Letting 𝑑	(𝑠, 𝑗) be the total weight going from 𝑠 to 𝑗, 

the algorithm successively uses the relation 

 𝑑	 𝑠, 𝑗 = min
B∈Î

𝑑	 𝑠, 𝑖 + 𝑑BD , (5.12) 

where S is the set of nodes and 𝑑BD is the weight on edge (𝑖, 𝑗). The algorithm compares 

the minimum weight paths going from 𝑠 to any node 𝑖, adding the weight going from 𝑖 to 

𝑗. Dijkstra’s algorithm uses weights on edges, whereas the delay actually incurred in the 

nodes, so node delays need to be mapped onto edges. This can be done since the delays, 

just like distances, are positive and additive. The minimum delay route is determined 

locally, and by using this route for a particular end-to-end connection, the node delays 

would change. Since the global properties of minimum delay routing is the one to focus, 

iterative procedure is needed where minimum delay routes are re-calculated as traffic are 

added to the already determined minimum delay routes. 

 

 To find the optimal end-to-end routing from a network perspective, we use a 

fixed-point equation is used 

 𝐹 ∆RBK = ∆RBK. (5.13) 

Such fixed-point equations are commonly used to analyse blocking networks [29], where 

𝐹(. ) is a function of the total blocking on a route, given by Erlang’s B-formula. The 

algorithm (and equation) is inspired by the Erlang fixed point theorem, which is based on 

a fixed point iteration [63].	The blocking is a convex function of the load, just as the delay. 

Assume that at least one such fixed point exists and that the equation converges to this 

point (or points). This assumption is partly justified by the fact that the node delays are 

limited and a function of traffic load. Thus, assuming delays incurred by the traffic offered 

to the routers, this thesis sequentially determines the end-to-end minimum delay paths, 

adding traffic to the nodes along the path corresponding to an end-to-end traffic matrix. 

This gives the initial solution to the fixed-point equation (5.13). The minimum delay 

routes are then successively re-calculated, using the previously defined edge delays, 

updating the traffic on the routers along any computed path, and updating the edge delays 
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accordingly. Interestingly, the fixed-point equation converges in many cases to two 

solutions, leading to a hysteresis in the network delay. This stability phenomenon has also 

been observed in blocking networks [20][29]. In blocking networks, which lack 

centralised control, trunk reservation has been suggested as a stabilising strategy [20]. In 

this case, the centralised logic selects the best network routes, using delay measurements 

from the nodes. 

5.7 Quality of Service Evaluation 

A node consists of two or three queues, which are simulated independently in the 

sense that once resources are assigned to a specific queue, these cannot be shared by 

another queue in the node. The queues are fed with the aggregate or single type traffic, 

represented by vectors of arriving packets. At each time instant, the queues are governed 

by Lindley’s equation (4.1) with the constraint of limited buffer space B 

 𝑄QT. =
			max 0, 𝑄Q + 𝐴Q − 𝑆Q
0																																		

			
𝑖𝑓	𝑄Q + 𝐴Q − 𝑆Q ≤ 𝐵	
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																		

∕	., (5.14) 

which can be expressed 𝑄QT. = min max 0, 𝑄Q + 𝐴Q − 𝑆Q , 𝐵 . The arrivals 𝐴Q are given 

by the vectors of offered load, and 𝑆Q = 𝑠 is a constant number of packets processed in 

each time step. 

 

 In the router simulator, at each time instant the number of lost packets is being 

counted, that is 𝑌 = max 0, 𝑄Q − 𝐵 , where 𝑄 is the queue length in a queue with infinite 

buffer. These are the packets in excess of router capacity, that is, the packets that are 

being processed during the time step, and the free buffer space. By recording the number 

of packets in the system at each simulation step (the state occupancy), the delay can be 

determined. Whilst, from the recorded state occupancy, the state probabilities 𝑝K, and the 

delay is given by 

 𝛿B = 1
á

KLx

. 𝑝K (5.15) 

packets per time step, and where C is the total router capacity. In the simulation, a M/D/1 

queue is used, so the single queue services 1 packet per time step (and since it is 

deterministic, exactly one packet is processed in each small time interval). The difference 

in performance is measured using the standard “error” measure 
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 ∆𝑚 =
𝑚£ −𝑚â

𝑚â
	, (5.16) 

where 𝑚£	is the observed metric and 𝑚â is the reference metric. When 𝑚â is zero, the 

metric degenerates, and sets as 

 ∆𝑚 =
1
0
−1
				
𝑖𝑓	𝑚â = 0	𝑎𝑛𝑑	𝑚x > 0
𝑖𝑓	𝑚â = 0	𝑎𝑛𝑑	𝑚x = 0
𝑖𝑓	𝑚â = 0	𝑎𝑛𝑑	𝑚x < 0

			 (5.17) 

As a general rule, the performance measure is being improved so that 0 ≥ ∆𝑚 ≥ 1 to 

avoid large values whenever underlying metric is small. This also allows to represent the 

difference in performance as a percentage figure. In order to make the percentage figures 

comparable, the average number of affected packets is scaled; the number of buffered, 

lost and forwarded packets to the total number of packets, respectively. 

5.8 The Effect of Traffic Aggregation 

The effect of traffic aggregation on need level is analysed, comparing two 

aggregation strategies with the case of no aggregation, and recording delay, packet loss 

and throughput. Each case is simulated 1000 times, where each case consists of the three 

traffic types of size 512 time steps. Each case therefore consists of 512,000 simulation 

points. Traffic aggregation in combination with optimal routing is discussed in Section 

5.9. 

5.8.1 Node Level Traffic Aggregation 

Traffic aggregation on node level includes the operations of merging two of the 

three traffic streams and configuring the node resources proportionally. This thesis 

compares two cases of traffic aggregation; aggregation of real-time traffic, always 

aggregating Poisson and MAP traffic, and dynamic aggregation, where traffic types are 

aggregated so that the entropy of the two resulting traffic streams are equal as possible. 

The entropy-based traffic aggregation is analysed in isolation to be able to assess its 

efficiency and impact on performance on node level. The aggregation decision is based 

on the entropy of each of the streams of voice, video, and data traffic. Aggregation is 

performed so that the entropy of the traffic load in each channel is as equal as possible. 
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 For each queue with capacity C (including buffer space),  

 𝑛D𝛼D ≤ 𝐶,
�

DL.

 (5.18) 

where N is the number of sources in an aggregate, and 𝛼D is the effective bandwidth of 

the traffic flow 𝑗. Do not try to estimate the statistical multiplexing gain, but the gain in 

the QoS triple consisting of delay, packet loss and throughput. In each simulation, the 

total and maximum delay, the total and maximum packet loss and the total and maximum 

throughput are collected, and compares that with the situation where no aggregation is 

performed, using three queues, and resources are allocated equally between these queues. 

The improvement is referred to as gain. The gain in throughput and performance are 

compared by comparing the strategies of 

 

(1) No aggregation, static mapping of traffic to equally configured queues 

(2) Aggregation of real-time traffic sources (Poisson and MAP) mapped onto queues 

with proportionally scaled resources 

(3) Dynamic aggregation, where traffic is aggregated to make the entropy as equal as 

possible between the two queues, and proportionally scaled resources 

 

By measuring the change in total and maximum delay, packet loss and throughput 

when compared to no aggregation, this thesis has descriptors of the relative performance 

of each strategy. Clearly, the larger relative improvement the better. There is, however, 

justification to order the performance statistics after importance, having; 

(1) Maximum delay. The statistic measures the worst end-to-end delay, which is the 

main performance indicator to be improved. It is, however, closely related to the 

total delay, and the former should not be improved at the expense of the latter. 

(2) Maximum and total packet loss. For real-time services, packet loss can lead to 

severe quality degradation. For best effort traffic, however, packet loss is typically 

compensated by retransmissions controlled by TCP. Also note the duality between 

delay and packet loss; the larger the buffer, the longer delays and the smaller 

packet loss. The change in total packet loss – if negative – should be small due to 

its adverse effect on real-time traffic. Packet retransmission is not considered in 

the study, since it is traffic dependent and leads to a bias in the throughput figures. 
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(3) Total throughput. The statistic represents the utility of shared resources, and the 

larger the increase, the better. The improvement is achieved through statistical 

multiplexing of the traffic or increased buffering. 

5.8.2 Real-Time/Non Real-Time Traffic Aggregation 

 It has been suggested in the literature [9] that aggregation of real-time sources 

would give the best QoS. The aggregation strategy is to aggregate real-time traffic, 

justified by their similar characteristics and QoS demands, while keeping non real-time 

traffic separate and denote this strategy RT/NRT for brevity. The node resources are 

scaled in proportion to the entropy of the two traffic streams. On node level, a comparison 

of the RT/NRT with the case of separate queues is shown in Figure 5.2. 

 

 
Figure 5.2(a): Delay Average Performance between RT/NRT Aggregation over Static 

Aggregation 
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Figure 5.2(b): Packet Loss Average Performance between RT/NRT Aggregation over 

Static Aggregation 

 

 

 
Figure 5.2(c): Throughput Average Performances of RT/NRT Traffic Aggregation and 

Static Aggregation 
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buffered, the delay increases. By the effect of traffic scaling, the expectation of that 

processing capacity should be increased faster than buffer size using this strategy. 

 

 The increase in maximum throughput is associated with the aggregation of real-

time traffic, and can be attributed to statistical multiplexing of real-time sources. This is 

an expected result, as aggregation of Markovian sources and resources improves the 

efficiency. At the same time, since the change in average throughput remains very small, 

the other queue must experience a similar decrease in throughput. There is no or small 

net gain in throughput in this case. While the maximum throughput increases, there is 

negligible improvement in total throughput which indicates a shift in processing resources 

to the real-time traffic. 

5.8.3 Dynamic Traffic Aggregation 

 A comparison of the dynamic aggregation strategy with no aggregation is shown 

in Figure 5.3. 

 

 
Figure 5.3(a): Delay Average Performances between Dynamic Traffic Aggregation 

and Static Aggregation 
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Figure 5.3(b): Packet Loss Average Performances between Dynamic Traffic 

Aggregation and Static Aggregation 

 

 
Figure 5.3(c): Throughput Average Performances between Dynamic Traffic 

Aggregation and Static Aggregation 
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increased throughput and improved packet loss follow from a more agile resource scaling 

strategy. 

5.8.3.1 Relative Difference between Dynamic and RT/NRT Aggregation 

 It is instructive to compare the dynamic with the RT/NRT strategy. The result is 

shown in Figure 5.4. 

 

 
Figure 5.4(a): Delay Average Performances between Dynamic Traffic Aggregation and 

RT/NRT Aggregation 

 

 
Figure 5.4(b): Packet Loss Average Performances between Dynamic Traffic 

Aggregation and RT/NRT Aggregation 
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Figure 5.4(c): Throughput Average Performances between Dynamic Traffic 

Aggregation and RT/NRT Aggregation 
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and thereby benefit from statistical multiplexing. For dissimilar traffic types, on the other 

hand, starvation of resources of one type by another may decrease performance. It is 

therefore suggested to separate self-similar traffic from Markovian traffic, and allocation 

resources in proportion to the load. 

5.9 The Effect of Optimal Routing 

Controlled flow routing can be used to further take advantage of the resources 

available in the network. This thesis investigates routing optimised with respect to the 

total delay, that is, the sum of delays incurred at all nodes in the network, and sum of the 

maximum delays. For the search of an optimal flow assignment, the algorithm by Dijkstra 

is used. Dijkstra’s Algorithm finds the shortest path between two nodes 𝑠 (the start node) 

and 𝑡 (the destination node) by scanning the neighbours at each step, and builds a tree of 

shortest paths to all nodes from 𝑠. It uses the “distances” of the edges, where the distance 

can be any positive real number, which be called as the edge weight. Thus, the weight 

can be Euclidean distances, number of hops, or, with a slight modification, delay. 

 

 Initially, all weights are set to ∞. Starting from the start node 𝑠, the algorithm 

finds the nearest neighbour of 𝑠 by comparing the edge weights. It then progresses to the 

nearest neighbour 𝑗 and repeats the scanning. At each step, the weights are updated to be 

the smallest weight encountered so far, resulting from all paths traversed up to the current 

step. The pseudo code of Dijkstra’s algorithm is as follows. 

 

Algorithm 5.0.1  (Dijkstra’s Algorithm). 

Given a (undirected) graph G = (V, E), non-negative edge costs c(.) and a starting vertex 

𝑠 ∈ 𝑉. 

STEP 0: 

 Set S ≔ 𝑠 , 𝑙 𝑠 ∶= 0, 𝑙 𝑖 =∞, i	∈ 𝑉, 𝑖 ≠ 𝑠 

STEP 1 to |V| - 1: 

 While 𝑆 ≠ 𝑉 do 

      find 𝑥 such that 𝑙 𝑥 = min	{𝑙 𝑦 :	𝑦 ≠ 𝑆} 

      set 𝑆 ∶= 𝑆 ∪ 𝑥  
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      for all y	∈ 𝑉 − 𝑆 do 

        𝑙 𝑦 ≔ min	{𝑙 𝑦 , 𝑙 𝑥 + 𝑑´å} 

      end end 

 

Output: the shortest total weights from 𝑠 to all 𝑖 ∈ 𝑉. •  

 

 In this algorithm, two important observations are made. Firstly, the shortest path 

need not be unique. However, all shortest paths must have the same total weight in the 

network. This thesis is interested in any such shortest path, by looking for a global 

optimum. Secondly, in its original form, the algorithm does not give the shortest path, but 

only the sum of weights along this path. The actual paths can be found by labelling each 

edge, and adding an edge (i, j) to an edge set E each time such an edge is traversed and a 

node j is added to the set S. After the destination node t has been reached, backtracking 

is used from t through the edges in E to find the path back to s. Now, in order to make 

two modifications to find the optimal flow assignment with respect to delay, firstly, the 

delays, which are properties of the nodes, need to be mapped to edge weights. Secondly, 

since the algorithm finds the shortest path with all weights given, an iterative procedure 

is needed to find a global flow assignment in the network where weights depend on the 

assignment. Please refer to Figure 5.1 as illustrated. 

 

 The first modification is based on the additivity of delays. Since the delays are 

additive, the total delay of an end-to-end connection can be expressed as 

 ∆æQ= 𝛿B

Q

BLæ

, (5.19) 

where 𝑖 starts and ends at the respective end points {𝑠, 𝑡}. In this expression, ∆æQ is the 

total end-to-end delay, and 𝛿B is the delay incurred in node 𝑖. By setting the edge weights 

to 𝑑BD =
ÏÈ
@
+ Ïs

@
, see that 
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The first and the last term do not influence the shortest path, since the start and end notes 

are fixed. To obtain a numerical value of the total delay, simply add these two terms to 

the results from Dijkstra’s algorithm. 

 

 Now, the minimum delay route can be determined locally, for a particular end-to-

end connection. This choice of path, however, assumes that the delays remain fixed in the 

network. Since in this thesis the global properties of minimum delay routing is studied, 

an iterative procedure is needed where minimum delay routes are re-calculated as traffic 

are added to the already determined minimum delay routes. The end-to-end distribution 

of traffic is given by an n×n probability matrix, where each row signifies the node 𝑖 traffic 

is originating from and each column the node 𝑗, a percentage 𝑝BD of the traffic is addressed 

to. This is called the traffic matrix in the following. For this matrix must have 𝑝BD = 0 

and ∑B𝑝BD = 1. In each simulation, the 𝑝BD are drawn from a uniform distribution with the 

condition that ∑B𝑝BD = 1. This ensures that the assumptions on the end-to-end traffic 

distribution is minimal. 

 

 To find the globally optimal end-to-end routing from a network perspective, the 

fixed-point Equation (5.13) is used. 

 𝐹 ∆RBK = ∆RBK. (5.20) 

After initial generation and dynamic aggregation of traffic, the fixed-point equation 

iteratively simulates and maps delays as weights onto the edges, computes the minimum 

delay paths, and aggregates the traffic along these paths. 

 

Algorithm 5.0.2   (Fixed-Point Optimal Route Algorithm). 

Given a network (graph) G = (V,E) with n = |V| nodes, an n-dimentional traffic vector 

t and an n	×	n traffic matric T. 

STEP 0: 

 Populate 𝒕x by generating traffic and apply dynamic traffic aggregation. 

 

STEP 1 until convergence: 

 for each node 𝑖 ∈ 𝑉	do 

    determine delays 𝑑B incurred 

 end for each link 𝑖, 𝑗 ∈ 𝐸 do 
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    set weights 𝑤 𝑖, 𝑗 = ÏÈ
@
+ Ïs

@
  

 end for each node 𝑖 ∈ 𝑉	do 

    for each node 𝑗 ∈ 𝑉	do 

       Find minimum delay paths 𝑃RBK
(B,D)	using Dijkstra’s algorithm 

       Set 𝒕 𝑖 = 𝒕x 𝑖 + 𝑇D (𝑖, 𝑗)𝒕(D)RBK    end end 

Output: minimum delay flow allocation. •  

 

 Assumes that the fixed-point algorithm converges. Should it happen that the 

algorithm shows oscillating behaviour, the solution with the best characteristics is chosen. 

Since the minimum delay paths may be longer than the shortest paths in terms of hops, 

the effect of optimal routing next is being analysed. 

5.9.1 Traffic Aggregation Under Minimum Total Delay Routing 

Considering congestion control on a network level, optimal routes through the 

network can be chosen minimise the number of hops (ordinary shortest paths), the total 

end-to-end delay, or sum of maximum end-to-end delays. The gain is determined as the 

performance improvement with traffic aggregation at the nodes and optimal routing, 

compared to the situation with traffic aggregation at the nodes and shortest path routing. 

It should be noted, that in the network scenarios, nodes carry not only its own traffic, 

which is a random quantity.  

 

 The performance gains for the case of routing minimising the sum of end-to-end 

delays are shown in Figure 5.5. As for the gain due to traffic aggregation in individual 

nodes, the largest gain is in packet loss. The distribution of gains, however, depends on 

the node configurations and the traffic levels. The positive gains in delay, packet loss and 

throughput are significant with p-value less than 0.3%. The simulations result of the 

system are the average of 100 simulations. From the data set, the average and variance 

are obtained. Two-sided confidence interval is used with z = 3, corresponding to a 

probability of 99.74% from a standard normal distribution table. Consequently, the 

confidence interval is not significant at level p = 1.00-0.997 = 0.003. 
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Figure 5.5: Performance Gain with Dynamic Traffic Aggregation and Optimal Routing 

 

This result is compared with two cases: RT/NRT routing under optimal routing and 

dynamic aggregation under shortest path routing. The optimally routed RT/NRT 

aggregation is shown in Figure 5.6. A marked improvement in delay is showing, but 

declining in packet loss and throughput. 

 
Figure 5.6: Performance Gains with RT/NRT Aggregation and Optimal Routing 

5.9.2 Dynamic Traffic Aggregation Under Shortest Path Routing 

 The effect of dynamic traffic aggregation under optimal routing compared to 

simple shortest path routing is shown in Figure 5.7. These graphs illustrate the results of 

independent simulations and is not a time average. The scales are negative (relative the 

global optimum), and therefore the result for optimal routing is better than the result for 

0

5

10

15

20

25

30

Delay Packet Loss Throughput

G
ai

n 
(%

)

Performance Gain between Dynamic Traffic Aggregation and Optimal Routing

Dynamic Traffic Aggregation Optimal Routing

-10

-5

0

5

10

15

20

25

30

Delay Packet Loss Throughput

G
ai

n 
(%

)

Performance Gains with RT/NRT Aggregation and Optimal Routing

RT/NRT Aggregation Optimal Routing



 75 

static routing. Under optimal routing, the total delay and throughput is worse than for 

optimal routing, following from the fact that the average paths are longer than in shortest 

path routing. However, maximum delay and packet loss is improved, indicating an 

improvement in the worst end-to-end QoS. As a conclusion; 

(1) When using optimal routing, the overall performance gain is better for dynamic 

traffic aggregation than for RT/NRT routing. This follows from the better resource 

utilisation in the nodes. 

(2) Optimal routing can improve the worst end-to-end QoS at the expense of average 

values, following a dynamic load distribution in the network. 

 

 
Figure 5.7(a): Delay Average Performances of Dynamic Traffic Aggregation Under 

Optimal Routing and Shortest Path Routing 

 

 
Figure 5.7(b): Packet Loss Average Performances of Dynamic Traffic Aggregation 

Under Optimal Routing and Shortest Path Routing 
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Figure 5.7(c): Throughput Average Performances of Dynamic Traffic Aggregation 

Under Optimal Routing and Shortest Path Routing 

5.9.3 Traffic Aggregation Under Minimum Maximum (Min-Max) Delay Routing 

 When the optimal routes are chosen to minimise the maximum end-to-end delay, 

the gain in total and maximum delay is higher than in the previous case, as shown in 

Figure 5.8. By comparing Figures 5.5 and Figure 5.6, it can be seen that routes optimised 

with respect to maximum end-to-end delay gives higher overall gain. Using the maximum 

end-to-end delay as optimisation criterion has some obvious advantages. Firstly, 

minimising the maximum delay leads to a higher degree of fairness in the network. 

Secondly, from an optimisation point of view, the maximum delay is a stricter and explicit 

condition than the total delay, which should improve the convergence of the solution to a 

minimum. 
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Figure 5.8(a): Delay Average Performances of Dynamic Traffic Aggregation Under 

Min-Max Delay Routing over Optimal Routing 

 

 
Figure 5.8(b): Packet Loss Average Performances of Dynamic Traffic Aggregation 

Under Min-Max Delay Routing over Optimal Routing 
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Figure 5.8(c): Throughput Average Performances of Dynamic Traffic Aggregation 

Under Min-Max Delay Routing over Optimal Routing 

 

To summarise, dynamic traffic aggregation provides a more flexible utilisation of 

resources. At the same time, preserving fairness between traffic streams in imperative. 

On node level, traffic aggregation leads to gains in packet loss and throughput – in 

particular maximum throughput. When combined with optimal routing, a load balancing 

effect on network level is achieved, resulting in increased fairness without using any 

particular scheduling or priority principles. Routes optimised with respect to maximum 

delay gives better results than when optimising with respect to total delay, which is a 

direct consequence of improving the worst end-to-end performance. 

5.10 Chapter Summary 

This chapter summarise that by empirically, investigation into traffic aggregation and 

routing are to improve throughput and performance. We compared different aggregation 

and routing strategies and showed (by simulation) that aggregation in combination with 

Min-Max optimal routing gives substantial gain in all performance metrics, and was 

better than any other combination of studied actions.  
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Chapter 6 

ALLOCATION OF NETWORK FUNCTION USING ANT 

COLONY OPTIMISATION 

6.1 Introduction 

The deployment of a centralised logic must be very resilient to failures of nodes 

and links. A promising strategy is therefore using NFV to allocate the logic dynamically, 

depending on availability and load on the nodes in the network. In this context, the 

network can be viewed as a “cloud” of resources, and it is assumed that a controlling 

entity is available to assign the control logic in an optimal fashion. If the failure 

probability of a node is 𝑞, and there are 𝑛 nodes, the possibility to allocate the control 

function to any of the 𝑛 nodes results in an operational probability of 

 𝑝 = 1 − 𝑞K	, (6.1) 

assuming that nodes fail independently from each other. Of course, this is a theoretical 

result, since the network would anyway be disconnected should a number 𝑚 << 𝑛 nodes 

fail. 

 

Resource allocation in clouds can be divided into different categories or steps. 

Mills et al. [35] evaluate different allocation heuristics and categorise the optimisation 

type based on initial placement, where new requests are allocated subject to available 

resources, consolidation, where a new request may modify existing allocation to achieve 

lower cost, and trade-off between SLA and cost. The cost/demand structure is also 

categorised into reservations, where the customer pays a fixed price for a service running 

for a specified amount of time, on-demand access, where customers put requests and the 

cost is dependent on utilisation, and spot market, where the price of a service also depend 

on demand. With resource allocation in a cloud is understood the allocation of VM to 

physical nodes, or hosts, where the hosts are characterised by the number of processors, 
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and the amount of processing capacity and random access memory (RAM) (and possibly 

other parameters). The scheduling of tasks is not considered part of the project, but it is 

desirable that the framework should be possible to extend to this situation, if desired. An 

important step in defining an algorithm for the resource allocation problem is defining 

objective of the optimisation. Two different objectives of the customers and the cloud 

operator are identified. In a simplified setup, by assuming that for the customer, the cost 

is fixed, and so tries to maximise the utility of resources. For the operator, the total amount 

of resources is fixed, and the potential for adding more customer requests to the cloud 

depends on the assignment of the existing requests. 

 

Resource allocation is Non-Deterministic Polynomial-Time (𝒩𝒫)-hard, so the 

number of possible solutions grows exponentially with the number of servers and the 

number of customers. This is a variant of the bin packing problem, and can also be 

formulated as an integer program. In this thesis, the following terminology is used. 

Consider an IT cloud consisting of physical resources. The cloud is managed by the cloud 

operator, who fully controls the resources and how requests are assigned. Requests for 

resources are specifically VM, and the requesting entity (not necessarily human) is called 

a customer. The customer may have preferences where its request should be allocated. 

The final resource allocation, however, is determined by the cloud operator. In the context 

of the algorithm, the customer is also referred to as an ant. 

 

The physical resources are residing in several levels. The lowest unit is referred 

to as a host. Hosts are aggregated into clusters – typically residing in the same location, 

and several clusters form a cloud. This thesis is not considered geographically distributed 

clusters, so a cluster and a cloud is essentially the same. The term cloud has been used as 

it is clearer from an engineering point of view. The resources together with the requests 

is referred to as a system when a general abstract term is needed. 
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6.2 Cloud Resources and Descriptors 

Both the cloud resources and the requests are assumed to be described in sufficient 

detail so that an assignment can be made, and that this information is available to the 

algorithm at all times. The resources are quantifications of available physical properties, 

such as number of processors in the Central Processing Unit (CPU) core, CPU speed, 

amount of RAM, amount of disk storage space and network bandwidth. The idea of using 

a constantly updated database with a resource vector for each node [30], has been adopted 

as a general and technically appealing solutions to manage cloud state data. The network 

is clearly dynamic, so rather than allocating according to the physical resources of a node, 

it should be done with respect the instantaneously available free resources of a node. The 

result of the optimisation is an assignment of VM-node pairs. 

 

Some of the resources are static, such as the CPU core, and can be included as 

side constraints (or rather, an infeasible assignment results in a zero probability). Other 

properties are dynamic and change with each assignment. Also here, by distinguishing 

between resources that set a definite limitation on the service capability, such as the 

amount of memory available, should the VM requirements exceed a node’s capabilities, 

the node is considered not to be able to host that VM. The second type of resource - for 

example processing power or network bandwidth - scales gradually with the number of 

VMs. Service quality can then be seen as the expected average processing time (or 

throughput).  

 

Assume that a VM can be specified in the same terms as a physical node. For 

simplicity, let the resource vector be the triple (core, cpu, memory), as described in [30]. 

Thus, a VM requirement can be directly compared to a node’s available resources, and 

be allocated to any physical node having sufficient resources. Assume that a host can 

have a number of VMs, and this number is limited by the aggregate requirements on the 

node resources. Also that a VM occupies the resources it specifies [46], should a node 

not have sufficient amount of free resources, the assignment is infeasible and will be 

disregarded. 
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6.3 Optimisation Criteria 

ACO is described in [10], where the optimisation method is applied to the TSP. 

The method has also been used on related bin packing problems [17]. Lee et al. [30] 

propose using a vector of different resources to describe the state of the system, and a 

scalar function to describe the instantaneous system state parsimoniously. The system 

variables can be stored in a central database for easy retrieval of cloud state data by the 

resource allocation function. In the scenario under consideration - initial placement of 

VM requests - customers would only benefit from trying to gain as good service quality 

as possible, since the price is fixed for a specified time. The cloud operator, on the other 

hand, may save cost by assigning resources optimally. The optimisation goal is to find in 

some respect best trade-off between cost and quality. A multi-optimal approach seems 

infeasible due to the hardness of the problem. Solutions optimal with respect to different 

criteria will tend to be vastly different, and there is no way to find a trade-off by 

interpolation due to the discrete nature of resource assignment. A second question is how 

to define service quality from a system perspective. With a central function for resource 

allocation, requests are assigned one by one, and simple heuristics would give no 

guarantee of fairness in service quality. In this paper, the minimum level of quality is 

therefore determined by the SLA of each request. 

 

The actual ACO simulation is performed in C++. This implementation is off-line and 

intended to study the optimality properties of the algorithm. In CloudSim, however, the 

source code is Java, and the logic has to be on-line. The algorithm is therefore 

reformulated using a dynamic programming approach where the virtual machines are 

mapped onto servers with respect to available server resources. The CloudSim is run 

under Eclipse, with addition of the three policy rules (greedy, round-robin, and optimal). 

The number of ants equal is set to the number of nodes (5), and the number of cycles to 

1000. The auxiliary parameters are set to alpha = 0.5, beta = 0.5, evaporation = 0.5 and 

tau = 0.1, for all i and j, rather conservatively. The attractiveness (visibility, eta) is the 

‘distance matrix’ constructed from scaled processing capacity. 

 

In the ACO, ants’ movements are governed by target probabilities that is a product 

of two parts. The first is an assignment probability that is proportional to the 
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attractiveness of a match from the customer point of view (called visibility in [10]), and 

the second a memory of the best past assignments represented by the fictitious pheromone 

trail. As long as the SLA of a request can be fulfilled, the attractiveness is non-zero, 

otherwise it is zero. The probability of transition to another (including self) node is 

 𝑝BD =
(𝜏BD(𝑡))\(𝜂BD(𝑡))ì

(𝜏BD(𝑡))\((𝜂BD(𝑡))ì
í (6.2) 

evaluated for feasible assignments, otherwise 𝑝BD = 0. The pheromone 𝜏BD(𝑡) and the 

attractiveness 𝜂BD(𝑡) are time dependent, which is indicated by the argument in t. The first 

property changes with each cycle, and the second with each move within a cycle. 

 

Several papers also consider optimisation with respect to geographically 

distributed clusters [22][34], and include network bandwidth as a system parameter. 

Another view is to divide requests into tasks, and schedule the tasks optimally [45]. Both 

consolidation and scheduling requires the possibility of migration of resizing of tasks. 

The optimisation algorithm described in this paper is adapted to the initial placement 

problem for the reservation type of cost and allocation in a single cluster. Consolidation 

and scheduling are not considered. The algorithm as such, however, is sufficiently general 

to be extended to more general resource allocation problems. From a global optimisation 

perspective, the system lets the customers find an assignment according to their 

preferences and the given constraints, and then select the best assignment out of a number 

N of trials. 

6.3.1 Attractiveness 

From the customers’ point of view, it is reasonable to maximise their own benefit 

at each step. Assuming that the service comes at a fixed price per VM configuration, the 

customer would try to maximise the service quality accordingly. This is likely represented 

by response time, that is the sum of CPU processing time and network transmission delay. 

The transmission delay is not considered here, as it depends mainly on the infrastructure 

outside the cloud. The attractiveness refers to the property of the algorithm on which the 

probability of choosing a server is based. The free capacity measure is used to describe 

this property based on the principle that the more free capacity in a server, the 

more ”attractive” it is for the customer to be allocated to. 
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The CPU capacity is typically measured in MIPS (Millions of Instructions Per 

Second). The effective processing power available to applications is dependent on system 

configuration and simultaneously running processes etc. In [30], the authors propose 

measuring the available CPU and RAM capacity by performing a matrix inversion 

operation and measure the execution time. This method would give an accurate 

instantaneous measurement on which the attractiveness can be based. For this discussion, 

however, it is sufficient to assume that this information is available. Thus, assume that a 

customer selects server based on the available processing power of the CPU (the total 

processing power adjusted for system processes and other VMs using it). The customer 

then sees the available processing power as a resource potentially available to itself. 

6.3.2 Cost 

Cost can be defined in terms of idle capacity, that is, unoccupied capacity that 

cannot be assigned to another VM due to limitations in some other resource type. The 

cost will depend on the applications, or in other words, the distribution of demands of 

arriving requests. The cost for a cloud operator can be expressed in the degree of 

infrastructure utilisation, or equivalently, return on investments. The operator wishes to 

allocate requests to resources in a ”best fit” manner, so that not more resources than 

necessary are occupied by an allocated request. 

 

The greedy principle from the cloud operator’s perspective is that the more VMs that can 

be allocated, the higher the utilisation and the return on investment. As a metric for system 

efficiency, the energy of the relative free resources is used here. The energy unit for 

processing capacity becomes (instructions)2/s2. The optimisation then follows the 

principle of minimum energy. The system energy is defined as 

 E = (𝐶B − 𝑟BD)@,
ïÈ

DL.

K

BL.

 (6.3) 

where 𝐶B is the capacity of the server and 𝑟BD is the VM capacity requirement of VM j on 

host i. The total requirement sums over the 𝑣B VMs allocated to host i. 
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Rescaling Equation (6.3) gives 

 E = (1 − 𝑟BD/𝐶B)@,
ïÈ

DL.

K

BL.

 (6.4) 

which is the objective function that will be minimised. Under this metric, it is more 

efficient to allocate available resources occupying the best fit between request and 

resource. The best fit is when the resource matches the VM specification exactly. Then, 

the energy of the match is zero. 

6.4 Algorithm for Resource Optimisation 

ACO is suitable for many optimisation problems that can be modelled by a graph, 

including resource assignment [10][17]. It is, however, in its original form modifying the 

edges, but not the nodes, in a graph. The algorithm is an adaptation of the ACO algorithm 

for solving the TSP, described in [10]. The assignment problem is modelled as a complete 

graph on the set 𝑛	of nodes. Initially, the ants are distributed between the nodes in a 

round-robin fashion and could also originate from a source node (a ”nest”), but this is not 

necessary, as the algorithm only performs a single iteration in each cycle. The ants could 

also be distributed randomly, which would affect the order of assignment. In the example 

below, however, this has no or little effect. The ants move according to a matrix of 

transition probabilities, where self-loops are allowed, so that an ant may request its job to 

be assigned to the node it originally occupies. The probabilities are proportional to the 

attractiveness of the target and the pheromone level of the edge between the origin and 

the target. The algorithm therefore has to keep track of the resource requirements of each 

ant, and the instantaneous amount of free resources at each node. 

 

As opposed to the TSP, where the attractiveness is fixed, the system state changes 

with assignment of a new job (the property of the ant, or customer). Therefore, after each 

move, the transition probabilities change and must be recalculated. The attractiveness of 

a server to a given customer decreases when resources are assigned another customer. As 

a measure of attractiveness, the (possibly scaled) available CPU processing power of the 

host is used. Whereas in the TSP, the goal is to find a path, the objective here is to find 

an assignment. Since the constraints ensure that all allowed assignments are feasible, the 

algorithm only runs for one iteration, where each ant is moved (including possibly back 
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to its origin) exactly once. The number of cycles will have to be fairly large though, in 

order to find an optimum. After an iteration, a candidate assignment has been generated. 

The algorithm has to keep track of the so-far best assignment through the cycles. 

 

The constraints also differ from the TSP case, where an ant is forbidden to visit a 

node already visited by a tabu list. In the present case, the tabu list simply consists of the 

nodes that cannot with remaining resources accommodate the ant, that is, the VM. This 

includes the host it is initially starting from. Next, the system cost 𝑐� is calculated 

according to Equation (6.3). This energy can be a composite measure including other 

resources, such as RAM as suggested in [30]. For the purpose of describing the algorithm, 

however, the energy is only based on the CPU processing power. 

 

The deposited amount of pheromone, ∆𝜏	on each edge is now dependent on 

system cost, rather than on a single ant’s trail as in the TSP. This quantity is given by 

 ∆𝜏 = 𝑄/𝑐}, (6.5) 

where 𝑄 is a scaling constant and 𝑐} the cost in cycle 𝑘	 ∈ 1, 2, … , 𝑁 . Since 𝑐}	can be 

zero, a maximum limit on ∆𝜏  is set to one. This limit is rather arbitrary, and is an 

additional system parameter that may affect the convergence properties of the algorithm. 

 

Since the attractiveness changes dynamically throughout the algorithm, the 

transition probabilities are given by two matrices: the attractively matrix A, which 

changes throughout an iteration but is reset for each cycle, and the pheromone level 

matrix P, that remains constant throughout a cycle, but is updated after each cycle. The 

cost is used to update matrix P, first by multiplying all previous pheromone levels 𝑝BD	by 

the evaporation constant (1 − 𝜌 ), and then by adding ∆ 𝜏  onto edges describing 

assignments made in the iteration. The minimum cost 𝑐RBK and the corresponding 

assignment obtained so far is recorded after each cycle, the matrix A and the vectors of 

free node resources and assignments are restored to their initial values, corresponding to 

no yet assigned VMs. 
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Algorithm 6.0.1 (Resource Allocation). 

Given matrices of server capabilities S and VM requirements V. 

 

STEP 0: (initialise) 

Let 𝐽	be a list of initial node assignments, and set algorithm parameters 𝛼, 𝛽, 𝜏x, 𝜌 and K, 

the number of cycles. Set the matrix of free resources to A = S and the matrix of 

pheromone concentrations P = (𝜏x), the matrix where all entries equals 𝜏x. Set 𝑐RBK= ∞ 

 

STEP k = {1, 2, . . . ,N}: (iterate) 

while k < K (the number of cycles) do: 

Randomly select a node i and a customer request, 

Divide a customer request into tasks (ants). For each ant j: 

  Calculate the probabilities 𝑝BD	(Eq. (6.2) based on A and P, 

By simulation, select a move of ant j, assign to the selected target node if 

resources are available; assign resources, update A (end). 

   When all ants have been moved once: 

     Calculate the cost 𝑐} (defined by the energy in Eq. (6.3) of the assignment, 

     and update matrix P by ∆𝜏. 

   If 𝑐RBK< 𝑐}, let 𝑐RBK= 𝑐}	and 𝐽RBK	=𝐽}. Reset J, A = S, 

   and let P = (1 − 𝜌) P. (end) 

 Delete customer request (end) 

end; 

 

Output 𝑐RBKand 𝐽RBK	, the optimal assignment. •  

 

 

It should be noted, that the algorithm assigns VMs all at once, so for the CloudSim 

experiment described below, the assignment rule has to be formulated so that VMs can 

be assigned sequentially. Also, the result of the algorithm depends on the random number 

generator, and so to find an optimum the algorithm may have to be run several times, and 

possibly with different seeds. The memory induced by the pheromone trails may therefore 

take many runs to change from a suboptimal assignment to an optimal. 
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6.5 Experiments 

To test the algorithm, a small cluster with hosts similar to the one described in 

[30] (Section 6.5, Experiments, Tables 6.3 and 6.4) is used. The simplicity of this scenario 

with five servers having different characteristics and a single type of VM, makes manual 

comparison with other assignment schemes straightforward. To evaluate different 

assignment strategies, it is a good idea to have hosts with different characteristics but 

identical VMs that clearly shows how different strategies being assigned. The algorithm 

as such could easily be extended to larger and more general cases. Like in [10], the 

number of ants (VMs) is set equal to the number of nodes. The properties of the host 

servers in the cluster are listed in Table 6.1, and of the virtual machines in Table 6.2. 

 

To compare the algorithm with other assignment schemes, this thesis compares 

the result with the round-robin, and a customer greedy heuristic schemes. In the round-

robin scheme, the VMs are simply distributed one at each node, and the relative free 

capacity  

 

Table 6.1: Cluster specification: MIPS and RAM capacities. 

Host ID Core MIPS RAM 

0 

1 

2 

3 

4 

1 

2 

2 

1 

2 

1000 

500 

300 

2000 

300 

2048 

2048 

2048 

2048 

2048 

 

Table 6.2: Virtual machine specification: requirements on MIPS and RAM. 

VM ID Core MIPS RAM 

0-4 1 300 512 

 

is shown in Table 6.3. In Tables 6.3, 6.4 and 6.5 the entries for each host are the 

percentage of free capacity, calculated as 1- (occupied capacity)/(total host capacity). The 

cost as defined in Equation (6.3), that is, the sum of the squared entries, is 1.3725. Taking 

the number of processors into account, the energy is 2.2025. 
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Table 6.3: Efficiency of round-robin assignment. 

Host ID No. VM 

Free 

Capacity 

w/o PEs 

Free Capacity 

With PEs 

0 

1 

2 

3 

4 

1 

1 

1 

1 

1 

0.7 

0.4 

0.0 

0.85 

0.0 

0.7 

0.7 

0.5 

0.85 

0.5 

Energy  1.37 2.20 

 

The round-robin and the greedy algorithms are deterministic, whereas the ACO 

algorithm is random. The algorithm may therefore give a different result at each run. This 

depends on the random number generator. Since the round-robin assignment scheme is 

deterministic and not an optimisation method, it is likely to perform poorly when there 

are VM with different requirements. In this example, however, the assignment is good, 

under the energy metric. By letting each customer choose server according to the largest 

amount of available processing capacity, the assignment is as shown in Table 6.4. The 

cost in this case is 3.65. The same value is achieved when taking the number of processors 

into account, since there is one VM per host. The greedy scheme is essentially what would 

be expected from a single iteration of the algorithm.  

 

The algorithm applied to the same problem gave the assignment shown in Table 

6.5. It should be noted that lower capacity hosts (1, 2 and 4) are assigned VMs, but not 

node 3. The minimum energy obtained is 1.32. After having reached the minimum energy, 

the algorithm was run for up to N = 10000 without showing any further improvement. 

Taking the number of processors into account, the energy is 2.15 for this policy. 
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Table 6.4: Efficiency of greedy assignment. 

Host ID No. VM 

Free 

Capacity 

w/o PEs 

Free 

Capacity with 

PEs 

0 

1 

2 

3 

4 

1 

0 

0 

4 

1 

0.7 

1.0 

1.0 

0.4 

1.0 

0.7 

1.0 

1.0 

0.4 

1.0 

Energy  3.65 3.65 

 

Table 6.5: Efficiency of ACO assignment. 

Host ID No. VM 

Free 

Capacity 

w/o PEs 

Free Capacity 

with PEs 

0 

1 

2 

3 

4 

2 

1 

1 

0 

1 

0.4 

0.4 

0.0 

1.0 

0.0 

0.4 

0.7 

0.5 

1.0 

0.5 

Energy  1.32 2.15 

 

The parameter values used are 𝛼 = 0.5, 𝛽	= 0.5, 𝜌 = 0.1 and 𝜏x = 0.1. The cut-off 

limit for the inverse of the cost was set (rather arbitrarily) to unity. Elaborating on the 

system parameters would probably influence the convergence of the algorithm greatly, 

but has not been studied in detail in this project. The convergence shown in Figure 6.1 

shows one possible run trace of the algorithm. It could, for example, also jump up and 

down before settling down. 
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Figure 6.1: The convergence of the algorithm in the example. 

 

The Figure shows that the first value is somewhat greedy (but still random) and come at 

a rather high cost, but once the minimum is reached, it stays there. 

6.5.1 CloudSim Implementations 

In the CloudSim experiment the goal was to keep things as simple as possible 

apart from the hosts and VMs. Only one user, one datacenter and one broker was therefore 

initiated. The VMs represent the ants, and the cloudlets jobs assigned to the VMs. The 

implementation uses 10 cloudlets, like in the code by [41]. These can of course be chosen 

differently, but the cloudlets are basically just a test to see that the cloud works. The CPU 

capacity is measured in MIPS (million instructions per second) in CloudSim - per 

processor (Pe). Thus, MIPS and RAM are properties used of the hosts in the datacenter 

(bandwidth and storage are not used). For the algorithm can use any unit, either GHz or 

MIPS, as exchangeable and give the same results. Host IDs are set manually, so these are 

defined according to Table 6.1. 

 

The three assignment strategies where implemented in CloudSim. CloudSim (3.0.3) in 

run under the Eclipse Mars environment. Additional java files used are a cloud simulation 

file, specifying details of VMs and hosts, and a VM allocation policy class containing the 

assignment logic. The CloudSim environment is used to verify the online version of the 

algorithm, and produces the same result as the offline C++ implementation. The cloud 

was defined as described in Tables 6.1 and 6.2. The round-robin assignment was 
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implemented by [41] and has been used for comparison. The simulation uses ten cloudlets 

of equal small sizes to illustrate that the clouds with the given assignment policies work 

properly. The round-robin assignment is shown in Table 6.3. For the greedy algorithm, 

the assignment policy is implemented so that each VM is assigned the host with the 

largest available MIPS (CPU capacity), possibly after some VM already has been 

assigned to the host. The assignment is in agreement with Table 6.4. The optimal 

assignment is implemented so that VMs can be assigned sequentially. This is necessary, 

because the algorithm described makes a repeated assignment of all VMs at once, whereas 

in CloudSim, VMs are assigned on a first-come first-served basis. Therefore, optimal 

result of the algorithm needs to reformulate as a policy, and in order to do so, we may use 

dynamic programming is used. 

 

Consider the energy Equation (6.4). This is the cost to minimise by assignments 

of VMs to hosts and also have the rather obvious restrictions on the problem 

 𝑟BD ≤ 	𝐶B,
ïÈ

DL.

 (6.6) 

 					𝑟BD ≥ 0, (6.7) 

for all i and j. The dynamic program can be written 

 𝑉} 𝑦 = min 𝑉}-. 𝑦 , 𝑉}-. 𝑦 + (1 −
𝑟}
𝐶}
)@  (6.8) 

where y = (1 − 𝑟BD/𝐶B)@
ïÈ
DL.

K
BL.  is the relative free capacity at each instant, and 𝑟}	is 

a new VM to be allocated to a host with capacity 𝐶} in step k. The dynamic programming 

formulation of the problem is the base for the implementation of the policy in CloudSim, 

since it is sequential as compared to the algorithm which is parallel. Thus, the energy 

Equation (6.4) is therefore implemented only implicitly in the simulation. 

 

The algorithm described assigns VMs so that the largest decrease in energy occurs 

for each VM assignment to a host. For example, the decrease is much greater when the 

free capacity decreases from 1 to 0.5, than when the capacity decreases from 0.5 to 0. 

Thus, heuristically (and knowing the capacities of the hosts), if the proportion of available 

MIPS goes below the threshold (50%), the second best match is used. 
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The policy aims at both minimising unutilised capacity in a host. It also aims at 

distributing VMs so that the load is less than unity. Since the energy in Equation (6.4) is 

a sum of squares, this leads to a minimum energy assignment. The result of the simulation 

is in agreement with Table 6.5. The assignment is in practice made as follows. For the 

first VM, the host with the lowest capacity able to accommodate the VM is found, and an 

assignment is made. In this case, the free capacity decreases from 1 to 0.5, or the energy 

contribution (which is the squared value), from 1 to 0.25. The second VM could be 

assigned to the same host. Then the energy contribution would decrease from 0.25 to 0. 

But assigning it to another host with the same capacity would give an energy decrease 

from 1 to 0.25 as well, which is lowers the energy sum more than the decrease from 0.25 

to 0 which is achieved when the VM is assigned to the first host. 

 

Continuing in this way, a situation where the decrease in energy is larger when 

assigning a VM to a host which already has a VM assigned, rather than assigning it to 

another host with larger free capacity. So for host with ID 0, the decrease in energy is 

larger by assigning two VMs to this host, as compared to assigning one VM to host 0 and 

one VM to host 3. The cost in the implemented in CloudSim therefore looks for the host 

for which the VM allocation gives the largest decrease in energy. This is used in the 

CloudSim policy as an optimisation parameter to find the best match. Figure 6.2 shows 

the energy for each of the three assignment strategies for an increasing number of standard 

size VMs in Table 6.2. The algorithm described in this study (green line) has lower energy 

than the other two, although the round-robin strategy (blue line) is close to optimal.  

 

 
Figure 6.2: Comparison of the efficiency the algorithms; greedy (red), round-robin 

(blue) and AOC (green). 
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6.6 Chapter Summary 

This chapter concludes that the proposed algorithm using ACO shows a better 

results compared to the most used algorithm in the market; Greedy and Round-Robin 

Algorithm. Since ACO is a meta-heuristic (randomised algorithm) it is difficult to give 

complexity estimates. However, in practice the algorithm can be reformulated and 

implemented as a dynamic program. 
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Chapter 7 

CONCLUSIONS AND FUTURE WORK 

In this final chapter, all the works in this thesis are concluded and in brief, explain 

regarding the future works that may improve the methods of the system in the future study. 

7.1 Conclusions 

This thesis investigates a logic for congestion control on network level based on 

SDN and NFV and showing that traffic aggregation on node level combined with optimal 

routing with respect to delay. Traffic aggregation is performed on node level using 

entropy of aggregate traffic streams as decision variable for aggregation and resource 

allocation. The optimal paths are selected to minimise either the total end-to-end delay or 

the maximum end-to-end delay. Note that path optimisation with respect to maximum 

end-to-end delay gives slightly better results compared to optimisation with respect to 

total delay and that the congestion control should be combined with admission control at 

access points and end-to-end flow control, such as TCP (or a modification of TCP). 

 

By comparing three policies for assigning VMs to hosts; round-robin, a customer 

greedy heuristic, and an optimised allocation policy derived from an ACO algorithm, 

these have been simulated in CloudSim. To measure a cloud operator’s cost, an energy 

function has been used, and the main objective has been cast-off to find as assignment 

policy that minimises this energy. When comparing the three assignment policies, the 

round-robin can be said to be both simple and efficient (has low energy) in this setup. The 

greedy assignment, where a customer can choose to allocate a VM where there are most 

available resources is rather expensive.  
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An optimal assignment can be found using the algorithm described in this thesis, 

which minimises the energy used to measure cloud operator costs. The benefit for the 

cloud operator is to minimise the possibility to add further VMs to the cloud without 

performance degradation or delays. All assignment policies have been simulated and 

tested in CloudSim, and the processing of cloudlets have in this setup been shown to be 

equally efficient. 

7.2 Future Work 

The congestion control algorithm proposed in this thesis use traffic measurements 

and predicted network states for aggregation and routing decisions. It gives measurable 

performance gains at reasonable traffic levels. It should therefore be combined with 

admission control to protect the network from severe overload and end-to-end flow 

control to achieve fairness and rate limitation on flow level. For future study, the 

relationship between different types of congestion control (hop, end-to-end, access, and 

transport level) should be investigated. 

 

Furthermore, since different services are sensitive with respect to different QoS 

measures, a composite metric for route optimisation should be investigated. It should also 

be intrusive to analyse control actions on different time scales. This may affect stability 

as well as the efficiency of the congestion control. Although long range dependent traffic 

is likely to attain a load level close to previous one, predictive congestion control can 

likely be improved by adequate modelling and computing forecast intervals, which 

should improve the resource utilisation further. 
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Appendix 1 

Mathematical Symbols – Explanations 

 

 𝑍 =
𝑉𝑎𝑟(𝑋)
𝑬(𝑋)

  

𝑬(𝑋) denotes the expectations and 𝑉𝑎𝑟(𝑋) denotes the variance of a random variable or 

process 𝑋. 

 
 𝜆 ∈ 𝑋 ± 𝑧\/@𝑠. 𝑛-./@   

(change notation) 𝜆 lies in the interval 𝑋 − 𝑧\/@𝑠. 𝑛-./@ , 𝑋 + 𝑧\/@𝑠. 𝑛-./@ , and 𝑧\/@ 
is the upper 1 − 𝛼/2  quantile of the standard normal distribution and 
𝑠@ = (𝑛 − 1)-. (𝑋B − 𝑋)@K

BL. 	is the sample variance estimating 𝜎@. 
 

 𝑝 𝑘 ≈ 𝐻 2𝐻 − 1 𝑘@�-@,  

≈ should be interpreted as “is approximately”, such as the ordinary least squares line 
approximating a random but correlated set of points. 
 

 𝑄QT. = max 0, 𝑄Q + 𝐴Q − 𝑆Q ,  

The max 	  operator takes on 0 whenever 𝑄Q + 𝐴Q − 𝑆Q < 0, and 𝑄Q + 𝐴Q − 𝑆Q otherwise 
(similarly for min 	 ). The operator may take an index, denoting the variable that should 
be changed to attain the functional maximum (or minimum), such as 
 

 𝑷 𝑀K > 𝑎 ≤ min
·Ëx

𝑒-K ·P-∧ · = exp −𝑛max
·Ëx

𝜃𝑎 −∧ 𝜃 .  

 𝑷 𝑄 > 𝑏 = 𝑷 sup
Q¬x

𝑊Q > 𝑏 .  

The 𝑷  operator denotes the probability (with respect to some probability measure). 
sup
Q¬x

𝑊Q > 𝑏 is the supremum (the largest value) of 𝑊Q for any 𝑡 > 0 such that 𝑊Q > 𝑏. 

This is a slight abuse of notation: Should the value of 𝑊Q never exceed 𝑏, the conditional 
supremum would be undefined, but its probability zero. 
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 𝑷 sup
Q¬x

𝑊Q > 𝑏 = 𝑷 ∪Q¬x 𝑊Q > 𝑏 ≥ sup𝐏
Q¬x

𝑊Q > 0 ,  

In this equation, the notation ∪Q¬x 𝑊Q > 𝑏  are all the events where 𝑊Q > 𝑏. You may 
think of it as the sum of the time segments 𝑡., 𝑡@ 	, 𝑡�, 𝑡ö , . . . , 𝑡K. 𝑡KT.  where for 𝑡 ∈
𝑡B, 𝑡BT.  it is true that 𝑊Q > 𝑏, and the sum divided by the total time of consideration 𝑇 

giving the probability. 
 

 𝑷 𝑀K > 𝑥 ≍ 𝑒-K³ ´ 𝑓𝑜𝑟	𝑥 > 𝜇  

 𝑷 𝑀K < 𝑥 ≍ 𝑒-K³ ´ 𝑓𝑜𝑟	𝑥 < 𝜇  

The notation ≍ means “is asymptotically equal to”, so that the right-hand side approaches 
the left-hand side as (in this case) 𝑛 →∞ (as 𝑛	approaches infinity). It does not indicate 
how fast the left-hand side approaches the right-hand side, but rather indicates the 
mathematical form “for large 𝑛”. 
 

 𝑀 𝜃 = 𝑬 𝑒·¸ = 𝑒·¸ 𝑓 𝑥 𝑑𝑥,  

The symbol 𝑑  signifies the differential operator (derivative) and is not in italics to 
distinguish it from the variable 𝑑, which can be anything. 
 

 𝐼À(𝑥) ≜
1 𝑖𝑓	𝑥 ∈ 𝐴
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

The symbol ≜ denotes identity, and can be read as “is defined by”. 
 

 𝑬 𝐼[KP,∞) 𝑛𝑀K = 𝑷 𝑛𝑀K > 𝑛𝑎   

The symbol 𝐼[KP,∞) is the indicator function, taking value 𝑛𝑀K in the interval [𝑛𝑎,∞) 
and 0 otherwise. 


