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On the stability of the Hartmann layer
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In this paper we are concerned with the theoretical stability of the laminar Hartmann layer, which
forms at the boundary of any electrically conducting fluid flow under a steady magnetic field at high
Hartmann number. We perform both linear and energetic stability analyses to investigate the
stability of the Hartmann layer to both infinitesimal and finite perturbations. We find that there is
more than three orders of magnitude between the critical Reynolds numbers from these two
analyses. Our interest is motivated by experimental results on the laminar—turbulent transition of
ducted magnetohydrodynamics flows. Importantly, all existing experiments have considered the
laminarization of a turbulent flow, rather than transition to turbulence. The fact that experiments
have considered laminarization, rather than transition, implies that the threshold value of the
Reynolds number for stability of the Hartmann layer to finite-amplitude, rather than infinitesimal,
disturbances is in better agreement with the experimental threshold values. In fact, the critical
Reynolds number for linear instability of the Hartmann layer is more than two orders of magnitude
larger than experimentally observed threshold values. It seems that this large discrepancy has led to
the belief that stability or instability of the Hartmann layer has no bearing on whether the flow is
laminar or turbulent. In this paper, we give support to Lock’s hypotH&sisc. R. Soc. London, Ser.

A 233 105 (1955] that “transition” is due to the stability characteristics of the Hartmann layer
with respect to large-amplitude disturbances. 1@99 American Institute of Physics.
[S1070-663(199)03708-3

I. INTRODUCTION The stability of Hartmann layers must be ensured. In fact,
this stability requirement could be a criterion for determining
The Hartmann layer is a fundamental element of magnethe minimum magnetic field intensity to apply, although as
tohydrodynamic¢MHD). It develops along any boundary in yet no direct evidence of this potential cause of instability
an electrically conducting fluid where the magnetic field ishas been shown. Metallurgy and, in particular, steel casting
not tangential to the boundary and it is where most of thenakes use of steadypr slowly sliding magnetic fields. The
shear stress is concentrated. More than being simply a hyrature of the flow is not well known, but the velocities and
drodynamical boundary layer, it provides a path for electricadimensions are large, of the order of a meter per second and
currents that close within the core of the flow; the Hartmanrh meter, respecti\/e|y_ In such cases, the Hartmann_|ayer sta-
Iayer thus controls the whole flow. The Stability and the StatEbi”ty may be of primary importance in de[ermining the g|0_
(i.e., whether laminar or turbulentf the Hartmann layer are  pa| damping effect of the magnetic field. In fusion-reactor
important for two reasons. First, as with a classical bOUndarbrojectS' a so-called |iquid_meta| blanket surrounds the
layer, the transfer of heat or mass through the layer depengsiasma and is subjected to an intense magnetic field of sev-
fundamentally on its state. Second, if a laminar Hartmanrera| teslas. The natural convection, which develops due to
layer is destabilized, the global electric circulation is affectediye large heat flux received, produces large velocities and
and the flow may completely change in nature and intensitysherefore the stability of the Hartmann layer should be inves-
In general, application of a magnetic field to a boundarytigated_ Finally, the case of MHD-generated two-
layer has two effects on the stability of the layer. First, thegimensional turbulence is linked to the state of the Hartmann
magnetic field acts to accelerate the damping of perturbagyer, It is generally assumed that the layer is laminar and
tions through Joule dissipation and, second, the field deformg,erefore simply provides a “frictional” linear damping
the laminar velocity profile and hence changes the hydrodyforce on the two-dimensional core turbulence. If, however,
namical stability characteristics of the boundary layer. the Hartmann layer becomes unstable, this linear term should
Examples of applications in which the stability of the o replaced by another model.
Hartmann layers may be of importance are numerous. For Tpe concept of the Hartmann layer was introduced by
instance, in the field of crystal growth, steady magnetic field$y5tmann and Lazardslts thicknesss* depends only on
are used essentially to stabilize the flow and, to a lesser expe fluid’s properties and the magnetic field intendty. If
tent, to control the dopant distribution in the final product. y* g g typical length scale of the flows* /H* ~Ha %,
where the Hartmann number is given by Ha
dElectronic mail: rjl2@eng.cam.ac.uk =(o*/(p* v*))Y?B*H*. Here the asterisks denote dimen-
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sional quantitiesp™* is the fluid densityp* is the kinematic U,

viscosity, ando™ is the electrical conductivity. When a typi- —

cal velocityU* is considered in a cavity, a Reynolds number

can be formed ReU*H*/v*. As recognized first by

Lundquist? the ratio Re/Ha is the Reynolds number basedon = \ = e st

the Hartmann-layer thickness and therefore should be the '

governing parameter for the stability of the layer. Ldpko-

vided the first linear stability analysis of the Hartmann layer.

In his study, he neglected the Lorentz force acting on the

disturbances and found that the critical ratio Re/Ha seems to

converge toward 5010 in the limit of high Hartmann

number. Roberfsprovides an approximate solution for the

critical Reynolds number (4620Q0. More recently, FIG. 1. The studied configuration.

Takashima® performed a linear stability analysis for Poi-

seuille and Couette flow under a transverse magnetic field,

taking into account the Lorentz force on the disturbances anl THE BASE FLOW

finite values of the magnetic Prandtl number, for Hartmann

numbers up to 200. He found in both cases that the critical Under the assumption of a small magnetic Reynolds

ratio Re/Ha converges toward 48 311.016 for high Hartmanmumber, the dimensional Navier—Stokes and continuity

numbers at low magnetic Prandtl number and that increasingguations for an electrically conducting fluid with an im-

the magnetic Prandtl number is slightly destabilizing. ThePosed magnetic field vect®* are

common feature of all these stability studies is that the mag-  5*

netic field is strictly perpendicular to the boundary and that

the analysis has been performed for a more “global” flow

than an isolated Hartmann layer; namely, a Poiseuille or +v*V2u*, V.u*=0, (2.1

Cou_?:]te flow. . . . where the asterisks denote dimensional quantitfes time,
'he expe_nmental results repgrted in the literature are nolt.l* is the velocity vector fieldp* is the pressure field, and

explicitly dedicated to the stability of the Hartmann Ia7yer. is the current density vector field. Ohm’s law for a moving

Severa! aguthor(;e.g., Hartmann ?“d Lazarbgurgatroyd, . electrically conducting medium is given by

Lykoudis® and Branoved determine whether a duct flow is

laminar or turbulent in the presence of a transverse magnetic j*=0*(—=Ve¢*+u*0B*), V.j*=0, 2.2

field. The flow is turbulent before entering the gap benNeethere¢* is the electric potential field.

the magnet poles and what is really recorded is the smallest The configuration considered is a Hartmann layer, iso-

value of transverse magnetic field necessary to laminarize thgted from a global MHD flow(see Fig. 1 The boundary is

flow. (In general the difference between transition and lami-3ssumed to be flat at the scale of the Hartmann-layer thick-

narization has not been emphasized in the literature; with §ess and the tangential free-stream velocity vector tiélds

few exceptions, laminarization is rather loosely called trantaken to be uniform. The uniform magnetic fielt is not

sition without qualification. The value reported by all ex- parallel to the boundary.

perimentalists for this laminarization corresponds to a ratio  The nondimensionalizing velocity scalelg , which is

150<Re /Ha< 250 for Sufficiently Iarge Hartmann numbers the free-stream Ve|ocity, and the |ength scale §%

and electrically insulating walls. This result is extremely ro- = (,* p*/g*)Y3/B* | which is the boundary-layer length

bust, in the sense that it is valid for rectangular cross sectionscale and wherd®? is the magnitude of the wall-normal

of any aspect ratio and also for circular pipes. Despite thgomponent oB*. Time, pressure, magnetic field, and cur-
fact that experiments show that Re/Ha is a consistent indicaent density scales a@ /U* , p* u*?, B¥, ando*U%B? ,

tor of laminarization, it is not generally accepted that insta-respectively. The Reynolds numberR=UZ* §*/v*

bility of the Hartmann layers controls the process. At the end= (¢* v*/p*) ~Y2U*/B¥ (Re/Ha in the notation of Sec) is

of his paper, Lockexpresses his concerns about the discrepthe single dimensionless parameter for the Hartmann layer.

ancy between his critical Reynolds number, derived from ane may think that the Stuart numb@iso called the inter-

linear stability analysis, and experimental evidence and araction paramet@iN=o* B 25*/(p* U%) is also an indepen-

gues that instability to finite-amplitude disturbances may redent parameter, but it can be shown thiat 1/R. The prob-

solve the difference. lem is formulated in Cartesian coordinates wxtienoting
The structure of the paper is as follows. In Sec. Il wethe streamwise directiory, denoting the spanwise direction,

define the configuration. Section Il is devoted to the linearandz denoting the wall-normal direction.

stability analysis, including investigation of the effect of in- The dimensionless steady solutions for the velocity and

clining the magnetic field away from the wall-normal direc- current density vector fields are given by

tion. In Sec IV the energetic stability of the Hartmann layer _ 1 a2

is examined for the first time. These results are followed by U=[U(2),0.0]=[1~e*0.0],

a discussion and conclusions in Sec. V. J=[0J(z),0]=[0,e%0],

1 1
PG +(u*-V)u* =— p—*Vp* + p—*(j*DB*)

(2.3
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u(x,y,z,t)=U(z)+1(x,y,zt),
v(X,Y,z,t)=v(X,Y,21),

w(Xx,Y,z,t)=W(x,y,zt),

i 1 3.1
P(X,y,2.t) = P(2) + B(X.y.2.b), @D

j(xy,z,)=3(2)+](x,y,z,1),

e(x,y,2,) =@ (2) +o(X,y,Z,1),

tities. The perturbation quantities take the following normal-
mode form:

X exgi(kx+ky—wt)], (3.2

FIG. 2. The base flow: —U(2); - --J(2). because the base flow is invariantdiny, andt. The dimen-
sionless forms 0f2.1) and(2.2) are linearized with respect
to the perturbation quantities, which for each solution set
o o _ (kx.,ky,o,R) results in an eighth-order system of ordinary-
and shown in Fig. 2. This ideal expression for the Hartmannjifferential equations inQ(,5,W,p, ). Here, the full depen-
layer solution is appropriate for the study of the stability of yence ofti(z) for example, is given byi(z,ky K, ,®,R) and
any boundary layer in the limit of high Hartmann number, g js the spectral representation of thevelocity, k, andk,
provided the magnetic field is not parallel to the wall. In g3re the streamwise and spanwise wave numbers, respec-
reality the free-stream velocity may not be strictly uniform, tjyely, and w is the frequency of the perturbation. The real
but can be considered as such over a much larger lengibart of (3.2) is taken to obtain physical quantities. The per-
scale than the Hartmann-layer thickness. Also, instead ofrbation equations can be written as a set of eight first-order

vanishing in the core, the value of the current density mayydinary differential equations in the following transformed
converge toward a finite value, in which case a pressure grarariables:

dient would balance the Lorentz force in the core. This finite .k R) = k04K
value and the associated pressure gradient would not affect b1(ZKi Ky, 0. R) =k O+ kD,
the stability analysis and can be subtracted to recover expres- ¢,(z,k, Ky, 0,R) =k 0" +kyd’,

sion (2.3). ba(Z,ky Ky, 0, RI=W,  da(z,ky Ky, 0,R)=P,
bs(z,ky Ky, 0,R) =k, —k,Q, (3.3

I1l. LINEAR STABILITY ANALYSIS ¢6(kaxyky,w,R)=kxl§’—ky0’,

A. Formulation d7(z Ky Ky, 0, R)=3,  bg(z,ke Ky, 0,R)=,

In this section we consider the effect of superimposingwhere the primes denote differentiation with respec toet
an infinitesimal disturbance on the steady fields. The instarnds first perform the analysis for a magnetic field purely per-
taneous velocities, pressure, current density, and electric pgendicular to the wallB=g,. In the transformed variables,

tential are given by the perturbation equations are
b1 0 1 0 0 0 0 0 0\ /¢
b2 A+1 0 RkU’ iRk 0 0 0 O b»
3 —i 0 0 0 0O 0 0 © b3
b4 0 —ilR -AR 0 0O 0 0 © N
o= o o 0 o o 1 0 off el 34
bs 0 0 -RkU" 0 A+1 0 —ik® 0| ¢
b} 0 0 0 0 0O 0 0 1 b7
: 0 0 0 0 i 0 k¥ o0 o
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wherek?=k2+ k§ andA=iR(k,U— w) + k2. _ where the subscript 7 or 8 is chosen depending on whether
This system has eight independent solutiols the boundary is conducting or insulating, and the dependence

(z,ky ky,o,R) (i=)=1,2,3,...,8), where the subscripin-  on k, ,k,,», andR has been omitted from the list of vari-
dicates one of the eight transformed variables and the supeables. Letting the partial Wronskian—determinant of the 4
scriptj indicates one of the eight solutions. These solutions<4 matrix in (3.8—be A(k, Kk, ,»,R), we have nontrivial
cannot be found analytically because th& 8 matrix de- solutions to the homogeneous problem only when
pends onz through the base flow, but the perturbation A(K,,k,,w,R)=0; this is usually referred to as the disper-
equations in the limiz—o, whereU—1 andU’—0 have sion relation. Further, combinations kf, k,, o, andR that
exact closed-form solutions that are exponential in form: satisfy the dispersion relation define eigenvalaeand the

: . o resulting solutions of3.7) are the corresponding eigenfunc-
dl(z— ky ky,0,R)=cle?, i=]=123,..8, (39 tions.
wherec! represent constant coefficients that are the compo-  When the dispersion relation is satisfied, the4 matrix

nents of the eigenvectors of the<® matrix in (3.4) in the N (3.8 is singular andC, 357 can be determined using
limit z— . The values ok; are the eigenvalues of the same singular-value decompositidiwhich then allows the eigen-

matrix in the limitz—o and are given by funf:tions to be calculateq. With any three-_ of the (_:iependent
variables given, the solution of the dispersion relation allows
K1,= Kg6= T (1/2)(2+4k*+ 2iR (K~ ) the fourth to be determined. We have a two-point boundary-

value problem and we used a shooting method of solution,

2 H _
F2(1+ 4k 2iR (ke o) which involves choosing values for the fourth unknown de-

+2R%ky o — R?w?— R?k2)2) 12 pendent variable at the start point and integrating the pertur-
(3.6 bation equations to the wall, which in general results in a
K3,4= K7,8= T (1/2)(2+4K*+ 2iR(Ky— @) nonzero value o (k, ky ,,R). A Newton—Raphson linear

search procedure was used to find the starting values of the
initially guessed variable that zefo(k, ,k, ,,R) to within a
+2R2kxw_RZwZ_RZkf()l/Z)l/Z, predetermined tolerance. We used a fixed-step-size fourth-
order Runge—Kutta integration scheme to integrate through
The eight fundamental solutions are obtained by numeriyne poundary layer to the wall, starting from the exact solu-
cal integration of(3.4) through the Hartmann layer down to tjons of the perturbation equations a0, given by (3.5).
the wall starting from the eight eigenvectors valid at suffi-\y/e took z=5 to be sufficiently far from the wall to be a
cient large distance from the wall. The solution(&4) is good approximation foz— . Gram—Schmidt orthonormal-
formed by summing the eight fundamental solutions, withjzation was used to cope with the stiffness of the perturbation
appropriate weightings, in such a way that the boundary congquations(thus, in conjunction with shooting, we use a so-
ditions are satisfied. Components of the final solution vectogg|jed “parallel-shooting” technique The orthonormaliza-

—2(1+k?+2iR(ky— )

are thus represented by tion procedure replaces the original vectors with an orthonor-
8 mal set leaving discontinuities in the vectors at each point of
¢i(2,kx,ky,w,R)=E Cj(kx,ky,w,R)¢f(z,kX,ky,w,R), orthonormalization, which means that the solution vectors
=1 must be reconstructed before they can be combined to give
- the eigenfunctions. A standard method of reconstruction was

i=1,2,3,...,8, (3.7 '

used; see Wazzan, Okamura, and Srhith.

whereC;(ky Kk, ,®,R), which is constant with respect ®is The perturbation equations can also be written as two

the weighting coefficient of thgth solution vector. The fourth-order equations,
boundary conditions a— o0 are that all perturbations decay,

which implies thatC,=C,=Cg=Cg=0. The boundary con- (kU — @) (W' = k2W) — k,U" W
ditions atz=0 are thatl(0)=0(0)=w=0 and that either
¢(0)=0 or ¢'(0)=0, depending on whether the boundary +
is assumed to be perfectly conducting or perfectly insulating

(we considered only these extreme cas@fiese homoge- An L2A ) a
neous wall boundary conditions determine the value€ qf (U —0)(@"=k8) —k,U"W
C3, Cs, andC-, which can be found from i

ﬁ(\iv””—(Zkz%— 1)W" +k*W) =0, (3.9

+'§(¢""—(2k2+ 1)¢"+k*p)=0, (3.10
$1(0) ¢1(0)  ¢3(0)  $3(0)  ${(0)
$3(0) | | #3(0)  ¢30)  #5(0)  3(0) which are, respectively, the familiar Orr—Sommerfeld and
#50) | | #i0)  #A0)  $20)  HL0) Squire’s-mode equations appropriately modified to include
$760) $740) ¢340) #340) H40) the effects of an imposed steadwall-norma) magnetic
field. (Here we have given the equations in the primitive
Cy 0 variables® and ¢, but we could equally have written them
y Cs| _| O 39 in terms of¢3 and ¢b;.) Note that(3.10 is coupled to(3.9)
Cs o/’ ' only if ky#0. This fact is also clear fron3.4), which is
C, 0 block diagonal ifk,= 0 (as it also is in the limit ok— ). In
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FIG. 3. Marginal curves for linear stability for both an insulating and con- F!G: 4. Marginal curves for linear stability for both an insulating and con-
ducting boundary and a purely wall-normal magnetic field. ducting boundary and,=0: —B,=0 and allB,; --- B,=1.

fact, whetherk, is zero or nonzero, solution dB.9) alone Lorentz force in the perturbation equations, which results in
[or, equivalently, the top left % 4 block of (3.4) alond will sol_utlon of the standard_ Orr—Sommerfeld equatlﬁo_r
give the eigenvalues of the problem and it is only if theWhich he used an approximate methahd therefore, with
eigenfunctions are required thé.10 [or, equivalently, the this mean velocity profile, corresponds equally to the

bottom right 4<4 block of (3.4)] must also be solved. asymptotic suction profile(Note that Lock’s value for the
critical Reynolds number is 50 000.

Inclination of the magnetic field in the& direction is
stabilizing to modes wittk,=0. Figure 4 shows the same

The discussion so far has dealt entirely with the casenarginal curve for linear stability as Fig. 3 but over a much
where the imposed magnetic field is in thelirection only.  reduced scale so that the small degree of stabilization pro-
We have also considered the effects of inclination of the fieldiuced by addition oB,=1 can be seen. These curves apply
in the x andy directions. Formulation of these problems is equally to insulating and conducting boundaries, and the
similar to that discussed in Sec. IllA with appropriately curve forB,=0 also applies to any value &, ; nonzeroB,
modified forms of(3.4) and (3.6). The nondimensional im- has no effect on the stability of modes wih=0. Further-
posed magnetic fields in theandy directions are denoted by more, fork,=0 the perturbations in electric potentialand
Bx and By, respectively. Because the nondimensionalizingthe spanwise velocity are both zero throughout the bound-
scale isB; , B, and B, represent taf, and targ,, respec-  ary layer; compare Fig. 5 with Fig. 6. Note that Fig. 6 is for
tively, where the angles are measured away from the positivan insulating boundary only} is nonzero at the wall, while
zdirection. Due to our choice of nondimensionalizing scalesg’ (not plotted is zero.
B,=1 and therefore with increasinB, or B, the overall Although Squire’s theorem is valid when the magnetic
magnitude of the field increases but the base fl@¥®) is  field is normal to the walll, it has not been proven when the
unchanged. Note that we have restricted the analyses by cofield is inclined. Therefore, three-dimensional perturbations
sidering only the effects dB, or B, individually. may lead to lower Reynolds numbers for linear stability
when B,#0 or B,#0. However, there seems to be little
benefit in analyzing this point in detail because the Reynolds
numbers at which infinitesimal disturbances become unstable
are so much larger than experimental observations for insta-

tséi'?”lr:g)ll’ g(ret”r:)haet'ieypomdss ::(;m;ircte)eslow.rvgg'?ﬁegg infini- bility of the Hartmann layer. This discrepancy between the
' perturbation grows, » S qui @™ Jinear stability results and experimental observations led us

plies when the magneth .ﬁeld is purely normal t(.) thg bound-to investigate the stability of the Hartmann layer to finite
ary, we have that the critical Reynolds number is given by aperturbations

two-dimensional disturbance witk =0, i.e., by spanwise '

vortices. As can be seen frofﬁ.4), thg stability results are IV. ENERGETIC STABILITY ANALYSIS

the same for conducting and insulating wall boundary con-
ditions. Figure 3 shows the neutral curve fqr=0, giving Linear stability is a relatively weak stability condition
the critical Reynolds number for linear stability &  because it tells us nothing about the stability of finite-
~48 250. The linear stability of Poiseuille flow under a mag-amplitude disturbances. To investigate the stability of any
netic field was considered by Loékbut he neglected the finite-amplitude perturbation the full nonlinear equations

B. Non-normal magnetic field

C. Linear stability results

We are interested in the critical Reynolds number for
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s T T T the energetic-stability method described here is not to be
confused with the inviscid energy-stability analysis, which is
conservative and restricted to small-amplitude disturbances.
In the latter method, under the constraints of the problem, the
total energy of the base flow is found to be a local minimum
among admissible flows, therefore preventing small distur-
bances from growing without limit. Taking.1) here to rep-
resent the addition ofinite perturbations to the base state
defined in Sec. Il, then the perturbations satisfy

o ~
— H(@V)TU+(T-V)U+(U-V)T

1.
:—V”p+§(jDB+V2H), V.U=0, (4.1

0 o1 oz 03 o4 05 06 o7 08 o8 i T:(—V¢+EDB), V-TZO. (4.2

FIG. 5. Magnitude of all nonzero eigenfunctions normalized by the maxi- : T
mum in O for R=50 000 on the upper branch of the marginal cuftsee Taking the scalar product of the momentum equatiofif)

Figs. 3 and % for a wall-normal imposed magnetic field, for both an insu- With. ﬁ and integrating over any ﬁnite. volume with no .net
lating and conducting boundary and foy=0: — [a[; - - - [W]; --- |P|. addition of energy, leads to the following energy equation:

d 1. 1
must be used. The energetic stability method is first men- a”ﬁ”%:_ fﬂﬁ'(VU)'U dx— §||J||§— §||VU||§, 4.3
tioned by Orf® and a complete reference to this method can

be found in Josepf where theL? norm is denoted by ||,. It can be showt
_ from Eq. (4.3 that the slowest possible decay rate of a per-
A. Formulation turbation is given by the following infimum over all

The approach of Doering and GibWddris followed and divergence-free vector fields that satisfy the boundary condi-

modified to account for the presence of a magnetic field. Wélons:

define the condition for energetic stability to be that the ki- ~

netic energy of any disturbances must monotonically decay . [ (LR)(IVT[5+]]I5) + [ oTi-(VU) T dx

to zero. The energy decay is due to diffusive processes, mo- ||U||§ '

mentum diffusion and magnetic diffusion, corresponding to

viscous and Joule dissipation, respectively, while the meawhich can be calculated using variational calculus. The mini-

flow acts as a reservoir of energy for the perturbations. Sanizing field is given by a field satisfying the Euler—Lagrange
equations and therefore is a solution of the following eigen-
value problem:

(4.4

1.
in=U-D—§(j OB+ V2U)+Vp, V-U=0, (4.5

where] is given by (4.2) and D;;=(dU;/dU;+ dU;/dx;)/2
is the deformation tensor, which fdd defined in(2.3) is
given byD 3= D3;=(dU(2)/9z)/2 with all other terms zero.
The boundary conditions on the perturbations are the same as
for the linear stability problem; see Sec. Ill A. Whereas the
eigenvalue problem for the linear stability analysis is gener-
ally not self-adjoint, the nonlinear eigenvalue problem does
result in a self-adjoint operator and therefore to a real spec-
trum of i w or, equivalently, to an imaginary spectrum of
If wis negative then perturbations decay, and if positive
then they grow at least initially. We are interested in neutral
values, i.e.,.o=0, and specifically in the critical Reynolds
number below which no perturbation grows.

_ _ _ _ _ This eigenvalue problem is solved in an analogous way
FIG. 6. Magnitude of all nonzero eigenfunctions normalized by the maxi-

mum in 0 for R=50 000 on the upper branch of the marginal curve for ato the Ilngar Stab_lllw analySIS' \N_e rec_a(stS) as elght first- .
wall-normal imposed magnetic field, for an insulating boundary andfor order ordinary differential equations in the transform vari-

=+0.01: —[0; ---|W|; - |pl; - [2]; — | @) ables of(3.3), which for B=g, gives
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b1 0 1 0 0 0 0 0 O b1
b3 1+Kk2 0 RkU'/2  iRK? 0 0O 0 O b
b3 —i 0 0 0 0 0 0 O b3
s | | —kU'M(2k*) —i/R  —KIR 0 kU'/(2k)) 0 0 O o 6
s |~ 0 0 0 0 0 1 0 O és | :
b 0 0 -RkU/2 0 1+k* 0 —ik* 0] | ¢
b 0 0 0 0 0 0 0 1 &7
L 0 0 0 0 i 0 k¥ o0 o

where the notation is the same as in Sec. lll, except that hef®. Non-normal magnetic field
the magnitudes of the perturbation quantities are no longer As with the linear stability analysis, formulation of the

necessa:r%ili inﬂnitgs;mal. t'rr]his sytstemhis sqlvr?td.irzjthe Sé"rm%nergetic stability problem when the imposed magnetic field
Wa}y as( ',-)' ks ke (I;re, ._e. _s;isze;n ZS elgh n rt]apen ben}s inclined in thex or y direction is similar to that discussed
solutions é;(z,ky ky,R) (i=]=1,23,..,8), where the sub- i gec i A with appropriately modified forms ¢#.6) and

scripti indicates one of the eight transformed variables an 4.8). We have restricted the analyses by considering only
the superscrip} indicates one of the eight solutions, which the effects ofB, or B, individually, and we use the same

have the following exact closed-form solutions in the limit notation for the inclined fields as described in Sec. 11 B.

Z— 0]
¢ij(z—>w,kx,ky,R)=cfeKJZ, i=j=123..8, (4.7 C. Energetic stability results
Figure 7 shows marginal curves for energetic stability

where thec] and «; are the eigenvectors and eigenvalues,for a selection of cases. Flg=0 (andk,#0) the curves are
respectively, of the & 8 matrix in (4.6) in the limit z—oo. distinct for insulating and conducting walls but, as with the

The values ofk; are given by linear stability analysis, fok,=0 (andk,#0) the insulating
and conducting wall boundary conditions result in identical
K1 7= kg e=(1/2)F (1/2)(1+4k?)*? curves. Further, fok,=0 the addition of a component of
(4.9 magnetic field in thex direction has no effect on the ener-
K34= K7 5= — (112 F (1/2) (1+ 4k2) 2, getic stability of the flow; similarly, fok,=0 the addition of

a component of magnetic field in thedirection has no ef-
fect. However, fork,=0 the addition of a component of
magnetic field in the direction is stabilizing, as is the addi-
tion of a component of magnetic field in tkxedirection for

Again, in order that all perturbations decay at-», C,
=C,=Cg=Cg=0, which leaves the components of the final
solution vector as

k,=0.
y
8 Joseph gives a proof, following Buss¥, that for an
(Z.ky Ky R)= Ci(k, ko . R) Bl (z.k, Ky .R), odd velocity profile without electromagnetic forcés.g.,
Piz ko ky R) 121 ik ky Rk Ky R) plane Couette flowthe critical Reynolds number for ener-

i—135.7. 4.9 getic stability is determined by considering only the cases

The wall boundary conditions are the same as those given in s
Sec. lll A and allow the values &, 35 7to be determined as .
nontrivial solutions of(3.9), i.e., for zeros ofA(k,,ky,R)
=0. Note that the differences between the solution of the ENERGETICALLY STABLE
linear stability analysis and the energetic analysis are that the *
8 8 matrices in(3.4) and(4.6) differ and that here there is o
no o dependence. As discussed in Sec. Il A, in the linear 4z ky 2 * 16, =0,all6,
stability analysis only the top left ¥4 block of the 8<8 . y LT 0 =450
matrix in (3.4) needs to solved if only the linear eigenvalues 0,=0,all6, ="/ 182 = 60°
are required. However, here an equivalent reductiotd) v ’ ’ '

is only possible ifk,= 0, otherwise the full eighth-order sys- ' \
tem must be solved. Indeed, it can be shdaee Sec. IVE os o
that the critical Reynolds number for energetic stabiltig- '
low which there is no amplification of any disturbander a
Hartmann layer with purely wall-normal imposed magnetic Re =25.6

_ﬁeld is given_by a tV\_/O'dimenSional disturbance with=0, FIG. 7. Marginal curves for energetic stability: — insulating boundary;
i.e., streamwise vortices, and rkpt= 0. - -- conducting boundary;-- both insulating and conducting boundary.

} ky=0




Phys. Fluids, Vol. 11, No. 8, August 1999 On the stability of the Hartmann layer 2065

45 T T T T T 45

051

R =100 Bt R : . R =100
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FIG. 8. Marginal curves for energetic stability for an insulating boundary FIG. 9. Marginal curves for energetic stability for an insulating boundary
andB,=B,=0: — R=100; ---R=60; --- R=50; - R=30; — R=26. andB,=1 andB,=0: — R=100; --- R=80; --- R=60; :-- R=30; —
R=26.

k=0 or ky,=0. Figure 7 does not conclusively show
whether these results also apply to the Hartmann layer. Al
though we can see thgg=0 is more critical thark,=0 for

11 shows that, =0 (and equally 180°has the lowest criti-
cal Reynolds numbe(~25.6 and therefore the Hartmann
layer on thez axis is the first part of the layer around the pipe

any (zero or nonzer_)) BZ" we do not know from F.'g' ! to become unstable to finite disturbances as the Reynolds
whether some combination &f+ 0 andk,+ 0 would give a o o "

- . number is increased. Beyor#tj~67° the critical Reynolds
lower critical Reynolds number. Moreover, Fig. 7 suggests

that for sufficiently largeB, the marginal curve fok,=0 humber is approximately 55.2 and is given ky=0.
becomes more critical than that fkg=0, but again it may
be that some combination é&f+# 0 andk,# 0 is most criti- V. DISCUSSION AND CONCLUSIONS

cal. To clarify these issues we have calculated marginal e have considered the stability of an isolated Hart-
curves for energetic stability in thek(,ky) plane for fixed  mann layer to both infinitesimal and finite perturbations. The
values ofR. Figure 8 shows the results for a purely normaljinear stability results(i.e., for infinitesimal perturbatiofs
imposed field. The points on thle, axis andk, axis are \yere not entirely unexpected, given the approximate results
already given in Fig. 7. Here only the first quadrant is showngf | ock® and those of Takashiré for both Poiseuille and
but there is symmetry about both tkeaxis andky axis. The  Couette flows under a transverse magnetic fiblth having
fact that the constari®lines at the smaller values & are 3 critical Reynolds number of 48311.016 at high Hartmann
ellipses with a principle axis lying on the, axis implies that  nymbey. Here, we find that the critical Reynolds number for
asRis reduced the “island” of instability does indeed shrink instability of the ideal Hartmann-layer solution with a wall-

to thek, axis, i.e.,k=0. Similarly, forB,=1 andBy=1  normal magnetic field is approximately 48 2g@r both an
and an insulating boundary, Figs. 9 and 10, respectively,

show thatk, =0 again gives the critical Reynolds number for

energetic stability. However, for increasd#l,, e.g., B, 4

~2.75 (0y=70°) in Fig. 11,k,=0 gives the critical Rey-

nolds number. The results for a perfectly conducting pipe are

qualitatively similar. a5
The energetic stability results f@,+# 0 (see Fig. J can

be applied to the flow in a circular pipe with a magnetic field

imposed in thez direction i.e., normal to the axis of the pipe, 25
which is in thex direction. This field gives a local wall- ky

normal component that varies as @s At high Hartmann i
number layer that forms at the pipe wall approaches the sk

Hartmann-layer solution for a flat plate. Around the circum-
ference of the pipe, the thickness of the layer varies inversely bl
with the local normal component of the magnetic field, i.e., osf
as sed,, and the local free-stream velocity varies as €pos R = 100 —
Therefore, the local Reynolds number is constant. Figure 12~ — 5, o : 5 5 Py 2
shows the variation in critical Reynolds number for energetic

stability with 6, for an in§U|ating boupdgr;(.‘l’hg resu!ts for  FiG. 10. Marginal curves for energetic stability for an insulating boundary
a perfectly conducting pipe are qualitatively similafigure  andB,=1 andB,=0: — R=100; - - - R=60; -- R=40; --- R=33.
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4 ' ’ ; ' ' number that there is little insight to be gained from a linear
stability analysis of three-dimensional perturbations. We be-
lieve that this discrepancy between early linear stability re-
asf 1 sults and experimental observations of laminarization has led
to the widespread feeling that the stability characteristics of
the Hartmann layer have no bearing on the sti&minar or
turbulen) of bounded MHD flows. However, our suggestion
is that instability of the Hartmann layer does determine the
state but that it is instability of finite, and not infinitesimal,
perturbations that is fundamentally important. We base our
belief that the state of a wide range of bounded partially
bounded MHD flows at high Hartmann number is due to the
stability or instability of the Hartmann layers, rather than of
the global flow, on the fact that experiments have shown that
3 transition(in fact, laminarizatiohis controlled by the value
of the ratio Re/Ha, rather than Re alone. If, as commonly
believed, it were the global flow that controls this transition
ryprocess, Re and Ha would be the two independent determin-
ing factors. Apart from the apparent irrelevance of duct cross
section and aspect ratio, there is, unfortunately, no conclu-
insulating and conducting boundaryThe difference be- Sive evidence to support our clainEven in the case of
tween our result and Takashima’s is smé@pproximately —rectangular cavities with the long side parallel to the mag-
1.5% and is probably due to differences in calculation netic field, there are Hartmann layers along the short sides,
method. We have also briefly considered the effects of indefined by the same parameRrFor an infinite aspect ratio,
clining the magnetic field in th& andy directions. Despite the laminar flow would be Poiseuille flow unaffected by the
the fact that Squire’s theorem has not been proven in thes@agnetic field and linear stability would depend on Re only.
cases, we restricted the analyses by considering only twoFhis is not observed in experiments, probably because the
dimensional perturbations witk,=0. In this way, we found aspect ratios are not sufficiently large. We claim that the
that inclination of the field in the direction resulted in the Hartmann layers still govern the stability of all the finite
same marginal curve for linear stability as for a purely wall-aspect-ratio duct flows studied in experimenthis is be-
normal field and that inclination in thedirection has a small cause experiments that have detected laminarization have
stabilizing effect. It may be that three-dimensional perturbalargely done so through measurements of pressure drop
tions give a more critical Reynolds number for instability along a section of ducted flow, rather than through detailed
than two-dimensional perturbations when the magnetic fieldneasurements that would determine the state, i.e., laminar or
is inclined, but we feel that given that the critical values wereturbulent, of the Hartmann layer and global flow. There is,
so much larger than the observations of “transition” be-however, limited experimental evidence, reported by Bra-
tween turbulent and laminar flow in ducts at high Hartmannnover, Gelfgat and Tsinobéf,that, for Reynolds numbers
slightly higher than the threshold valuglectric potentigl
fluctuations are found only in the vicinity of the boundaries.
o ' T ' ' ' ' ' ' Undoubtedly, there is a need for more detailed experiments
to determine the state of the Hartmann layers.
<] Our energetic stability analysis for finite perturbations
results in a critical Reynolds number of approximately 26 for
a wall-normal field and shows the stabilizing effect of inclin-
100} ; ing the field in both thex andy directions. Although the
critical Reynolds number is now much closer to experimen-
tal observed threshold values than that given by linear stabil-
ity analysis, there is still an order of magnitude difference.
This difference is, at least in part, due to the fact that the
x | critical Reynolds number resulting from the energetic stabil-
ity analysis must be viewed as a lower bound; the critical
Reynolds number is the Reynolds number below which all
aor 1 (divergence-free perturbation decay monotonically to zero
x and above which at least one perturbation does not decay
monotonically. Monotonic decay of all disturbances is a very
R - R E TR R stringent condition, whereas allowing transient growth with
ultimate decay is likely to result in a more realistic critical

FIG. 12. Variation in critical Reynolds number for energetic stability with R€ynolds number. Figure_ 13, which _iS adapted er_m
0, (in degreesfor an insulating boundaryx k,=0; — k,=0. Joseph? shows a schematic representation of the stability

FIG. 11. Marginal curves for energetic stability for an insulating bounda
andBy~2.75 andB,=0: — R=100; --- R=80; -- R=65; --- R=60.

120F
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GLOBALLY & MONOTONICALLY STABLE experimental results for laminarization (¥&®<250). To
GLOBALLY STABLE make a real comparison, however, we would need to apply
Nagata’s analysis in the limit of high Hartmann number and
UNSTABLE . . )
Ao ‘} l consider unsteady, as well as steady, finite-amplitude solu-

tions.

’/ For high-Hartmann-number ducted flows, as well as
Hartmann layers, there are parallel layers along boundaries
parallel to the magnetic field. These parallel layers are
thicker (6*/H*~Ha ¥ than the Hartmann layers
(6*/H*~Ha 1) and therefore for constant magnetic field
intensity and free-stream velocity the Reynolds number
based on the layer thickness is greater for the parallel layers
than the Hartmann layers. This may suggest that the parallel

At)

A(t)

CONDITIONALLY STABLE

LINEARLY UNSTABLE layers are more unstable and therefore that they, not the
AW®) A® Hartmann layers, control the “transition” process in ducted
u MHD flows. Although we could not find any reference to
¢ ¢ stability of parallel layers in the literature, it is true to say

that parallel layers are stabilized by the friction due to the
presence of Hartmann layers at their ends. Moreover, be-
cause the parallel-layer thickness is large, the contribution to
the total wall shear stress from the parallel layers is negli-
bounds, whereRg is the critical Reynolds number derived gible compared with that from the Hartmann layers. Whether
from an energetic stability analysis, such as ours described ithe parallel layers are more or less unstable, it is therefore
Sec. IVA,R, is the critical Reynolds number derived from a unlikely that laminarizatioritransition of the parallel layers
linear stability analysis, such as that described in Sec. Ill Aalone—assuming that with decreasifiigcreasing Reynolds
andRg is the Reynolds number below which all disturbancesnumber it occurs before that of Hartmann layers — would be
eventuallydecay. HereA(t) denotes the time-dependent am- detected as a decreas@h increasedpressure drop along
plitude of a perturbation and, is the initial perturbation the duct, nor is it likely that laminarizatioftransition) of the
amplitude. BetweeRg andRg perturbations of infinitesimal parallel layers would globally change the flow. Furthermore,
or finite initial amplitude may grow transiently but they ul- in circular-pipe flows under a magnetic field there are no
timately decay. This is also true belo#:(R) betweenRg parallel layers and these flows are observed experimentally
andR,. We believe that the experimentally observed valueto behave in the same way as flows in rectangular cross-
for laminarization ofR~200 is a good approximation for section ducts, where there are parallel layers. The results of
Rg . To the right ofA:(R), perturbations do not ultimately the energetic stability analysisee Sec. IV Cfavor the hy-
decay to zero, although the amplitude may saturate at sonpothesis that the Hartmann layers control “transition” be-
finite level. We have calculateBg as a lower bound ap- cause they show that the most unstable part of the circum-
proximation ofRg, which is likely to be a better indicator of ferential layer is at zero inclination to the imposed field, i.e.,
the laminarization Reynolds number. Kreiss, Lundbladh, andvhere the field is purely normal to the wall, and the associ-
Henningsof® have developed a method to calculate an estiated critical energetic Reynolds numkigb.6) is the same as
mate forRg (still a lower bound approximation, but better for the Hartmann layers in a duct with rectangular cross sec-
thanRg), however straightforward application of the proce- tion, which is consistent with the experimentally observed
dure is precluded when the flow is semi-infinite, e.g., asimilarity. In summary, we believe that the parallel layers
boundary layer. Nevertheless, as for the Hartmann layer, thelay a passive role.

transition Reynolds number for plane Poiseuille flow and no  There are obvious similarities between the asymptotic-
magnetic field=~1000 is an order of magnitude greater than suction boundary layer and the Hartmann layer; both have
Re(=50), which gives some support to our claim that insta-exponential mean velocity profiles and both therefore have
bility of finite perturbation triggers transition. Further, similarly high critical Reynolds numbers for instability of
Nagatd® has recently given interesting results from a nonlin-infinitesimal disturbancegThe shape of the exponential ve-
ear analysis on steady three-dimensional finite-amplitude sdecity profile is the dominant factor in determining the sta-
lutions of plane Couette flow with a transverse magnetidility, not the electromagnetic damping of disturbanges.
field. He considers a range of Hartmann numbers, with thédowever, in the case of the asymptotic-suction boundary
largest value being 10 for which he shows that the criticalayer, experiments have shown the strongly stabilizing effect
Reynolds number Re is about 3280 for the appearance aff introducing suction at the wall to a flat-plate hydrody-
steady nonlinear solutions. This value of Hartmann numbenamical boundary layer; see Libby, Kaufmann, and
is not sufficiently large for the laminar Hartmann layers to beHarrington? It seems that the laminar asymptotic-suction
closely exponential, as considered here, but if we neverthédoundary layer conforms to the predictions from a linear
less consider these results, Nagata shows that steady threstability analysis, provided the level of extraneous excitation
dimensional finite-amplitude disturbances exist for approxifrom sources such as free-stream turbulence and wall rough-
mately R>328. This is in fair agreement with the ness are small. This suggests that the same may be true for

FIG. 13. Schematic representation of the stability bounds.
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