A thermoregulation model for whole body cooling hypothermia

Ana Beatriz de C.G. e Silvaa,1,*, Luiz C. Wrobelb, Fernando L.B. Ribeiroa

aCivil Engineering Program, COPPE/Federal University of Rio de Janeiro Technological Center, Ilha do Fundão, CEP 21945-970, Rio de Janeiro, Brazil

bInstitute of Materials and Manufacturing, Brunel University London, Uxbridge UB8 3PH, United Kingdom

Abstract

This paper presents a thermoregulation model based on the finite element method to perform numerical analyses of brain cooling procedures as a contribution to the investigation on the use of therapeutic hypothermia after ischemia in adults. The use of computational methods can aid clinicians to observe body temperature using different cooling methods without the need of invasive techniques, and can thus be a valuable tool to assist clinical trials simulating different cooling options that can be used for treatment. In this work, we developed a finite element method (FEM) package using isoparametric linear three-dimensional elements which is applied to the solution of the continuum bioheat Pennes equation. Blood temperature changes were considered using a blood pool approach and a lumped analysis for intravascular catheter methods of blood cooling. Some analyses are performed using a three-dimensional mesh based on a complex geometry obtained from computed tomography medical images, considering a cooling blanket and an intravascular catheter. A comparison is made between the results obtained with the two techniques and the effects of each case in brain temperature reduction in a required period of time, maintainance of body temperature at moderate hypothermia levels and gradual

*Corresponding author

Email addresses: anabeatrizgonzaga@coc.ufrj.br (Ana Beatriz de C.G. e Silva), luiz.wrobel@brunel.ac.uk (Luiz C. Wrobel), fernando@coc.ufrj.br (Fernando L.B. Ribeiro)

1Tel.: +55 (21) 988406995

Preprint submitted to Journal of Thermal Biology August 22, 2018
Therapeutic hypothermia is a medical treatment used to reduce the damages caused by ischemic diseases that lead to a hypoxic condition in the internal organs. The brain is the most vulnerable organ to this condition \cite{Tisherman and Sterz 2005}, which can be caused by cardiac arrest, arteries occlusion and cerebral trauma. After an hypoxic-ischemic event, also called primary phase of energy failure, cerebral oxidative metabolism is restored \cite{Christiansen, Rakhilin, Tarakanova, and Wong 2010}. However, a second energy failure phase may occur in the first few hours after the ischemia, and there is a critical time when secondary factors such as hypotension, hypoxia, hyperglycemia and hyperthermia may occur and cause brain cell damage \cite{Hickey and J. Painter 2006}. The window for hypothermic treatment occurs between the primary and secondary energy failure stages, and consists in reducing the brain temperature to a mild ($35 - 36^\circ C$) or moderate ($32 - 35^\circ C$) hypothermic state, depending on the type of intervention. This reduction results in a decrease of metabolic activities and other hazardous biochemical effects, offering protection and limiting the damage in the affected tissues.

In animal trials, an improvement of neurological sequels was observed after hypothermia treatment within six hours of injury \cite{Eicher, Wagner, Katikaneni, Hulsey, Bass, Kaufman, Horgan, Languani, Bhatia, Givelichian, Sankaran, and Yager 2005}, even when only a small reduction ($1 - 2^\circ C$) is achieved \cite{Diao, Zhu, and Wang 2003}. Nozari \textit{et al.} \cite{Nozari, Safar, Stezoski, Wu, Kostelnik, Radovsky, Tisherman, and Kochanek 2006} state that mild or moderate hypothermia induced during cardiopulmonary resuscitation opens a window of
time to restore spontaneous circulation, minimizes organ injury and enables intact survival in dogs.

For adults, the most usual type of hypothermia treatment is whole body cooling (WBC) using thermal blankets and thermal mattresses, the application of ice pads, intracarotid infusion of cold fluid or intravascular catheter. The efficacy of each method is still under discussion, as there is no consensus so far about which of them would have a better effect in reducing sequels.

Multiple studies also suggest that, after the treatment, a gradual rewarming phase is really important. Zhu et al. [Zhu, Schappeler, Cordero-Tumangday, and Rosengart, 2009] state that rapid rewarming may result in rebound intracranial pressure elevation to dangerous levels and reduction of cerebral perfusion pressure, worsening outcome in brain injuries, emphasizing the importance of a gradual rewarming. For this reason, it is suggested that the process should be conducted at a rate of less than $0.5^\circ C/h$ [Hoque, Chakkarapani, Liu, and Thoresen, 2010].

In recent years, different models were developed to simulate the human thermoregulatory behaviour, from two-node models of core and skin heat balances to more complex multi-segment models of the human body and its thermoregulatory responses [Fiala, Lomas, and Stohrer, 1999]. The latter model incorporates concepts of physiological regulation to predict human thermal responses and body heat loss at various activity levels and thermal environments [Al-Othmani, Ghaddar, and Ghali, 2008]. Practical examples can be found in different applications [Kingma, Vosselman, Frijns, Steenhoven, and Lichtenbelt, 2014, Fiala, Lomas, and Stohrer, 1999, Al-Othmani, Ghaddar, and Ghali, 2008].

Early attempts to develop head cooling models did not consider arterial temperature changes [Dennis et al., 2003, Leeuwen et al., 2000]. According to Zhu and Diao [2001], the arterial temperature is the major determinant of the temperature in the body tissues, being responsible for a protective effect against external cooling. The blood flow in the circulatory system is responsible for the thermoregulation in the tissues. During hypothermia, hyperthermia or changes in the environment, it works regulating the local temperature [Bhowmik, Singh, ...]
As the arterial temperature regulates the local tissue temperature, hypothermia simulation models must consider arterial temperature changes. The work of Al-Othmani et al. uses an arterial system model to calculate blood flow in the core tissue and a bioheat model to determine skin temperature for nude and clothed human bodies in transient non-uniform environments. The model presented in incorporates the body heat losses considering a non-uniform temperature distribution in the skin, regulatory responses, properties of clothing used and various environmental conditions such as extreme temperatures, wind speed and solar radiation. Xiang and Liu use a compartmental model of 12 body segments and a blood compartment to simulate whole body hyperthermia treatments for tumours. In , a heat transfer model was implemented to simulate hypothermia treatment in neonates using a three-dimensional geometry obtained from magnetic resonance imaging (MRI) scans. In , a numerical model for whole body intravascular cooling was developed and applied to a human body consisting of a cylinder of one material and a combination of components representing torso, head and limbs. The work calculated a \(1.2^\circ C/hour\) cooling rate for a cooling capacity of 100W and suggested the method can be used to reduce critical fever of \(40^\circ C\) or hypothermia of \(34^\circ C\) in less than 3 hours.

For the rewarming phase of the hypothermia therapy, the simulation of the rewarming procedure by considering a passive rewarming, taking off the helmet or icepacks and considering the room temperature of \(25^\circ C\), showed the need for more studies in this part of the procedure, as the passive rewarming in this case was too rapid. Some studies using a mattress to simulate hyperthermia conditions used experimental data to determine some parameters that can be used not only on the rewarming stage but also during the whole procedure of hypothermia using a cooling mattress.
In this work, the Pennes bioheat equation was used to simulate bioheat transfer in the human body, and the model that represents heat exchange on the circulatory system described in \cite{Fiala1998} was implemented in a three-dimensional finite element code to simulate hypothermia treatments in adults. The in-house software was developed at the Structure and Materials Laboratory at the Federal University of Rio de Janeiro, as a continuation of the work of \cite{Silva2012,Silva2016}. Numerical analyses of whole body cooling methods were performed to compare the efficacy of cooling mattress and intravascular catheter procedures during rapid cooling, maintenance of cooling and rewarming phase of the therapy. A thermoregulation model capable of simulating a real cooling therapy can be used to assist clinical trials for hypothermia techniques, simulating the best options to be used during treatment and improving low cost methods that could be used in hospitals and clinics that cannot afford expensive techniques.

2. Methodology

2.1. Bioheat Transfer

In this paper, the calculation of a whole body thermal analysis will be based on a blood perfusion continuum macro-scale bioheat model developed by Pennes \cite{Bhowmik2013}:

\begin{equation}
\rho_c c_t \frac{\partial T_t}{\partial t} = \nabla \cdot (k_t \nabla T_t) + \rho_b c_b \omega_b (T_a - T_t) + \dot{q}_m
\end{equation}

and represents the bioheat flux in a domain Ω. The symbol T is the temperature and the subscripts t, b, a and m represent tissue, blood, arterial blood and metabolism, respectively. The material properties defined in the equation are: k (thermal conductivity), c (specific heat), ρ (density) and ω (blood perfusion rate). The metabolic heat generation rate is represented by \dot{q}_m. The values of the parameters will be defined in the next section.

For each tissue of the body are defined different properties. Prescribed temperatures $T(\Gamma_t, t)$ in the boundary Γ_t and heat fluxes $\nabla(\Gamma_q, t)$ in the boundary
\(\Gamma_q \) are defined as boundary conditions in the boundary \(\Gamma = \Gamma_t \cup \Gamma_q \). The initial condition is

\[
T(x, t_0) = T_0, \tag{2}
\]

where \(T_0 \) is the initial temperature in each tissue, which may vary according to the position within the body.

2.2. Metabolism

The metabolic heat generation rate in each tissue is composed of the basal rate \(\dot{q}_{m,0} \), and an additional rate \(\Delta \dot{q}_m \) generated by a local thermoregulation activity [Fiala, 1998]:

\[
\dot{q}_m = \dot{q}_{m,0} + \Delta \dot{q}_m \tag{3}
\]

The rate \(\Delta \dot{q}_m \) is composed of three terms:

\[
\Delta \dot{q}_m = \Delta \dot{q}_{m,0} + \Delta \dot{q}_{m,sh} + \Delta \dot{q}_{m,w} \tag{4}
\]

where the local basal metabolic variation is \(\Delta \dot{q}_{m,0} \) and variations due to changes in metabolism are represented by the terms \(\Delta \dot{q}_{m,sh} \) and \(\Delta \dot{q}_{m,w} \). These variations are caused by shivering and muscular effort, and occurs only in muscular tissues.

The local basal metabolic variation can be calculated by [Fiala, Lomas, and Stohrer, 1999]:

\[
\Delta \dot{q}_{m,0} = \dot{q}_{m,0} \left[Q_{10}^{\frac{T_f - T_0}{10}} - 1 \right] \tag{5}
\]

where \(T_0 \) is the temperature of thermal neutrality, equal to 30°C and the \(Q_{10} \) coefficient is responsible for changes in the metabolic heat generation rate and blood perfusion rate due to changes in the temperature of the tissues, defined from experimental measurements to be in a range between 2 and 4 and usually considered as equal to 2 [Fiala, Havenith, Bröde, and B. Kampmann, 2012].

The shivering effect may be neglected because it may be controlled in a medical
procedure for adults. The muscular response may also be omitted since the hypothermia treatment does not involve muscular activities that may increase the metabolic heat generation at a significant level.

2.3. Arterial Temperature

In Eq. (1) the term that represents the blood perfusion considers that the heat exchange between blood and tissues occurs only on the capillary vessels, but adjacent arteries and veins exchange heat in the body extremities, where the blood is colder than in the core. These effects must be considered in the model, as the tissue temperature influences the arterial blood temperature. To take this effect into account the arterial temperature calculation is performed by a circulatory system model described in Fiala [1998], Silva, Laszczyk, Wrobel, Ribeiro, and Nowak [2016].

This model assumes that the arterial temperature has different values in different regions of the human body, called sectors. The central sectors have an arterial temperature equal to the blood pool temperature while the arterial temperature of the extremities is influenced by the countercurrent heat exchange effect. Assuming mass continuity in blood vessels and the net flow rate from the equation of Gordon [Gordon, 2001], the arterial temperature can be calculated as:

\[
T_a = \frac{\dot{m}_b c_b T_P + h_x T_v}{\dot{m}_b c_b + h_x}
\]

(6)

In the above equation, \(T_P\) is the blood pool temperature, \(T_a\) and \(T_v\) are the arterial and venous temperatures and \(h_x\) is the countercurrent heat exchange coefficient, considered as zero in the core and with defined values obtained from experimental measurements for the extremities of the body Fiala, Lomas, and Stohrer [1999].

As the bioheat equation assumes capillary blood is in equilibrium with the surrounding tissue Fiala [1998], the calculation of \(T_v\) in a body element can be
obtained as follows:

\[
T_{v,\text{element}} = \frac{\int \omega_b \, T_t \, dV}{\int \omega_b \, dV}
\]
(7)

This means the venous blood leaving the body element is equal to the local tissue temperature of the element.

The implementation presented here is similar to the model applied for neonates described in Laszczyk and Nowak [2015a], Silva, Laszczyk, Wrobel, Ribeiro, and Nowak [2016], and is a fully continuum three-dimensional model that considers that all sectors of the body are connected and all surfaces exchange heat. The numerical procedure to calculate \(T_a, T_v \) and \(T_p \) will be shown in Section 2.7.

2.4. Blood Perfusion Rate

The blood perfusion rate \(\omega_{b,t} \) in a specific tissue can be described as a composition of two terms:

\[
\omega_{b,t} = \omega_{b,0,t} + \Delta \omega_{b,t}
\]
(8)

where \(\omega_{b,0,t} \) stands for the local basal blood perfusion rate and \(\Delta \omega_{b,t} \) is a local temperature-dependent variation. Assuming that the local blood perfusion rate is coupled with the local metabolic heat generation [Diao, Zhu, and Wang [2003]], this local variation may be calculated as:

\[
\Delta \omega_{b,t} = \omega_{b,0,t} \left[\frac{T_t - T_0}{Q_{10}^{T_{10} - T_0}} - 1 \right]
\]
(9)

Similarly to Eq. [5], the reference temperature \(T_0 \) is the temperature of thermal neutrality and the \(Q_{10} \) coefficient is usually considered as equal to 2.

2.5. External Heat Exchange

The external heat exchange is sum of the contributions of three main mechanisms: convection, radiation and evaporation. The heat exchange rate varies
along the body surface, and the heat flux consists of the convective, radiative
and evaporative fluxes:

\[q_{\text{skin}} = q_{\text{conv}} + q_{\text{rad}} + q_{\text{evap}} \]

(10)

The convective flux \(q_{\text{conv}} \) between the environment and the body boundaries
consists of the skin surface and it can be obtained using the Newton cooling law,
defined as

\[q_{\text{conv}} = h_{\text{conv}} \cdot (T_{\text{ext}} - T_{\text{skin}}) \]

(11)

The symbol \(T_{\text{ext}} \) represents the external air temperature and \(h_{\text{conv}} \) is the con-
vective heat transfer coefficient.

The radiative flux is calculated using the Stefan-Boltzmann law:

\[q_{\text{rad}} = h_{\text{rad}} (T_{\text{skin}}^4 - T_{\text{sr,mean}}^4) \]

(12)

where \(T_{\text{skin}} \), \(T_{\text{sr,mean}} \) and \(h_{\text{rad}} \) are the temperatures at the skin surface, the
temperature of the radiation source on the exterior of the domain, and a radia-
tive parameter, respectively, and

\[h_{\text{rad}} = \sigma \varepsilon \]

(13)

in which \(\sigma \) refers to the Stefan-Boltzmann constant and \(\varepsilon \) is the emissivity of
the external skin surface. The value of the emissivity varies according to the
surface material.

The evaporative flux was incorporated in the model as a prescribed heat
flux boundary condition to consider heat losses by evaporation, based on values
described in the literature. In the applications described in this paper the
basal evaporation rate from the skin was considered as 18W (taken from [Fiala,
Havenith, Bröde, and B. Kampmann, 2012]).

Respiration losses were incorporated on the material thermal properties of
the trunk/head sectors, as respiration can be responsible for a loss of 25% of
whole-body metabolic heating [Vallez, Plourde, and Abraham, 2016].
The value of the external heat transfer coefficient may be adjusted to simulate clothed or unclothed situations as discussed in Al-Othmani, Ghaddar, and Ghali [2008].

2.6. Lumped Analysis for Blood Cooling

One of the most effective ways to reduce body temperature is to use intravascular cooling catheters that directly cool the major veins and can achieve cooling rates of 5.0°C/hour depending on the capacity of the device Dae, Gao, Ursell, Stillson, and Sessler [2003]. In these procedures, the blood temperature is actively lowered or increased. The simulation of blood cooling for hypothermia treatments using methods applied directly to the blood vessels, as intravenous saline fluid infusion or an intravascular catheter, needs an additional equation coupled to the Pennes bioheat equation to account for the tissue-blood thermal interactions.

The model implemented in this paper considers the energy balance of a blood compartment as a lumped system that combines the energy added or subtracted by an external device and the loss of heat from blood to tissues during circulation. This model, adapted from Zhu, Schappeler, Cordero-Tumangday, and Rosengart [2009], provides a method to obtain blood and body temperatures during active blood temperature modifications and is capable of simulating the stages of cooling and rewarming of blood during hypothermia procedures to treat strokes and brain damages in adults.

The mathematical model consists of a coupled simulation of body temperature distribution and blood energy balance, and couples the Pennes bioheat equation (Eq. 1) and an equation of energy balance of the blood compartment of the body to predict blood temperature change during clinical applications. Because of the relatively short recalculation time, blood in the human body is represented as a lumped system. The governing equation for the blood temperature can be written as Zhu, Schappeler, Cordero-Tumangday, and Rosengart
\[\rho_b c_b V_b \frac{dT_a}{dt} = Q_{ext}(T_a, t) - Q_{b-\ell}(t) = Q_{ext}(T_a, t) - \rho_c c_b \overline{\omega} V_{body} (T_a - \overline{T}_t) \]

(14)

where \(Q_{ext} \) represents the capacity of the external device and can be a function of arterial temperature or time, and \(V_{body} \) stands for the volume of the body. The parameter \(\overline{\omega} \) is the mean volumetric blood perfusion rate, calculated by:

\[\overline{\omega} = \frac{1}{V_{body}} \iiint_{V_{body}} \omega dV_{body} \]

(15)

and \(\overline{T}_t \) is the weight-average tissue temperature, defined by the relation:

\[\rho_c \omega (T_{a0} - \overline{T}_t) V_{body} = \iiint_{V_{body}} \rho_c \omega (T_{a0} - T_{t0}) dV_{body} \]

(16)

where \(T_{a0} \) stands for the arterial temperature before time step \(t + \Delta t \) and \(T_{t0} \) represents the tissue temperature before time step \(t + \Delta t \). At steady-state, the arterial temperature \(T_a \) should be the same as the weight-average tissue temperature \(\overline{T}_t \).

The numerical procedure for the implementation of this model will be shown in the next section.

2.7. Numerical Model

The solution of the Pennes bioheat equation and the circulatory model described in section 2.4 is obtained using the finite element method. The transient problem is solved using a time-marching scheme based on a semi-discrete form of the finite element method (FEM). The numerical model is described in [Silva, Laszczyk, Wrobel, Ribeiro, and Nowak, 2016]. Considering Eq. (1) in a spatial domain \(\Omega \) and a temporal interval \((0, \Pi) \), the domain \(\Omega \) is discretized into elements and at each time step \(t = t_{n+1} \), the following system of algebraic equations is obtained:

\[M \dot{T}_{n+1} + K T_{n+1} = F_{n+1} \]

(17)
where M is the mass matrix, \dot{T}_{n+1} stands for the nodal values of the time derivative of temperature, K is the stiffness matrix, T_{n+1} are the nodal temperatures at time step t_{n+1} and F_{n+1} is the vector of independent terms. The coefficients of these matrices are calculated as follows:

$$m_{ij} = \int_{\Omega} c_t \rho_t N_i N_j d\Omega$$ \hspace{1cm} (18)

$$K_{ij} = k_t \int_{\Omega} \left(\frac{\partial N_i}{\partial x} \frac{\partial N_j}{\partial x} + \frac{\partial N_i}{\partial y} \frac{\partial N_j}{\partial y} + \frac{\partial N_i}{\partial z} \frac{\partial N_j}{\partial z} \right) d\Omega + \int_{\Omega} c_b \rho_b \omega_b N_i N_j d\Omega$$ \hspace{1cm} (19)

$$f_i = \int_{\Omega} \dot{q}_m N_i d\Omega - \int_{\Gamma} \tau N_i d\Gamma + \int_{\Omega} c_b \rho_b \omega_b T_a N_i d\Omega$$ \hspace{1cm} (20)

The counter current heat exchange effect and the changes in arterial temperature are calculated for each sector $T_{a,l}$ as

$$T_{a,l} = \frac{\rho_b c_b \left(\sum_{i=1}^{N_l} \omega_{b,t,l} V_{i,t,l} \right) T_p + h_{x,l} T_{v,l}}{\rho_b c_b \left(\sum_{i=1}^{N_l} \omega_{b,t,l} V_{i,t,l} \right) + h_{x,l}}$$ \hspace{1cm} (21)

where the subscript l denotes the sector of the body, the number of elements in each sector l is denoted by N_l and the volume of element i of the tissue t in the sector l is $V_{i,t,l}$.

As the venous temperature of each element is equal to the tissue temperature, to calculate the venous temperature $T_{v,l}$ in each sector, Eq. \[7\] can be incorporated to the numerical model as:

$$T_{v,l} = \frac{\rho_b c_b \left(\sum_{i=1}^{N_l} \omega_{b,t,k} V_{i,t,l} T_{i,t,l} \right)}{\rho_b c_b \left(\sum_{i=1}^{N_l} \omega_{b,t,l} V_{i,t,l} \right)}$$ \hspace{1cm} (22)
The blood pool temperature can be written as:

\[
T_p = \frac{\sum_{l=1}^{L} \rho_b c_b \left(\sum_{i=1}^{N_i} \omega_{b,t,l} V_{i,t,l} \right) \rho_b c_b \left(\sum_{i=1}^{N_i} \omega_{b,t,l} V_{i,t,l} T_{i,t,l} \right) - \rho_b c_b \left(\sum_{i=1}^{N_i} \omega_{b,t,l} V_{i,t,l} \right) + h_{x,l}}{\sum_{l=1}^{L} \left[\rho_b c_b \left(\sum_{i=1}^{N_i} \omega_{b,t,l} V_{i,t,l} \right) \right]^2} \]

where \(L \) is the total number of sectors in the body and \(T_{i,t,l} \) is the temperature of each element \(i \) of tissue \(t \) in sector \(l \). For the treatment of the non-linearities a predictor multi-corrector algorithm was used [Hughes, 1987], as described in [Silva, Laszczyk, Wrobel, Ribeiro, and Nowak, 2016].

For the method described in section 2.7 for blood cooling applications in adults, the transient problem represented by Eq. (14) can be discretized by finite differences. The implicit discretization scheme results in the calculation of the arterial temperature as:

\[
T_{a}^{n+1} = \frac{Q_{ext} \Delta t}{\rho c_v V_b} + T_{a}^{n} + \frac{T_{a}^{n} \left(\frac{\rho c_v V_{body} \Delta t}{\rho c_v V_b} \right)}{1 + \frac{\rho c_v V_{body} \Delta t}{\rho c_v V_b}} \]

In this case, the same iterative solver and element calculation procedures of the previous model is used. The calculation of the temperature \(T_{a}^{n+1} \) is performed before step 5 at each new time step.

3. Applications

The geometrical model used for simulations of adults was obtained by segmentation of 3D medical images (CT scans) of the Visible Human Data Set (VHD) provided by the National Library of Medicine, US Department of Health and Human Services. The medical images were used to generate the geometry using the software MIMICS and adapted using the packages ANSYS Workbench.
and Trelis to generate a 13 million mesh of a male adult with a body weight of 287 kg, body surface area of 2.27 m², 1.88 m height, a cardiac output of 6 l/min and 28% body fat content. The total basal whole body metabolism is 106 W and basal evaporation rate from the skin of 18 W (taken from Fiala, Havenith, Bröde, and B. Kampmann [2012]). The simulations were performed using a platform comprised by two Xeon E5 – 5420 processors with 64 GB of RAM and 12 cores.

The geometry of the body is composed of eight different materials: skin+fat, muscle, bone, brain, viscera, lungs, eyes and cerebrospinal fluid. For the calculation of the arterial temperature, the body is divided in six sectors: trunk + abdomen, head, arm, hand, leg, foot. The simulations were performed in a geometry of half of the body, due to symmetry. The materials and division into sectors are depicted in Figures 1-4.

Figure 1: Geometry of the male adult
Figure 2: Geometry of the male adult, internal organs

Figure 3: Geometry of the tissues
The finite element mesh consisted of 13 million four-node tetrahedral ele-
ments. A zoom in the upper region of the body is shown in Figure 5.

The thermophysiological properties of the human tissues were taken from
the literature, adapted from Vallez, Plourde, and Abraham [2016] Fiala [1998]
Hasgall, Gemaro, Baumgartner, Neufeld, Gosselin, Payne, Klingeblock, and
Kuster 2015. Table 1 shows the tissue thermophysiological properties used in
this simulation. Metabolic heat generation rates used in the simulation consider
the impact of respiration on heat loss corresponding to 25% of the whole-body
metabolic heating Vallez, Plourde, and Abraham [2016], distributed over the
elements belonging to the sectors trunk+abdomen and head. The counter cur-
rent heat exchange coefficients were taken from Fiala [1998] and are presented
in Table 2.
Table 1: Thermophysiological properties of the different tissues

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Thermal Conductivity (W/m.°C)</th>
<th>Density (kg/m³)</th>
<th>Specific Heat Capacity (J/kg.°C)</th>
<th>Metabolic Heat Generation Rate (W/m³)</th>
<th>Blood Perfusion Rate (1/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>0.5</td>
<td>1050</td>
<td>3800</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eye</td>
<td>0.43</td>
<td>1076</td>
<td>4200</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.39</td>
<td>394</td>
<td>3886</td>
<td>1835</td>
<td>0.0008677</td>
</tr>
<tr>
<td>Skin + Fat</td>
<td>0.2</td>
<td>877</td>
<td>2727</td>
<td>170</td>
<td>0.0003146</td>
</tr>
<tr>
<td>Cerebrospinal fluid</td>
<td>0.57</td>
<td>1007</td>
<td>380</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bones</td>
<td>1.16</td>
<td>1300</td>
<td>1590</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.5</td>
<td>1050</td>
<td>3770</td>
<td>528</td>
<td>0.0005355</td>
</tr>
<tr>
<td>Viscera</td>
<td>0.55</td>
<td>1100</td>
<td>3350</td>
<td>3160</td>
<td>0.004532</td>
</tr>
<tr>
<td>Brain</td>
<td>0.53</td>
<td>1360</td>
<td>2450</td>
<td>12954</td>
<td>0.013124</td>
</tr>
</tbody>
</table>

Table 2: Countercurrent heat exchange coefficient of the seven sectors of the body

<table>
<thead>
<tr>
<th>Sector</th>
<th>Countercurrent heat exchange coefficient (h_{xc} (W/°C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>0.000</td>
</tr>
<tr>
<td>Trunk + Abdomen</td>
<td>0.000</td>
</tr>
<tr>
<td>Arm</td>
<td>4.13</td>
</tr>
<tr>
<td>Hand</td>
<td>0.57</td>
</tr>
<tr>
<td>Leg</td>
<td>6.2</td>
</tr>
<tr>
<td>Foot</td>
<td>1.45</td>
</tr>
</tbody>
</table>

The first example used to validate the adult geometry and tissue properties in these simulations was taken from [Vallez, Plourde, and Abraham, 2016; Fiala, Lomas, and Stohrer, 1999] and consists of a male human in an environment in thermal neutrality. The boundary conditions consist of a convective heat flux at
the skin surface (Eq.11). The skin surface was exposed to a room temperature of 30°C and a heat transfer coefficient value of 7\,W/m\(^2\)°C was used, as defined in [Vallez, Plourde, and Abraham, 2016; Fiala, Lomas, and Stohrer, 1999].

The simulation of the WBC procedure was based on temperature results found in different clinical studies [Wang, Olivero, Lanzino, Elkins, Rose, and Honings, 2004; Yang, Ou, and Chen, 2006; Harris, Muh, Surles, Pan, Rozycki, and Macleod, 2009; Callaway, Tadler, Katz, Lipinski, and Brader, 2002] and the boundary conditions of the numerical simulations [Fiala, 1998; Vallez, Plourde, and Abraham, 2016; Laszczyk and Nowak, 2015a] were considered to perform analyses that match the same values obtained in the clinical trials. The target was to reduce core temperature to around 34°C after 1 – 4 hours, maintaining the temperature at this level during 24 hours and then rewarming the body at a rate of 0.15 – 1.45°\textdegree C/hour. Although the body temperature can be higher or lower than the normal temperature depending on the trauma, the examples presented in this work consider an initial body temperature of 37°C.

Whole body cooling simulations were performed considering a cooling mattress on the bottom part of the body, where convective heat fluxes were prescribed using Eq.11 and heat transfer to the room environment on the top part, with convective heat fluxes prescribed using Eq.11. Evaporative heat fluxes were also considered on the top part of the body as a prescribed heat flux, calculated using the basal evaporation rate from the skin. For the top part, the total heat flux at the skin surface is composed by the sum of convective and evaporative heat fluxes:

\[
q_{\text{skin}} = q_{\text{conv}} + q_{\text{evap}}
\]

(25)

and the evaporative heat flux \(q_{\text{evap}}\) can be calculated according to

\[
q_{\text{evap}} = \frac{Q_{\text{evap}}}{A_{\text{top}}}
\]

(26)

where \(Q_{\text{evap}}\) represents the basal evaporation rate and \(A_{\text{top}}\) the area of the top surface of the body. The flux per unit of area was given at each external bound-
ary surface element to calculate the equivalent nodal loads. Both boundary regions are depicted in Fig. 6.

Figure 6: Top (green) and bottom (black) surfaces used to prescribe boundary conditions in whole body cooling

For the top surface, a room temperature of 25°C was prescribed and a convective heat transfer coefficient of 7 W/m²°C is used. The contact between body and cooling mattress is simulated by a convective flux prescribed at the bottom surface, considering an initial temperature of 10°C during the first 2 hours of analysis. After this initial rapid cooling, the cooling mattress temperature is set to 33°C during 22 hours. The convective heat transfer coefficient was set to 10 W/m²°C, based on experimental studies found in [Vallez, Plourde, and Abraham, 2016]. A second subcase was performed considering a room temperature of 20°C and comparing the results. After 2 hours of simulation the cooling mattress temperature has been set to 34°C during the rest of the analysis.

The third example demonstrates the validity of our model for transient conditions. It consists of the simulation of the rewarming phase using the same boundary conditions of the cooling mattress case during 24 hours and then raising the temperature of the mattress. The mattress temperature was set to different values to compare core temperature behaviour. In this case, mattress temperatures of 37°C, 42°C and 45°C were used.

Test four demonstrates the viability of cooling using an intravascular catheter, with a novel numerical method adapted from [Zhu, Schappeler, Cordero-Tumanglay, and Rosengart, 2009], which is used for the first time in a comprehensive whole body cooling model. For this case, the same boundary regions (top and bottom) of the previous case are used. The mattress in this case does not exchange heat and is considered as an insulated surface during the first hour of simula-
tion (prescribed heat fluxes at the bottom part are null). After the first hour, the mattress temperature is set to $33^\circ C$ and the heat transfer coefficient of $10 W/m^2.\circ C$ is used (Eq. 11). The top surface is subject to a convective flux with a heat transfer coefficient of $7 W/m^2.\circ C$ (Eq. 11) and a prescribed evaporative heat flux based on the basal evaporation rate from the skin. The heat exchanged by the device is $100 W$ during the first hour of simulation; after this period, the device is turned off. The idea is to use the device for rapid cooling and then maintain the temperature at a hypothermia level using a cooling mattress.

4. Results

In the first case, conditions of thermal neutrality were imposed and a transient simulation was performed until a steady-state solution was obtained. The core temperature was defined as equal to the blood pool temperature calculated during the simulation. The core temperature was extracted and compared to normothermic values of a human subject to a $30^\circ C$ room temperature. The results showed a core temperature of $37^\circ C$, in agreement with values from other studies [Vallez, Plourde, and Abraham, 2016, Fiala, 1998]. The mean skin surface temperature was $34.3^\circ C$, consistent with the results of published data for neutrality conditions described by [Fiala, 1998], where the mean skin surface temperature of $34.4^\circ C$ has been obtained.

The second case analyses core temperature during a whole body cooling treatment using a cooling mattress. Figure 7 shows changes in blood pool temperature during the 24 hour procedure.
The results show a drop in the blood pool temperature to 34°C after 2 hours of simulation and the core temperature reaches the minimum value of 33.8°C at the end of the simulation. The temperature profile at the end of the analysis at the outer skin and internal organs is depicted in Fig. 8 and Fig. 9. It should be noted that the interface between the upper and bottom boundary conditions is a continuous field, not a step function as may be misinterpreted from Fig. 8.

Figure 8: Second case: Internal temperature distribution after a 24 hour treatment.
The temperature profile shows a minimum brain temperature of 34.1°C at the end of the simulation. The temperature distribution at the top skin surface has a range between 24.6 – 30°C, and the minimum values are found in the extremities (hands and feet).

The third case analyzes core temperature during the rewarming phase of the WBC treatment. Three analyses were performed, considering the mattress temperature set to 37°C, 42°C and 45°C. Figure 10 shows a comparison between the blood pool temperature during 7 hours of rewarming for the three cases analyzed.
Figure 10: Third case: Comparison between core temperature after a 24 hour hypothermia treatment using different mattress temperatures.

The results show a considerable influence of the mattress temperature in the core temperature during the rewarming phase. The fastest rewarming rate is 0.63°C/hour, for the mattress temperature of 45°C. Rewarming rates of 0.47°C/hour and 0.20°C/hour were obtained for mattress temperatures of 42°C and 37°C, respectively. Based on these results, the more suitable rewarming mattress temperature for a real case is 42°C. The core temperature during the whole simulation (rapid cooling, cooling and rewarming) for the 42°C rewarming mattress temperature is shown in Fig. [11]
Figure 11: Third case: Core temperature during 24 hours of hypothermia and 6 hours of rewarming for mattress temperature of 42.0°C.

The temperature profile at the end of the analysis at the outer skin and internal organs is depicted in Fig. 12 and Fig. 13.

Figure 12: Third case: Internal temperature distribution after rewarming.
The temperature profile shows the brain temperature reestablishes the normothermic value at the end of the simulation. The temperature distribution at the top skin surface has a range between $24.8 - 32^\circ C$, and the minimum values are found in the extremities (hands and feet).

A second simulation using the same parameters and a room external temperature of $20^\circ C$ is performed to compare the behaviour and distribution of temperatures for a decrease in the room temperature of $5^\circ C$. The comparison between core temperature during rapid cooling, cooling maintenance and rewarming is plotted in Fig. 14.
Figure 14: Third case: Comparison between core temperature during 24 hours of hypothermia and 6 hours of rewarming for mattress temperature of 42.0°C for room temperature of 25.0°C and 20.0°C.

The above figure shows a decrease of 5°C in the room temperature reduces the minimum value of the core temperature to 33°C after a 24 hour treatment. The rewarming rate for subcase B is 0.42°C/hour, 8.5% lower than the original case for external temperature of 25°C.

The fourth case considers the anatomical geometry shown in Figure 1 for direct blood cooling. The simulation of an invasive procedure using an intravascular catheter uses an insulated mattress during the first hour of simulation and a room temperature of 25°C. The blood cooling procedure is treated as an external device with capacity of 100W applied during the first hour of simulation. After the first hour, the mattress temperature is set to 33°C with a heat transfer coefficient of 10W/m²°C and the intravascular catheter is turned off. Results of arterial temperature during 24 hours are shown in Fig. 15.
The results show a drop in arterial temperature of 2.6°C during the first hour of simulation. After this period, the cooling rate is reduced and the temperature drops from 34.4°C to 33.6°C during the next 23 hours of simulation.

5. Conclusion

The main goal of the work described in this paper was to develop a finite element model able to simulate bioheat transfer processes in adults, and to perform whole body cooling procedures as a treatment for brain traumas. The Pennes bioheat model was chosen to simulate the bioheat transfer processes in a macroscale and the blood pool approach described in [Fiala, 1998] was considered to take into account changes in the arterial temperature due to the circulatory system and heat transfer with the environment. For blood cool-
ing using an intravenous catheter, a blood cooling approach described in [Zhu, Schappeler, Cordero-Tumangday, and Rosengart 2009] was used.

The whole body cooling method applied to the adult body produced satisfactory results in reducing brain/core temperature to less than 34°C in two hours. The moderate hypothermia was maintained for 22 hours with a core temperature around 34.0 – 33.8°C. As stated previously, the brain temperature remained 0.2 – 0.3°C above/below core temperature during the whole analysis. The mattress had to be set to a temperature of 42°C to allow a smooth increase of core temperature, at a rate around 0.5°C/hour. Although this value is defined as the ideal rewarming rate, [Wang, Olivero, Lanzino, Elkins, Rose, and Honings 2004] reported values of 0.15 – 1.45°C/hour measured on randomised trials, showing that the rewarming procedures are not always able to maintain cooling rates close to the ideal value.

The blood cooling simulation, considering an intravascular catheter, was able to reduce core temperature to less than 34°C in one hour. After the intravascular catheter was removed, the cooling mattress was set to a temperature of 33°C. The mixed method was able to simulate a hypothermia treatment with rapid cooling and maintenance of cooling at moderate hypothermia levels during 24 hours. Suggestions of a study using mixed methods, considering head cooling methods to maintain cooling after induction of hypothermia with cold intravenous fluids were mentioned in [Harris, Andrews, Murray, Forbes, and Moseley 2012], but no results were found in clinical trials mixing blood cooling with WBC methods.

The results of different cooling methods demonstrate the importance of the developed model for the study of different cooling procedures. The simulations presented in this work reproduce a hypothermic treatment in a realistic adult body with results similar to values reported in the literature [Harris, Andrews, Murray, Forbes, and Moseley 2012, Hoque, Chakkarapani, Liu, and Thoresen 2010, Unit 2006]. This opens the way for the optimization of the treatment on a patient-specific basis.

The major limitations in the use of this type of model are associated with
the correct definition of the geometry and the input parameters, very important to obtain good results. In the cases discussed here, the FEM mesh was generated based on a geometry obtained from CT scans, so the model for the human body is based on a real geometry. One of the greatest difficulties of the numerical model is the determination of the correct parameters to guarantee that the analysis corresponds to the real case, as small differences in some of the parameters can result in substantial differences in temperature, as demonstrated by the sensitivity analysis in [Silva, Laszczyk, Ribeiro, and Nowak, 2016]. A sensitivity analysis performed for a neonate model [Silva, Laszczyk, Wrobel, Ribeiro, and Nowak, 2016] shows the importance of correctly determining input parameters as external temperature and heat transfer coefficient. For the correct determination of parameters, at this stage of the research literature values were used, adapted from other numerical simulations [Vallez, Plourde, and Abraham, 2016, Fiala, 1998] and from an experimental database source [Hasgall, Gennaro, Baumgartner, Neufeld, Gosselin, Payne, Klingebock, and Kuster, 2015].

Calibration of the model using real hypothermia cases could be used as a starting point to test cost-effective methods for brain/body cooling. Experiments for determination of the convective heat transfer coefficient should be conducted to establish a standard database for bioheat transfer in the human body. After validation, tests of cost-effective methods could be used as a standard protocol in clinics and hospitals for public health care, reducing neurological damages after cerebral traumas.

Although the benefits of hypothermia for post-traumatic brain injuries in adults is widely known, the uncertainties about effectiveness and robust evidence of reducing brain temperature during clinical trials makes it difficult to define a cooling method to be used for each case of trauma. Whole body cooling is a promising method that still needs further research and more robust evidence of temperature reduction. Studies should describe clear baseline temperatures, duration of cooling, temperatures achieved and temperature changes with cooling, along with side effects of each method. In this way, joint research between engineers and clinicians could fill some empty spaces and collaborate to reduce
post-traumatic neurological damage in patients suffering brain traumas.

Although the development of this three-dimensional finite element model was conducted with the objective of investigating hypothermia treatments, it can also be adapted to predict body temperature changes during exercises and different heat exposures. The numerical tool presented here can be improved and many additional time or temperature-dependent parameters can be added to simulate transient body temperature on different applications.

Acknowledgements: We thank the Carlos Chagas Filho Research Foundation of the State of Rio de Janeiro (FAPERJ) and the Coordination for the Improvement of Higher Education Personnel (CAPES), both in Brazil, for the financial support.

Conflicts of Interest: None
Funding: Carlos Chagas Filho Research Foundation of the State of Rio de Janeiro (FAPERJ) and the Coordination for the Improvement of Higher Education Personnel (CAPES)
Ethical Approval: Not required

References

National Perinatal Epidemiology Unit. TOBY study protocol - whole body hypothermia for the treatment of perinatal asphyxial encephalopathy. volume 2. National Perinatal Epidemiology Unit, 2006.

