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Direct numerical simulations based on the incompressible nonlinear Navier–Stokes equa-
tions of the flow over the surface of a rotating disk have been conducted. An impul-
sive disturbance was introduced and its development as it travelled radially outwards
and ultimately transitioned to turbulence has been analysed. Of particular interest was
whether the nonlinear stability is related to the linear stability properties. Specifically
three disk-edge conditions were considered; (i) a sponge region forcing the flow back to
laminar flow, (ii) a disk edge, where the disk was assumed to be infinitely thin, and
(iii) a physically-realistic disk edge of finite thickness. This work expands on the linear
simulations presented by Appelquist et al. (J. Fluid. Mech., vol. 765, 2015, pp. 612-631),
where, for case (i), this configuration was shown to be globally linearly unstable when
the sponge region effectively models the influence of the turbulence on the flow field. In
contrast, case (ii) was mentioned there to be linearly globally stable, and here, where
nonlinearity is included, it is shown that both case (ii) and (iii) are nonlinearly globally
unstable. The simulations show that the flow can be globally linearly stable if the linear
wavepacket has a positive front velocity. However, in the same flow field, a nonlinear
global instability can emerge, which is shown to depend on the outer turbulent region
generating a linear inward-travelling mode that sustains a transition-front within the
domain. The results show that the front position does not approach the critical Reynolds
number for the local absolute instability, R = 507. Instead, the front approaches R = 583
and both the temporal frequency and spatial growth rate correspond to a global mode
originating at this position.
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1. Introduction

The setup considered here is a rotating-disk in an incompressible fluid. The rotating-
disk flow is also known as the von Kármán flow (von Kármán 1921). The scaled velocity
profiles of figure 1 show an exact solution to the incompressible Navier–Stokes equations.
The simplicity of the von Kármán flow has made it suitable to serve as a model for other
three-dimensional boundary layers as suggested for example by Gregory et al. (1955).

This flow case has been of interest for stability and transition research for some time,
and the finding of Lingwood (1995) that the boundary layer becomes (linearly) absolutely
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Figure 1. The von Kármán velocity profiles in the rotating reference frame for the flow over an
infinite rotating disk. U is the radial velocity component, V is the azimuthal velocity component,
W is the vertical velocity component and P is the pressure. The pressure is normalized to zero
at the wall.

unstable above a threshold Reynolds number was of particular significance. Prior to this,
extensive theoretical investigations had been made, e.g. Mack (1985); Malik (1986), and
the two main convectively unstable modes together with a family of damped modes have
been found. Lingwood (1995) indicated the significance of one of the damped modes
by showing that it exhibited a pinch-point with one of the unstable modes where the
group velocity was zero giving rise to the absolute instability. After this discovery, more
theoretical research has been undertaken, trying to translate this local behaviour to a
global frame, e.g. Pier (2003, 2007), mainly looking for signs that this absolute insta-
bility is responsible for the onset of transition to turbulence observed in experiments.
Experimental studies of the disk flow can also be divided into those performed prior to
Lingwood (1995) and those after. Prior to 1995, most studies were focussed on the sta-
tionary vortices, e.g. Wilkinson & Malik (1985), whereas Lingwood (1996) explored the
possibility of a global instability in the flow field resulting from the absolute instability,
with follow-up experiments in this vein by e.g. Othman & Corke (2006); Siddiqui et al.
(2013); Imayama et al. (2014). Lingwood (1995) found that the absolute instability had a
critical Reynolds number (Rcl) of 507 (first given as 510 and then corrected in Lingwood
1997). The Reynolds number for the rotating-disk flow is here defined as

R = r∗
√

Ω∗

ν
= r, (1.1)

where ∗ refers to a dimensional quantity, r∗ is the radial position on the disk and
√
ν/Ω∗

is the length scale used, where ν is the (dimensional) kinematic viscosity of the fluid and
Ω∗ is the angular velocity of the disk.

In 2003, the first (known to the authors) direct numerical simulation (DNS) of the
linearized Navier–Stokes equations was reported (Davies & Carpenter 2003), computing
both the local and global flow behaviours. The local behaviour showed exactly what
was expected from theory: an absolute instability, whereas the global behaviour showed
no sign of one. Pier (2003, 2007) therefore based his nonlinear theoretical work on the
underlying assumption that the flow was linearly globally stable. Further investigations
were also made by Davies et al. (2007) to investigate effects of the inhomogeneous base
flow, when R varies with r, of the infinite disk. They managed to mimic the stable
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Figure 2. Isosurfaces pertaining to case NL03 showing the azimuthal velocity normalized by
the disk speed (VN ) in the laboratory frame of reference at T = 6.

behaviour of the disk boundary layer through a Ginzburg–Landau model if the temporal
frequcency varied linearly with radius. This ‘detuning’ effect created a spatial variation in
the temporal growth rate and thus stabilized the flow. The results of Davies & Carpenter
(2003) also led to further numerical simulations to determine whether their finding of
linear global stability was also applicable to a finite disk in contrast to the infinite disk
assumed in their simulations. Healey (2010) investigated the flow case using a linearized
Ginzburg–Landau model, and Appelquist et al. (2015a) considered DNS of the flow over
a finite disk.

In the previous work of Appelquist et al. (2015a,b), a nonlinear simulation was included
both to justify the use of a sponge region in the linear simulations, modelling the effect
of the turbulent outer annulus on an inner flow region, and also to analyse the nonlinear
behaviour. A linear global mode induced by the turbulence was found and has been
shown to maintain the turbulence within the domain, as a global instability would. In
this paper, this nonlinear behaviour is further analysed and, in addition, two simulations
where the actual edge of the disk is included are discussed: one where the disk is assumed
to be infinitely thin; and a case with a physically realistic edge to allow for comparisons
with experiments. Figure 2 is a three-dimensional visualization from the latter simulation
that shows isosurfaces of the azimuthal velocity normalized by the local disk speed and,
in particular, a nonlinear front can be seen. It is precisely these fronts found in the DNS
that will be analysed and characterized in the present paper.

The nonlinear theory studied by Pier (2003, 2007) predicted a so-called ‘elephant’
global mode in the rotating-disk boundary layer. These results are based on the previous
theoretical work on steep nonlinear global modes where Pier et al. (1998) showed that a
frequency selection takes place at a position where an upstream (–) branch is linked to a
downstream (+) branch. For a steep global mode, the position where a linear upstream
branch kl− and a nonlinear downstream branch knl+ meet, acts as a frequency generator
for the entire flow. This position separates the convectively unstable region from the
absolutely unstable region (Rcl) acting as a local oscillator inducing both the upstream
(–) branch and the downstream (+) branch. The kl− branch then lies completely in
the convectively unstable region whereas the knl+ branch lies in the absolutely unstable
region. The steep global mode just described was first referred to as an ‘elephant mode’
in Pier & Huerre (2001). They showed that the Kármán vortex street is of elephant-
mode type and that the elephant frequency-selection criterion agrees with the frequency
of the vortex shedding. The selection criterion is given by the local absolute instability.
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Since the absolute instability, which is a local property, selects an elephant mode at
transition whenever an absolutely unstable region is present, the absolute instability is a
necessary and sufficient condition for the existence of self-sustained nonlinear structures.
The conclusion of Pier & Huerre (2001) was that a nonlinear global instability takes place
as soon as a local absolute instability arises at some point in the flow. The nonlinear
elephant global mode is thus governed by local linear properties. Two kinds of such
nonlinear elephant modes have been described in the literature, i.e. pulled and pushed
elephant modes, see Chomaz (2004). The kind described above is a pulled front, which
would be seen as a stationary front located at Rcl, which is itself absolutely unstable
to secondary instabilities. Such a front has been found in the DNS by Viaud et al.
(2008, 2011) in an open rotating cavity. They found that their flow was linearly globally
stable and nonlinearly globally unstable, leading to a subcritical global instability. At
Rcl, a sharp front grew and downstream a saturated nonlinear spiral mode was fixed by
properties from linear theory. This downstream mode also contained an elephant mode
and a direct transition to turbulence was given through an elephant-mode cascade where
an absolute secondary instability gives rise to a secondary elephant mode. The structure
of the flow field in figure 3b in Viaud et al. (2011) is similar to that of the disk.

The second type of nonlinear elephant global mode, the pushed front, has a propagation
speed determined by the nonlinear behaviour downstream. This contrasts with the pulled
front where the front propagation speed is determined by the linear global mode. For
either type of elephant mode, the linear upstream branch (kl−) meets the nonlinear
downstream branch (knl+) at a certain position in space. For our simulations this position
will be estimated and called rend, consistent with previous presentation of results in
Appelquist et al. (2015a,b). This definition of rend indicates the end of the linear region.
For r > rend the flow will have entered the nonlinear region and rend thus separates
the linear and nonlinear regions. In experiments, Imayama et al. (2013) defined the
transitional Reynolds number (also including Imayama et al. 2012, 2014, 2016) from their
power spectra where the first harmonic of the stationary vortices reaches an amplitude
of 10−6. Using this threshold for the onset of nonlinearity in our simulations, it will be
shown that the first harmonics of the travelling disturbances reach the same amplitude
in our corresponding spectra at our position rend. Furthermore, Imayama et al. (2013)
summarize the transitional Reynolds numbers of various experiments in their table 1
showing that a wide range of definitions have been used by different authors. In their table
3, they have translated a few of these: Lingwood (1996); Malik et al. (1981); Othman
& Corke (2006); Wilkinson & Malik (1985) and Kobayashi et al. (1980) to their own
definition of onset of nonlinearity for comparison, on which they base their resulting
transitional Reynolds number (R = 510 − 520), including their own data. Also Viaud
et al. (2008, 2011) use a corresponding position to our rend for their primary front found
in simulations of a rotating cavity. The position of their primary front is shown to be
followed by a saturated wave, and corresponds to Rcl for the rotating cavity.

Studies of the proximity of the edge to the transition Reynolds number have also
been reported in the literature. Healey (2010) also investigated the effect of nonlinearity
by adding a term to his Ginzburg–Landau model and found a (supercritical) nonlinear
front appearing at the onset of absolute instability when the disk edge was far from
the front itself. However, he found that when the disk edge approached Rcl the onset
of absolute instability moves radially outwards, i.e. the proximity of the edge stabilized
the flow. Experiments by Imayama et al. (2013) showed no obvious variation in the
transition Reynolds number when Rcl was close to the edge while Pier (2013) found in
his experiments that the edge of the disk acted as a strong source of fluctuations. Having
a physical edge included in the DNS gives the opportunity to investigate its effect on
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the boundary layer and check whether the perturbations from the edge enter into the
rotating-disk boundary layer. We do not, however, aim here to examine how the proximity
of the edge affects Rcl, and leave this for future numerical studies.

This paper is organized as follows. In §2 the setup of the simulations is described.
Results are presented in §3 including a discussion, and finally §4 provides a summary
and conclusions.

2. Method

The simulations were performed with the massively parallel code Nek5000 (Fischer
et al. 2012) using a Spectral Element Method (SEM). The code is the same as used in in
Appelquist et al. (2015a) however a minor correction is given here; namely that the PN -
PN−2 method is used in both papers. This describes the spatial discretization where the
pressure is only defined on the Gauss–Legendre points, in contrast to the velocity fields
that are defined on Gauss–Lobatto–Legendre points. The reason for this is to remove
spurious pressure modes. Again Legendre polynomials of order 7 are used. SEM was
introduced by Patera (1984) and combines the geometrical flexibility of finite element
methods with the accuracy of spectral methods. The temporal discretization scheme
in Nek5000 is based upon operator splitting, where the nonlinear convective terms are
treated explicitly via an extrapolation scheme (EXT), and the viscous and divergence
operators are treated implicitly. The implicit scheme is based on the backward differential
formula (BDF). Equation (15) in Karniadakis et al. (1991) corresponds to the operative
scheme BDFk/EXTk, where in Nek5000 orders of k = 1, 2, 3 are possible.

2.1. Governing equations

The full Navier–Stokes equations are advanced in time within the Nek5000 code

∂Ux

∂t
+ Ux · ∇Ux = −∇p+

1

RN
∇2Ux + fx (2.1)

together with the continuity equation

∇ ·Ux = 0, (2.2)

where Ux = (Ux, Uy,W ) are the velocities in Cartesian coordinates, p is the pressure
and fx is a forcing term used in connection with the initial disturbance, fictional forces
(if included) and sponge regions used together with the radial boundary conditions. The
nonlinearity in the advection can be turned off so that the code is run in only a linear
fashion, which was the approach taken in Appelquist et al. (2015a). The flow field for
the linear code is divided into a baseflow and an additional perturbation field. For the
velocities in cylindrical coordinates the notation U = (U, V,W ) is used. The scaling
of these velocities and the additional pressure in the global scale are U = U∗/r∗Ω∗,
V = V ∗/r∗Ω∗, W = W ∗/(νΩ∗)1/2 and P = P ∗/ρνΩ∗, where ρ is the dimensional
density. The time scale within the simulations is such that t corresponds to the number
of radians through which the disk has rotated. The number of full rotations is measured
by T = t/(2π). The parameter RN in equation (2.1) refers to the numerical Reynolds
number used in the simulations directly related to the size of the numerical domain. For
our simulations this was chosen to be 1 giving the desired relationship R = r. An extensive
description of this scaling can be found in Appelquist (2014). There, a description of the
accuracy of the laminar flow can also be found to be of the order 10−8 − 10−12 when
using an efficient spectral interpolation routine to extract equidistant points from the
SEM mesh.
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r = [400 780] Nr = 96 ∆r = 4
θ = [0 2π/68] Nθ = 11 ∆θ = 2π/(68 ·Nθ)
z = [0 20.5] Nz = 20 ∆z = 0.2, s = 1.15

Table 1. Summary of the spectral-element mesh for the linear simulations in terms of size of
the domain [min max], number of spectral elements (Nr, Nθ and Nz in the r, θ and z directions,
respectively) and resolution of the spectral elements in the radial, azimuthal and wall-normal
directions.

r = [400 780] Nr = 191 ∆r = 2
θ = [0 2π/68] Nθ = 31 ∆θ = 2π/(68 ·Nθ)
z = [0 49.3] Nz = 31 ∆z = 0.4, s = 1.08

Table 2. Summary of the spectral-element mesh for the nonlinear simulation NL01 (see table
3), again, in terms of size of the domain [min max], number of spectral elements (Nr, Nθ and Nz
in the r, θ and z directions, respectively) and resolution of the spectral elements in the radial,
azimuthal and wall-normal directions.

2.2. Mesh and simulations

The domain sizes of the simulations in the r-z plane are shown in figure 3 and 4. Two
linear simulations, L01 and L02, have been performed with a total of 21120 spectral
elements each. Their mesh characteristics are summarized in table 1, and with a typical
linear disturbance with a radial wavelength of 4.8 (corresponding to a disturbance with
αr = 0.2088), an azimuthal wavelength of 2π/68 and a boundary-layer thickness for the
laminar profile where V = 0.05 of 3.60, this mesh is well resolved. These simulations were
run for a time of, respectively, T = 3.25 and T = 2.5. The difference between these two
linear simulations is the boundary conditions used. The L01 case uses a sponge region
corresponding exactly to case r04 in Appelquist et al. (2015a). Case L02 is also mentioned
in Appelquist et al. (2015a), and turns out to be linearly stable although the data are
further analysed in this paper in relation to the corresponding nonlinear simulation NL02.
Both L02 and NL02 include a disk edge with a symmetry boundary condition (SYM),
where the domain is mirrored in the z direction corresponding to an infinitely-thin disk.
The simulation NL03 also includes a symmetry boundary condition but with a finite-
thickness edge included in the simulation. The setup of NL03 can easily be related to
the physical disks used in experiments. The thickness of the disk in NL03 corresponds
to almost 40 mm if mirrored in the vertical plane, for a disk with rotational speed of
1000 rotations per minute in air at 20◦C (ν = 1.5 ·10−5 m2s−1). The experimental radius
would then correspond to 265 mm if the edge Reynolds number is 700. The spectral-
element mesh for the nonlinear simulation NL01 is presented in table 2. Simulations
NL02 and NL03 have spectral elements clustered close to the edge of the disk (r = 700)
in order to resolve the sudden change in geometry or boundary condition. Table 2 can
then be seen as a reference of minimum resolution of the spectral elements. The number
of spectral elements for the three nonlinear simulations conducted, NL01, NL02 and
NL03 are 183,551, 186,434 and 221,991, respectively. All nonlinear simulations were run
to a time of T = 6. A resolution check was undertaken for case NL02 for another half
rotation where the polynomial order was increased from 7 to 9 and no difference was
seen. Simulations L01, L02, NL02 and NL03 were performed in the laboratory frame
of reference, wheras NL01 was run in the rotating frame of reference. The reason for
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Figure 4. Similar as figure 3, but for case NL03.

this was to keep the velocity small for the flow beyond the edge of the disk, where in
the laboratory frame of reference both NL02 and NL03 have velocities decaying to zero.
Since the edge was not included in NL01 this was preferably run in the rotating frame
of reference for a more direct comparison to theory, which is performed in this reference
frame. The linear simulations L01 and L02, however, appear in Appelquist et al. (2015a)
where all simulations were performed in the laboratory frame of reference.

The included angle of the domain considered is 2π/68 where 68 is chosen since this is
the azimuthal wavenumber of the onset of local absolute instability according to linear
theory. In the wall-normal direction the elements are stretched according to

zn =

n∑
i=1

∆z si−1, (2.3)

where s is the stretching factor, zn is the coordinate at position n above the wall and
z1 = ∆z is the height of the spectral element closest to the wall. These parameters are
also seen in table 1 and 2. An advantage of defining the coordinate system in such a way
is the equivalence to the geometric sum

zn =
sn − 1

s− 1
∆z (2.4)

giving a direct relationship between a mesh coordinate and an array position in our code.

2.3. Boundary conditions

There are different boundary conditions seen in figure 3 and 4 in relation to the simu-
lations. A formulation of the already mentioned symmetric boundary condition would
be an impermeable plane where W = 0, and ∂U/∂z = 0 and ∂V/∂z = 0. The Dirichlet
boundary condition is denoted with ‘v’ and is always set to the von Kármán similarity
solution. A homogeneous Neumann outflow boundary condition is denoted with ‘O’, and
‘ON’ combines both v and O to set the in-plane velocities but leaves the normal veloc-
ity to be stress free: ∂W/∂z = p. A segmentation of the domain to only 2π/68 radians
was made possible through cyclic boundary conditions in the azimuthal direction, which
are essentially periodic boundary conditions but involve an appropriate rotation of the
velocities across the boundary.

The grey shaded areas in figures 3 and 4 are sponge regions also described in Appelquist
et al. (2015a) applying a volume force to the velocity field such that the solution relaxes
to the von Kármán laminar flow field. Figure 2 therein shows λ(r) used in the forcing
function

f = −λ(r)u (2.5)

where f in cylindrical coordinates is converted to fx in Cartesian coordinates before
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entering equation (2.1) in our simulations. The sponge function λ is described by

λ(r) = λmax

[
S
(r − rstart

∆rise

)]
, (2.6)

where maximum strength of the damping is λmax, the radial position where the sponge
region starts is rstart, and ∆rise corresponds to the rise distance of the damping function.
The smooth step function S, using x as the argument, is

S(x) =


0, x ≤ 0,

1/(1 + e1/(x−1)+1/x), 0 < x < 1,

1, x ≥ 1.

(2.7)

The corresponding ∆rise parameters describe a smooth increase of the force and are
shown as light grey shaded areas and the areas, where λmax is achieved are illustrated in
dark grey in our figures 3 and 4. The λmax values were [28, 10, 18, 8, 8] for simulations
[L01, NL01, L02, NL02, NL03]. For the two cases with a sponge prior to the ‘O’ condition,
only V and W were forced back to the similarity solution to reduce the vorticity in the
fields before the outflow. A sponge was also used for the inflow region where the function
(2.6) was tuned to damp in the opposite direction. Then rstart = 420, ∆rise = 10 was
used in the negative r-direction, and λmax = 0.8 for all simulations, which is the same
as in Appelquist et al. (2015a). The purpose of this inflow sponge region is to reduce
potential spurious reflections of the upstream-travelling mode.

2.4. Initial conditions

All simulations were started with the laminar von Kármán boundary layer, and for case
NL03 a linearly decreasing azimuthal velocity from the wall initialized the flow on the
vertical edge of the disk. The simulations with the symmetric boundary condition (L02,
NL02) and physical edge (NL03) were run for some time to allow the flow to develop to
either a stable radial jet (symmetric condition) or to a developed boundary layer on the
finite vertical edge of the disk. Both of these initial conditions are seen in figure 5 where
the azimuthal velocity is shown normalized by the disk speed. Figure 5(a) shows the initial
condition for NL02. This initial condition was achieved by running the simulations for
0.25 rotations and the flow shown is steady in time. Figure 5(d), on the other hand, shows
the initial condition for NL03. This was obtained after running the simulations for 1.5
rotations during which the flow developed. Initially, a radial jet emanated from the edge
of the disk, similar as in (b), and is shown in (c) to break down. After only 0.25 rotations a
fully-developed boundary layer on the vertical edge of the disk was established, however
the simulation was continued in order to see if the turbulence at this edge could act
as an upstream disturbance and enter the boundary layer on the disk surface. Despite
the turbulence on the vertical part, after 1.5 rotations the boundary-layer on the disk
surface was still laminar. However, we cannot exclude the possibility that at a later time
transition on the disk would be induced from the edge, but we have shown that this is
not an immediate process.

All boundary layers were exited by an impulse as described in Appelquist et al. (2015a)
with an excitation position located at a radius of r = 490. The impulse was added as a
short volume force spread over a few length units in the radial direction close to the disk
surface, fixed in the rotating frame of the disk. In both the r and z direction, the spatial
shape is a Gaussian function, and in the azimuthal direction a sinusoidal wavefunction
was introduced. The strength of the forcing is formally defined as

η = <[a(r) · b(z) · c(t) · d(θ)], (2.8)
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(a) NL02, T = 0 after 0.25 rotations.

(b) NL03, T = −1.4375 after 1/16 rotations.

(c) NL03, T = −1.375 after 1/8 rotations.

(d) NL03, T = 0 after 1.5 rotations.

Figure 5. Initial conditions for simulations (a) NL02 (the disk edge is at r = 700) and (d)
NL03 showing only part of the full domain. The base flow for L02 is the same as the initial
condition for NL02 with a shift in the radial edge position to r = 680. The azimuthal velocity
is shown normalized by the local disk speed, where red corresponds to one and blue to zero.
(b) and (c) show the radial jet prior to the development of the turbulent boundary layer on the
finite vertical edge of the disk.
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when considering the rotating reference frame. In equation (2.8) a, b and c are functions
of either space (r,z) or time (t). The separate terms are defined as

a(r) = e−λ(r−rex)
2

eiα(r−rex) (2.9)

b(z) = e−µ(z−zex)
2

(2.10)

c(t) = (1− e−σt
2

)e−σt
2

(2.11)

d(θ) = eiβ(θ). (2.12)

In (2.9)–(2.12), rex = 490 and zex = 0 set the exitation location of the disturbance in
the radial and wall-normal directions, respectively, whereas λ = 0.5, µ = 25 and σ = 50
give the extent of the forcing in space (r and z directions) and time. The wavenumbers
in the radial and azimuthal directions are α = 0.213 and β = 68, respectively. The
nondimensional rotation rate of the disk is Ω = 1. The resulting forcing function in
cylindrical form is introduced as

f = η(Ud −Us), (2.13)

where Ud is the velocity of the disk, and Us is the current simulation velocity. The
excitation lasts for approximately 1/16th of a rotation and time (T ) is measured in
rotations from the start of the excitation. The actual starting time of simulation N03 is,
therefore, T = −1.5 since the boundary layer at the edge had to develop. The amplitude
of the impulse was increased for simulation NL02 and NL03, where η was multiplied by a
factor of 1000, compared to NL01, allowing for turbulence to initially develop at earlier
radial positions. For the simulations based on the linearized equations, the amplitude of
the impulse is of not relevant.

3. Results and discussion

In figure 6 space–time diagrams are presented to illustrate the development of the
impulse disturbance in all simulations. All figures show the root-mean-square (rms) am-
plitudes

vrms =

√
1

2π

∫ 2π

0

(VN − V N )2dθ. (3.1)

where VN is the azimuthal velocity normalized by the local disk speed (rΩ). The rms
values are computed at a height of z = 1.3 and the overbar indicates the mean value
in the azimuthal direction. Figure 6(a) L01 and (b) NL01 both show globally unstable
behaviour, linear and nonlinear, respectively. This behaviour of the flow and the corre-
sponding appearance of the space–time diagrams for L01 and NL01 has previously been
discussed in Appelquist et al. (2015a,b). Unstable behaviour then emerges from a small
amplitude perturbation where the flow either is affected by the downstream boundary
condition (imitating the change of a laminar mean flow to a turbulent one), L01, or ac-
tual time-dependent turbulence developing close to the downstream boundary and grows
upstream, NL01. The latter indicates a front separating the linear and nonlinear regions
moving upstream. In contrast, cases (c) L02 and (d) NL02 show different behaviours. L02
is linearly globally stable while NL02 is nonlinearly globally unstable. In simulation L02
a high convective radial velocity makes the disturbance leave the domain and at the final
time no disturbance is left. Simulation NL02, on the other hand, is disturbed by high
amplitude disturbances such that nonlinear effects enter the simulation soon after the
excitation. The simulation develops turbulence and again a front is created indicating a
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Figure 6. Space–time diagrams showing vrms at a height z = 1.3. All simulations are impulsively
disturbed at r = 490 and time zero. The dashed lines in (c) and (d) indicate the edge of the
disk. The logarithmic colour scale is the same for all figures.

separate upstream linear behaviour from a downstream nonlinear behaviour. In the case
of NL02 this front moves downstream in contrast to NL01, this is due to the difference
in amplitude of the initial impulse disturbance. In figure 6(e) the behaviour for NL03 is
the same as in (d) and here it is also possible to see the influence of the edge. Damped
disturbances are shown upstream until approximately r = 600 before T = 0. These dis-
turbances are not amplified in the boundary layer before the impulse is introduced which
leads to the same nonlinearly globally unstable behaviour seen emerging for NL01 and
NL02.

Nonlinear rotating-disk simulations performed at Tohoku University in Sendai, Japan,
with a domain of r = 441 − 570 have shown that no disturbances are left inside the
domain when perturbed by an impulse (Lee et al. 2014). This stable flow is not further
considered here.
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Figure 7. Temporal evolution of rms and growth rates for all simulations: (a) vrms as a function
of time at r = 530 and z = 1.3. (b) shows growth rates in time of (a), and (c) shows the same
growth rates as in (b) but with absolute values and for an axis in log10-scale. Dashed lines are
fitted to the last three rotations of the nonlinear cases.

A summary of the amplitudes and growth rates in time for all simulations is provided in
figure 7. Values extracted at a height z = 1.3 and radial position r = 530 are shown. In all
figures the simulations NL02 and NL03 are hard to distinguish, which essentially means
that the flow behaviour on top of the flat plate is independent of the conditions at the disk
edge. In figure 7(a) the amplitude of vrms is shown, indicating that NL01, NL02 and NL03
are approaching a similar value. The amplitude of L01 grows due to global instability
and the amplitude of L02 vanishes eventually due to global stability. Linearly growing
behaviour of L01 is assumed for larger times after the simulation was stopped at T = 3.25,
which is shown as a solid line without markers. Figure 7(b) presents the corresponding
growth rates in time of the data in figure (a) where L01 is assumed to approach a constant
value in connection to (a), also as other linear simulations in Appelquist et al. (2015a)
do. A five value running average was used to evaluate the growth rates mainly because
the data of the NL01 simulation was somewhat noisy. The positive growth rate of the
NL01 data indicates a growing behaviour in time while approaching zero growth rate for
later times, associated with the inward motion of turbulence. The negative growth rates
of simulations NL02 and NL03 indicate a decaying behaviour in time associated with the
outward motion of turbulence. Also these are seen to approach zero growth rate for later
times. An exponential decaying behaviour of the absolute growth rates of NL01, NL02
and NL03 can be identified as shown in figure 7(c) and this indicates that all nonlinear
simulations are approaching a zero growth rate at infinite time. For clarification, linearly
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Figure 8. Growth rates in radial direction of vrms at the respectively final time of the simula-
tions. Local theory data for the absolute instability is shown as chain-dotted line as a function of
R, and for R = 655 the upstream (α−

i ) and downstream (α+
i ) modes contributing to the absolute

instability with constant ωg = −13.78+i0.9810 are shown as grey lines. Also the upstream mode
for the absolutely unstable position R = 582.8 is included with constant ωg = −15.56 + i0.5680.
The position rend = 570 is indicated in the figure where rend is defined as the intersection
between simulation data and local theory data.

fitted dashed lines to the last three rotations of the nonlinear cases are also included in
the figure.

To proceed with the analysis, the spatial growth rates at the final time of all unstable
simulations are compared in figure 8. The L01 curve does not change in time since
the downstream ‘imitated’ turbulence at the end of the domain is stationary. Following
Appelquist et al. (2015a,b), the theoretical line for absolutely unstable behaviour is
included (ωi > 0 for R > 507) in the figure, together with the two modes pinching to
create the absolute instability at R = 655. These modes have constant global frequency
ωg = −13.78+i0.9810 (the relation between local, ωl, and global frequency is ωg = ωl ·R,
where the local frequency is obtained from local linear theory). Subscripts for imaginary
(i), real (r), global (g) and local (l) are further used when needed. The simulation data
from L01 follow the upstream global mode closely from r = R = 655, indicated by α−

i .
This α−

i mode is our corresponding linear upstream branch kl− mentioned in section 1.
For the nonlinear simulation data in figure 8, the global modes are still moving slowly
in time. The curve for case NL01 shifts inward and the curves for cases NL02 and NL03
shift outward in relation to the inward or outward shift of the turbulent region. We
later show that the cases are approaching the same global mode as T → ∞. For these
curves, the nonlinear data at high r are removed. Also for these simulations, it is possible
to find a kl− branch from the position where the simulation data meet the theoretical
line, and in the radially outward direction a knl+ branch is expected. The intersection
between inward and outward branches is our definition of rend where there is a linear
region for r < rend and a nonlinear region for r > rend. The position rend was first used
by Appelquist et al. (2015a) to define the end of the linear region, and for case L01
it is stationary in time while for the nonlinear cases it shifts as previously discussed.
An indication of rend is shown in figure 8 for simulation NL03 at the final time T = 6
for which rend = 570. The position of rend can be mapped in time for these nonlinear
simulations, which is further shown in figure 9, and an asymptotic position can then
be estimated as 582.8 for the absolute instability, i.e. where the nonlinear lines would
collapse and intersect the theoretical line. This α−

i mode pinching at Rcg = 582.8 (defined
as the critical Reynolds number for the global nonlinear flow) is also included in figure 8
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Figure 9. Growth rates in time as a function of rend. The final growth rate of the linear
simulations presented in Appelquist et al. (2015a) are shown as circles. The square shows the
linear simulation also presented in this paper, L01. The nonlinear simulations show growth rates
between T = 3 − 6 where the arrows indicates the direction of time. The black line shows ωi
from linear theory when β = 68 (following the absolute instability for ωi > 0). This theoretical
line is lowered (grey chain-dotted line) to be used as a model to fit the nonlinear data. The
dashed line shows the position of Rcl = 507.

having a constant ωg = −15.56 + i0.5680 (only shown for R < Rcg). Note that the
various rend positions are within the absolutely unstable region (rend > Rcl = 507). The
kl− branch (our α−

i mode) will thus partially lie in the absolutely unstable region for our
simulations, which is not consistent with the theory of Pier et al. (1998) for the elephant
mode where rend → 507 for T →∞ would be expected in order to have the kl− branch
in the purely convective region.

Figure 9 shows temporal growth rates as a function of its rend. The linear simulation
L01 is shown as a square, and circles refer to the additional linear simulations that have
been performed in Appelquist et al. (2015a). For the nonlinear simulations, the growth
rate in time at the specific location of rend is shown as a function of rend. This data
have been traced for the last three rotations and an arrow indicates the direction of
time. The symbols are plotted equidistant in time, indicating that the propagation of the
line is slowing down, consistent with the exponential decaying behaviour of the absolute
growth rates. Including data from linear theory for β = 68 as a line, the critical Reynolds
number for absolutely unstable behaviour, Rcl = 507, can be found where ωi changes sign,
which is indicated by a dashed vertical line in the figure. The line for the local theory is
also shifted by subtracting d[ln(vrms)]/dt = 0.568 (grey chain-dotted line), and it clearly
follows the trend of the nonlinear simulation data. Lowering this curve even further would
result in it following the data of the linear simulations. This empirical approach seems to
serve as a good model for our data. Previously, in Appelquist et al. (2015b), a straight
line was fitted to the nonlinear data of NL01 to estimate the asymptotic front position
to be at rend = 582, i.e. where a change of sign took place for the temporal growth. In
Appelquist et al. (2015a), rend = 594 was estimated by linear interpolation by using the
linear simulation data. However, here following our model line based on ωi from linear
theory, the position of rend = 582.8 is found from the nonlinear simulations. The aim for
all of these approaches has been to obtain an intersection where the critical Reynolds
number for the global instability can be defined, Rcg, similar to how it is defined for local
theory. Here it is suggested that our global flow is governed by the absolute instability
properties at Rcg = 582.8.

The local-theory eigenfunctions at Rcg = 582.8 are compared to the rms vertical pro-
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Figure 10. Fluctuation intensity as a function of wall-normal position evaluated from the
rms values in each direction, r, θ and z, (a) to (c). In each figure, data from the nonlinear
simulations NL01, NL02 and NL03 at positions r = 589, r = 570 and r = 570, respectively,
and local theory data at position R = 582.8 are plotted. The theoretical data corresponds to
ω = −15.56 + i0.5680, α = 0.2088 − 0.1246 and β = 68. The profiles are normalized by the
maximum value of the azimuthal profile (b) for theory and simulations separately.

files obtained from the simulations at rend = 570 for cases NL02 and NL03, and at
rend = 589 for case NL01. The result is provided in figure 10 where all profiles are
normalized by the maximum value of the azimuthal velocity for theory and simulations
separately. The shape of all profiles in each plot corresponds well, however the ampli-
tudes differ. Cases NL01 and NL02 have similar amplitudes, whereas NL03 has a higher
maximum for urms and wrms. The reason for this could be the differences in boundary
conditions at the edge of the disk. For all simulations, the mean flow field corresponds
to the von Kármán field within the linear region, i.e. for r < rend. However, due to the
various boundary conditions, the mean flow field over the edge of the disk, r > 700, is
significantly different. For case NL03, there is a negative mean vertical velocity, which
is not possible in the other two cases, where fluid is entrained into the boundary layer
from the vertical edge of the disk. This could possibly have an upstream effect on the
amplitude of the perturbation velocities.

In a next step, the temporal frequency can also be analysed. Figure 11 shows various
plots of the temporal frequency found for simulations NL03 (a and b) and NL01 (c and d).
Case NL02 shows the same behaviour as NL03 and is therefore not explicitly shown. The
simulations NL02 and NL03 were made in the laboratory frame of reference such that the
signal from the flow field was collected in an analogous way to that measured by a hot-wire
probe in an experimental flow field. Simulation NL01 was performed in the rotating frame
of reference. In figure 11(a) a Fourier analysis is provided of the signal at r = 610 and
z = 1.3 for the last 1.28 rotations of simulation NL03 including 4096 data points. A clear
peak at a frequency of 52.36 is identified together with related higher harmonics. Only
including the linear initial behaviour of NL01, and for this case using data from T = 1 to
T = 1.3 over 1024 data points gives a peak frequency seen in figure 11(c) of 15.64. These
waves are moving in the negative θ direction and thus have 0 > ωrg = −15.64. Knowing
the wavenumber β = 68 of the simulations, the frequencies can be translated between
reference frames and are found to correspond, i.e. 52.36− 68 = −15.64. Translating the
absolute mode frequency at R = 582.8 from local linear theory, ωrl = −0.0267 to the
global reference frame via ωrg = ωrl ·R gives ωrg = −15.56. This value is very close to the
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Figure 11. Frequency analysis of the flow: (a) shows the square root of the spectral energy
of the signal at r = 610 and z = 1.3 calculated over the last two rotations from case NL03 in
the laboratory frame of reference. (b) shows a frequency–time diagram at position r = 610 and

z = 1.3 including the amplitude of log10(E
1/2
ωr ). The white dashed line is located at ωr = 52.36.

(c) and (d) are analogous to (a) and (b) but including only the linear initial behaviour of NL01
in the rotating frame of reference. The white dashed line is located at ωr = 15.64 in (d).

frequency obtained in the simulations differing only by 0.08. Slightly different values were
also found from the linear simulations in Appelquist et al. (2015a) where the frequencies
for the global modes were increased compared to theory by 0.3–0.4.

In figures 11(b) and (d) data are shown after processing the signal at position r = 610
and z = 1.3 to extract the time development of the frequency. The square root of the

energy content for each frequency is shown in colour (E
1/2
ωr ) where a moving window

in time of 1024 points was included in the Fourier analysis (there were 3600 points per
rotation). The wave-pattern appearing in the direction of time is due to the number of
points used (1024), which was chosen to optimize the algorithm for the Fourier analysis
and not for the wavelength to fit exactly within the moving window of analysis. In both
figures, the frequency-time diagrams show clear peaks at either ωr = 52.36 or ωr = 15.64,
with only slight variations at early times, T < 0.5. Figure 11(b) also features peaks for
the nonlinear harmonics whereas the initial linear behaviour is only seen in (d) showing
one single peak at all times. Both these figures suggest that the global frequency from
the absolute mode at Rcg is found early on in the simulation. This global frequency
may be tuning the flow field to its particular global mode, creating a front according to
where this mode matches a local absolute instability. The global frequency is found to
be independent of the type of boundary conditions and mesh configurations. Also, when
taking the radial direction into account, the same global frequency can be found at all
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Figure 12. Amplitude log10(E
1/2
ωr ) for the temporal frequencies of signals at different radial

positions (z = 1.3). The frequencies are calculated over a window of 0.32 rotations from case
NL01 in the rotating frame of reference at two different times. The white dashed lines indicate
ωr = 15.64.

positions for T > 0.5. It is most likely, therefore, that the presence of turbulence triggers
the global frequency.

With regard to the frequency at each radial position, the simulation NL01 was ex-
amined more closely for earlier times with the aim of detecting any possible detuning

effect (Davies et al. 2007). Figures 12(a) and (b) show E
1/2
ωr for the radial-frequency plane

for T = 0.4 and T = 0.8, and in (a) there is a shift of frequency with radius towards
lower frequencies. This same effect is seen in Davies et al.’s (2007) figure 3(a) where the
frequencies are shown as negative. However, this effect is soon lost, and in (b), i.e. at
later times, no such behaviour is present, although, for the highest radial positions non-
linearities are already present possibly contaminating the whole flow domain inhibiting
the detuning behaviour. The linear variation of frequency with radius promoting global
stability explained in Davies et al. (2007) is thus shown here to be quickly overtaken by
our global frequency.

Looking at the modal energy in space rather than in time, figure 13 examines the
spatial waves found in NL03 at the last time step of the simulation. The possible waves are
adapted to the azimuthal extent of the domain appearing as multiples of wavenumber 68.

Figure 13 shows the square root of energy content, E
1/2
β , of the azimuthal wavenumbers

as a function of radial position. It is clear that several nonlinear harmonics are present
in the flow field at rend = 570. Imayama et al. (2013) defines the transition Reynolds
number where the first harmonic in the spectra reaches an amplitude of 10−6. The orders
of magnitude in their spectra are comparable to the amplitudes of figure 13 (the sum of
their spectra result in the dimensional value v∗rms, which becomes nondimensional when
dividing by r∗Ω∗ which in their case is of order 1) and it can be seen that the value
10−6 is just around rend = 570 for the first harmonic. However, there is a difference since
Imayama et al. (2013) was referring to the first harmonic of the stationary vortices and
here the first harmonic is of a travelling disturbances. For our purposes, this position
rend = 570, where the first harmonic reaches 10−6, is defined to separate the linear
from the nonlinear behaviour. Figure 14 shows a snapshot from the last time step of
NL03 in the laboratory frame of reference. The mean velocity hides the perturbation at
rend = 570, which is indicated with a dashed line, but as the perturbation grows stronger
with radius it is shown more clearly. The position of rend = 570 can be seen as a position
where the flow is constantly perturbed, creating damped waves upstream and amplified
waves downstream which eventually break down to turbulence.
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Figure 14. Snapshot of the last field of NL03 (T = 6) at z = 1.3 showing the azimuthal
velocity (V ) in the laboratory frame of reference in logarithmic scale. The black dashed line
shows rend = 570.

The case NL03 is very similar to a real experimental setup with the edge of the disk
at r = 700. A limitation is the azimuthal periodicity giving the fundamental mode with
wavenumber 68. It has been shown for NL03 that such a disk can be run purely with
the von Kármán flow without picking up any disturbance from the vertical outer edge
for 1.5 rotations. In an experimental setup, however, this is highly unlikely since there
are not only disturbances from the vertical outer edge but also from the freestream
and from roughness on the disk surface. To have a completely smooth disk as in DNS
would be impossible for experiments even in a clean laboratory environment. Due to these
different disturbance environments, case NL03 differs significantly from experiments: rend
approaches Rcg = 583, which does not match the experimentally observed location for
the onset of nonlinearity, R = 502− 514 (Lingwood 1996) and R = 510− 520 (Imayama
et al. 2013). This suggests that other disturbances, mainly the stationary vortices, present
in all experiments to a greater or lesser degree, modify the flow leading to an earlier onset
of nonlinearity and thus an earlier transition point. A comparison is provided in figure 15
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Figure 15. The azimuthal fluctuation intensity, vrms, as a function of r for NL03 at time T = 6
and z = 1.3 shown together with the position rend = 570 (thick dashed line), which estimates
the boundary between the linear and nonlinear behaviour of the flow field. An estimation based
on these data for the neutral nonlinear global front, seen for T → ∞, is given as a grey line
along with Rcg. Finally, experimental data are also included in the figure (case IP02 in Imayama
et al. 2014) together with their line for onset of nonlinearity at R = 510.

(as a grey line) where an estimation of how the final neutral front for T →∞ is shown.
The data shown are the vrms modelled on the data from simulation NL03 at T = 6. Also
rend = 570 is indicated as a black dashed line, and to the right, parallel to this line, a
grey line indicates the position of Rcg = 583, which is found to be the critical Reynolds
number for the global instability. Experimental data are shown for clean-disk experiments
(Imayama et al. 2014, case IP02) where nonlinearities are entering at R = 510, denoted
here with a black line. Comparing our Rcg to the position where nonlinearities enter for
experimental data, there is a difference in radius of ∆r = 73. There are travelling modes
observed in experiments (Imayama et al. 2013) just as we observe the travelling global
mode from the simulations. The origin of these could be due to turbulence, as in the
current study, although the mechanism sustaining the turbulence in experiments may
well be the convective stationary vortices due to small distributed rougnesses on the disk
surface, which themselves can be susceptible to secondary instabilities. Even though the
Rcl found by Lingwood (1995) for the onset of the absolute instability agrees well with
the experimentally observed positions for the onset of nonlinearity for relatively smooth
disks, both the findings from Appelquist et al. (2015a) and here (where in both cases
the disk is perfectly smooth) suggests that the nonlinear global mode develops further
downstream, at least in the absence of stationary vortices.

4. Summary and conclusions

The boundary layer on an infinitely large rotating disk is linearly globally stable (Davies
& Carpenter 2003) unless turbulence is modelled downstream, in which case it can be
linearly globally unstable (Appelquist et al. 2015a). In this paper, linearly globally stable
and unstable flows resulting from differences in setup and configurations are considered,
and it is shown that both are nonlinearly globally unstable.

A number of different simulations, both using the full nonlinear Navier–Stokes equa-
tions and their linearized version about the von Kármán base flow, were considered in the
present paper. The linear simulation L01 had a sponge region as an outer radial boundary
condition modelling the effect of the turbulent outer annulus on an inner region of linear
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flow. This simulation is shown to be globally unstable, just as the corresponding nonlin-
ear simulation NL01, also using a sponge boundary condition. The linear simulation L02
was, however, shown to be globally stable. This setup was comparable to an infinitely
thin disk, and its corresponding nonlinear simulation NL02 was shown to be globally
unstable. The behaviour of case NL03 was globally unstable, just as NL02, however this
simulation is easily compared with physical experiments due to the inclusion of the edge
of the disk.

Our linearly globally unstable simulation, case L01, resulted in one global mode with a
frequency and radial growth rate determined by the position of the artificial turbulence
modelled at the outer radial boundary. Our nonlinearly globally unstable simulations,
cases NL01, NL02 and NL03, showed asymptotic behaviour approaching the same global
mode independent of setup and configuration. Defining rend as the boundary between
the linear and nonlinear behaviour, it could be shown that an upstream linear global
mode is found to originate from the absolute instability at this rend position when ob-
serving the radial growth rate. This linear mode corresponds to our kl− branch. For the
nonlinear behaviour r > rend, when harmonics of the travelling mode were observed to
exceed an amplitude in

√
Eβ of 10−6, a knl+ branch is expected prior to turbulence.

The global frequency ωrg for the nonlinear simulations corresponds well to an upstream
mode originating from the time-asymptotic position found at Rcg = 583, i.e. where all
the nonlinear simulations would collapse on with the same global mode. Interestingly, the
temporal frequency ωrg is found and fixed at early times whereas the radial growth rates
adapt throughout the simulations. It is suggested that the turbulence triggers this global
frequency and the corresponding upstream global mode adapts in time. However, for the
linear simulations there is no possibility for the upstream mode to adapt in time since
the turbulence is modelled at a fixed position, thus the global frequency is instead set
from the absolute instability resulting from the turbulence position. In either case, there
is no global instability unless there is downstream turbulence. This also suggests that
the infinite disk of Davies & Carpenter (2003) would be globally unstable if downstream
turbulence had been included.

The correspondance to an upstream mode from local linear theory suggests an ‘elephant
mode’ arising at Rcg, since by definition the characteristics of the elephant mode are set
by local linear theory. The elephant mode acts as a wave maker with an upstream damped
wave and a downstream wave that saturates and becomes turbulent fast, possibly because
in the nonlinear region the secondary instabilities are absolutely unstable. In the flow
field, the nonlinear global mode takes the shape of a neutral front with vanishing temporal
growth rate, separating the linear and the nonlinear regions. Since the upstream part of
the absolutely unstable domain is ‘pulling’ the elephant mode upstream, it is said to be
a pulled nonlinear global mode. The global mode is, however, not pulled the entire way
to Rcl in our simulations, which therefore does not conform precisely to the definition of
an elephant mode, i.e. our kl− branch is still in the absolutely unstable region. Figure 9
shows this discrepancy between ωi and d[ln(vrms)]/dt. We suggest that it is not pulled
the entire way because of the frequency selection by the turbulence. Taking away this
frequency selection ability from the elephant mode, i.e. taking into account that our
simulations exhibit the nonlinear front further downstream than expected (at 583 rather
then 507), our elephant mode corresponds well to the findings of Viaud et al. (2011) for
the rotating cavity. The strong influence of turbulence (though not explored further here)
on the transition behaviour requires a different perspective to be taken that accounts for
the upstream/inward effects of turbulence on the linear regime. In addition to the above
findings, an indication of the detuning effect (Davies et al. 2007) was found for early
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times suggesting that this effect is purely linear and is most effective in an unconfined
domain.

An interesting finding is that the vertical-edge turbulence of case NL03 did not pene-
trate the boundary layer within at least 1.5 rotations. The effect on transition between
this edge condition and the other cases when adding an impulse was, also, negligible. It
is possible, though, that the different amplitudes of the eigenfunctions in r and z relate
to the edge condition. The configuration of case NL03 makes it easy to compare with
experiments and, for example with regards to figure 15, it is suggested that the experi-
ments do not experience the same global instability as the simulations. In experiments
it is not possible to have a perfectly smooth disk and the differences in figure 15 are
probably due to the stationary vortices modifying the flow. The stationary vortices are
themselves susceptible to instabilities and the transition scenario in experiments is likely
to include these secondary instabilities. To describe the precise transition scenario an
extensive investigation of secondary instabilities is needed, and further simulations are
planned to investigate the interactions between the various instability modes.

The main findings of the present paper can be summarized as:
i) The simulations have established a critical Reynolds number for the nonlinear

global instability to be Rcg = 583, which has a corresponding value of Rcl = 507 for
the local linear absolute instability.
ii) For the nonlinear global instability, the downstream turbulence triggers the fre-

quency for the absolute instability mode found from linear theory at Rcg.
iii) At Rcg, where the linear flow is separated from the nonlinear disturbances, an
elephant mode is established.
iv) There is no influence of disk edge geometry on Rcg.
v) In an experiment, stationary vortices triggered by unavoidable roughness on the

surface lead to a different transition scenario and hence the global instability seen in
the simulation has not been observed in experiments.
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