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On the stability of the Hartmann layer
R. J. Lingwooda) and T. Alboussière
Department of Engineering, University of Cambridge, Trumpington Street,
Cambridge CB2 1PZ, United Kingdom

~Received 22 December 1998; accepted 23 April 1999!

In this paper we are concerned with the theoretical stability of the laminar Hartmann layer, which
forms at the boundary of any electrically conducting fluid flow under a steady magnetic field at high
Hartmann number. We perform both linear and energetic stability analyses to investigate the
stability of the Hartmann layer to both infinitesimal and finite perturbations. We find that there is
more than three orders of magnitude between the critical Reynolds numbers from these two
analyses. Our interest is motivated by experimental results on the laminar–turbulent transition of
ducted magnetohydrodynamics flows. Importantly, all existing experiments have considered the
laminarization of a turbulent flow, rather than transition to turbulence. The fact that experiments
have considered laminarization, rather than transition, implies that the threshold value of the
Reynolds number for stability of the Hartmann layer to finite-amplitude, rather than infinitesimal,
disturbances is in better agreement with the experimental threshold values. In fact, the critical
Reynolds number for linear instability of the Hartmann layer is more than two orders of magnitude
larger than experimentally observed threshold values. It seems that this large discrepancy has led to
the belief that stability or instability of the Hartmann layer has no bearing on whether the flow is
laminar or turbulent. In this paper, we give support to Lock’s hypothesis@Proc. R. Soc. London, Ser.
A 233, 105 ~1955!# that ‘‘transition’’ is due to the stability characteristics of the Hartmann layer
with respect to large-amplitude disturbances. ©1999 American Institute of Physics.
@S1070-6631~99!03708-3#

I. INTRODUCTION

The Hartmann layer is a fundamental element of magne-
tohydrodynamics~MHD!. It develops along any boundary in
an electrically conducting fluid where the magnetic field is
not tangential to the boundary and it is where most of the
shear stress is concentrated. More than being simply a hy-
drodynamical boundary layer, it provides a path for electrical
currents that close within the core of the flow; the Hartmann
layer thus controls the whole flow. The stability and the state
~i.e., whether laminar or turbulent! of the Hartmann layer are
important for two reasons. First, as with a classical boundary
layer, the transfer of heat or mass through the layer depends
fundamentally on its state. Second, if a laminar Hartmann
layer is destabilized, the global electric circulation is affected
and the flow may completely change in nature and intensity.
In general, application of a magnetic field to a boundary
layer has two effects on the stability of the layer. First, the
magnetic field acts to accelerate the damping of perturba-
tions through Joule dissipation and, second, the field deforms
the laminar velocity profile and hence changes the hydrody-
namical stability characteristics of the boundary layer.

Examples of applications in which the stability of the
Hartmann layers may be of importance are numerous. For
instance, in the field of crystal growth, steady magnetic fields
are used essentially to stabilize the flow and, to a lesser ex-
tent, to control the dopant distribution in the final product.

The stability of Hartmann layers must be ensured. In fact,
this stability requirement could be a criterion for determining
the minimum magnetic field intensity to apply, although as
yet no direct evidence of this potential cause of instability
has been shown. Metallurgy and, in particular, steel casting
makes use of steady~or slowly sliding! magnetic fields. The
nature of the flow is not well known, but the velocities and
dimensions are large, of the order of a meter per second and
a meter, respectively. In such cases, the Hartmann-layer sta-
bility may be of primary importance in determining the glo-
bal damping effect of the magnetic field. In fusion-reactor
projects, a so-called liquid-metal blanket surrounds the
plasma and is subjected to an intense magnetic field of sev-
eral teslas. The natural convection, which develops due to
the large heat flux received, produces large velocities and
therefore the stability of the Hartmann layer should be inves-
tigated. Finally, the case of MHD-generated two-
dimensional turbulence is linked to the state of the Hartmann
layer. It is generally assumed that the layer is laminar and
therefore simply provides a ‘‘frictional’’ linear damping
force on the two-dimensional core turbulence. If, however,
the Hartmann layer becomes unstable, this linear term should
be replaced by another model.

The concept of the Hartmann layer was introduced by
Hartmann and Lazarus.1 Its thicknessd* depends only on
the fluid’s properties and the magnetic field intensityB* . If
H* is a typical length scale of the flow,d* /H* ;Ha21,
where the Hartmann number is given by Ha
5(s* /(r* n* ))1/2B* H* . Here the asterisks denote dimen-a!Electronic mail: rjl2@eng.cam.ac.uk
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sional quantities,r* is the fluid density,n* is the kinematic
viscosity, ands* is the electrical conductivity. When a typi-
cal velocityU* is considered in a cavity, a Reynolds number
can be formed Re5U*H* /n* . As recognized first by
Lundquist,2 the ratio Re/Ha is the Reynolds number based on
the Hartmann-layer thickness and therefore should be the
governing parameter for the stability of the layer. Lock3 pro-
vided the first linear stability analysis of the Hartmann layer.
In his study, he neglected the Lorentz force acting on the
disturbances and found that the critical ratio Re/Ha seems to
converge toward 5.03104 in the limit of high Hartmann
number. Roberts4 provides an approximate solution for the
critical Reynolds number ~46 200!. More recently,
Takashima5,6 performed a linear stability analysis for Poi-
seuille and Couette flow under a transverse magnetic field,
taking into account the Lorentz force on the disturbances and
finite values of the magnetic Prandtl number, for Hartmann
numbers up to 200. He found in both cases that the critical
ratio Re/Ha converges toward 48 311.016 for high Hartmann
numbers at low magnetic Prandtl number and that increasing
the magnetic Prandtl number is slightly destabilizing. The
common feature of all these stability studies is that the mag-
netic field is strictly perpendicular to the boundary and that
the analysis has been performed for a more ‘‘global’’ flow
than an isolated Hartmann layer; namely, a Poiseuille or
Couette flow.

The experimental results reported in the literature are not
explicitly dedicated to the stability of the Hartmann layer.
Several authors~e.g., Hartmann and Lazarus,1 Murgatroyd,7

Lykoudis,8 and Branover9! determine whether a duct flow is
laminar or turbulent in the presence of a transverse magnetic
field. The flow is turbulent before entering the gap between
the magnet poles and what is really recorded is the smallest
value of transverse magnetic field necessary to laminarize the
flow. ~In general the difference between transition and lami-
narization has not been emphasized in the literature; with a
few exceptions, laminarization is rather loosely called tran-
sition without qualification.! The value reported by all ex-
perimentalists for this laminarization corresponds to a ratio
150,Re /Ha,250 for sufficiently large Hartmann numbers
and electrically insulating walls. This result is extremely ro-
bust, in the sense that it is valid for rectangular cross sections
of any aspect ratio and also for circular pipes. Despite the
fact that experiments show that Re/Ha is a consistent indica-
tor of laminarization, it is not generally accepted that insta-
bility of the Hartmann layers controls the process. At the end
of his paper, Lock3 expresses his concerns about the discrep-
ancy between his critical Reynolds number, derived from a
linear stability analysis, and experimental evidence and ar-
gues that instability to finite-amplitude disturbances may re-
solve the difference.

The structure of the paper is as follows. In Sec. II we
define the configuration. Section III is devoted to the linear
stability analysis, including investigation of the effect of in-
clining the magnetic field away from the wall-normal direc-
tion. In Sec IV the energetic stability of the Hartmann layer
is examined for the first time. These results are followed by
a discussion and conclusions in Sec. V.

II. THE BASE FLOW

Under the assumption of a small magnetic Reynolds
number, the dimensional Navier–Stokes and continuity
equations for an electrically conducting fluid with an im-
posed magnetic field vectorB* are

]u*

]t*
1~u* –“ !u* 52

1

r*
“p* 1

1

r* ~ j* ∧B* !

1n* ¹2u* , “–u* 50, ~2.1!

where the asterisks denote dimensional quantities,t* is time,
u* is the velocity vector field,p* is the pressure field, andj*
is the current density vector field. Ohm’s law for a moving
electrically conducting medium is given by

j* 5s* ~2“w* 1u* ∧B* !, “–j* 50, ~2.2!

wherew* is the electric potential field.
The configuration considered is a Hartmann layer, iso-

lated from a global MHD flow~see Fig. 1!. The boundary is
assumed to be flat at the scale of the Hartmann-layer thick-
ness and the tangential free-stream velocity vector fieldU*̀ is
taken to be uniform. The uniform magnetic fieldB* is not
parallel to the boundary.

The nondimensionalizing velocity scale isU *̀ , which is
the free-stream velocity, and the length scale isd*
5(n* r* /s* )1/2/Bz* , which is the boundary-layer length
scale and whereBz* is the magnitude of the wall-normal
component ofB* . Time, pressure, magnetic field, and cur-
rent density scales ared* /U *̀ , r* U *̀ 2, Bz* , ands* U *̀ Bz* ,
respectively. The Reynolds numberR5U *̀ d* /n*
5(s* n* /r* )21/2U *̀ /Bz* ~Re/Ha in the notation of Sec. I! is
the single dimensionless parameter for the Hartmann layer.
One may think that the Stuart number~also called the inter-
action parameter! N5s* Bz*

2d* /(r* U *̀ ) is also an indepen-
dent parameter, but it can be shown thatN51/R. The prob-
lem is formulated in Cartesian coordinates withx denoting
the streamwise direction,y denoting the spanwise direction,
andz denoting the wall-normal direction.

The dimensionless steady solutions for the velocity and
current density vector fields are given by

U5@U~z!,0,0#5@12e2z,0,0#,
~2.3!J5@0,J~z!,0#5@0,e2z,0#,

FIG. 1. The studied configuration.
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and shown in Fig. 2. This ideal expression for the Hartmann
layer solution is appropriate for the study of the stability of
any boundary layer in the limit of high Hartmann number,
provided the magnetic field is not parallel to the wall. In
reality the free-stream velocity may not be strictly uniform,
but can be considered as such over a much larger length
scale than the Hartmann-layer thickness. Also, instead of
vanishing in the core, the value of the current density may
converge toward a finite value, in which case a pressure gra-
dient would balance the Lorentz force in the core. This finite
value and the associated pressure gradient would not affect
the stability analysis and can be subtracted to recover expres-
sion ~2.3!.

III. LINEAR STABILITY ANALYSIS

A. Formulation

In this section we consider the effect of superimposing
an infinitesimal disturbance on the steady fields. The instan-
taneous velocities, pressure, current density, and electric po-
tential are given by

u~x,y,z,t !5U~z!1ũ~x,y,z,t !,

v~x,y,z,t !5 ṽ~x,y,z,t !,

w~x,y,z,t !5w̃~x,y,z,t !,
~3.1!

p~x,y,z,t !5P~z!1 p̃~x,y,z,t !,

j ~x,y,z,t !5J~z!1 j̃ ~x,y,z,t !,

w~x,y,z,t !5F~z!1w̃~x,y,z,t !,

whereũ, ṽ, w̃, p̃, j̃ , andw̃ are the small perturbation quan-
tities. The perturbation quantities take the following normal-
mode form:

@ ũ,ṽ,w̃,p̃, j̃ ,w̃#T5@ û~z!,v̂~z!,ŵ~z!,p̂~z!, ĵ ~z!,ŵ~z!#T

3exp@ i ~kxx1kyy2vt !#, ~3.2!

because the base flow is invariant inx, y, andt. The dimen-
sionless forms of~2.1! and ~2.2! are linearized with respect
to the perturbation quantities, which for each solution set
(kx ,ky ,v,R) results in an eighth-order system of ordinary-
differential equations in (û,v̂,ŵ,p̂,ŵ). Here, the full depen-
dence ofû(z) for example, is given byû(z,kx ,ky ,v,R) and
û is the spectral representation of thex velocity, kx and ky

are the streamwise and spanwise wave numbers, respec-
tively, andv is the frequency of the perturbation. The real
part of ~3.2! is taken to obtain physical quantities. The per-
turbation equations can be written as a set of eight first-order
ordinary differential equations in the following transformed
variables:

f1~z,kx ,ky ,v,R!5kzû1kyv̂,

f2~z,kx ,ky ,v,R!5kxû81kyv̂8,

f3~z,kx ,ky ,v,R!5ŵ, f4~z,kx ,ky ,v,R!5 p̂,
~3.3!f5~z,kx ,ky ,v,R!5kxv̂2kyû,

f6~z,kx ,ky ,v,R!5kxv̂82kyû8,

f7~z,kx ,ky ,v,R!5ŵ, f8~z,kx ,ky ,v,R!5ŵ8,

where the primes denote differentiation with respect toz. Let
us first perform the analysis for a magnetic field purely per-
pendicular to the wall:B5ez . In the transformed variables,
the perturbation equations are

S f18

f28

f38

f48

f58

f68

f78

f88

D 5S 0
A11
2 i
0
0
0
0
0

1
0
0

2 i /R
0
0
0
0

0
RkxU8

0
2A/R

0
2RkyU8

0
0

0
iRk2

0
0
0
0
0
0

0
0
0
0
0

A11
0
i

0
0
0
0
1
0
0
0

0
0
0
0
0

2 ik2

0
k2

0
0
0
0
0
0
1
0

D S f1

f2

f3

f4

f5

f6

f7

f8

D , ~3.4!

FIG. 2. The base flow: —U(z); - - -J(z).
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wherek25kx
21ky

2 andA5 iR(kxU2v)1k2.
This system has eight independent solutionsf i

j

(z,kx ,ky ,v,R) ( i 5 j 51,2,3,...,8), where the subscripti in-
dicates one of the eight transformed variables and the super-
script j indicates one of the eight solutions. These solutions
cannot be found analytically because the 838 matrix de-
pends onz through the base flowU, but the perturbation
equations in the limitz→`, whereU→1 andU8→0 have
exact closed-form solutions that are exponential in form:

f i
j~z→`,kx ,ky ,v,R!5ci

jek j z, i 5 j 51,2,3,...,8, ~3.5!

whereci
j represent constant coefficients that are the compo-

nents of the eigenvectors of the 838 matrix in ~3.4! in the
limit z→`. The values ofk j are the eigenvalues of the same
matrix in the limit z→` and are given by

k1,25k5,657~1/2!~214k212iR~kx2v!

12~114k212iR~kx2v!

12R2kxv2R2v22R2kz
2!1/2!1/2,

~3.6!
k3,45k7,857~1/2!~214k212iR~kx2v!

22~11k212iR~kx2v!

12R2kxv2R2v22R2kx
2!1/2!1/2.

The eight fundamental solutions are obtained by numeri-
cal integration of~3.4! through the Hartmann layer down to
the wall starting from the eight eigenvectors valid at suffi-
cient large distance from the wall. The solution to~3.4! is
formed by summing the eight fundamental solutions, with
appropriate weightings, in such a way that the boundary con-
ditions are satisfied. Components of the final solution vector
are thus represented by

f i~z,kx ,ky ,v,R!5(
j 51

8

Cj~kx ,ky ,v,R!f i
j~z,kx ,ky ,v,R!,

i 51,2,3,...,8, ~3.7!

whereCj (kx ,ky ,v,R), which is constant with respect toz, is
the weighting coefficient of thej th solution vector. The
boundary conditions atz→` are that all perturbations decay,
which implies thatC25C45C65C850. The boundary con-
ditions atz50 are thatû(0)5 v̂(0)5ŵ50 and that either
w(0)50 or w8(0)50, depending on whether the boundary
is assumed to be perfectly conducting or perfectly insulating
~we considered only these extreme cases!. These homoge-
neous wall boundary conditions determine the values ofC1 ,
C3 , C5 , andC7 , which can be found from

S f1~0!

f3~0!

f5~0!

f7,8~0!

D 5S f1
1~0!

f3
1~0!

f5
1~0!

f7,8
1 ~0!

f1
3~0!

f3
3~0!

f5
3~0!

f7,8
3 ~0!

f1
5~0!

f3
5~0!

f5
5~0!

f7,8
5 ~0!

f1
7~0!

f3
7~0!

f5
7~0!

f7,8
7 ~0!

D
3S C1

C3

C5

C7

D 5S 0
0
0
0
D , ~3.8!

where the subscript 7 or 8 is chosen depending on whether
the boundary is conducting or insulating, and the dependence
on kx ,ky ,v, and R has been omitted from the list of vari-
ables. Letting the partial Wronskian—determinant of the 4
34 matrix in ~3.8!—be D(kx ,ky ,v,R), we have nontrivial
solutions to the homogeneous problem only when
D(kx ,ky ,v,R)50; this is usually referred to as the disper-
sion relation. Further, combinations ofkx , ky , v, andR that
satisfy the dispersion relation define eigenvaluesv and the
resulting solutions of~3.7! are the corresponding eigenfunc-
tions.

When the dispersion relation is satisfied, the 434 matrix
in ~3.8! is singular andC1,3,5,7 can be determined using
singular-value decomposition,10 which then allows the eigen-
functions to be calculated. With any three of the dependent
variables given, the solution of the dispersion relation allows
the fourth to be determined. We have a two-point boundary-
value problem and we used a shooting method of solution,
which involves choosing values for the fourth unknown de-
pendent variable at the start point and integrating the pertur-
bation equations to the wall, which in general results in a
nonzero value ofD(kx ,ky ,v,R). A Newton–Raphson linear
search procedure was used to find the starting values of the
initially guessed variable that zeroD(kx ,ky ,v,R) to within a
predetermined tolerance. We used a fixed-step-size fourth-
order Runge–Kutta integration scheme to integrate through
the boundary layer to the wall, starting from the exact solu-
tions of the perturbation equations atz→`, given by~3.5!.
We took z55 to be sufficiently far from the wall to be a
good approximation forz→`. Gram–Schmidt orthonormal-
ization was used to cope with the stiffness of the perturbation
equations~thus, in conjunction with shooting, we use a so-
called ‘‘parallel-shooting’’ technique!. The orthonormaliza-
tion procedure replaces the original vectors with an orthonor-
mal set leaving discontinuities in the vectors at each point of
orthonormalization, which means that the solution vectors
must be reconstructed before they can be combined to give
the eigenfunctions. A standard method of reconstruction was
used; see Wazzan, Okamura, and Smith.11

The perturbation equations can also be written as two
fourth-order equations,

~kxU2v!~ŵ92k2ŵ!2kxU9ŵ

1
i

R
~ŵ992~2k211!ŵ91k4ŵ!50, ~3.9!

~kxU2v!~ŵ92k2ŵ !2kyU8ŵ

1
i

R
~ ŵ992~2k211!ŵ91k4ŵ !50, ~3.10!

which are, respectively, the familiar Orr–Sommerfeld and
Squire’s-mode equations appropriately modified to include
the effects of an imposed steady~wall-normal! magnetic
field. ~Here we have given the equations in the primitive
variablesv̂ and ŵ, but we could equally have written them
in terms off3 andf7 .) Note that~3.10! is coupled to~3.9!
only if kyÞ0. This fact is also clear from~3.4!, which is
block diagonal ifky50 ~as it also is in the limit ofz→`). In
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fact, whetherky is zero or nonzero, solution of~3.9! alone
@or, equivalently, the top left 434 block of ~3.4! alone# will
give the eigenvalues of the problem and it is only if the
eigenfunctions are required that~3.10! @or, equivalently, the
bottom right 434 block of ~3.4!# must also be solved.

B. Non-normal magnetic field

The discussion so far has dealt entirely with the case
where the imposed magnetic field is in thez direction only.
We have also considered the effects of inclination of the field
in the x and y directions. Formulation of these problems is
similar to that discussed in Sec. III A with appropriately
modified forms of~3.4! and ~3.6!. The nondimensional im-
posed magnetic fields in thex andy directions are denoted by
Bx and By , respectively. Because the nondimensionalizing
scale isBz* , Bx and By represent tanux and tanuy , respec-
tively, where the angles are measured away from the positive
z direction. Due to our choice of nondimensionalizing scales,
Bz51 and therefore with increasingBx or By the overall
magnitude of the field increases but the base flow~2.3! is
unchanged. Note that we have restricted the analyses by con-
sidering only the effects ofBx or By individually.

C. Linear stability results

We are interested in the critical Reynolds number for
stability, i.e., the Reynolds number below which no infini-
tesimal perturbation grows, and, since Squire’s theorem12 ap-
plies when the magnetic field is purely normal to the bound-
ary, we have that the critical Reynolds number is given by a
two-dimensional disturbance withky50, i.e., by spanwise
vortices. As can be seen from~3.4!, the stability results are
the same for conducting and insulating wall boundary con-
ditions. Figure 3 shows the neutral curve forky50, giving
the critical Reynolds number for linear stability asR
'48 250. The linear stability of Poiseuille flow under a mag-
netic field was considered by Lock,3 but he neglected the

Lorentz force in the perturbation equations, which results in
solution of the standard Orr–Sommerfeld equation~for
which he used an approximate method! and therefore, with
this mean velocity profile, corresponds equally to the
asymptotic suction profile.~Note that Lock’s value for the
critical Reynolds number is 50 000.!

Inclination of the magnetic field in thex direction is
stabilizing to modes withky50. Figure 4 shows the same
marginal curve for linear stability as Fig. 3 but over a much
reduced scale so that the small degree of stabilization pro-
duced by addition ofBx51 can be seen. These curves apply
equally to insulating and conducting boundaries, and the
curve forBx50 also applies to any value ofBy ; nonzeroBy

has no effect on the stability of modes withky50. Further-
more, forky50 the perturbations in electric potentialŵ and
the spanwise velocityv are both zero throughout the bound-
ary layer; compare Fig. 5 with Fig. 6. Note that Fig. 6 is for
an insulating boundary only;ŵ is nonzero at the wall, while
ŵ8 ~not plotted! is zero.

Although Squire’s theorem is valid when the magnetic
field is normal to the wall, it has not been proven when the
field is inclined. Therefore, three-dimensional perturbations
may lead to lower Reynolds numbers for linear stability
when BxÞ0 or ByÞ0. However, there seems to be little
benefit in analyzing this point in detail because the Reynolds
numbers at which infinitesimal disturbances become unstable
are so much larger than experimental observations for insta-
bility of the Hartmann layer. This discrepancy between the
linear stability results and experimental observations led us
to investigate the stability of the Hartmann layer to finite
perturbations.

IV. ENERGETIC STABILITY ANALYSIS

Linear stability is a relatively weak stability condition
because it tells us nothing about the stability of finite-
amplitude disturbances. To investigate the stability of any
finite-amplitude perturbation the full nonlinear equations

FIG. 3. Marginal curves for linear stability for both an insulating and con-
ducting boundary and a purely wall-normal magnetic field.

FIG. 4. Marginal curves for linear stability for both an insulating and con-
ducting boundary andky50: — Bx50 and allBy ; -•- Bx51.
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must be used. The energetic stability method is first men-
tioned by Orr13 and a complete reference to this method can
be found in Joseph.14

A. Formulation

The approach of Doering and Gibbon15 is followed and
modified to account for the presence of a magnetic field. We
define the condition for energetic stability to be that the ki-
netic energy of any disturbances must monotonically decay
to zero. The energy decay is due to diffusive processes, mo-
mentum diffusion and magnetic diffusion, corresponding to
viscous and Joule dissipation, respectively, while the mean
flow acts as a reservoir of energy for the perturbations. So

the energetic-stability method described here is not to be
confused with the inviscid energy-stability analysis, which is
conservative and restricted to small-amplitude disturbances.
In the latter method, under the constraints of the problem, the
total energy of the base flow is found to be a local minimum
among admissible flows, therefore preventing small distur-
bances from growing without limit. Taking~3.1! here to rep-
resent the addition offinite perturbations to the base state
defined in Sec. II, then the perturbations satisfy

]ũ

]t
1~ ũ–“ !ũ1~ ũ–“ !U1~U–“ !ũ

52“ p̃1
1

R
~ j̃ ∧B1¹2ũ!, “–ũ50, ~4.1!

j̃ 5~2“w̃1ũ∧B!, “–j̃ 50. ~4.2!

Taking the scalar product of the momentum equation in~4.1!
with ũ and integrating over any finite volume with no net
addition of energy, leads to the following energy equation:

d

dt
i ũi2

252E
V

ũ–~“U!–ũ dx2
1

R
i j̃ i2

22
1

R
i“ũi2

2, ~4.3!

where theL2 norm is denoted byi i2 . It can be shown15

from Eq. ~4.3! that the slowest possible decay rate of a per-
turbation is given by the following infimum over all
divergence-free vector fields that satisfy the boundary condi-
tions:

infS ~1/R!~ i“ũi2
21i j̃ i2

2!1*Vũ–~“U!–ũ dx

i ũi2
2 D , ~4.4!

which can be calculated using variational calculus. The mini-
mizing field is given by a field satisfying the Euler–Lagrange
equations and therefore is a solution of the following eigen-
value problem:

ivũ5ũ–D2
1

R
~ j̃ ∧B1¹2ũ!1“ p̃, “–ũ50, ~4.5!

where j̃ is given by~4.2! and Di j 5(]Ui /]U j1]U j /]xi)/2
is the deformation tensor, which forU defined in ~2.3! is
given byD135D315(]U(z)/]z)/2 with all other terms zero.
The boundary conditions on the perturbations are the same as
for the linear stability problem; see Sec. III A. Whereas the
eigenvalue problem for the linear stability analysis is gener-
ally not self-adjoint, the nonlinear eigenvalue problem does
result in a self-adjoint operator and therefore to a real spec-
trum of iv or, equivalently, to an imaginary spectrum ofv.
If v is negative then perturbations decay, and ifv is positive
then they grow at least initially. We are interested in neutral
values, i.e.,v50, and specifically in the critical Reynolds
number below which no perturbation grows.

This eigenvalue problem is solved in an analogous way
to the linear stability analysis. We recast~4.5! as eight first-
order ordinary differential equations in the transform vari-
ables of~3.3!, which for B5ez gives

FIG. 6. Magnitude of all nonzero eigenfunctions normalized by the maxi-
mum in û for R550 000 on the upper branch of the marginal curve for a
wall-normal imposed magnetic field, for an insulating boundary and forky

560.01: — uûu; - - - uŵu; -•- u p̂u; ¯ u ŷu; — uŵu.

FIG. 5. Magnitude of all nonzero eigenfunctions normalized by the maxi-
mum in û for R550 000 on the upper branch of the marginal curve~see
Figs. 3 and 4!, for a wall-normal imposed magnetic field, for both an insu-
lating and conducting boundary and forky50: — uûu; - - - uŵu; -•- u p̂u.
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D , ~4.6!

where the notation is the same as in Sec. III, except that here
the magnitudes of the perturbation quantities are no longer
necessarily infinitesimal. This system is solved in the same
way as~3.4!. As before, the system has eight independent
solutionsf i

j (z,kx ,ky ,R) ( i 5 j 51,2,3,...,8), where the sub-
script i indicates one of the eight transformed variables and
the superscriptj indicates one of the eight solutions, which
have the following exact closed-form solutions in the limit
z→`:

f i
j~z→`,kx ,ky ,R!5ci

jek j z, i 5 j 51,2,3,...,8, ~4.7!

where theci
j and k j are the eigenvectors and eigenvalues,

respectively, of the 838 matrix in ~4.6! in the limit z→`.
The values ofk j are given by

k1,25k5,65~1/2!7~1/2!~114k2!1/2,
~4.8!

k3,45k7,852~1/2!7~1/2!~114k2!1/2.

Again, in order that all perturbations decay atz→`, C2

5C45C65C850, which leaves the components of the final
solution vector as

f i~z,kx ,ky ,R!5(
j 51

8

Cj~kx ,ky ,R!f i
j~z,kx ,ky ,R!,

i 51,3,5,7. ~4.9!

The wall boundary conditions are the same as those given in
Sec. III A and allow the values ofC1,3,5,7to be determined as
nontrivial solutions of~3.8!, i.e., for zeros ofD(kx ,ky ,R)
50. Note that the differences between the solution of the
linear stability analysis and the energetic analysis are that the
838 matrices in~3.4! and~4.6! differ and that here there is
no v dependence. As discussed in Sec. III A, in the linear
stability analysis only the top left 434 block of the 838
matrix in ~3.4! needs to solved if only the linear eigenvalues
are required. However, here an equivalent reduction of~4.6!
is only possible ifky50, otherwise the full eighth-order sys-
tem must be solved. Indeed, it can be shown~see Sec. IV C!
that the critical Reynolds number for energetic stability~be-
low which there is no amplification of any disturbance! for a
Hartmann layer with purely wall-normal imposed magnetic
field is given by a two-dimensional disturbance withkx50,
i.e., streamwise vortices, and notky50.

B. Non-normal magnetic field

As with the linear stability analysis, formulation of the
energetic stability problem when the imposed magnetic field
is inclined in thex or y direction is similar to that discussed
in Sec. III A with appropriately modified forms of~4.6! and
~4.8!. We have restricted the analyses by considering only
the effects ofBx or By individually, and we use the same
notation for the inclined fields as described in Sec. III B.

C. Energetic stability results

Figure 7 shows marginal curves for energetic stability
for a selection of cases. Forkx50 ~andkyÞ0) the curves are
distinct for insulating and conducting walls but, as with the
linear stability analysis, forky50 ~andkxÞ0) the insulating
and conducting wall boundary conditions result in identical
curves. Further, forkx50 the addition of a component of
magnetic field in thex direction has no effect on the ener-
getic stability of the flow; similarly, forky50 the addition of
a component of magnetic field in they direction has no ef-
fect. However, forkx50 the addition of a component of
magnetic field in they direction is stabilizing, as is the addi-
tion of a component of magnetic field in thex direction for
ky50.

Joseph14 gives a proof, following Busse,16 that for an
odd velocity profile without electromagnetic forces~e.g.,
plane Couette flow! the critical Reynolds number for ener-
getic stability is determined by considering only the cases

FIG. 7. Marginal curves for energetic stability: — insulating boundary;
- - - conducting boundary; -•- both insulating and conducting boundary.
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kx50 or ky50. Figure 7 does not conclusively show
whether these results also apply to the Hartmann layer. Al-
though we can see thatkx50 is more critical thanky50 for
any ~zero or nonzero! Bx , we do not know from Fig. 7
whether some combination ofkxÞ0 andkyÞ0 would give a
lower critical Reynolds number. Moreover, Fig. 7 suggests
that for sufficiently largeBy the marginal curve forky50
becomes more critical than that forkx50, but again it may
be that some combination ofkxÞ0 andkyÞ0 is most criti-
cal. To clarify these issues we have calculated marginal
curves for energetic stability in the (kx ,ky) plane for fixed
values ofR. Figure 8 shows the results for a purely normal
imposed field. The points on thekx axis andky axis are
already given in Fig. 7. Here only the first quadrant is shown,
but there is symmetry about both thekx axis andky axis. The
fact that the constant-R lines at the smaller values ofR are
ellipses with a principle axis lying on theky axis implies that
asR is reduced the ‘‘island’’ of instability does indeed shrink
to the ky axis, i.e.,kx50. Similarly, for Bx51 andBy51
and an insulating boundary, Figs. 9 and 10, respectively,
show thatkx50 again gives the critical Reynolds number for
energetic stability. However, for increasedBy , e.g., By

'2.75 (uy570°) in Fig. 11,ky50 gives the critical Rey-
nolds number. The results for a perfectly conducting pipe are
qualitatively similar.

The energetic stability results forByÞ0 ~see Fig. 7! can
be applied to the flow in a circular pipe with a magnetic field
imposed in thez direction i.e., normal to the axis of the pipe,
which is in thex direction. This field gives a local wall-
normal component that varies as cosuy . At high Hartmann
number layer that forms at the pipe wall approaches the
Hartmann-layer solution for a flat plate. Around the circum-
ference of the pipe, the thickness of the layer varies inversely
with the local normal component of the magnetic field, i.e.,
as secuy , and the local free-stream velocity varies as cosuy .
Therefore, the local Reynolds number is constant. Figure 12
shows the variation in critical Reynolds number for energetic
stability with uy for an insulating boundary.~The results for
a perfectly conducting pipe are qualitatively similar.! Figure

11 shows thatuy50 ~and equally 180°! has the lowest criti-
cal Reynolds number~'25.6! and therefore the Hartmann
layer on thez axis is the first part of the layer around the pipe
to become unstable to finite disturbances as the Reynolds
number is increased. Beyonduy'67° the critical Reynolds
number is approximately 55.2 and is given byky50.

V. DISCUSSION AND CONCLUSIONS

We have considered the stability of an isolated Hart-
mann layer to both infinitesimal and finite perturbations. The
linear stability results~i.e., for infinitesimal perturbations!
were not entirely unexpected, given the approximate results
of Lock3 and those of Takashima5,6 for both Poiseuille and
Couette flows under a transverse magnetic field~both having
a critical Reynolds number of 48 311.016 at high Hartmann
number!. Here, we find that the critical Reynolds number for
instability of the ideal Hartmann-layer solution with a wall-
normal magnetic field is approximately 48 250~for both an

FIG. 8. Marginal curves for energetic stability for an insulating boundary
andBx5By50: — R5100; - - - R560; -•- R550; ¯ R530; — R526.

FIG. 9. Marginal curves for energetic stability for an insulating boundary
and Bx51 andBy50: — R5100; - - - R580; -•- R560; ¯ R530; —
R526.

FIG. 10. Marginal curves for energetic stability for an insulating boundary
andBy51 andBx50: — R5100; - - - R560; -•- R540; ¯ R533.
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insulating and conducting boundary!. The difference be-
tween our result and Takashima’s is small~approximately
1.5%! and is probably due to differences in calculation
method. We have also briefly considered the effects of in-
clining the magnetic field in thex andy directions. Despite
the fact that Squire’s theorem has not been proven in these
cases, we restricted the analyses by considering only two-
dimensional perturbations withky50. In this way, we found
that inclination of the field in they direction resulted in the
same marginal curve for linear stability as for a purely wall-
normal field and that inclination in thex direction has a small
stabilizing effect. It may be that three-dimensional perturba-
tions give a more critical Reynolds number for instability
than two-dimensional perturbations when the magnetic field
is inclined, but we feel that given that the critical values were
so much larger than the observations of ‘‘transition’’ be-
tween turbulent and laminar flow in ducts at high Hartmann

number that there is little insight to be gained from a linear
stability analysis of three-dimensional perturbations. We be-
lieve that this discrepancy between early linear stability re-
sults and experimental observations of laminarization has led
to the widespread feeling that the stability characteristics of
the Hartmann layer have no bearing on the state~laminar or
turbulent! of bounded MHD flows. However, our suggestion
is that instability of the Hartmann layer does determine the
state but that it is instability of finite, and not infinitesimal,
perturbations that is fundamentally important. We base our
belief that the state of a wide range of bounded~or partially
bounded! MHD flows at high Hartmann number is due to the
stability or instability of the Hartmann layers, rather than of
the global flow, on the fact that experiments have shown that
transition~in fact, laminarization! is controlled by the value
of the ratio Re/Ha, rather than Re alone. If, as commonly
believed, it were the global flow that controls this transition
process, Re and Ha would be the two independent determin-
ing factors. Apart from the apparent irrelevance of duct cross
section and aspect ratio, there is, unfortunately, no conclu-
sive evidence to support our claim.~Even in the case of
rectangular cavities with the long side parallel to the mag-
netic field, there are Hartmann layers along the short sides,
defined by the same parameterR. For an infinite aspect ratio,
the laminar flow would be Poiseuille flow unaffected by the
magnetic field and linear stability would depend on Re only.
This is not observed in experiments, probably because the
aspect ratios are not sufficiently large. We claim that the
Hartmann layers still govern the stability of all the finite
aspect-ratio duct flows studied in experiments.! This is be-
cause experiments that have detected laminarization have
largely done so through measurements of pressure drop
along a section of ducted flow, rather than through detailed
measurements that would determine the state, i.e., laminar or
turbulent, of the Hartmann layer and global flow. There is,
however, limited experimental evidence, reported by Bra-
nover, Gelfgat and Tsinober,17 that, for Reynolds numbers
slightly higher than the threshold value,~electric potential!
fluctuations are found only in the vicinity of the boundaries.
Undoubtedly, there is a need for more detailed experiments
to determine the state of the Hartmann layers.

Our energetic stability analysis for finite perturbations
results in a critical Reynolds number of approximately 26 for
a wall-normal field and shows the stabilizing effect of inclin-
ing the field in both thex and y directions. Although the
critical Reynolds number is now much closer to experimen-
tal observed threshold values than that given by linear stabil-
ity analysis, there is still an order of magnitude difference.
This difference is, at least in part, due to the fact that the
critical Reynolds number resulting from the energetic stabil-
ity analysis must be viewed as a lower bound; the critical
Reynolds number is the Reynolds number below which all
~divergence-free! perturbation decay monotonically to zero
and above which at least one perturbation does not decay
monotonically. Monotonic decay of all disturbances is a very
stringent condition, whereas allowing transient growth with
ultimate decay is likely to result in a more realistic critical
Reynolds number. Figure 13, which is adapted from
Joseph,14 shows a schematic representation of the stability

FIG. 11. Marginal curves for energetic stability for an insulating boundary
andBy'2.75 andBx50: — R5100; - - - R580; -•- R565; ¯ R560.

FIG. 12. Variation in critical Reynolds number for energetic stability with
uy ~in degrees! for an insulating boundary:3 kx50; — ky50.
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bounds, whereRE is the critical Reynolds number derived
from an energetic stability analysis, such as ours described in
Sec. IV A,RL is the critical Reynolds number derived from a
linear stability analysis, such as that described in Sec. III A,
andRG is the Reynolds number below which all disturbances
eventuallydecay. Here,A(t) denotes the time-dependent am-
plitude of a perturbation andA0 is the initial perturbation
amplitude. BetweenRE andRG perturbations of infinitesimal
or finite initial amplitude may grow transiently but they ul-
timately decay. This is also true belowAC(R) betweenRG

and RL. We believe that the experimentally observed value
for laminarization ofR'200 is a good approximation for
RG . To the right ofAC(R), perturbations do not ultimately
decay to zero, although the amplitude may saturate at some
finite level. We have calculatedRE as a lower bound ap-
proximation ofRG , which is likely to be a better indicator of
the laminarization Reynolds number. Kreiss, Lundbladh, and
Henningson18 have developed a method to calculate an esti-
mate forRG ~still a lower bound approximation, but better
thanRE), however straightforward application of the proce-
dure is precluded when the flow is semi-infinite, e.g., a
boundary layer. Nevertheless, as for the Hartmann layer, the
transition Reynolds number for plane Poiseuille flow and no
magnetic field~'1000! is an order of magnitude greater than
RE('50), which gives some support to our claim that insta-
bility of finite perturbation triggers transition. Further,
Nagata19 has recently given interesting results from a nonlin-
ear analysis on steady three-dimensional finite-amplitude so-
lutions of plane Couette flow with a transverse magnetic
field. He considers a range of Hartmann numbers, with the
largest value being 10 for which he shows that the critical
Reynolds number Re is about 3280 for the appearance of
steady nonlinear solutions. This value of Hartmann number
is not sufficiently large for the laminar Hartmann layers to be
closely exponential, as considered here, but if we neverthe-
less consider these results, Nagata shows that steady three-
dimensional finite-amplitude disturbances exist for approxi-
mately R.328. This is in fair agreement with the

experimental results for laminarization (150,R,250). To
make a real comparison, however, we would need to apply
Nagata’s analysis in the limit of high Hartmann number and
consider unsteady, as well as steady, finite-amplitude solu-
tions.

For high-Hartmann-number ducted flows, as well as
Hartmann layers, there are parallel layers along boundaries
parallel to the magnetic field. These parallel layers are
thicker (d* /H* ;Ha21/2) than the Hartmann layers
(d* /H* ;Ha21) and therefore for constant magnetic field
intensity and free-stream velocity the Reynolds number
based on the layer thickness is greater for the parallel layers
than the Hartmann layers. This may suggest that the parallel
layers are more unstable and therefore that they, not the
Hartmann layers, control the ‘‘transition’’ process in ducted
MHD flows. Although we could not find any reference to
stability of parallel layers in the literature, it is true to say
that parallel layers are stabilized by the friction due to the
presence of Hartmann layers at their ends. Moreover, be-
cause the parallel-layer thickness is large, the contribution to
the total wall shear stress from the parallel layers is negli-
gible compared with that from the Hartmann layers. Whether
the parallel layers are more or less unstable, it is therefore
unlikely that laminarization~transition! of the parallel layers
alone—assuming that with decreasing~increasing! Reynolds
number it occurs before that of Hartmann layers — would be
detected as a decreased~an increased! pressure drop along
the duct, nor is it likely that laminarization~transition! of the
parallel layers would globally change the flow. Furthermore,
in circular-pipe flows under a magnetic field there are no
parallel layers and these flows are observed experimentally
to behave in the same way as flows in rectangular cross-
section ducts, where there are parallel layers. The results of
the energetic stability analysis~see Sec. IV C! favor the hy-
pothesis that the Hartmann layers control ‘‘transition’’ be-
cause they show that the most unstable part of the circum-
ferential layer is at zero inclination to the imposed field, i.e.,
where the field is purely normal to the wall, and the associ-
ated critical energetic Reynolds number~25.6! is the same as
for the Hartmann layers in a duct with rectangular cross sec-
tion, which is consistent with the experimentally observed
similarity. In summary, we believe that the parallel layers
play a passive role.

There are obvious similarities between the asymptotic-
suction boundary layer and the Hartmann layer; both have
exponential mean velocity profiles and both therefore have
similarly high critical Reynolds numbers for instability of
infinitesimal disturbances.~The shape of the exponential ve-
locity profile is the dominant factor in determining the sta-
bility, not the electromagnetic damping of disturbances.!
However, in the case of the asymptotic-suction boundary
layer, experiments have shown the strongly stabilizing effect
of introducing suction at the wall to a flat-plate hydrody-
namical boundary layer; see Libby, Kaufmann, and
Harrington.20 It seems that the laminar asymptotic-suction
boundary layer conforms to the predictions from a linear
stability analysis, provided the level of extraneous excitation
from sources such as free-stream turbulence and wall rough-
ness are small. This suggests that the same may be true for

FIG. 13. Schematic representation of the stability bounds.
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an initially laminar Hartmann layer in a low-disturbance en-
vironment, i.e., that it may be possible for the boundary layer
to remain laminar up to the very large Reynolds numbers
predicted by a linear analysis for instability. Thus far, experi-
ments on high-Hartmann-number MHD flows have not in-
vestigated the transition from laminar to turbulent flow, in-
stead they have considered the reverse process of
laminarization. It is likely that there is a large degree of
hysteresis between these processes and that the true transi-
tion Reynolds number in a ‘‘clean’’ environment is higher
than the laminarization Reynolds number.9 This is simply
because the finite-amplitude disturbances in the initially tur-
bulent flow are unstable to much lower Reynolds numbers
than infinitesimal disturbances and therefore the Reynolds
number must be small to stabilize the Hartmann layer to the
excitation of the finite-amplitude turbulent fluctuations.
Clearly, despite the practical difficulties of creating the ap-
propriate conditions, further experiments are needed in order
to investigate the transition from laminar to turbulent flow of
the Hartmann layer. It would also be interesting to compare
the existing experimental results for laminarization of the
Hartmann layer with laminarization of an initially turbulent
asymptotic-suction boundary layer, in parallel with an ener-
getic stability analysis.
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