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Conditions for Existence of Uniformly
Consistent Classifiers

Agne Kazakeviciute, Vytautas Kazakevicius, and Malini Olivo

Abstract— We consider the statistical problem of binary clas-
sification, which means attaching a random observation X from
a separable metric space E to one of the two classes, 0 or 1.
We prove that the consistent estimation of conditional probability
p(X) = P(Y = 1 | X), where Y is the true class of X , is equivalent
to the consistency of a class of empirical classifiers. We then
investigate for what classes P there exist an estimate p̂ that
is consistent uniformly in p ∈ P . We show that this holds if
and only if P is a totally bounded subset of L1(E, μ), where
μ is the distribution of X . In the case, where E is countable, we
give a complete characterization of classes �, allowing consistent
estimation of p, uniform in (μ, p) ∈ �.

Index Terms— Consistency in uniform metric, classification,
functional data analysis, pattern recognition, uniform consistency,
universal consistency.

I. INTRODUCTION

B INARY classification amounts to attaching an observation
x from a separable metric space E to one of the two

classes, y = 0 or y = 1. Formally, a classifier is a Borel
function h : E → {0, 1}. The pair (x, y), where y ∈ {0, 1}
is the true class of x , is considered as a realization of a
random vector (X,Y ). The quality of a classifier is measured
by the false positive and false negative probabilities. If the
distribution of (X,Y ) is known and the costs for false positives
and false negatives are given, then the form of the optimal,
so-called Bayes, classifier is known. However, in practice
the distribution of (X,Y ) is unknown and is estimated from
a training set (X1,Y1), . . . , (Xn,Yn) of independent copies
of (X,Y ). The problem of classification then amounts to
providing an estimate ĥn of the Bayes classifier h∗, given that
training set. We call ĥn an empirical classifier. As we will
discuss in Section II, the task of providing a good empirical
estimator ĥn is directly related to the task of providing a good
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estimate p̂n of the conditional probability p(x) = P(Y = 1 |
X = x). Therefore, we will now focus on the latter task.

The distribution of (X,Y ) is uniquely defined by the distrib-
ution μ of X and the conditional probabilities p(x). Let Mmax
denote the set of all distributions on E , Pmax the set of all
Borel functions p : E → [0; 1] and �max = Mmax×Pmax. The
estimate p̂n is called consistent, if p̂n(X) � p(X), where �
denotes convergence in probability. The notion of consistency
obviously depends on the distribution of (X,Y ), that is, an
estimate p̂n may be consistent for one pair (μ, p) and may not
be consistent for another. An estimate p̂n is called universally
consistent, if it is consistent for all (μ, p) ∈ �max.

In the case, where E = R
d the existence of universally

consistent estimates was noticed by Stone [1] and since then
universal consistency of various estimators has been proved
(see [2]–[8]). As pointed out in [9], some proofs can be
transferred to the more general spaces E such as separable
metric spaces. The need in such generalization has recently
emerged in relation with a growing attention to functional
data analysis (see [10], [11] for the general theory, or [12]
for a proof of consistency of a concrete estimator in Hilbert
space). For the sake of completeness, we give a proof of
universal consistency of histogram type estimates in the end of
Section II. However, our main interest is on the notion stronger
than that of consistency, namely, uniform consistency.

Definition 1: For � ⊂ �max, an estimate p̂n is called
�-uniformly consistent, if the convergence p̂n(X) � p(X)
is uniform over (μ, p) ∈ �, that is, if for all ε > 0,

sup
(μ,p)∈�

Pμ,p(| p̂n(X)− p(X)| > ε) → 0, (1)

as n → ∞ (we write Pμ,p and Eμ,p instead of P and E when
we want to indicate explicitly the distribution of (X,Y )).

The notion of uniform consistency, as in Definition 1,
should not be confused with the similar notion meaning
that supx | p̂n(x) − p(x)| � 0. We prefer to call the latter
consistency in uniform metric, while the usual consistency can
be referred as consistency in L1 metric (because p̂n(X) �
p(X) if and only if

∫ | p̂n − p|dμ � 0). Consistency in
uniform metric of regression function estimators has been first
studied in [13] and [14] and various results on this topic are
continuously emerging (see [15]–[19]).

It should be also noted that a lot of papers in machine
learning theory adopt another approach to the problem of
binary classification than that described above. Instead of
estimating the function p they try to find a consistent empirical
classifier ĥn directly. The so-called ERM principle recom-
mends using empirical estimators ĥn that minimize empirical
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risk, for example,

R̂n(h) = 1

n

n∑

i=1

1{h(Xi ) �=Yi },

over some class of classifiers H . If the class is not too big
then such an empirical estimator has also a small mean risk
ER(ĥn), where R(h) = P(h(X) �= Y ). More precisely, if
R̂n(h) � R(h) for each h ∈ H then R(ĥn) � R∗

H =
infh∈H R(h). If H contains the Bayes classifier, ĥn is con-
sistent (its risk tends in probability to the risk of the Bayes
classifier). If not, a sequence ĥkn , k ≥ 1, of ERM classi-
fiers, corresponding to some classes Hk, can be considered.
If infk R∗

Hk
is equal to the risk of the Bayes classifier, one

may expect that some empirical classifier of the form ĥkn n

would be consistent. The problem is in choosing an appropriate
sequence kn . It may be proved that such a sequence exists
(and does not depend on unknown pair (μ, p) ∈ �) if
each Hk has the following uniform convergence property (see
[20, Definition 4.3]): for all ε

sup
(μ,p)∈�

sup
h∈H

Pμ,p(|R̂n(h)− R(h)| > ε) → 0, (2)

as n → ∞.
Definition (2) resembles our definition of uniform con-

sistency (1) (both notions claim uniform convergence in
probability). So maybe the uniform convergence property is
the analogue of uniform consistency in that data analytical
approach to binary classification problem. However, the exact
relation between the two notions are not yet clear to us.

Our notion of uniform consistency, as described in Defini-
tion 1, is standard in statistical estimation theory. For example,
the local asymptotic minimax theorem ( [21, Th. 8.11]) says
that if a sample from a distribution, which smoothly depends
on some parameter θ ∈ � (� is an open subset of R

d ), and
a smooth function θ 	→ ψθ on � are given then for any
estimator ψ̂n of ψθ based on that sample, any bowl-shaped
loss function � and any θ0 ∈ � the following inequality holds:

sup
c<∞

lim
n→∞

sup
|θ−θ0|<c/

√
n

Eθ �(
√

n(ψ̂n − ψθ)) ≥ E�(Z0), (3)

where Z0 is a random vector distributed according to the
normal N(0, ψ̇θ0 I−1

θ0
ψ̇�
θ0
) law, ψ̇θ denotes the derivative of

ψθ and Iθ is the information matrix of the model. If the lower
bound in (3) is attained for some estimate ψ̂n , it is called
asymptotically efficient. Clearly, every asymptotically efficient
estimator (for example, the maximum likelihood estimator), is
(locally) uniformly consistent.

To the best of our knowledge, there are currently no papers
on pattern recognition, where uniform consistency of esti-
mates p̂n would be analyzed. There is also no result analogous
to that of the local asymptotic minimax theorem (3). This is
due to the fact that usually only nonparametric classes P of
possible functions p are considered and in that case there
is no standard rate of convergence for the estimates p̂n,
such as n−1/2 in the parametric or semi-parametric estimation
theory. One exception is the logistic regression model, where
E = R

d and P = {pθ | θ ∈ E} with

pθ (x) = 1

1 + e−〈θ,x〉 . (4)

In this case the maximum likelihood estimator θ̂n of the
unknown parameter θ tends to the true value of that parameter
at the rate n−1/2, which yields the same convergence rate of
p̂n(X) = pθ̂n

(X) to p(X) = pθ (X).
It is known (see [9, Th. 7.2]) that for each estimate p̂n

we can find (μ, p) ∈ �max with the arbitrary slow rate of
convergence of p̂n to p under the distribution (μ, p). We can
bypass the latter fact by fixing μ and some P ⊂ Pmax and by
asking what is the asymptotic lower bound for, say,

�n(μ, P) = inf
p̂n

sup
p∈P

Eμ,p| p̂n(X)− p(X)|.

However, this still seems to be a very difficult problem because
even the rate of convergence of �n(μ, P) can depend on μ
and P in an unpredictable manner. Therefore, we can first ask
ourselves, for what pairs (μ, P) this quantity at least tends
to 0.

It is easily seen that �n(μ, P) → 0 if and only if
there exists a (μ × P)-uniformly consistent estimator (here
μ × P is a shorthand for {μ} × P). Therefore, the problem
of characterizing pairs (μ, P) for which (μ × P)-uniformly
consistent estimator exists can be thought as the first step
towards the theory of asymptotically efficient binary classi-
fiers. In Section III we give such a characterization. It appears
that (μ× P)-uniformly consistent estimators exist if and only
if the set P is totally bounded in L1(E, μ).

This paper is organized as follows. In Section II we study
the relation between ĥn and p̂n and prove that the consistency
of the estimate p̂n is equivalent to the consistency of a class
of binary classifiers. We also give some additional arguments
in favor of our definition of consistency of ĥn by proving that
it can be equivalently defined in a number of ways. Finally,
we construct some histogram-type estimator in the general
case of a separable metric space E and prove its universal
consistency. In Section III we present our main result which
is the characterization of pairs (μ, P) for which there exist
(μ × P)-uniformly consistent estimators. We also prove that
histogram-type estimator constructed in Section II is uniformly
consistent in all such cases. Then we discuss the more difficult
problem of �-uniform consistency for arbitrary � ⊂ �max
and give its solution in the simplest case, where the set E is
countable.

II. RELATIONSHIP BETWEEN BINARY CLASSIFICATION

AND ESTIMATING THE CONDITIONAL PROBABILITY

We always suppose that the values p̂n(x) of any esti-
mate p̂n are in [0; 1]. In that case consistency of p̂n can
be equivalently defined in many other ways. For any loss
function L on [0; 1]2, the estimate p̂n is called L-consistent, if
EL(p(X), p̂n(X)) → 0, as n → ∞.

Theorem 1 states that L-consistency is equivalent to con-
sistency for a large class of loss functions. This result is used
to prove Theorem 2.

Theorem 1: Let L be a continuous non-negative function on
[0; 1]2 and, for all p, p′ ∈ [0; 1], L(p, p′) = 0 ⇐⇒ p = p′.
Then p̂n is L-consistent if and only if it is consistent.

The proof of Theorem 1 is given in Appendix A.
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The usual choices of the loss function are L(p, p′) =
|p − p′| and L(p, p′) = (p − p′)2. Hence consistency of
p̂n is equivalent to either of the two following conditions:

E
∣
∣ p̂n(X)− p(X)

∣
∣ → 0 or E

(
p̂n(X)− p(X)

)2 → 0.

Let u and 1 − u (here u ∈ (0; 1)) denote the costs for false
negative and false positive decisions, respectively. Then the
risk of a classifier h is defined by

Ru(h) = uP(h(X) = 1,Y = 0)+(1−u)P(h(X) = 0,Y = 1),

and the problem of classification is to find a h with as small
risk as possible. The value u = 1/2, corresponding to the case
of equal costs for false positives and false negatives, leads to
the risk

R1/2(h) = 1

2
P(h(X) �= Y ) = 1

2
R(h),

where R is the risk mentioned in the Introduction. This is the
usual choice, however, for some reason that will be explained
later in this Section, we need the risks Ru with an arbitrary u.

By definition of conditional probability, for any function f ,

E f (X,Y ) = EEX f (X,Y )

= EEX ( f (X, 0)1{Y=0} + f (X, 1)1{Y=1})
= E f (X, 0)(1 − p(X))+ f (X, 1)p(X),

(here EX denotes conditional expectation, given X). Taking

f (X,Y ) = 1{h(X)=1,Y=0} + 1{h(X)=0,Y=1}
= h(X)1{Y=0} + (1 − h(X))1{Y=1}

we get

Ru(h) = uE(1 − p(X))h(X) + (1 − u)Ep(X)(1 − h(X))

= E(u − p(X))h(X)+ (1 − u)Ep(X).

The risk takes the least possible value, if h(x) = 1, when u <
p(x), and h(x) = 0, otherwise. Hence, the optimal classifier
is given by

h∗
u(x) =

{
1, if p(x) > u,

0, otherwise,
(5)

Its risk is denoted by R∗
u , so

R∗
u = (1 − u)Ep(X)− E

(
p(X)− u

)
1{p(X)>u}.

The form of the Bayes classifier suggests the following
scheme for obtaining empirical classifiers. We should estimate
the unknown function p by, say, p̂n and use

ĥun(x) =
{

1, if p̂n(x) > u,

0, otherwise.
(6)

Note that the estimate p̂n itself does not depend on u.
Nevertheless, it provides an entire class of empirical classifiers
containing, for each value of u, a possibly good approxi-
mation to Bayes classifier h∗

u . It seems very likely that the
classification problem described above is equivalent to the
problem of estimating the unknown function p of conditional
probabilities. To formulate this principle more precisely, we
need the following definition.

Definition 2: An empirical classifier ĥn is called
u-consistent, if ERu(ĥn) → R∗

u , as n → ∞.
The mean risk of the classifier (6) is

ERu(ĥun) = (1 − u)Ep(X)− E
(

p(X)− u
)
1{ĥn(X)>u}.

Therefore,

ERu(ĥun)− R∗
u = E

(
p(X)− u

)(
1{p(X)>u} − 1{ p̂n (X)>u}

)

= E
(

p(X)− u
)
1{p(X)>u≥ p̂n(X)}

+ E
(
u − p(X)

)
1{ p̂n (X)>u≥p(X)},

which yields

0 ≤ ERu(ĥun)− R∗
u ≤ E

∣
∣ p̂n(X)− p(X)

∣
∣ (7)

and also
∫ 1

0

(
ERu(ĥun)− R∗

u

)
du

= E1{ p̂n (X)<p(X)}
∫ p(X)

p̂n(X)

(
p(X)− u

)
du

+ E1{p(X)< p̂n(X)}
∫ p̂n(X)

p(X)

(
u − p(X)

)
du

= 1

2
E
(

p(X)− p̂n(X)
)2
. (8)

It is well-known that consistency of p̂n implies
u-consistency of ĥun (see [22]). This also easily follows
from (7). Conversely, if ĥun is u-consistent for all u, then by
dominated convergence and (8), E

(
p(X)− p̂n(X)

)2 → 0, that
is, p̂n is consistent. We thus proved the following theorem.

Theorem 2: Let ĥun be defined by (6). The following two
statements are then equivalent:

1) p̂n is consistent.
2) ĥun is u-consistent for each u.
We end this Section by constructing a universally consistent

histogram-type estimate of p. It is based on the idea of
approximating conditional probability p(x) = P(Y = 1 |
X = x) by

P(Y = 1 | X ∈ An(x)) = P(Y = 1, X ∈ An(x))

P(X ∈ An(x))
,

where An(x) is some set containing x , which should be
small enough for approximation to be good enough, but
with probability P(X ∈ An(x)) > 0 large enough to allow
good estimation by the sample of size n. Although they are
consistent, the drawbacks of histogram-type estimates are well
known and we do not recommend it for practical use. Our only
aim here is to provide a proof of consistency, which is valid
in the general case, where E is an arbitrary separable metric
space, and which can be simply transformed into a proof of
uniform consistency.

Let Pn = {Anj | j ≥ 1} be a sequence of finite partitions of
E such that Pn is finer than Pn−1 for any n ≥ 2 and

⋃
n Pn

generates the Borel σ -algebra on E . Define

Nnj =
n∑

i=1

1{Xi ∈Anj }, Snj =
n∑

i=1

1{Xi ∈Anj ,Yi=1}
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and let Nn(x) = Nnj , Sn(x) = Snj for x ∈ Anj . Then our
estimate is defined by

p̂n(x) =
{

Sn(x)
Nn (x)

if Nn(x) > 0,

0 otherwise.
(9)

Let kn denote the number of non-empty elements in
Pn (kn = ∞ if there are infinitely many j with Anj �= ∅).

Theorem 3: If kn = o(n), as n → ∞, then estimate (9) is
universally consistent.

The proof of Theorem 3 is given in Appendix B.
We now switch to the main topic of our paper, uni-

form consistency defined by (1). Inspecting the proofs of
Theorems 1 and 3 we easily see that both statements remain
valid if wording ’consistent’ is replaced by ’�-uniformly
consistent’. The analogue of Theorem 2 could also be proved,
were the notion of �-uniform u-consistency defined in the
obvious way. However, we will not need the latter result in
the next Section.

III. UNIFORM CONSISTENCY

If � ⊂ �max, an estimate p̂n is called �-uniformly
consistent, if (1) holds. Inspecting the proof of Theorem 1,
we see that uniform consistency can be equivalently defined
by

sup
(μ,p)∈�

Eμ,p L(p(X), p̂n(X)) → 0,

where L is an appropriate loss function. For instance, p̂n is
�-uniformly consistent if either of the following two condi-
tions holds:

sup
(μ,p)∈�

Eμ,p
∣
∣ p̂n(X)− p(X)

∣
∣ → 0

or

sup
(μ,p)∈�

Eμ,p( p̂n(X)− p(X))2 → 0.

We denote by L1(E, μ) the set of all μ-integrable functions
f : E → R, endowed with the norm ‖ f ‖ = ∫ | f | dμ. More
precisely, the elements of L1(E, μ) are not the functions f
themselves, but equivalence classes of such functions, where
two functions are meant equivalent if they agree almost every-
where with respect to μ. Note that conditional probabilities
p(x) = P(Y = 1 | X = x) are bounded and defined up to that
equivalence, therefore they belong to the space L1(E, μ).

Recall also that a subset of a metric space is called totally
bounded if, for each ε > 0, it can be covered by a finite
number of balls of diameter less than ε.

The following Theorem is the main result of our paper.
Theorem 4: 1. If kn = o(n), then estimate (9) is (μ× P)-

uniformly consistent for each μ ∈ Mmax and P ⊂ Pmax such
that P is totally bounded as a subset of L1(E, μ).

2. If there exists a (μ × P)-uniformly consistent estimate
of p, then P is totally bounded as a subset of L1(E, μ).

The proof of Theorem 4 is given in Appendix C.
The conditions for a subset of L1(E, μ) to be totally

bounded are known, but rarely used, because they are very
confusing (as compared with the similar conditions for, say,
the space C[a; b]). In our case P consists of bounded func-
tions, but this fact eliminates only one (unfortunately, less

complicated) condition. So P is totally bounded as a subset
of L1(E, μ) if and only if for each ε > 0 there exists a
measurable partition (A1, . . . , Ak) of E such that, for all p
in P there exists a measurable B ⊂ E with μ(Bc) < ε and

∀ j ∀x, x ′ ∈ B ∩ A j |p(x)− p(x ′)| < ε. (10)

In practice, however, we can use the well-known fact that P
is totally bounded if and only if it is precompact, that is, if
each sequence (pn) ⊂ P contains a converging subsequence.
In [23] we used this criterion to establish (in the case, where
E = R

d ) total boundedness of the set P = {pθ | θ ∈ R
d},

where pθ are given by (4).
It seems to be a real challenge to prove a generalization of

Theorem 4 for arbitrary subsets � ⊂ �max instead of μ× P ,
or at least for the sets � of the form M × P , where M ⊂
Mmax and P ⊂ Pmax. In the latter case, we can expect that
(M × P)-uniformly consistent estimators will exist if and only
if P is totally bounded in each L1(E, μ) and if this holds
uniformly, in some way, over μ ∈ M . Criterion (10) gives
several suggestions about how this condition could look. For
example, the set B , or the partition (A1, . . . , Ak) could not
depend on μ. However, we could not prove any statement of
such kind.

In our opinion, the first step in solving this problem should
be the analysis of a number of specific models. Moreover,
some ‘natural’ set P0 should exist in these models so that
we could focus only on the sets M for which (M × P0)-
uniformly consistent estimators exist. The simplest such model
is that with the countable set E . In this case Pmax is totally
bounded as a subset of each L1(E, μ) and therefore there
exists an estimate of p, which is (μ × Pmax)-uniformly
consistent for all μ. It is interesting to characterize the sets
M ⊂ Mmax, for which there exist (M × Pmax)-uniformly
consistent estimates. It appears that these are exactly the sets
satisfying the following condition:

sup
μ∈M

Pμ(X1 �= X, . . . , Xn �= X) → 0, (11)

as n → ∞. Here X, X1, ..., Xn are independent random
variables identically distributed according to the law μ.

Theorem 5: 1. If M satisfies condition (11), then histogram-
type estimate (9), corresponding to the sequence of partitions
Pn = {{ j} | j ≥ 1} is (M × Pmax)-uniformly consistent.

2. If there exists an (M × Pmax)-uniformly consistent esti-
mate of p, then M satisfies condition (11).

The proof of Theorem 5 is given in Appendix D.

IV. CONCLUSIONS AND DISCUSSION

The main result of Section II is Theorem 2, which relates
consistency of empirical classifiers to consistency in L1 metric
of estimators of conditional probabilities. In our opinion,
it also shows that L1 metric is more natural in this context
than, say, uniform metric.

The main result of Section III, as well as of the whole
paper, is Theorem 4, which gives necessary and sufficient
conditions on (μ, P) for the existence of (μ × P)-uniformly
consistent estimates p̂n . As we have explained in Introduction,
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we consider this result as an analogue of the local asymp-
totic minimax theorem in statistical estimation theory. If an
estimator p̂n is (μ × P)-consistent for all pairs (μ, P) such
that P is totally bounded in L1(E, μ), we think of it as
asymptotically efficient in some sense (say, o(1)-efficient). For
instance, histogram type estimators described in Section II
are o(1)-efficient.

This suggests the following programme of revising the
existing classification procedures: each estimator p̂n should
be tested on efficiency and modified, if needed (by using
a histogram-type estimator as a model, for example). The
modified estimator would probably perform better even for
finite sample size n.

We have already started this programme in [23], where
we consider the logistic classifier in E = R

d . In that case
the set P = {pθ | θ ∈ R

d }, where pθ is given by (4), is
totally bounded in L1(E, μ), for each distribution μ. However,
we could prove (μ × P)-uniform consistency of the logistic
classifier only under some assumption on μ, which can be
roughly described in the following way. Let P̄ denote the set
of functions that are point-wise limits of sequences (pθn ) ⊂ P .
For p, p′ ∈ P̄ denote also d(p, p′) = ∫ |p − p′|dμ and
Npp′ = {p �= p′}. Clearly, d(p, p′) = 0 implies that Npp′ is a
null set, i.e. μ(Npp′) = 0. The above mentioned assumption
says that, for any p ∈ P̄ , the union

⋃
p′:d(p,p′)=0 Npp′ is also

a null set. The assumption seems very technical and at the
moment we do not know if it is crucial (it is needed only in
the case d ≥ 3). However, if the logistic classifier turned out
to indeed not be uniformly consistent, it would be interesting
to find out how its modification would look.

APPENDIX A
PROOF OF THEOREM 1

Proof: The proof of Theorem 1 is based on the following
two formulas:

∀ε ∃δ ∀p, p′ ∈ [0; 1] (L(p, p′) < δ ⇒ |p − p′| < ε),

∀ε ∃δ ∀p, p′ ∈ [0; 1] (|p − p′| < δ ⇒ L(p, p′) < ε).

Let us prove the first one, the second one is proved analo-
gously. Suppose the contrary and find an ε and pn, p′

n ∈ [0; 1]
such that L(pn, p′

n) < 1/n and |pn − p′
n| ≥ ε for all n.

Without loss of generality we can assume that pn → p
and p′

n → p′ for some p, p′ ∈ [0; 1]. Then, by continuity,
L(pn, p′

n) → L(p, p′) and therefore L(p, p′) = 0, and
p = p′. Hence ε ≤ |pn − p′

n| → 0, a contradiction.
If p̂n is L-consistent, then for any ε there exists δ such that

P(| p̂n(X)− p(X)| ≥ ε) ≤ P(L(p(X), p̂n(X)) ≥ δ).

By Chebyshev inequality,

P(L(p(X), p̂n(X)) ≥ δ) ≤ δ−1EL(p(X), p̂n(X)) → 0,

therefore p̂n is consistent. Conversely, let p̂n be consistent.
By continuity, L is bounded. Denote c =
sup0≤p,p′≤1 L(p, p′). Then, for any ε there exists δ such that

EL(p(X), p̂n(X)) ≤ ε + cP(
∣
∣ p̂n(X)− p(X)

∣
∣ ≥ δ) < 2ε,

for n sufficiently large, that is, p̂n is L-consistent.

APPENDIX B
PROOF OF THEOREM 3

Proof: Let μ be the distribution of X and Tn denote
the operator of conditional expectation with respect to μ,
given the σ -algebra Bn , generated by the partition Pn (that is,
(Tnq)(X) = EBn q(X)). It is well known that Tn is a continu-
ous linear operator from L1(E, μ) to itself with ‖Tn‖ ≤ 1.
Moreover, by our assumptions on Pn , ‖Tnq − q‖ → 0,
as n → ∞, for every q ∈ L1(E, μ). Set p̃n = Tn p.
Then E

∣
∣ p̃n(X) − p(X)

∣
∣ → 0 and it remains to prove that

E
∣
∣ p̂n(X) − p̃n(X)

∣
∣ → 0, as n → ∞. Since our partitions

do not depend on (X1, . . . , Xn), we can proceed similarly to
the proof of the analogous part of in [9, Th. 6.1] (in the
case, where partitions depend on data, their proof contains
a gap).

For short, denote anj = μ(Anj ) and bnj = ∫
Anj

p dμ. Then

E
∣
∣ p̂n(X)− p̃n(X)

∣
∣ =

∑

anj>0

anj E1{Nnj>0}
∣
∣ Snj

Nnj
− bnj

anj

∣
∣

+
∑

anj>0

bnjP(Nnj = 0).

Moreover,

E1{Nnj>0}
∣
∣ Snj

Nnj
− bnj

anj

∣
∣ =

∑

I �=∅

E1Wnj I

∣
∣ 1

|I |
∑

i∈I

1{Yi =1} − bnj

anj

∣
∣,

where I denotes various subsets of {1, . . . , n}, |I | is the
number of elements in I and

Wnj I = {∀i ∈ I Xi ∈ Anj , ∀i �∈ I Xi �∈ Anj }.
Conditionally on Wnj I , the sum Znj = ∑

i∈I 1{Yi =1} is
distributed according to the binomial law with parameters |I |
and

bnj
anj

, therefore it is independent of Wnj I and

E1Wnj I

∣
∣ 1

|I |
∑

i∈I

1{Yi =1} − bnj

anj

∣
∣ = P(Wnj I )

1

|I |E|Znj I − EZnj I |

≤ P(Wnj I )
1

|I |
√

VarZnj I

≤ P(Wnj I )|I |−1/2.

Hence

E
∣
∣ p̂n(X)− p̃n(X)

∣
∣

≤
∑

anj>0

anj

∑

I �=∅

P(Wnj I )|I |−1/2 +
∑

anj>0

bnj P(Nnj = 0)

≤ 1√
k

+
∑

anj>0

anj

∑

|I |<k

P(Wnj I )

= 1√
k

+ P(Nn(X) < k)

and it remains to show that P(Nn (X) = s) → 0 for any
fixed s.
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Suppose that Anj = ∅ for j > kn . Then for all n ≥ s,

P(Nn (X) = s) =
kn∑

j=1

anj P(Nnj = s)

=
kn∑

j=1

(
n

s

)

as+1
nj (1 − anj )

n−s

≤
kn∑

j=1

ns

s! as+1
nj e−(n−s)anj

≤ es

s!n
kn∑

j=1

(nanj )
s+1e−nanj

≤ escs

s!
kn

n
= o(1),

where cs = maxu≥0 us+1e−u = (s + 1)s+1e−(s+1).

APPENDIX C
PROOF OF THEOREM 4

Proof: 1. Inspecting the proof of Theorem 3 shows that
it suffices to prove that

sup
p∈P

‖Tn p − p‖ → 0, (12)

as n → ∞, where Tn p denotes the conditional expectation
of p with respect to σ -algebra, generated by the partition Pn .
Suppose the contrary and find an ε and a sequence (pn) ⊂ P
such that ‖Tn pn− pn‖ ≥ ε for all n. Since P is totally bounded
(= precompact), we can suppose that pn → p ∈ Pmax (in
L1(E, μ)). Then

‖Tn pn − p‖ ≤ ‖Tn pn − Tn p‖ + ‖Tn p − p‖
≤ ‖Tn‖ ‖pn − p‖ + ‖Tn p − p‖
≤ ‖pn − p‖ + ‖Tn p − p‖ → 0.

2. We use one theorem of Yatracos [24], which extends
the results of [25]. He considers the problem of estima-
tion of the unknown distribution π using an i.i.d. sample
(Z1, . . . , Zn) from π . The set M of possible distributions π
is supposed to be separable with respect to the total variance
metric ρ and the estimate π̂n is called uniformly consistent, if
supπ∈M Eπρ(π̂n, π) → 0, as n → ∞. Reference [24, Th. 2]
says that, if M is uniformly dominated by some probability
π0 (that is, supπ∈M π(A) is arbitrary small, whenever π0(A)
is small enough) and if there exists a uniformly consistent
estimate π̂n of π , then M is totally bounded.

In our case Zi = (Xi ,Yi ) and M = {πp | p ∈ P}, where
πp is the distribution on E × {0, 1} defined by

πp(A × {0}) =
∫

A
(1 − p) dμ and πp(A × {1}) =

∫

A
p dμ,

A ⊂ E measurable. Since 0 ≤ p ≤ 1, the set M is
uniformly dominated by μ × (ν/2), where ν is the counting
measure on {0, 1}. It is easily seen that ρ(πp, πp′) = ∫ |p −
p′| dμ. Therefore, if p̂n is a (μ × P)-uniformly consistent
estimate of p, then π p̂n is uniformly consistent estimate of πp.
By [24, Th. 2], M is totally bounded, which implies that P
is totally bounded as a subset of L1(E, μ).

APPENDIX D
PROOF OF THEOREM 5

For simplicity, we suppose that E = {1, 2, 3, . . . } and write
μ( j) instead of μ({ j}) for μ ∈ Mmax and j ∈ E . First we
show that condition (11) can be equivalently formulated in
some other way.

Lemma 1: For each M ⊂ Mmax the following three state-
ments are equivalent:

1) supμ∈M μ{ j | μ( j) < δ} → 0, as δ → 0,
2) for all s ≥ 0, supμ∈M

∑
j

(n
s

)
μ( j)s+1(1−μ( j))n−s → 0,

as n → ∞,
3) supμ∈M

∑
j μ( j)(1 − μ( j))n → 0, as n → ∞.

Proof: (1 ⇒ 2) For each μ ∈ M and δ > 0,

∑

j

(
n

s

)

μ( j)s+1(1 − μ( j))n−s

≤
∑

μ( j )<δ

μ( j)+
∑

μ( j )≥δ

(
n

s

)

(1 − δ)n−s

≤ μ{ j | μ( j) < δ} + ns(1 − δ)n−s .

Therefore,

lim
n→∞ sup

μ∈M

∑

j

(
n

s

)

μ( j)s+1(1 − μ( j))n−s

≤ sup
μ∈M

μ{ j | μ( j) < δ}

and, by assumption 1, the term on the right-hand side can be
made arbitrary small.

(2 ⇒ 3) Take s = 0.
(3 ⇒ 1) For each μ ∈ M and n ≥ 1

∑

j

μ( j)(1 − μ( j))n ≥ 1

2

∑

μ( j )<1−2−1/n

μ( j)

= 1

2
μ{ j | μ( j) < 1 − 2−1/n}.

Therefore,

sup
μ∈M

μ{ j | μ( j) < 1 − 2−1/n}

≤ 2 sup
μ∈M

∑

j

μ( j)(1 − μ( j))n.

Fix ε. By assumption 2, the term on the right-hand side < ε
for some n. Then, for all δ < 1 − 2−1/n ,

sup
μ∈M

μ{ j | μ( j) < δ} < ε.

Hence, supμ∈M μ{ j | μ( j) < δ} → 0, as δ → 0. �
Note that condition 3 of Lemma 1 is exactly condition (11).

Now we are ready to prove Theorem 5. The proof is based
on the same idea as the proof of the so-called No-Free-Lunch
Theorem (see [20, Th. 5.1]).

Proof: 1. Inspecting the proof of Theorem 3 shows that
it suffices to prove that, for any fixed s ≥ 0,

sup
μ∈M

Pμ(Nn(X) = s) → 0

as n → ∞. This is exactly condition 2 of Lemma 1.
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2. First note that, for any bounded measurable function f ,

Eμ,p f (X1,Y1, . . . , Xn,Yn)1{Xi �= j,...,Xn �= j }
=

∑

x1,...,xn �= j
y1,...,yn∈{0,1}

f (x1, y1, . . . , xn, yn)

×
n∏

i=1

μ(xi)p(xi )
yi (1 − p(xi ))

1−yi

and the term on the right-hand side does not depend on p( j).
This means that

Eμ,p f (X1,Y1, . . . , Xn,Yn)1{∀i≤n Xi �= j }
= Eμ,p′ f (X1,Y1, . . . , Xn,Yn)1{∀i≤n Xi �= j },

provided p(k) = p′(k) for all k �= j .
Now suppose that p̂n is an (M × Pmax)-uniformly consistent

estimate of p. We need to prove that M satisfies condition (11).
Suppose the contrary. Then there exists an ε and a sequence
(μn) ⊂ M such that

∑

j

μn( j)(1 − μn( j))n ≥ 3ε,

for all n. For each n find a kn such that
∑

j≤kn

μn( j)(1 − μn( j))n ≥ 2ε.

By uniform consistency, there exists an n0 such that, for all
n ≥ n0,

sup
p∈Pmax

Eμn ,p
∣
∣ p̂n(X)− p(X)

∣
∣ < ε.

But

sup
p∈Pmax

Eμn ,p
∣
∣ p̂n(X)− p(X)

∣
∣

≥ sup
p∈Pmax

∑

j

μ( j)Eμn,p
∣
∣ p̂n( j)− p( j)

∣
∣1{X1 �= j,...,Xn �= j }

≥ sup
p∈Pmax

∑

j

μ( j)
∣
∣Eμn ,p p̂n( j)1{X1 �= j,...,Xn �= j }

− p( j)(1 − μ( j))n
∣
∣.

Therefore, for n ≥ n0,

sup
p∈Pmax

∑

j

μ( j)
∣
∣Eμn ,p p̂n( j)1{X1 �= j,...,Xn �= j }

− p( j)(1 − μ( j))n
∣
∣ < ε.

Let P∗
n denote the subset of Pmax, consisting of 2kn func-

tions p with the following two properties:
(a) p( j) ∈ {0, 1} for all j ≤ kn ,
(b) p( j) = 0 for all j > kn .
Denote also ϕnj (p) = Eμn ,p p̂n( j)1{X1 �= j,...,Xn �= j }. If p ∈

P∗
n then

∣
∣ϕnj (p)− p( j)(1 − μ( j))n

∣
∣ equals either ϕnj (p) (if

p( j) = 0) or (1 − μ( j))n − ϕnj (p) (if p( j) = 1). Therefore,
for all n ≥ n0 and p ∈ P∗

n ,
∑

p( j )=0

μ( j)ϕnj (p)+
∑

p( j )=1

μ( j)(1 − μ( j))n

−
∑

p( j )=1

μ( j)ϕnj(p) < ε.

But p( j) = 0 for j > kn , therefore, for n ≥ n0, the following
2kn inequalities corresponding to different p ∈ P∗

n hold:
∑

p( j )=0, j≤kk

μ( j)ϕnj (p)+
∑

p( j )=1, j≤kn

μ( j)(1 − μ( j))n

−
∑

p( j )=1, j≤kn

μ( j)ϕnj(p) < ε.

Let us sum up all these inequalities. Of course,
∑

p∈P∗
n

∑

p( j )=1, j≤kn

μ( j)(1 − μ( j))n

=
kn∑

j=1

μ( j)(1 − μ( j))n
∑

p∈P∗
n ,p( j )=1

1

= 2kn−1
kn∑

j=1

μ( j)(1 − μ( j))n.

Moreover,
∑

p∈P∗
n

∑

p( j )=0, j≤kk

μ( j)ϕnj (p)−
∑

p∈P∗
n

∑

p( j )=1, j≤kk

μ( j)ϕnj(p)

=
kn∑

j=1

μ( j)
( ∑

p∈P∗
n ,p( j )=0

ϕnj (p)−
∑

p∈P∗
n ,p( j )=1

ϕnj (p)
)

= 0

because ϕnj (p) does not depend on p( j). Hence, for all
n ≥ n0,

2kn−1
kn∑

j=1

μ( j)(1 − μ( j))n < 2kn ε,

that is,

kn∑

j=1

μ( j)(1 − μ( j))n < 2ε.

We got a contradiction.
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