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Abstract. The study of protein dynamics through analysis of conformational
transitions represents a significant stage in understanding protein function. Us-
ing molecular simulations, large samples of protein transitions can be recorded.
However, extracting functional motions from these samples is still not automated
and extremely time-consuming. In this paper we investigate the usefulness of un-
supervised machine learning methods for uncovering relevant information about
protein functional dynamics. Autoencoders are being explored in order to high-
light their ability to learn relevant biological patterns, such as structural charac-
teristics. This study is aimed to provide a better comprehension of how protein
conformational transitions are evolving in time, within the larger framework of
automatically detecting functional motions.
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1 Introduction

Proteins are large biomolecules having crucial roles in the proper functioning of or-
ganisms. They are synthesized using information contained within the ribonucleic acid
(RNA), when by means of the process known as translation, building blocks, the amino
acids, are chained together in a sequence. Although this sequence is linear, the protein
acquires a complex arrangement in its physiological state, as intramolecular forces be-
tween the amino acids and the hydrophobic effect lead to a folding of the protein into its
three dimensional shape, which determines the protein’s function [27]. The stable three
dimensional structure of a protein is unique, however this shape undergoes significant
changes to deliver its biological function, according to various external factors from
the protein’s environment (e.g. temperature, interaction with other molecules). Thus, a
protein will acquire a limited number of conformations during its lifetime, having the
ability to transition between alternative conformations [26].

The study and prediction of conformational transitions represents a significant stage
in understanding protein function [21]. In this paper we investigate protein molecular
motions and conformational transitions starting from the structural alphabet devised by
Pandini et al., a representation which provides a highly informative encoding of proteins
[22]. In this description, each fragment consists of 4 residues and is defined by three
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internal angles: two pseudo-bond angles between the Cα atoms (Cα is the first carbon
atom that attaches to a functional group) of residues 1-2-3 and 2-3-4 and one pseudo-
torsion angle formed by atoms 1-2-3-4 [22]. These internal angles entirely define each
structural fragment which can be also encoded as a letter from a Structural Alphabet
(SA) [22]. In addition to the previously mentioned representation based on angles, we
investigate whether enhancing the structural alphabet states (represented by the three
angles) with relative solvent accessibility information might bring further insight into
the matter at hand. Relative solvent accessibility (RSA) of amino acid residues is a value
indicating the degree to which the residue is exposed [20], being able to characterize the
spatial distribution of amino acids in a folded protein. RSA is significant for predicting
protein-interaction sites [20] and it is used in protein family classification [1]. The in-
tuition is that, even if RSA values independently do not offer a unique characterization
of a protein, being individually non-specific, new structural states defined by the three
angles together with RSA values could bring additional information.

Using molecular simulations, large samples of protein transitions can be recorded.
However, extracting functional motions from these samples is still not automated and
extremely time-consuming. Therefore, we consider that computational methods such as
unsupervised learning could be a well suited solution for better understanding protein
dynamics. We are investigating the usefulness of deep autoencoder neural networks to
acquire a clearer sense of proteins’ structure, with the long term goal of learning to
predict proteins’ conformational transitions. Several approaches in the literature were
proposed for analyzing and modeling protein structural conformations using both super-
vised and unsupervised machine learning techniques. Support vector machine’s perfor-
mance was tested in [14] by classifying gene function from heterogeneous protein data
sets and comparing results with various kernel methods. In [28], a Radial Basis Func-
tion Network (RBFN) is proposed for classifying protein sequences. Fifteen supervised
learning algorithms were evaluated in [9] by automating protein structural classifica-
tion from pairs of protein domains and Random Forests were proven to outperform
the others. Additional insight into protein molecular dynamics (MD) is gained in [16]
by employing L1-regularized reversible Hidden Markov Models. Self-organizing maps
have also been used alongside hierarchical clustering in [6], for the purpose of cluster-
ing molecular dynamics trajectories. A methodology for detecting similarity between
three dimensional structures of proteins was introduced by Iakavidou et al. in [8].

The contribution of the paper is twofold. Our first main goal is to investigate the ca-
pability of unsupervised learning models, more specifically of autoencoders, to capture
the internal structure of proteins represented by their conformational transitions. Sec-
ondly, we propose two internal representations for a protein (one using the structural al-
phabet states defined by three angle values, as introduced in [22] and one in which these
states are extended with RSA information) with the aim of analyzing which of them is
more informative and would drive an autoencoder to better learn structural relation-
ships between proteins. The experiments performed are aimed at evaluating the extent
by which the combination of a reduced representation and an autoencoder is suitable to
compress the complex MD data into a more interpretable representation. With this aim
we propose a proof of concept that considers only two similar but unrelated proteins
where learning on one can be used on the other. The literature regarding protein data
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analysis reveals that a study similar to ours has not been hitherto performed. The study
can be further extended on a large scale where evolutionary relationship are considered,
with the goal of answering how much the “closeness” of proteins in evolutionary space
can affect the efficiency of the encoding. To sum up, in this paper we seek answers to
the following research questions: RQ1 What is the potential of autoencoders to unsu-
pervisedly learn the structure of proteins and how does the internal representation for a
protein impact the learning process?; and RQ2 Are autoencoders able to capture bio-
logically relevant patterns? More specifically, are our computational findings obtained
by answering RQ1 and RQ2 correlated with the biological perspective?

The remainder of the paper is organized as follows. The autoencoder model used
in our experiments is described in Section 2. Section 3 provides our methodology and
Section 4 contains the results of our experiments, as well as a discussion regarding the
obtained results, both from a computational and biological perspective. The conclusions
of our paper and directions for future work are summarized in Section 5.

2 Autoencoders
Autoencoders were successfully applied in different complex scenarios such as image
analysis [13] and speech processing [5]. An autoencoder [7] is a feed forward neural
network. The input of the network is a real numbered vector x ∈ Rn.

An autoencoder is composed of two main components: (1) an encoder: g : Rn →
Rm,g(x) = h and (2) a decoder: f :Rm→Rn, f (h) = x̂. The two components are stacked
together, hence the goal of the autoencoder is to model a function: f (g(x))≈ x. We no-
tice that the input and the label of the model are the same vector. Thus the autoencoders
may be considered self-supervised learning techniques. If m < n then the autoencoder
is called undercomplete.

We consider the learning process of autoencoders as minimizing a loss function
L(x̂,x) = 1

n ∑
n
i=1(x̂i− xi)

2. The optimization is performed using stochastic gradient de-
scent with backpropagation. One may notice that the goal of the autoencoder is to copy
the input x into the output value. However, such a model would not be useful at all. In
fact, the goal of the autoencoder is to come up with useful representation of data in the
hidden state, h. Good encoded values may be useful for various tasks such as informa-
tion retrieval and data representation. A sparse autoencoder is a technique used to help
the model avoid the simple copying of the input to the output by introducing a sparsi-
fying penalty to the loss function. Usually this sparsing penalty is the L1 regularization
on the encoded state. The penalty term is scaled using a small real number denoted as
λ . Thus the employed loss becomes L(x̂,x) = 1

n ∑
n
i=1(x̂i− xi)

2 +λ ∑
m
i=1 |hi|.

Denoising autoencoders represent another technique to avoid the mere copying of
the input data to the output layer, forcing the hidden layers to learn the best defin-
ing, most robust features of the input. To achieve this, a denoising autoencoder is fed
stochastically corrupted input data and tries to reconstruct the original input data. Thus,
in the case of denoising autoencoders the loss function to be minimized is L(g( f (x̃)),x),
where the input given to the autoencoder is represented by x̃ - input data corrupted by
some form of noise [7]. Therefore, the autoencoder will not simply elicit the input data,
but will learn a significant representation of it. Various experiments proved that autoen-
coders are better than Principal Component Analysis (PCA) [7]. This is mainly because
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autoencoders are not restricted to perform linear mapping. One can consider that a sin-
gle layer autoencoder with linear activation function has the same capacity as PCA.
However, the capacity of autoencoders can be improved by tuning the complexity of
the encoder and decoder functions.

3 Methodology
In this section we present the experimental methodology used in supporting our as-
sumption that autoencoders can capture, from a computational viewpoint, biologically
relevant patterns regarding structural conformational changes of proteins. With the goal
of answering the first research questions formulated in Section 1, the experiments will
investigate the ability of an autoencoder to preserve the structure of a protein. Two types
of representations will be considered in order to identify the one that is best suited for
the analysis we are conducting. These representations will be detailed in Section 3.1.

3.1 Protein representations
A protein is a macromolecule with a very flexible and dynamic innate structure [18] that
changes shape due to both external changes from its environment and internal molecular
forces. The resulting shape is a different conformation. For each conformation of a
protein, two different representations of the local geometry of the molecule will be
used in our study.

The first representation for a protein’s conformation, which we call the represen-
tation based on angles (Angles), consists of conformational states given by the three
types of angles mentioned in Section 1 [22]. In this representation, a conformation
of k fragments (letters from the structural alphabet [22]) is represented as 3k dimen-
sional numerical sequence. This sequence contains three angles for each fragment from
the conformation. The second way to represent a protein conformation, named in the
following the combined representation (Combined) is based on enhancing the confor-
mational states given by angles with the RSA values of the amino acid residues (see
Section 1). In our second representation, a conformation of k states is visualized as a 4k
dimensional numerical vector. The first 3k positions from this vector contain the con-
formation’s representation based on angles, whereas the following k positions contain
the RSA values.

3.2 Autoencoder architecture
In the current study we use sparse denoising autoencoders to learn meaningful, lower-
dimensional representations for proteins’ structures, considering their conformational
transitions. Hence, the loss function will be computed as shown in Section 2, where
x̂ = g( f (x̃)) and x̃ represents the corrupted input data. We chose a denoising autoen-
coder in our experiments, because experimental measurements of biological processes
and information generated by particle methods (e.g. MD simulations) can be noisy or
subject to statistical errors. We are going to use such an autoencoder in order to re-
duce the dimensionality of our data. Considering that one of our purposes is to be able
to visualize our data sets, all the techniques implied are going to encode the protein
representations into 2 dimensional vectors.

The sparse denoising autoencoder learns a mapping function from an n-dimensional
space (where n can have different values, according to the employed representation) to
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a 2 dimensional hidden state. We performed several experiments, with variable numbers
of hidden layers and using various activation functions, in order to reduce dimension-
ality. More specifically, the activation functions we employed for the hidden layers are:
rectified linear unit (ReLU), exponential linear unit (ELU) [4] and scaled exponential
linear unit (SELU) [12]. As a regularization strategy, we use the dropout technique [24],
with dropout rates in {0.1,0.2,0.3}. Since we have only 2 values in the encoded state
we are going to use a small value for λ hyperparameter: 10−6. The encoded values are
then reconstructed using a similar decoding architecture.

Optimization of the autoencoder is achieved via stochastic gradient descent en-
hanced with the adam optimizer [11]. We employ the algorithm in a minibatch perspec-
tive by using a batch size of 16. The batch size affects the performance of the model.
Usually, large batch sizes are not recommended since it may reduce the capacity of the
model to generalize. Adam is a good optimizer since it also deals with the adjustment
of the learning rate. The data set is shuffled and 10% is retained for validation. We keep
the best performing model on the validation phase by measuring the validation loss.
The loss obtained on the validation set was 0.555 for 1P1L and 0.378 for 1JT8 for the
ReLU activation function, with 0.2 dropout rate. Regarding the encoding architecture,
we experimented with 2 and 3 hidden layers, containing different numbers of neurons
(depending on the size of the input data), and each of the hidden layers benefit from
batch normalization. The decoding architecture is similar, having the same dimensions
for the hidden layers, but in reverse.

3.3 Evaluation measures
In order to determine whether the representation learned by the autoencoder preserves
the similarities found in the original protein data we define the intra-protein similar-
ity measure, IntraPS, which evaluates the degree of similarity between conformations
within a protein and we will use this as an indication of how well the intra-protein con-
formational relations are maintained in the lower-dimensional representation learned by
the autoencoder. IntraPS is based on the cosine similarity measure, which is employed
to evaluate the likeness between two conformations of a protein.

Cosine similarity (COS) is widely used as a measure for computing the similar-
ity between gene expression profiles. It is a measure of the direction-length simili-
tude between two vectors and is defined as the cosine of the angle between the high-
dimensional vectors. To define the intra-protein similarity measure, we consider that
a protein p is represented as a sequence of n conformations, i.e. p = (cp

1 ,c
p
2 , · · · ,c

p
n).

Each conformation cp
i of the protein is visualized as an m-dimensional numerical vec-

tor (i.e the representation based on angles or the combined representation previously
described).

The Intra-protein similarity of a protein p = (cp
1 ,c

p
2 , · · · ,c

p
n), denoted as IntraPS(p),

is defined as the average of the absolute cosine similarities between two consecutive

conformations, i.e. IntraPS(p) =

n−1

∑
i=1
|COS(cp

i ,c
p
i+1)|

n−1 .
In computing the IntraP measure, we decided to use the absolute values for the

cosine between two conformations, since our assumption was that for protein data the
relative strengths of positive and negative cosine values between RSA vectors is the
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same. This was experimentally confirmed in our experiments. For computing the sim-
ilarity/dissimilarity between two protein conformational transitions, different methods
were investigated (Euclidian distance, Pearson correlation, Biweight midcorrelation)
and the cosine similarity has proven to be the most appropriate. Since the dimension-
ality of the original protein conformations is significantly reduced by the autoencoder
(i.e. two dimensions), Euclidian, Pearson and Biweight midcorrelation are not good op-
tions for measuring the similarity: the Euclidean distance is larger between points in a
high dimensional space than in a two dimensional one; Pearson and Biweight are not
suitable in 2D (the correlation between two dimensional points is always 1).

4 Results and discussion
The experiments we performed for highlighting the potential of deep autoencoders to
capture the proteins’ structure will be further presented, using the experimental method-
ology presented in Section 3.

The proteins used in our study are described in Table 1 which shows a brief depic-
tion of the proteins together with their superfamily and sequence length. The proteins
from Table 1 were chosen based on data availability (conformational transitions and
RSA values), the fact that they have the same sequence length (which enables us to
carry out our investigations related to RQ2 from Section 1.

Protein Description Superfamily Sequence Length
1P1L Component of sulphur-metabolizing organisms 3.30.70.120 102
1JT8 Protein involved in translation 2.40.50.140 102

Table 1: Proteins selected for analysis [2].

For both these proteins, 10000 conformational transitions were recovered from the
MoDEL database [17] (i.e. n=10000), where each transition consists of a sequence of
99 fragments of the structural alphabet [22]. Thus, as described in Section 3.1, in the
representation based on angles, a conformation has a length of 297, whereas in the
combined representation a conformation is visualized as a 396-dimensional point. For
both proteins, the two representations proposed in Section 3.1 will be further used. Be-
fore applying the autoencoder, the protein data sets are standardized, i.e. transformed
to mean 0 and standard deviation 1. Furthermore, considering that the employed tech-
nique is a denoising autoencoder, the input data is corrupted by adding noise (random
samples from a standard normal distribution).

4.1 Results
The experiment described below is conducted with the aim of answering our first re-
search question RQ1 and of investigating if and how the internal representation for a
protein impacts the learning process. For each protein data set, we trained a number of
denoising sparse autoencoders (Section 3.2). For the autoencoder we have employed
the Keras implementation available at [3]. The autoencoders presented in Section 3.2
are used to reduce the dimensionality of our data and to visualize the protein data sets.
Figures 1 and 2 depict the visualization of the proteins from our data set using trained
sparse denoising autoencoders. The axes on Figures 1 and 2 represent the range of val-
ues obtained within the 2-dimensional encoding of the input data set (the values of
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the two hidden nodes representing the encoder output). Colours were added to better
emphasize the representations of successive conformations.

Fig. 1: Visualization of protein 1JT8. Fig. 2: Visualization of protein 1P1L.

The original data fed to the autoencoder for each protein represents a timely evolu-
tion of the protein’s structure (albeit for an extremely small interval of time - nanosec-
onds), considering its transitional conformations. From one conformation to another,
the protein might remain unchanged, or certain parts of it might incur minor modifica-
tions. The autoencoders used to obtain these representations were trained on original
data in its combined representation, they employ 6 hidden layers (3 for encoding and 3
for decoding), with ReLU as activation function, batch normalization and a dropout rate
of 0.2. Nevertheless, we experimented with the representation based on angles, as well
as with various combinations of parameters (number of neurons, layers, dropout rate,
activation functions), as described in Section 3.2 and all resulting plots denote an evo-
lution of the data output by the autoencoder (henceforth referred to as encoded data),
thus suggesting that autoencoders are able to identify the most relevant characteristics
of the original representations.

The two dimensional representations of the proteins as captured by the autoen-
coders, illustrated in Figures 1 and 2, reflect the autoencoder’s ability to accurately learn
biological transitions. Successive conformations in the original data are progressively
chained together in the autoencoder’s output data thus denoting a visual evolution. Fig-
ures 1 and 2 also show that the considered protein data are relevant for machine learning
models, as it correctly captures biological chained events, by encoding successive con-
formations into points that are close in a 2-dimensional space.

Further, to decide whether the autoencoder maintains the relationships found within
the original data, we use the IntraPS measure. Thus, first we compute these similarities
for the original data and then for the two-dimensional data output by the autoencoder,
for both considered representations. The results are shown in Table 2. For each protein,
in addition to the values for the IntraPS measure, we also present the minimum (Min),
maximum (Max) and standard deviation (Stdev) of the absolute values of cosine sim-
ilarities between two consecutive conformations, for both representations. We mention
that Min, Max and Stdev were computed using batches of 100 successive conforma-
tions. These results are also illustrated in Figures 3 and 4, which show the comparative
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evolution of average IntraPS values for each 100 conformations in the 10000 confor-
mations that characterize each considered protein. We notice that for both proteins 1JT8
and 1P1L the results output by the autoencoder (denoted by ”Encoded data” in the im-
ages) are slightly larger, but, on average, particularly similar to the values computed
for the original data. All these results suggest that the original proteins’ conformations
have a high degree of cosine similarity (highlighted in Table 2), which is still preserved
in the data resulted from the autoencoder. One observes from Figure 3 that there is a
spike in the encoded data, which is not visible in the original data. Analyzing protein
1JT8, we observed that there is an event in the protein structure, but it happens with
about 100 conformations before the spike, thus it needs further investigation.

Protein Angles Combined Min/Max/Stdev (COS)
Angles Combined

1JT8
Original 0.9960 0.9913 0.9894/0.9995/0.0023 0.9843/0.9962/0.0022
Encoded 0.9939 0.9985 0.9213/0.9999/0.0161 0.9573/0.9999/0.0044

1P1L
Original 0.9779 0.9573 0.9593/0.9896/0.0064 0.9464/0.9695/0.0054
Encoded 0.9912 0.9962 0.9315/0.9999/0.0119 0.9661/0.9999/0.0052

Table 2: IntraPS for proteins 1JT8 and 1P1L, using the two considered representations.

Fig. 3: Protein 1JT8 (combined representation). Fig. 4: Protein 1P1L (combined representation).

With regard to the used internal representations, we conclude that these do not se-
riously influence the learning process. This may be due to the significant reduction of
data dimensionality (two dimensions). Still, for the combined representation which is
richer in information than the representation based on angles, slightly better results
were obtained. As highlighted in Table 2, for both proteins, IntraPS values are larger
for the encoded data and the standard deviation of the cosine similarities between two
consecutive conformations is smaller, as well. If the data were reduced to a higher di-
mensional space, the RSA values might bring additional improvements, which induces
an interesting matter for future investigations.

With the aim of answering research question RQ2, we are analyzing in the following
the biological relevance of the above presented computational results. The molecular
dynamics sampled by the ensemble of structures in the two data sets is consistent with
small consecutive changes in the protein structure occurring on the nanosecond time
scale. These changes are typical of the first stages of the functional motions and they
are generally dominated by local transitions and significant resampling of the confor-
mational space. The autoencoder is able to capture both these features, as demonstrated
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by the obtained results: changes are encoded in chained events that resample the con-
formational space effectively. In addition, there is evidence that evolutionary related
proteins are also similar in their functional motions [23].

The study performed in this paper with the aim to highlight the ability of autoen-
coders to uncover relevant information about protein dynamics is new. Autoencoders
have been previously used in the literature for protein structure analysis, but from per-
spectives which differ from ours.

Autoencoders were proven to be effective for analysis of protein internal structure
in [15] where the authors initialized weights, refined them by backpropagation and used
each layer’s input back to itself in order to predict backbone Cα angles and dihedrals.
In [10], autoencoders were employed for improving structure class prediction by repre-
senting the protein as a “pseudo-amino acid composition” meaning the model consisted
of normalized occurrences of the each of the 20 amino acids in a protein, combined with
the order of the amino acid sequence. The algorithm called DL-Pro [19] is designed for
classifying predicted protein models as good or bad by using a stacked sparse autoen-
coder which learns from the distances between two Cα atoms residues. Sequence based
protein to protein interaction was also predicted using a sparse autoencoder in [25].

5 Conclusions and further work
We have conducted in this paper a study towards applying deep autoencoders for a bet-
ter comprehension of protein dynamics. The experiments conducted on two proteins
highlighted that autoencoders are effective unsupervised models able to learn the struc-
ture of proteins. Moreover, we obtained an empirical evidence that autoencoders are
able to encode hidden patterns relevant from a biological perspective.

Based on the study performed in this paper and on previous investigations regard-
ing protein data analysis, we aim to advance our research towards predicting protein
conformational transitions using supervised learning models. Furthermore, we plan to
continue our work by using a two-pronged strategy: from a biological viewpoint we will
consider other proteins and examine how their evolutionary relationships are reflected
within the resulting data; computationally, we will investigate different architectures
for the sparse autoencoder used in our experiments (e.g. model’s architecture, differ-
ent optimizers for the gradient descent) and we will apply variational and contractive
autoencoders instead of sparse ones.
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Camps, J., Fenollosa, C., Repchevsky, D., Gelpı́, J., Orozco, M.: MoDEL: A database of
atomistic molecular dynamics trajectories. Structure 18(11), 1399 – 1409 (2010)

18. Moon, K.K., Jernigan, R.L., Chirikjian, G.S.: Efficient generation of feasible pathways for
protein conformational transitions. Biophysical Journal 83(3), 1620–1630 (2002)

19. Nguyen, S., Shang, Y., Xu, D.: Dl-pro: A novel deep learning method for protein model
quality assessment. In: IJCNN. pp. 2071–2078. IEEE (2014)

20. Palmieri, L., Federico, M., Leoncici, M., Montangero, M.: A High Performing Tool for
Residue Solvent Accessibility Prediction. In: ITBAM. pp. 138–152 (2011)

21. Pandini, A., Fornili, A.: Using Local States To Drive the Sampling of Global Conformations
in Proteins. Journal of Chemical Theory and Computation 12, 1368–1379 (2016)

22. Pandini, A., Fornili, A., Kleinjung, J.: Structural alphabets derived from attractors in confor-
mational space. BMC Bioinformatics 11(97), 1–18 (2010)

23. Pandini, A., Mauri, G., Bordogna, A., Bonati, L.: Detecting similarities among distant ho-
mologous proteins by comparison of domain flexibilities. Protein Eng Des Sel. 20(6), 285–
299 (2007)

24. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A sim-
ple way to prevent ANNs from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

25. Sun, T., Zhou, B., Lai, L., Pei, J.: Sequence-based prediction of protein protein interaction
using a deep-learning algorithm. BMC Bioinformatics 18(1), 277 (2017)

26. Tokuriki, N., Tawfik, D.: Protein dynamism and evolvability. Science 324(9524), 203–207
(2009). https://doi.org/10.1126/science.1169375

27. Voet, D., Voet, J.: Biochemistry. Wiley, 4 edn. (2011)
28. Wang, D., Lee, N., Dillon, T.: Extraction and optimization of fuzzy protein sequences clas-

sification rules using GRBF neural netw. Neural Information Processing-Lett. and Reviews
1(1), 53–57 (2003)


