
© 2018 Perumal et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php  
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you 

hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission 
for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

International Journal of Nanomedicine 2018:13 6029–6038

International Journal of Nanomedicine Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
6029

O r I g I N a l  r e s e a r c h

open access to scientific and medical research

Open access Full Text article

http://dx.doi.org/10.2147/IJN.S171400

Identification of mycolic acid forms using 
surface-enhanced Raman scattering as a fast 
detection method for tuberculosis

Jayakumar Perumal1

Us Dinish1 
anne K Bendt2 
Agne Kazakeviciute1,3 
chit Yaw Fu1 
Irvine Lian Hao Ong4 
Malini Olivo1

1Laboratory of Bio-optical Imaging, 
Singapore Bioimaging Consortium, 
Agency for Science, Technology, 
and Research (A*STAR), Singapore; 
2Singapore Lipidomics Incubator, 
life sciences Institute, National 
University of Singapore, Singapore; 
3Department of statistical science, 
University College London, London, 
UK; 4Matralix Pte Ltd, Singapore

Background: Tuberculosis (TB) is the ninth leading cause of death worldwide and the leading 

cause from a single infectious agent, based on the WHO Global Tuberculosis Report in 2017. 

TB causes massive health care burdens in many parts of the world, specifically in the resource 

constrained developing world. Most deaths from TB could be prevented with cost effective 

early diagnosis and appropriate treatment. 

Purpose: Conventional TB detection methods are either too slow as it takes a few weeks for 

diagnosis or they lack the specificity and accuracy. Thus the objective of this study was to develop a 

fast and efficient detection for TB using surface enhanced Raman scattering (SERS) technique.

Methods: SERS spectra for different forms of mycolic acids (MAs) that are both synthetic origin 

and actual extracts from the mycobacteria species were obtained by label-free direct detection 

mode. Similarly, we collected SERS spectra for γ-irradiated whole bacteria (WB). Measurements 

were done using silver (Ag) coated silicon nanopillar (Ag SNP) as SERS substrate. 

Results: We report the SERS based detection of MA, which is a biomarker for mycobacteria 

species including Mycobacterium tuberculosis. For the first time, we also establish the SERS 

spectral characterization of the three major forms of MA – αMA, methoxy-MA, and keto-MA, in 

bacterial extracts and also in γ-irradiated WB. We validated our findings by mass spectrometry. 

SERS detection of these three forms of MA could be useful in differentiating pathogenic and 

nonpathogenic Mycobacterium spp. 

Conclusions: We have demonstrated the direct detection of three major forms of MA – αMA, 

methoxy-MA, and keto-MA, in two different types of MA extracts from MTB bacteria, namely 

delipidated MA and undelipidated MA and finally in γ-irradiated WB. In the near future, this 

study could pave the way for a fast and efficient detection method for TB, which is of high 

clinical significance.

Keywords: Mycobacterium tuberculosis, MTB, nontuberculosis mycobacteria, NTM, mycolic 

acid, MA, SERS, silver-coated silicon nanopillars, Ag SNPs, liquid chromatography mass 

spectrometry, LC-MS

Introduction
Tuberculosis (TB) is one of the oldest infectious diseases. Even though good anti-TB drug 

exists, TB remains a major global health threat in many underdeveloped regions. Accord-

ing to the World Health Organization, TB accounts for 1.4 million deaths annually and 

close to 10 million newly infected people worldwide.1–3 In order to stop the global emer-

gence of TB infections, rapid and reliable diagnosis of the causative agent, Mycobacterium 

tuberculosis (MTB), is crucial to begin adequate drug treatment. In countries where TB is 

endemic, the gold standard for diagnosis is still sputum-smear microscopy, followed by 

culturing of the bacteria. Its major limitations are low sensitivity and specificity (~60%) 
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and long incubation of up to 6 weeks.4,5 The primary need is also 

to distinguish TB from all the other conditions (ie, infections) 

that may cause very similar clinical symptoms.

Emerging novel technologies, such as the GeneXpert 

system, rely on DNA amplification and are considered costly 

and potentially risky options, due to the fragile nature of the 

analyte.6–8 A number of approaches have proposed the use 

of mycolic acid (MA) as a marker for TB detection.8,9 MAs 

are long-chain fatty acids characteristic of mycobacteria, 

including M. tuberculosis. Due to their high abundance (up 

to 50% of bacterium dry weight is made up of MA) and their 

stable and inert nature, they are attractive targets for the direct 

detection of mycobacteria. Since MAs are characteristic of 

mycobacteria and humans do not synthesize any similar 

molecules, the detection of MA in a patient sample can serve 

as a surrogate marker for the infection.

There is great chemical diversity within the molecular 

structures of MA, mainly caused by differences in their chain 

lengths (ie, number of carbon atoms) and in the type and 

position of different functional groups on their meromycolate 

chain. The three main forms are αMA (AMA), methoxy-MA 

(MMA), and keto-MA (KMA). In MTB, AMA accounts for 

roughly 50%, while KMA and MMA constitute around 25% 

each.8 The chemical diversity within MA has been success-

fully used for classification of different mycobacterial strains 

and species employing chemometric methods.8 Importantly, 

it has been demonstrated that while AMA and KMA exist 

in all mycobacteria, MMA seems to be present mainly in 

pathogenic species,10,11 though this is still a topic of debate.

Recently, surface-enhanced Raman scattering (SERS) 

has emerged as a highly promising bioanalytical tool, 

because it enhances vibrational “fingerprint” Raman spec-

tra of analytes, which allows for simultaneous multiplex 

detection with very high sensitivity.12–16 In this context, 

the use of SERS as a fast and reliable technique for the 

detection of MA holds significance. Raman spectroscopy 

has been successfully employed for the detection and char-

acterization of various bacteria and virus species.12,13,17,18 

In one of the pioneering studies of SERS for MA char-

acterization, Omar et al extracted MA from MTB and 

non-TB mycobacteria strains and compared it with chro-

matography, mass spectrometry, and nuclear magnetic 

resonance.19 They also employed statistical analysis on 

Raman spectra for successful classification and identifica-

tion of the mycobacterial species. In a follow-up study, 

Muhlig et al employed an easy and fast approach to disrupt 

mycobacteria and subsequently record its SERS spectra 

in a microfluidic platform. They successfully differenti-

ated bacterial species using spectral profiles of whole MA.20

Though these studies established the potential of SERS for 

the detection of MA, detailed analysis and spectral character-

ization of various forms of MA are still lacking, because their 

relative presence generates better understanding of the various 

Mycobacterium spp. In this study, we initially carried out SERS 

spectral characterization of AMA, KMA, and MMA using 

synthetic MA samples adsorbed on a silver (Ag)-coated silicon 

nanopillar (Ag SNP) substrate. After establishing the spectral 

profiles of these samples, we detected their presence in delipi-

dated (DL) and undelipidated (UDL) MA extracts from MTB 

and non-TB Mycobacterium spp. using the Ag-SNP substrate.

It should be noted that extraction of MA from mycobacte-

rial cells for subsequent analysis requires the use of solvents 

and involves a rather lengthy procedure.21 In this context, 

having a detection method sensitive enough to detect various 

forms of MA directly from whole bacteria without the need 

for extraction would greatly facilitate fast and efficient detec-

tion, which has great potential for clinical translation. In this 

scenario, herein we also demonstrate the direct detection 

and classification of KMA, MMA, and AMA in γ-irradiated 

whole bacteria. To the best of our knowledge, this is the first 

SERS study on the various forms of MA in DL and UDL 

bacterial extracts and also in whole bacteria.

Methods
Materials
All chemicals were obtained from Sigma-Aldrich and used 

as received. Field-emission scanning electron microscopy 

(FE-SEM; JEOL USA, Inc., Peabody, MA, USA) was used 

for imaging the SERS substrates. Methanol, ethanol, and 

chloroform were purchased from Sigma-Aldrich. Metal 

targets for Ag deposition were obtained from Ted Pella. 

Synthetically pure MA forms were obtained from Avanti 

Polar Lipids. All the MTB used in the study was γ-irradiated 

and obtained from BEI Resources.

extraction protocol
The H37Rv strain of γ-irradiated whole cells (NR14819, 

belonging to the MTB family) were used for MA extraction 

as described in the product-information sheet.22 These bac-

teria were inactivated by exposure to 2.4 mrad of ionizing 

γ-irradiation using a 137Cs source. Confirmation of inactiva-

tion was attained with Alamar blue assay. Delipidated MA 

extraction protocol from the MTB bacteria is described in 

detail, in the Supplementary material.

silicon nanopillar-substrate fabrication
In brief, we did not use any sophisticated lithographic pro-

cesses, such as mask aligners, photolithography, or E-beam 
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lithography, to fabricate the nanostructures. Instead, we tapped 

into the anomaly that is inherent in semiconductor processing 

during the silicon-etching phase (Bosch process). During this 

phase, generation of Si grass takes place if the etching condi-

tions are not controlled. In our study, we capitalized on this 

Figure 1 (A) FE-SEM of Ag-SNP SERS substrate. Scale bar 1 µm. (B) representative 
SERS spectra of 4-ATP molecule with a prominent peak at 1,078 cm−1. (C) sers 
mapping shows the minimum variation in SERS enhancement for 4-ATP on the Ag 
SNP substrate. Scale bar 50 µm.
Abbreviations: ATP, aminothiophenol; FE-SEM, field-emission scanning electron 
microscopy; SERS, surface-enhanced Raman scattering; SNP, silicon nanopillar.

and made conditions favorable for uniform Si-grass growth. 

Mainly, we used SF
6
 and O

2
 as the etching media in the induc-

tively coupled plasma etcher for our application. By control-

ling etching time and oxide thickness on the Si wafer, we were 

able successfully to generate randomly arranged nanoscale Si 

grass with spatial distribution ,100 nm and length ~200–220 

nm. The resultant SNP substrate was coated with 150 nm 

Ag using an E-beam evaporation system. Scanning electron 

microscopy of the substrate is shown in Figure 1.

raman probe
4-Aminothiophenol (4-ATP) was used as the Raman-active 

molecule to estimate the performance of the fabricated 

SERS substrate. First, 100 µM 4-ATP (in 100% ethanol) 

was prepared and sonicated for 10 minutes to dissolve the 

analyte. Then, Ag-SNP substrates with randomly distrib-

uted SNPs were incubated with 4-ATP solution for 1 hour 

and subsequently washed with pure ethanol. This resulted 

in the formation of a monolayer of 4-ATP on the Ag-SNP 

substrates. Throughout the experiment, we monitored SERS 

intensity at a 1,078 cm−1 peak from 4-ATP to evaluate the 

reproducibility of the substrates.

sers measurement
We used a Renishaw InVia Raman microscope with 785 nm 

excitation for acquisition of SERS spectra. This Raman system 

was integrated with a microscope (Leica), and laser light was 

coupled through an objective lens (50×, 0.75 nA), which was 

used to excite the sample and also to collect the scattered Raman 

signal. The dominant Rayleigh scattering was blocked with the 

help of a notch filter, and the beam spot on the sample was ~1 

µm. Integration time was fixed at 10 seconds for spectral acqui-

sition. For SERS measurement, extracted MA was dissolved in 

chloroform:methanol (9:1) medium. Whole MTB bacteria were 

also suspended in the same solvent medium. For each SERS 

measurement, about 5 µL sample was dropped onto the Ag-SNP 

substrate. For each sample, several scans were collected at vari-

ous spots on the SERS substrate. After collecting SERS spectra 

from many locations of the substrates, postprocessing was done 

using WiRE 3.4 software (Renishaw plc., Gloucestershire, 

UK) associated with the instrument. Background subtraction 

was done by cubic spine interpolation. The instrument was 

calibrated with a standard silicon signal at 520 cm−1.

Supporting information
See Supplementary material for details on vibrational mode 

assignment of obtained SERS spectra, extraction of MA, 

mass spectroscopy, chemometric data analysis, and substrate-

reproducibility study.
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Results and discussion
SERS substrate characterization
Field-emission scanning electron microscopy of Ag SNPs is 

shown in Figure 1A and indicates the uniform distribution of 

the nanostructures. Intensity mapping of the 1,078 cm−1 peak 

from 4-ATP was used to estimate the uniformity in SERS 

enhancement from the substrate. Figure 1B shows repre-

sentative SERS spectra of 4-ATP on Ag SNPs. As shown in 

Figure 1C, the approximate mapping area was 250×250 µm. 

We were able clearly to observe uniform SERS enhance-

ment all over the substrate. The high enhancement region 

is shown in bright red, while relatively low-enhancement 

regions are shown in shades of black, where dark patches 

correspond to the area devoid of nanostructures. On average, 

estimated variation in signal enhancement was ,10%, which 

is considered quite good in terms of reproducibility. We also 

evaluated substrate reproducibility using KMA molecules 

(Figure S1).

SERS characterization of synthetic MA
We established SERS spectral profiles of various forms of 

MA, as shown in Figure 2A. Notable peaks that consistently 

represented KMA were 713, 801, 854, 1,006, 1,132, 1,235, 

1,276, 1,388, 1,452, 1,561, 1,589, and 1,629 cm−1. Table S1 

lists the vibrational modes corresponding to these bands that 

have high intensities.14,16–20 In the case of AMA and MMA, 

both possessed overlapping Raman bands, particularly at 760, 

808, 838, 857, 932, 964, 1,003, 1,139, 1,159, 1,258, 1,376, 

1,493, 1,598, and 1,632 cm−1.

Since the spectral profiles of AMA and MM are quite 

similar, chemometric methods were employed for their dif-

ferentiation. Supervised classification was used to distinguish 

AMA observations from MMA. Since the data set was 

multidimensional, ie, the number of variables (wave num-

bers at which we recorded SERS intensity) was much higher 

than the number of AMA and MMA observations, we had to 

apply dimension-reduction techniques prior to classification. 

We used principal-component analysis and functional 

principal-component analysis for dimensionality reduction 

and logistic regression, as well as linear discriminant analysis 

for classification. As a result, in external validation of the 

four methods, we were able to distinguish AMA from MMA 

with 90% accuracy. Details of the analysis are provided in 

Tables S2 and S3.

SERS study of MA extracts from MTB
After demonstrating the power of differentiating MA using 

chemometric analysis, similar analysis was also performed 

for MA in the bacterial extracts. Extraction of MA was 

performed using an established protocol.19 Two different 

types of MA extracts were prepared: DL MA, which results 

in the purest form of MA obtained from MTB and contains 

only the covalently bound MA from the cell wall; and UDL 

MA, which involves a much simpler extraction process and 

hence contains cell-wall phospholipids and noncovalently 

bound MA associated with the bacterial cell wall, in addi-

tion to covalently bound MA. SERS spectra of these MAs 

are shown in Figure 2B. The spectra of DL MA exhibited 

consistent peaks at 857, 932, 964, 1,003, 1,032, 1,073, 1,128, 

1,160, 1,207, 1,235, 1,258, 1,348, 1,385, 1,445, 1,572, 1,598, 

and 1,632 cm−1, while for UDL MA salient peaks were at 857, 

1,003, 1,032, 1,061, 1,131, 1,160, 1,231, 1,261, 1,441, 1,492, 

1,580, and 1,630 cm−1. Vibrational mode assignments for the 

aforementioned peaks are included in Table S1.
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Figure 2 Average SERS spectra of (A) synthetic pure AMA, KMA, and MMA, and (B) delipidated Ma from MTB bacterial extract, undelipidated Ma, and γ-irradiated whole 
bacteria.
Abbreviations: aMa, α-mycolic acid; ATP, aminothiophenol; DL, delipidated; KMA, keto-MA; MMA, methoxy-MA; MTB, Mycobacterium tuberculosis; SERS, surface-enhanced 
Raman scattering; UDL, undelipidated; WB, whole Bacteria.
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In comparison with the spectra from synthetic MA, the 

following corresponding bands were observed in the extracts: 

857, 932, 1,003, 1,159, 1,354, and 1,598 cm−1 from AMA 

and MMA, and 1,132, 1,235, and 1,452 cm−1 from KMA. 

As shown in Figure 3, we validated the presence of three 

MA forms in all bacterial extracts using mass spectrometry, 

which is the most commonly used analytical tool to detect 

and quantify MA. As expected, the vast majority of MAs 

were AMA (53%–59%), followed by KMA (28%–33%) and 

MMA (12%–14%).

SERS study of MA in intact MTB
SERS spectra of whole, intact MTB were obtained without 

any extraction method for disintegrating the cell mem-

brane. Prominent Raman bands were observed at 714, 857, 

918, ~1,000, ~1,025, 1,130, 1,141, 1,231, 1,245, 1,314, 1,343, 

1,450, 1,585, and 1,636 cm−1 (Figure 2B). It was noted that 

SERS spectra of whole MTB-derived MA exhibited broader 

peaks, possibly as a result of contributions from multiple lipid 

components present in the bacteria that closely resembled 

targeted MA. This may have included various types of 

phospholipids and total MA that were covalently bound to 

the cell wall and also membrane proteins.

We observed specific Raman bands corresponding to dif-

ferent forms of MA in whole MTB without a sophisticated 

extraction protocol or any preprocessing, which is highly 

promising. The relative ratios of the three forms of MA 

are potential indicators of the pathogenicity of MTB. For 

instance, pathogenic TB-causing MTB strains have been 

described as having a higher relative ratio of MMA to the 

other MA forms.10,11

Conclusion
In this proof-of-concept study, SERS spectra of three major 

forms of MA – AMA, MMA, and KMA – which consti-

tute the total MA present in mycobacteria, were identified 

successfully using Ag-SNP SERS substrates. Label-free 

MA characterization was performed for the MA derived 

from three different sources. To the best of the authors’ 

knowledge, this is the first such study to demonstrate SERS 

spectra of various forms of MA. Currently, we are developing 

sophisticated analytical and statistical tools to evaluate the 

relative abundance of these forms of MA. In future, this study 

might pave the way for a facile, highly adoptable, fast, and 

cost-effective analytical technique to identify the presence 

of different MA forms and their relative abundance directly 

from whole bacteria, without involving any laborious extrac-

tion methods. The potential ability of the proposed technique 

to detect the presence of TB directly from sputum samples 

of suspect carriers, especially in resource-scarce places and 

developing countries where expensive specialized equipment 

is unavailable, is highly promising.
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Supplementary materials
Extraction of mycolic acid from 
delipidated bacteria
For the initial delipidation of bacteria, 100 mg bacteria was 

treated with 1 mL chloroform–methanol (2:1 v:v) in Pyrex 

glass culture tubes and shaken overnight at 40°C to inactivate 

the pathogens and extract free lipids. Two blanks containing 

only 1 mL chloroform–methanol (2:1 v:v) were also included 

in the extraction to serve as controls. After overnight incuba-

tion, the mixtures were transferred to screw-capped tubes and 

rinsed once with 500 µL H
2
O. Delipidation was carried out by 

vortexing the mixture thoroughly for 1 minute and centrifug-

ing at 14,000 rpm for 10 minutes at room temperature. The 

lower organic phase (containing free lipids) was removed. 

To reduce ion suppression by phospholipids and hydrolyzed 

fatty acids, a second delipidation with additional 500 µL 

chloroform was carried out by repeating the above steps. 

The upper aqueous phase and the lower organic phase were 

carefully removed. The intermediate layer was transferred 

to a fresh tube and dried.

These delipidated bacteria were then used for mycolic 

acid (MA) extraction, as described by Rivera-Betancourt et 

al5 (Dluhy protocol). In brief, 2 mL 20% methanolic KOH 

was added to 100 mg delipidated cells. Samples were incu-

bated at 80°C for 30 minutes, then autoclaved at 121°C for 

30 minutes. Chloroform (2 mL) was added, followed by 

1.5 mL 50% HCl. Samples were centrifuged at 2,000 rpm at 

room temperature for 10 minutes. The chloroform layer was 

collected and air-dried overnight at room temperature.

Vibrational mode assignment for SERS 
spectra obtained
Vibrational mode assignments of the various surface-

enhanced Raman scattering (SERS) peaks obtained from 

Mycobacterium tuberculosis (MTB) extracts and the whole 

MTB are listed in Table S1.
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Figure S1 SERS intensity of KMA on Ag SNPs.
Notes: (A) Average SERS signal intensity for the 1,006 cm−1 peak with error bar indicating SD; (B) individual spectra from different substrate locations indicate their high 
reproducibility.
Abbreviations: KMA, keto-mycolic acid; SERS, surface-enhanced Raman scattering; SNPs, silicon nanopillars.
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Liquid chromatography mass-
spectrometry (LC-MS) analysis of MA
LC-MS/MS analysis was conducted on an Agilent 6490 

mass spectrometer coupled to an Agilent 1290 Infinity 

LC. Electrospray ionization in negative-ion mode using 

multiple-reaction monitoring was performed: dwelling 

time 15 seconds, fragmentor 380 V, collision energy 60 V, 

cell-accelerator voltage 5 V, and MS1 and MS2 unit resolu-

tion. Source parameters were gas temperature 2,000°C, gas 

flow 14 L/min, nebulizer 350 PSIG, sheath gas temperature 

3,500°C, and sheath gas flow 11 L/min. High-performance 

LC conditions for the analysis of MA were carried out as 

follows: a Maisch Reprospher C
8
-DE column of 1.8 µm 

(50×2 mm) was used to separate lipids. Methanol:5 mM 

ammonium acetate (99:1) and isopropanol:hexane:5 mM 

ammonium acetate (79:20:1) were used as mobile phases 

A and B, respectively, under gradient elution: 100% A for 

1 minute, linearly changed to 100% B in 12 minutes, and 

maintained for 1 minute, then switched linearly to 100% A 

in 0.1 minute, followed by equilibration for 1.9 minutes. 

Column temperature was kept at 450°C throughout the 

analysis. Extracted MA was resuspended in mobile phase B 

and samples injected at a volume of 2 µL into the LC-MS/

MS system at a flow rate of 0.3 mL/min. Agilent MassHunter 

workstation software (version B.08.00/build 8.0.8023.5 SP1) 

was used for LC-MS data acquisition and analysis. The signal 

intensity of each multiple-reaction-monitoring value was 

normalized to the total MA count or an internal standard for 

quantitative comparisons.

LC-MS was used to quantify a total of 116 molecular 

species comprising the three classes αMA (AMA; 60), 

keto-MA (KMA; 34), and methoxy-MA (MMA; 22) isolated 

from M. tuberculosis H37Rv cells following the Dluhy pro-

tocol. Concentration was 5 µg/mL. Relative abundance of 

each molecular species was calculated by normalizing against 

the total count for its respective class.

Chemometric data analysis
Before analysis, we processed spectral data, including 

normalization, smoothing, scaling, and concentration for 

differentiation of AMA and MMA. Note that logistic regres-

sion (LR) methods can be used directly only for binary 

(two-class) classification, while linear discriminant analysis 

(LDA) methods can be used for differentiating any number 

of classes that may be useful when differentiating AMA vs 

MMA vs KMA.

Validation
To test various data classification algorithms on the data, the 

following validation strategy was used:

1. First, the data are randomly split into a training set 

(~80% of both groups) and a validation set (~20% of 

both groups).

2. The training set is used to train the classifier. This is done 

by randomly dividing the training set into two parts, one 

of which is used for estimating the model parameters and 

the other for testing. The final estimates of model param-

eters are set to those that minimize the misclassification 

error on the testing set.

3. The validation set is used to calculate the misclassifica-

tion rate.

4. Steps 1–3 represent one run: 100 such runs are done to 

account for the effects of random division of the data set, 

and the average misclassification rate is then reported.

The results of various classification methods are presented 

in Table S2. The functional methods performed similarly 

to their nonfunctional counterparts. When optimizing the 

parameter L, a tiebreaker was performed by choosing the 

Table S1 Vibrational mode assignments for SERS peaks obtained 
from various bacterial samples

SERS signal (cm−1) Band assignment

713 (ch2) in-phase rocking
854–857 √(CCO) in-phase stretching mode
932, 964 (ch3) rocking
1,003–1,006 √(CCO) out-of-phase stretching mode
1,128–1,132 (c–c) stretch
1,159 (c–c) stretch
1,235 (COH) bending mode
1,258 (COH) bending mode
1,354 (ch2) wagging
1,385–1,388 Symmetric (COO−) vibration
1,445, 1,452 (ch2) bend
1,561, 1,572 (c=c) stretch
1,589 (c=O) stretch; (C=c) stretch
1,598 (c=O) stretch; (C=c) stretch
1,629–1,632 (c=N) vibration; amide

Note: Data from references 1 to 6.
Abbreviation: SERS, surface-enhanced Raman scattering.

Table S2 Mean error rate (ER) and SD for various classification 
methods for aMa vs MMa

Classification method Runs Parameters ER, %

PCA-LR 100 l=10 33.55±8.55
PCA-LDA 100 l=10 34.02±8.49
FPCA-LR 100 l=9 33.71±8.26
FPCA-LDA 100 l=11 34.29±8.62

Note: The Parameters column in Table S2 contains the information on the number 
of retained principal components for both PCA-LR and PCA-LDA methods at the 
last run and the number of functional principal components for both FPCA-LR and 
FPCA-LDA methods at the last run.
Abbreviations: aMa, α-mycolic acid; FPCA, functional PCA; LDA, linear 
discriminant analysis; LR, logistic regression; MMA, methoxy-MA; PCA, principal-
component analysis.
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maximum number L from the set {1,2, L
max

}. At each itera-

tion (ie, for each run), the maximal candidate value of L was 

set to L
max

, where L
max

 is the maximal number of compo-

nents, explaining at least 1% of variance in the training set. 

This was done to avoid having a large number of retained 

principal components, which would imply overfitting to the 

training set.

external validation
For external validation, we joined the AMA and MMA data 

sets to obtain one big training data set, on which we trained 

the classifiers. Evaluation of the performance of each of the 

classifiers was then done on the third external data set, which 

contained ten MMA observations. In the classifier training 

stage, the number of retained principal components was L=2. 

This was because the third (validation) data set seemed to 

differ a lot from the first two. Therefore, by using L=2, we 

were able to use only the minimal information of the joint 

training set for classification of the data in the validation set.

Results of the external validation are presented in 

Table S3. As we can see from Table S3, PCA-LR and PCA-

LDA methods together with their functional equivalents 

had 90% correct label predictions. This demonstrated that 

in addition to the standard binary-classification methods 

for high-dimensional data, such as PCA-LR or PCA-LDA, 

functional classification methods, such as FPCA-LR and 

FPCA-LDA, were also used successfully for differentiation 

of AMA and MMA. The functional classification methods 

outperformed the standard nonfunctional ones in the presence 

of high measurement noise or outliers, for example.

Reproducibility study of Ag-SNP 
substrate using KMA
In order to reemphasize reproducibility, we acquired KMA 

spectra from different locations. Figure S1A shows the aver-

age SERS-signal intensity for the KMA peak at 1,006 cm−1, 

with the error bar indicating the SD. Variation was found to 

be within 10%. Figure S1B shows individual spectra from dif-

ferent substrate locations indicating high reproducibility.
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Table S3 Error rate (ER) for external validation of various classification methods for AMA vs MMA forms

Observation True label PCA-LR PCA-LDA FPCA-LR FPCA-LDA

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 1 1 1 1
7 0 0 0 0 0
8 0 0 0 0 0
9 0 0 0 0 0
10 0 0 0 0 0
er (%) – 10 10 10 10
Accuracy (%) – 90 90 90 90

Notes: True label = 0 for MMA observation and 1 for AMA observation. The 0/1 values in other columns represent the predicted labels for a given observation using the 
method for a specific column. For example, the value 0 in the first row under PCA-LR column means that by using the PCA-LR method we predicted that the first observation 
was MMa. For all the methods, the number of retained principal components (or functional principal components) was l=2. l=2 represents that only the first two principal 
components (or functional principal components) was retained.
Abbreviations: aMa, α-mycolic acid; FPCA, functional PCA; LDA, linear discriminant analysis LR, logistic regression; MMA, methoxy-MA; PCA, principal component 
analysis.
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