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ARTICLE INFO ABSTRACT
Atticle history: Background: Obstructive sleep apnea (OSA) is a chronic, multisystem disorder that has a bidirectional relationship
Received 23 January 2016 with several major neurological disorders, including Alzheimer's dementia. Treatment with Continuous Positive Air-
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way Pressure (CPAP) offers some protection from the effects of OSA, although it is still unclear which populations
should be targeted, for how long, and what the effects of treatment are on different organ systems. We investigated
whether cognitive improvements can be achieved as early as one month into CPAP treatment in patients with OSA.
Methods: 55 patients (mean (SD) age: 47.6 (11.1) years) with newly diagnosed moderate-severe OSA (Oxygen
Desaturation Index: 36.6 (25.2) events/hour; Epworth sleepiness score (ESS): 12.8 (4.9)) and 35 matched healthy
volunteers were studied. All participants underwent neurocognitive testing, neuroimaging and polysomnography.
Patients were randomized into parallel groups: CPAP with best supportive care (BSC), or BSC alone for one
month, after which they were re-tested.
Findings: One month of CPAP with BSC resulted in a hypertrophic trend in the right thalamus [mean difference (%):
4.04,95% Cl: 1.47 to 6.61], which was absent in the BSC group [ — 2.29, 95% Cl: —4.34 to — 0.24]. Significant improve-
ment was also recorded in ESS, in the CPAP plus BSC group, following treatment [mean difference (%): —27.97, 95%
Cl: —36.75 to —19.19 vs 2.46, 95% Cl: —5.23 to 10.15; P = 0.012], correlated to neuroplastic changes in brainstem
(r=—0.37; P =0.05), and improvements in delayed logical memory scores [57.20, 95% CI: 42.94 to 71.46 vs 23.41,
95% CI: 17.17 to 29.65; P = 0.037].
Interpretation: One month of CPAP treatment can lead to adaptive alterations in the neurocognitive architecture that
underlies the reduced sleepiness, and improved verbal episodic memory in patients with OSA. We propose that par-
tial neural recovery occurs during short periods of treatment with CPAP.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Obstructive sleep apnea (OSA) is a debilitating, chronic multisystem
sleep disorder that arises from recurrent partial or complete pharyngeal
obstruction during sleep (Lévy et al., 2015; Malhotra et al.,, 2015). It has
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been proposed to have an important, if not fully understood, bidirec-
tional relationship with several major neurological disorders (Lévy
etal, 2015; Rosenzweig et al., 2015; Rosenzweig et al., 2014). A close as-
sociation of OSA with early onset of cognitive decline, by as much as a
decade, has been reported, whilst a growing body of clinical and animal
work advocates that OSA should be recognized as one of the rare mod-
ifiable risks for Alzheimer's dementia (Rosenzweig et al., 2015; Osorio
et al.,, 2015; Yaffe et al.,, 2014). In addition, treatment with Continuous
Positive Airway Pressure (CPAP), the main treatment for OSA, has
been also variably shown to halt the onset, decelerate the progression,
or offer a better prognosis in patients with co-morbid dementia,

2352-3964/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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epilepsy and stroke (Osorio et al., 2015; Yaffe et al, 2014;
Campos-Rodriguez et al., 2014; Pornsriniyom et al., 2014; McMillan
et al., 2015).

Numerous clinical studies over the years have demonstrated chang-
es in the central nervous system (CNS) of patients with OSA, including
altered resting cerebral blood flow pattern (Baril et al., 2015) with hy-
poperfusion during the awake states (Joo et al., 2007), changes in the
electroencephalogram (EEG) and aberrant cortical excitability
(Morisson et al., 1998, 2001; Dingli et al., 2002) and changes in both
white and gray matter (Zimmerman and Aloia, 2006; Torelli et al.,
2011; Kumar et al,, 2014; Morrell and Glasser, 2011; Macey et al.,
2008). These studies have largely also suggested a putative
neurocircuitry fingerprint at which core lies the disconnection of the
frontal regions (O'Donoghue et al., 2012) and the disruption of the
(cerebello)-thalamocortical oscillator with involvement of the hippo-
campal formation (Rosenzweig et al., 2013a, 2014; Torelli et al., 2011;
Yaouhi et al., 2009).

The additive impact of progressive changes in sleep quality and
structure, changes in cerebral blood flow, neurovascular and neuro-
transmitters, plus the cellular redox status are all likely to contribute
to the cognitive deficits reported in up to one out of four newly diag-
nosed OSA patients (Rosenzweig et al., 2015; Lavie, 2015; Antonelli
Incalzi et al., 2004). Despite concerted efforts, OSA remains widely
underdiagnosed in the general population, with its prevalence predict-
ed to increase sharply over the coming years due to the epidemics of
aging and obesity (Lévy et al., 2015; Heinzer et al., 2015). The important
questions of what, who and when to treat, are far from clear
(Rosenzweig et al., 2015; Djonlagic et al,, 2015; Dalmases et al., 2015).
Persistent deficits, even after prolonged treatment with CPAP in some
patients, suggest that early detection of the central nervous system
(CNS) sequelae in OSA could be crucial (Rosenzweig et al., 2015;
Castronovo et al., 2014; Kylstra et al., 2013).

In a recent study of patients with OSA, augmentation of subjective
experience, attention and vigilance has been demonstrated after only
one night of CPAP (Djonlagic et al., 2015). However, no appreciative im-
pact on procedural memory consolidation was noted, suggesting differ-
ential impact on brain structures underlying these processes (Djonlagic
et al,, 2015). On the other hand, in a seminal study, three months of
CPAP treatment led to a significant recovery of cognitive and morpho-
metric deficits (Canessa et al., 2011). Taken together, empirical clinical
experience and early research findings suggest that subjective memory
improvements are reported as early as one month following the com-
mencement of CPAP treatment (McMillan et al., 2015). In the present
study, we set out to investigate this time frame, testing the hypothesis
that one month of CPAP treatment would lead to cognitive improve-
ments, and that any changes would be associated with neuroplastic
changes in patients with OSA.

2. Methods
2.1. Participants And Design

Patients with newly diagnosed OSA (18-65 years old) were recruit-
ed from Royal Brompton and Harefield Hospitals' sleep clinics. Inclusion
criterion was an apnea/hypopnea index (AHI) >10 events/h (McMillan
et al., 2014). Apneas were defined as >80% drop in airflow for 10 s.
Hypopneas were defined as >50% reduction in airflow from baseline
with a >4% dip in saturation, or an arousal from sleep (Berry et al.,
2012a,2012b; Rosenzweig et al., 2013b). Exclusion criteria were a histo-
ry of respiratory, cerebrovascular and/or ischemic heart disease, diabe-
tes mellitus, neuropsychiatric or neurological disorder, alcohol, drug
abuse, or psychoactive medications.

The same exclusion criteria were used for healthy controls (age- and
education-matched) recruited from a database of healthy volunteers.
Those with a history of sleep problems on questionnaires, or evidence
of OSA on pulse-oximetry (ODI > 5 events/h) were excluded.

All enrolled patients were randomly allocated [stratified by age, OSA
severity (oxygen desaturation index (ODI) & AHI) and years of educa-
tion], by an independent study coordinator, to receive CPAP with best
supportive care (BSC), or BSC alone, for one month and then re-
assessed (Fig. 1).

The study was part of an ongoing research to investigate the impact
of OSA on the brain and was approved by the UK central research ethics
committee (10/H0706/51). All patients gave written informed consent.

2.2. Intervention

CPAP treatment was initiated using standard clinical practice at each
center (ResMed S9; with humidification as required).

BSC comprised of advice on minimizing daytime sleepiness through
sleep hygiene, naps, caffeine, exercise and weight loss as appropriate to
each patient. Both groups were provided with BSC and asked to contin-
ue with their usual medical care during the trial.

2.3. Assessments

Structured assessments were performed at baseline (patients and
controls) and a follow-up after one month (patients only). In addition,
all patients received a telephone call at 1 week to record symptoms,
side-effects, and to optimize CPAP adherence. All OSA patients complet-
ed an inpatient polysomnography (SOMNOscreen PSG, S-Med, UK)
prior to CPAP initiation. Domiciliary overnight pulse-oximetry (Konica
Minolta Inc.,) was performed at one month. Treatment compliance
was measured objectively by download of the CPAP smart card during
the one-month visit.

2.4. Cognitive Test Battery

Cognitive function of all participants was assessed using a battery of
tests comprising the Addenbrooke's Cognitive Examination-Revised
(ACE-R) (Mioshi et al., 2006; Graham et al., 2004), Trail Making Test A
and B (Reitan, 1979) (TMA, TMB), Logical Memory (LM) Test: immedi-
ate and delayed LM with alternate stories used at baseline and follow
up, subtests from the Wechsler Memory Scales (Wechsler, 1987),
Digit Span Test: forward (DSF) and backward (DSB) (Wechsler, 1987),
and Spatial Span subtest forward (SSF) and backward (SSB) (the visu-
al-spatial version of Digit Span) (Wechsler, 1997). The tests used
were chosen to target cognitive domains that have been previously
shown to be affected by OSA, by our group and other groups
(Rosenzweig et al., 2015; Twigg et al., 2010).

ACE-R is a brief battery that provides evaluation of six cognitive do-
mains (orientation, attention, memory, verbal fluency, language and vi-
suospatial ability) (Mioshi et al., 2006). It is useful for detecting
dementia and mild cognitive impairment, and it is able to distinguish
between patients with progressive degenerative disorders and those
with affective disorders (Dudas et al., 2005). The total score is 100,
higher scores indicate better cognitive functioning, each domain has in-
dividual scores and there are age and education dependent norms for
the total score as well as for the individual domains (Mioshi et al.,
2006). The subscores for the domain of verbal fluency (ACE-R verbal flu-
ency) were used in this study to asses both executive and language abil-
ities (Shao et al,, 2014).

The TMT consists of two parts, A and B; it is one of the most widely
used neuropsychological tests that provides information on visual con-
ceptual and visuomotor tracking, motor speed, attention and executive
functions (Reitan, 1979). It is a timed test and the score represents the
amount of time required to complete the task (Reitan, 1979). Perfor-
mance decreases with increasing age and lower levels of education al-
though normative data is available (Tombaugh, 2004).

Wechsler Adult Intelligence Scale, third edition (WAIS-III)
(Wechsler, 1997) is a commonly used commercially available validated
assessment of cognitive function. The LM, DSF, DSB, SSF and SSB tests
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519 patients were assessed for eligibility
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Fig. 1. CONSORT diagram.

used in our study were subtests of the WAIS-III and administered and
scored as recommended by the WAIS-III instruction manual
(Wechsler, 1997). LM tests the patient's ability to remember two short
stories presented orally (Wechsler, 1997). There is an immediate test
and then a delayed recall test after 30 min; it is a measure of verbal
memory. Digit Span task is used to measure working-memory's number
storage capacity (Wechsler, 1997). Participants are presented with a se-
ries of digits and must repeat them back. The length of the longest list a
person can remember is that person's digit span. Whilst the participant
is asked to enter the digits in the given order in the forward digit-span
task, in the backward digit-span task the participant needs to reverse
the order of the numbers (Wechsler, 1997). Spatial Span forward and
backwards are a measure of visual-spatial processing and working
memory (Wechsler, 1997). It is validated in older patients that as cogni-
tive impairment severity increases there is a reduction in the total score.
The Spatial Span backward is a more sensitive measure of early cogni-
tive impairment as opposed to the Spatial Span forward which remains
relatively stable regardless of the level of impairment (Wiechmann
etal, 2011). Spatial Span forward is an attention task, whereas Spatial
Span backward is considered a working memory task as it requires
holding information in the memory (Wechsler, 1997).

2.5. Magnetic Resonance Imaging

All participants underwent MR imaging and T1-weighted MR-
images were acquired using a 1.5 T scanner (Magnetom Vision, Siemens
Healthcare, Camberley, Surrey, UK) and a 3D MP-RAGE sequence (TI
300 ms, TE 4 ms, in-plane resolution 1.0 x 1.0 mm) with contiguous

2 mm coronal slices. The T1-weighted images were processed, and
volumetry was performed using the automated method FreeSurfer, as
previously described by our group (Rosenzweig et al., 2013b).

2.6. Statistical Analyses

The Kolmogorov-Smirnov test was used to test the normality of distri-
butions. To analyze differences in a variety of demographic parameters
between healthy controls and OSA patients, Student's t-test was applied
(Table 1). All statistical analyses had a 2-tailed o level of <0.05 for
defining significance and were performed by a biostatistician on the
statistical software “STATISTICA 10-0” (http://www.statsoft.com).

Investigation of a priori hypotheses was focused on group differ-
ences for several neuroanatomical structures that had been previously
highlighted by our data and that of other groups, to present network
hubs of OSA-affected neurocircuitry: the hippocampus, amygdala,
basal ganglia, thalamus, brainstem, corpus callosum (and its subdivi-
sions) and cerebellum (Rosenzweig et al., 2015; Gozal, 2013). In addi-
tion, several previously reported affected cognitive domains were
assessed (Twigg et al., 2010). The intracranial volume (ICV) calculated
by FreeSurfer did not differ significantly between groups (t-test, P =
.514) and Student's t-test was done on the ICV normalized data (i.e. vol-
ume/ICV) to assess between-group differences (Supplementary
Table S2). Hierarchical cluster analysis (HCA) (Waddell et al., 2014)
was further undertaken to identify homogeneous groups of variables
among differential (diff A) changes in brain volumes following the
two interventions. HCA results in the formation of clusters in which pro-
files are iteratively joined in a descending order of similarity. More
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Table 1
Baseline characteristics of participants.
Controls CPAPpaseline BSCpaseline P? CPAPpaseiine P? BSChaseline Phaseline

Age (years) 435 (2.1) 48.6 (1.9) 46.5(2.2) 0.089 0.324 0.503
BMI (kg/m?) 27.8 (0.6) 347 (1.2) 34.1(1.3) <0.001 <0.001 0.707
Education (years) 15.0 (0.4) 14.8 (0.5) 14.5 (0.5) 0.720 0.495 0.755
AHI (events/h) n/a 36.6 (5.1) 36.4 (4.0) n/a n/a 0.979
ODI (events/h) 23(0.2) 354 (5.1) 37.8 (4.5) <0.001 <0.001 0.655
ESS 6.2 (0.5) 13.1 (1.0) 12 4(0.9) <0.001 <0.001 0.548
Gender (male): n (%)° 28 (80.0%) 28 (100.0%) 24 (88.9%) 0.014 0.491 0.111
Dexterity (right-handed): n (%) 35 (100.0%) 28 (100.0%) 27 (100.0%) n/a n/a n/a

Data presented as mean (SEM) or number of patients N (%). Abbreviations: Controls: healthy volunteers (N = 35); BSC: baseline values for patients treated with best supportive care (BSC)
(N = 27); CPAP: baseline values for patients treated with Continuous Positive Airway Pressure (CPAP) with BSC (N = 28); BMI: body mass index, AHI: apopnea/hypopnea index. ODI:
oxygen desaturation index. P columns: P CPAPyseiine = baseline CPAP with BSC group vs controls P BSCyaseiine = baseline BSC vs controls; P = baseline CPAP vs BSc scores.

¢ Bonferroni corrected P values.
b Fisher exact test.

specifically, in our study, the agglomerative hierarchical clustering algo-
rithm was used that started with each variable in a separate cluster and
combined clusters until only one was left. The resulting cluster hierar-
chies were displayed as tree diagrams, i.e. dendrograms (Fig. 2). The
clustering method was used to show between-groups linkage with
squared Euclidean distance as a measure of distance. The final number
of clusters has been defined according to the highest coefficient changes
in agglomeration schedules. Statistical analysis for HCA was performed
with IBM SPSS Statistics version 21.0 (http://wwwO01.ibm.com/
software/analytics/spss/).

During post hoc analyses interregional connectivity and inter-
domain relationships between the right thalami, somnolence (ESS test
scores) and verbal episodic memory (delayed LM test scores) were ex-
plored with Pearson correlations; controlled for ICV and normalized for
differential changes (diff A%) from the baseline (diff A = [V/
domainye — V/domainpes| / V/domainpee x 100). All results were
Bonferroni corrected for multiple comparisons. Finally, partial correla-
tions (Tahmasian et al., 2015) were used to control the body mass
index (BMI) confounding effect on correlation coefficients between
neuroimaging and cognitive tests' score changes.

3. Results

Fifty-five OSA patients (81%) completed the study, in addition to 35
age- and education-matched healthy volunteers (Fig. 1). Attrition was

due to incomplete investigations in 10% (7/68) of the BSC group, and
9% (6/68) of the CPAP group. Mean (SD) age of OSA patients was 47.6
(11.1) years, ODI 36.6 (25.2) events/hour, and ESS 12.8 (4.9). Baseline
demographic characteristics of participants are shown in Table 1. Base-
line sleep characteristics are shown in Supplementary Table S1. The
baseline characteristics were similar between the CPAP with BSC
group and BSC only group. Median CPAP use over one month was 5.0
(range 1.9-6.9) hours/night (Table 1).

3.1. A Priori Hypotheses Investigations

At baseline, hypotrophic changes were recorded in the left hippo-
campus, in the bilateral pallidus and the mid-posterior part of the cor-
pus callosum of OSA patients (n = 55) in comparison to those
recorded in healthy controls (n = 35) (Fig. 3: pre-CPAP). Following
one month of interventions, the between-group comparison (patient
groups vs healthy controls) no longer showed statistically significant
hypotrophic changes in either of these structures, suggesting that adap-
tive neuroplastic changes have occurred (Supplementary Table S2). The
hierarchical cluster analysis further demonstrated the distinct alteration
pattern for each intervention during this period (Fig. 2), with the tha-
lamic alterations in the CPAP group closely linked to wider core
neurocircuitry adaptations, compared to the BSC group.

The differential neuroanatomical structural changes at one month
between the CPAP group and the BSC group were subsequently
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Fig. 2. Dendrograms depict relationships between structural changes in brain volumes following one month of intervention with the Continuous Positive Airway Pressure or Best
Supportive Care treatment. Dendrograms were constructed using the results of Hierarchical Cluster Analysis (HCA) of the differential A structural changes, using Average Linkage with
squared Euclidean distance as a measure of distance (x-axis values). HCA resulted in the formation of clusters that were iteratively joined in a descending order of similarity. Resulting

dendrograms show different patterns of neuroanatomical changes in patients with OSA following the interventions with BSC alone (N

= 27) from those resulting post CPAP with BSC

(N = 28) treatment. The HCA findings also suggest that the thalamic alterations (arrows) in the CPAP group are closely linked to wider core neurocircuitry adaptations (pink boxes).
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Fig. 3. Significant structural change in OSA patients Pre and Post CPAP treatment. The first row (Pre-) shows neuroanatomical structures that were noted as hypotrophic in OSA patients
(N = 55) before any intervention, by comparison to matched healthy volunteers (N = 35); bilateral globus pallidi, left hippocampi and mid posterior section of corpus callosum. The
second row (Post-) depicts hypertrophic changes noted in bilateral thalami following one month of treatment with CPAP; the longitudinal structural changes were calculated by

normalization to the individual baseline volumes (refer to the equation).

explored. In the CPAP group, a significant hypertrophic trend (Fig. 3) for
the right thalamus was recorded [mean diff A% (SD): CPAP, 4.04 (13.61)
vs BSC, —2.29 (10.66); P = 0.06]. No other statistically significant differ-
ences between groups were found (Supplementary Table S3).

At baseline, OSA patients showed significantly impaired cognitive
processing in several domains by comparison to healthy controls
(Table 2). Following one month of interventions, improvement was re-
corded in the majority of tested domains compared to healthy controls
(Table 2). However, comparison of differential cognitive changes be-
tween interventions, suggested that only changes in sleepiness [mean
diff A% (SD): CPAP, 2.46 (39.97) vs BSC, —27.97 (46.46); P = 0.012]
and verbal episodic memory test scores [23.41 (32.45) vs 57.20
(75.46); P = 0.037] were statistically significant (Supplementary
Table S4).

Table 2
Changes in neurocognitive function.

In summary, the findings of a priori between-intervention analyses
demonstrated the differential neuroplastic cognitive and morphometric
adaptations already after one month of treatment (Figs. 2, 3; Supple-
mentary Tables S3, 4).

3.2. Post Hoc (Secondary) Analyses

Secondary correlational analyses were dictated by the three
significant findings of a priori investigations. We explored the
pathomechanisms behind improvements in episodic memory, somno-
lence and the hypertrophic trend for the thalamus in the CPAP group
(Figs. 3 & 4). Significant correlation between improvement in sleepiness
and volumetric changes in the brainstem (r = —0.37; P = 0.05) was
found (Fig. 4), whilst improvements in verbal episodic memory were

COgﬂitive tests Controls OSAbaseline BSChaseline CPAPpaseline BSC1 month CPAP1 month P? P? BSC1 month P? CPAP1 month
Immediate LM 47.06 (1.84) 36.36 (1.32) 37.59 (1.91) 35.17 (1.84) 41.70 (2.28) 44.43 (1.99) <0.001 0.070 0338
Delayed LM 29.79 (1.37) 2225(097)  2341(145)  21.14(128)  27.33(1.55) 2993 (142)  <0.001 0.238 0.946
ACE-R 94.91 (0.99) 90.55 (1.11) 88.59 (2.01) 92.42 (0.88) 90.70 (1.85) 91.86 (2.44) 0.008 0.038 0.220
Memory 24.18 (0.41) 22.05 (0.57) 21.15 (0.87) 22.92 (0.70) 23.07 (0.65) 23.79 (0.37) 0.009 0.143 0.493
Fluency 12.50 (0.3) 11.25 (0.3) 11.22 (0.43) 11.28 (0.42) 11.41 (0.49) 11.89 (0.45) 0.006 0.050 0.248
Language 2412 (0-71) 24.18 (0.37) 23.56 (0.68) 24,78 (0.28) 23.63 (0.68) 25.11 (0.24) 0.930 0.628 0.230
SSF 9.00 (0.31) 8.33 (0.23) 822 (0.31) 8.42 (0.33) 7.93 (0.38) 8.18 (0.4) 0.079 0.032 0.104
SSB 8.65 (0.26) 7.65 (0.24) 7.52 (0.39) 7.79 (0.29) 7.37 (0.39) 8.18 (0.31) 0.009 0.007 0.250
DSF 12.06 (0.33) 10.22 (0.31) 10.26 (0.45) 10.18 (0.43) 10.70 (0.4) 1032 (0.51) <0.001 0.011 0.005
DSB 8.18 (0.39) 6.73 (0.31) 6.93 (0.45) 6.54 (0.42) 7.41 (0.47) 7.26 (0.52) 0.005 0210 0.157
TMA 24.12 (1.18) 27.34 (1.04) 29.19 (1.49) 25.56 (1.38) 28.02 (1.56) 24.26 (1.28) 0.049 0.047 0.937
TMB 41.23 (2.0) 62.02 (3.65) 69.76 (6.33) 54,56 (3.31) 61.53 (4.81) 51.05 (3.68) <0.001 <0.001 0.017
ESS 6.18 (0.49) 12.80 (0.67) 12.44 (0.88) 13.14 (1.01) 12.11 (0.93) 8.18 (0.85) <0.001 <0.001 0.038

Data presented as mean (SEM). Memory, fluency and language test scores were calculated from respective subtest scores of the Addenbrooke's Cognitive Examination-Revised (ACE-R)
test. Normality was checked using the Kolmogorov-Smirnov test. The plots were normally distributed so independent sample t-test statistics were used to compare patient groups and
controls. P columns: P = baseline OSA scores vs controls; P BSC = BSC vs controls; P CPAP = CPAP with BSC group vs controls.

Abbreviations: Controls: baseline values for healthy volunteers (N = 35). OSA: baseline values for all obstructive sleep apnea (OSA) patients before any intervention (N = 55); BSC: pa-
tients treated with best supportive care (BSC) for one month (N = 27); CPAP: patients treated with Continuous Positive Airway Pressure (CPAP) with BSC for one month (N = 28). ESS:
Epworth sleepiness scale. TMB: trail making test B; TMA: trail making test A; DSF: digit-span forward task; DSB: digit-span backward task; SSF: spatial-span forward test; SSB: spatial-span
backward test; ACE-R: Addenbrooke's Cognitive Examination- Revised; LM: logical memory test.

¢ Bonferroni corrected P values.
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Right thalamus

ESS |

Fig. 4. Neuroplastic structural changes following one month of intervention with the Continuous Positive Airway Pressure or Best Supportive Care treatment. Potential strengthening in
interregional connectivity between the non-dominant thalamus with hippocampus and (or) cerebellar cortex in OSA patients was noted only in CPAP treated group (first row). In addition,
in the same group of patients, improvement in sleepiness (as shown by the ESS), was strongly positively correlated to changes occurring in brainstem during this period (second row).

not obviously correlated to any singular morphometric change. Similar-
ly, hypertrophic changes in the right thalamus appeared strongly corre-
lated to changes in bilateral cortical cerebellar (CC) and hippocampal
(H) structures (left CC r = 0.77; P = 1.96 10~%; right CC r = 0.75;
P=3.7810"5 left Hr = 0.49; P <0.01; right Hr = 0.51; P < 0.01),
which was not the case for OSA patients that received only BSC inter-
vention. In the CPAP group, thalamic changes were also found to be cor-
related with the changes in overall cognitive functioning (ACE-R) scores
(r = —0.554; P = 0.002), attentional span changes (DSF, r = —0.499;
P = 0.007) and with the changes in visuospatial working memory (SSB,
r = —0.370; P = 0.05).

Positive correlations between improvements in scores of verbal ep-
isodic memory and semantic subdomain of verbal fluency (fluency
ACE-R) (r = 0.406; P = 0.032) that were otherwise negatively correlat-
ed in the BSC group (r = —0.190, P = 0.343), were also shown.

Episodic memory showed significant positive correlation with span
changes in the CPAP (r = 0.451, P = 0.02) vs BSC group(r = —0.081,
P = 0.69). ESS scores were not significantly correlated to changes in
working memory in the CPAP (r = 0.295, P = 0.127), although they
were significant in the BSC group (r = 0.591, P = 0.001). The correla-
tions between noted changes over one month and ODI values of pa-
tients have been further explored; here, a significant correlation
between changes in the anterior part of corpus callosum and ODI
(r = 0.420; P = 0.026) was suggested for the CPAP treated group. Of
note is that when variations in pattern of alterations were controlled
for BMI values, significant impact was noted in the CPAP group on the
decreased association of changes between right thalamic plasticity and
verbal fluency scores (r = —0.554 vs r = —0.345). The results of
other neuroplastic adaptations and corresponding changes in cognitive
domains are summarized in Supplementary Table S5.

4. Discussion

Our findings demonstrate that just one month of CPAP treatment,
combined with psychoeducation and lifestyle modifications, can redress
several cognitive and morphometric deficits in patients with moderate-
severe OSA (defined with an AHI > 10 events/hour). These data are con-
sistent with the recovery of gray matter regions and cognition in

patients with OSA reported by Canessa et al. (2011) to occur following
three months of CPAP treatment (Canessa et al., 2011). Moreover, the
same group has recently shown that appreciable recovery of cognition
and white matter, including that in corpus callosum, occurs over the
course of 12-month treatment with CPAP (Castronovo et al., 2014).
Our study is, to the best of our knowledge, the first time that these find-
ings have been replicated in much shorter timeframe (Gozal, 2013).

The baseline neuroanatomical and neurocognitive impairments re-
corded in OSA patients were comparable to previously reported
neurocognitive deficits (Yaffe et al., 2014; Kumar et al., 2014; Kylstra
et al,, 2013; Kim et al., 2016) and involved the neurocircuitry hubs for-
merly shown as specifically vulnerable to chronic sleep fragmentation
and associated nocturnal cycles of intermittent hypoxia in clinical and
preclinical studies (Rosenzweig et al., 2013a, 2013b, 2015; Yaffe et al.,
2014; Gozal, 2013). Specifically, hypotrophic changes in regions corre-
sponding to hippocampal formation, basal ganglia and parts of corpus
callosum were suggested by the neuroimaging investigations (Fig. 3).
Similarly, we recorded excessive daytime somnolence and significant
impairments in cognitive domains of attention, working memory, ver-
bal episodic memory and semantic memory in our OSA patients at base-
line (Table 2).

Of note is that a minimal improvement, both in cognitive and neuro-
anatomical measures, was demonstrated in the OSA patients random-
ized to BSC over one month (Table 2, Supplementary Table S3).
Similar improvement in patients with OSA has been previously associat-
ed with the improved sleep quality and argued by the beneficial impact
of diet, exercise, lifestyle modifications and psychoeducation (Araghi
et al,, 2013). In addition to any intervention effects or natural neuro ho-
meostatic fluctuations, it is also possible that some of the cognitive
changes may have represented practice effects.

In order to distinguish the beneficial impact of CPAP from that of any
other interventional modality, the between-groups comparison of nor-
malized changes was performed. Consequently, three major constructs
were highlighted. Specifically, neuroplastic hypertrophic changes in
thalamus, decreased daytime somnolence and improvements in verbal
episodic memory were shown as more likely to result from adaptive
processes driven by treatment with CPAP, and as such merit further
discussion.
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4.1. Excessive Daytime Somnolence

Somnolence is a major complaint in OSA, and whilst its exact neuro-
logical substrate is incompletely understood (Guilleminault and Brooks,
2001), it is likely that chronic low-level neuroinflammation affects brain
structures that participate in the initiation and maintenance of sleep
and alertness (Rosenzweig et al., 2015). In agreement with this notion,
improvement in daytime somnolence following one month of treat-
ment with CPAP was significantly correlated with neuroplastic alter-
ations in brainstem (Fig. 4) in our study. In addition, brainstem
alterations were associated with hypertrophic thalamic changes,
which were in turn closely correlated with alterations in bilateral cere-
bellar cortices and hippocampus (Figs. 2 & 4). The neuroplastic stream
of these associations correlated closely with changes in scores of tests
of attentional regulation and working memory capacity (Fig. 5).

We propose that our findings represent changes in consciousness
and arousal regulation that can occur within one month, perhaps pri-
marily driven by increased activity/plasticity of brainstem pathways.
Many of these pathways are known to underlie rapidly generated
brief shifts of arousal at times of increased cognitive and corticothalamic
demand (Schiff, 2008). It follows that our findings might also suggest
specific vulnerability of a thalamocortical oscillator to sleep fragmenta-
tion and nocturnal cycles of intermittent hypoxia, something that has
been long suggested by neurophysiological and neuroimaging data in
OSA (Rosenzweig et al., 2013a, 2013b). In cases of a faulty oscillator,
distributed network activity and associated memory may suffer
across long-range cortico-cortical pathways, and within cortico-
striatopallidal-thalamocortical loop volleys (Schiff, 2008).

It is notable that our findings also show that, whilst in untreated OSA
patients changes in scores of tests of attention and working memory ca-
pacity were strongly affected by the severity of their sleepiness, this sig-
nificant association was all but negated by the effects of treatment with
CPAP over one month (Fig. 5). As patients with OSA have been shown to

P(r) < -05

be more likely to experience a driving-related traffic accident, and given
that such accidents have been shown as more likely in those who man-
ifest greater daytime sleepiness, we argue that this finding implies
strong clinical rationale for CPAP treatment even for a short duration
(Malhotra et al., 2015; Rosenzweig et al., 2015; Gozal, 2013).

4.2. Thalamocortical Circuitry in OSA

As already suggested, recruitment of central thalamic neurons via
the brainstem occurs in response to increasing cognitive demand, stress
and fatigue that reduce behavioral performance (Schiff, 2008). Through
thalamic activation, neurons across the cerebral cortex and striatum can
be depolarized, and their activity selectively gated by descending or as-
cending signals related to premotor attention and alerting stimuli
(Schiff, 2008).

We and others have argued that in OSA, direct injury to the
thalamocortical neurons, or their prominent deafferentation as a result
of multifocal, neuroinflammatory brain processes, could lead to severe
impairment of prefrontal functional integration and arousal regulation
(Rosenzweig et al., 2013a; Schiff, 2008; McNab and Klingberg, 2008;
Portas et al., 1998). In keeping with this suggestion, we speculate that
our findings show neuroplastic compensatory thalamic changes, insti-
gated by one month of CPAP treatment, leading to a wider circuitry re-
organization involving brainstem, cerebellum and hippocampal
connectivity (Figs. 2, 4). We also propose that CPAP-driven adaptive
processes further optimize activation of the thalamic system that acts
as functional interface between arousal and attentional regulation
(Portas et al., 1998; Eriksson et al.,, 2015). This might then underlie pos-
itive subjective experience of decreased mental effort required in order
to solve tasks following the CPAP treatment. It should be noted that the
results of our partial correlation analysis (Supplementary Table S5) sug-
gest that BMI might act as a confounder in noted executive and language
gains. This potential association between BMI and cognition is not a new

Somnolence (ESS) ﬂ

Cognitive Domain

Attention

Working
memory

Maintenance

Digit span
Backwards

Fig. 5. Schematic presentation of the neuroarchitecture behind working memory maintenance processes that might be implicated in improved daytime somnolence and verbal episodic
memory by the CPAP treatment. Distributed nature of processes and representations involved to solve working-memory tasks is shown (McNab and Klingberg, 2008; Eriksson et al., 2015),
with thalamus (central structure) acting as a functional interface between arousal and attentional regulation (Schiff, 2008). The hippocampus (elongated green), is the structure most
frequently reported affected by neuroimaging in OSA (Rosenzweig et al., 2015; Rosenzweig et al., 2013b), here it is proposed to bind aspects of working and episodic memory
(Eriksson et al., 2015; Axmacher et al., 2010). The list of cognitive tests used in our study to investigate impact of CPAP treatment on associated cognitive domains is also depicted.
CPAP treatment leads to improvement in verbal episodic memory (green box), which may be due to the interplay of the cascade of gradual changes in the semantic and verbal
working memory. In addition, CPAP leads to the improvement of excessive daytime somnolence (yellow box), which in turn appears to be significantly, correlated to ensuing
brainstem alterations. Our results also suggest that comparable subjective sleepiness has significantly less impact on the attention and maintenance of working memory capacity in
patients treated with CPAP. Abbreviations: CPAP: Continuous Positive Airway Pressure; BSC: best supportive care; LTM: long term memory; ESS: Epworth sleepiness scale.
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proposition, and results from a recent prospective controlled trial of
eighty patients with mild cognitive impairment suggest a strong link
between BMI decrease and improvements in verbal memory, verbal flu-
ency and executive function (Horie et al., 2016).

4.3. Neurocognitive Architecture of Working and Episodic Memory in OSA

One month of CPAP treatment resulted in a partial recovery of epi-
sodic and working-memory capacity. A crucial role for working memory
in temporary information processing and guidance of complex behav-
ior, as well as its impairment in OSA (Twigg et al., 2010), has been rec-
ognized (Eriksson et al., 2015). There is an emerging consensus that
working-memory maintenance results from the interactions among as-
sociative memory representations and basic processes, including atten-
tion, that are instantiated as reentrant loops between frontal and
posterior cortical areas, as well as subcortical structures (McNab and
Klingberg, 2008; Eriksson et al., 2015). In our study, over one month,
wider reorganization in a distributed memory system for associative
learning occurred, e.g. thalamocortical changes were associated with
changes in bilateral hippocampi and cerebellar cortices. None of these
alterations were observed in the BSC group (Figs. 4, 5).

It is of further interest that the hippocampus, the structure most fre-
quently reported affected by neuroimaging in OSA (Rosenzweig et al.,
2013b, 2015), has recently been proposed to act as a major shared sub-
strate for working and episodic memory (Eriksson et al., 2015).
Axmacher and colleagues (2010) have suggested that the hippocampus
plays a role in working-memory maintenance of multiple items by neu-
ral assemblies synchronized in the gamma frequency range, locked to
consecutive phase ranges of oscillatory activity in the hippocampal
theta range (Axmacher et al., 2010). Of note, a decrease in theta band
has been shown to occur after apnea and hypopnea events in some pa-
tients with OSA, and CPAP has been shown to normalize EEG changes
(Rosenzweig et al., 2014).

Several limitations should be considered when interpreting the find-
ings of this study; the cross-sectional design, the absence of follow up of
healthy controls and strict exclusion criteria used disallow conclusions
to be made regarding causality or interactions between OSA, its treat-
ment, and various comorbidities such as hypertension and diabetes.
Also, one cannot infer which, if any, interventional aspects of the life-
style modifications and psychoeducation, might have contributed to ob-
served changes. Furthermore, correlations between changes in regional
volumes and neuropsychological scores were exploratory and
hypothesis-generating. Their interpretation of presumed complex and
diverse causalities remains a challenging issue for the future. Nonethe-
less, we suggest that our findings indicate an important clinical message
about the benefits of CPAP treatment.

The results of this study show that one month of CPAP treatment
provides a sufficient timeframe for rudimentary neuroplastic changes
to occur within targeted brain structures of patients with moderate to
severe OSA. We also speculate that the structural changes provide a
basic neurocognitive architectural scaffold for further reorganization,
which underlies some of the observed functional recovery in working
and episodic memory.
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