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ABSTRACT in this paper, we discuss some challenges regarding the Hadoop framework. One of the main 

ones is the computing performance of Hadoop MapReduce jobs in terms of CPU, memory and hard disk 

I/O. The networking side of a Hadoop cluster is another challenge, especially for large scale clusters with 

many switch devices and computing nodes, such as a data centre network. The configurations of Hadoop 

MapReduce parameters can have a significant impact on the computing performance of a Hadoop cluster. 

All issues relating to Hadoop MapReduce parameter settings are addressed. Some significant parameters of 

Hadoop MapReduce are tuned using a novel intelligent technique based on both genetic programming and a 

genetic Algorithm, with aim of optimising the performance of a Hadoop MapReduce job. In the Hadoop 

framework, there are more than 150 configurations of parameters and hence, setting them manually is not 

difficult, but also time consuming. Consequently, the above-mentioned algorithms are used to search for the 

optimum values of parameter settings. Software Defined Network (SDN) is also employed to improve the 

networking performance of a Hadoop cluster, thus accelerating Hadoop jobs. Experiments have been 

carried out on two typical applications of Hadoop, including a Word Count Application and Tera Sort 

application, using 14 virtual machines in both a traditional network and an SDN. The results for the 

traditional network show that our proposed technique improves MapReduce jobs performance for 20 GB 

with the Word Count application by 69.63% and 30.31% when compared to the default and Gunther work, 

respectively. Whilst for the Tera Sort application, the performance of Hadoop MapReduce is improved by 

73.39% and 55.93%, compared with the default and Gunther work, respectively. Moreover, the 

experimental results in an SDN environment showed the performance of a Hadoop MapReduce job is 

further improved due to the advantages of the intelligent and centralised management achieved using it. 

Another experiment has been conducted to evaluate the performance of Hadoop jobs using a large scale 

cluster in a data centre network, also based on SDN, with the results revealing that this exceeded the 

performance of a conventional network.  

INDEX TERMS: Big Data, data centre network, genetic algorithm, genetic programming, Hadoop, 

MapReduce, parameter settings optimisation, shuffling flow, Software Defined Network. 

I. INTRODUCTION 

Big data is a term that refers to large and complex 

data sets that cannot be  processed, captured, 

stored or analysed using traditional tools [1]. 

These amounts of huge data are generated from 

different, sources such as social media, sensor 

devices, the Internet of things, mobile banking 

amongst many more origins. Furthermore, many 

governments and commercial organisations are 

producing large amounts of, data such as 

financial and banking statements, healthcare 

providers, high education systems, research 

centres, the manufacturing sector, insurance 

companies and the transportation sector. 
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Regarding which, International Data Corporation 

(IDC) reported that 2,800 Exabyte of data in the 

world were stored in 2012 and this is expected to 

reach up to 40,000 Exabyte over the next ten 

years. For instance, Facebook processes around 

500,000 GB every day. The vast amount of data 

includes both structured, such as relational 

databases as well as, semi structured and 

unstructured data, such as texts, videos, images, 

multimedia, and web pages. These types of huge 

data with various formats have led to the coining 

of the term big data [2]. However, these massive 

datasets are hard to be processed using traditional 

tools and current database systems. Hadoop 

MapReduce is a powerful computing technology 

tasked with supporting big data applications [3]. 

Hadoop is an open source framework that enables 

the implementation of the MapReduce algorithm 

for data processing purposes. It is scalable, fault-

tolerant and able to process massive data sets in 

parallel. Moreover, large datasets can be 

distributed across several computing nodes of a 

Hadoop cluster to achieve better computation 

resources and power [4]. Hadoop has a complex 

structure that contains a number of parts that react 

with each other through several computing 

devices. Moreover, Hadoop it has more than 150 

configuration parameters and recent studies have 

shown that tuning some of these can have a 

considerable effect on the performance of a 

Hadoop job [5, 6]. Because of the black box 

feature of the Hadoop framework, the tuning of 

parameters values manually is a challenging task 

as well as being time consuming. To tackle this 

issue, genetic algorithms (Gas) for Hadoop have 

been developed to achieve optimum or near 

optimum performance of the Hadoop MapReduce 

parameter settings. However, there are some 

traffic issues for Hadoop jobs especially in the 

shuffling phase during the transfer of 

intermediate output data from the mappers to the 

reducers. As a consequence, SDN is proposed to 

alleviate these traffic issues in a Hadoop cluster. 

We employed SDN for a small Hadoop cluster 

using 14 virtual machines connected to one 

physical switch and two open virtual switches. 

SDN was also used to evaluate the performance 

of Hadoop jobs in a large scale cluster in a data 

centre network. The major contributions of this 

paper are as follows. 

• Genetic programming is employed to construct 

a fitness function based on the running of Hadoop 

job samples that can be considered as CPU or I/O 

intensive. The interrelations among Hadoop 

parameters are represented by the constructed 

fitness function and described mathematically. 

 

• A GA is also used in this work to optimise the 

configuration parameters of Hadoop. It is applied 

to the fitness function constructed by the genetic 

programming to search for the optimum or near 

optimum settings of the Hadoop parameters. 

 

• For better optimisation, SDN is used to improve 

the performance of Hadoop jobs. The networking 

aspect of a Hadoop cluster is optimised using 

SDN by achieving centralised control and agile 

management. This can improve the performance 

of a Hadoop job by accelerating the shuffling 

phase that can be network intensive. The 

optimised values of the Hadoop parameters are 

applied in the optimised network to evaluate the 

performance of a Hadoop job. 

 

• An application-aware networking based on SDN 

is used for a Hadoop cluster in a data centre 

network to improve further the performance of a 

Hadoop job by reducing the execution time of the 

exchanged shuffling flows between nodes during 

the shuffle phase. An effective routing algorithm 

based on SDN is proposed to accelerate the 

shuffling phase of a Hadoop job by allocating 

efficient paths for each shuffling flow According 

to the network resources demand of each flow as 

well as their size and number in the data centre 

network. Accordingly, the proposed work 

improves the execution time of a Hadoop job. 

The proposed work also reduces the routing 

convergence time in the case of any link crashing 

or failure. 

 

 The remaining sections of this paper are 

organised as follows. Section II presents some 

related work, whilst in section III, a set of 

Hadoop MapReduce parameters are introduced. 

Section IV explains the implementation of 
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genetic programing for building an objective 

function of the Hadoop MapReduce parameters. 

The implementation of GA for MapReduce 

parameter optimisation is explained in section V 

and section VI presents a performance evaluation 

of the proposed work using a Hadoop cluster in 

Microsoft azure cloud. Section VII describes and 

discusses the experimental results of Hadoop jobs 

in a small cluster in Microsoft azure. Discussion 

and the experimental results of the small cluster 

based on SDN are provided in section VIII. 

Section IX presents and discusses the 

experimental results for a Hadoop cluster based 

on SDN in a data centre network and 

subsequently, the paper is concluded in section X.   
 
II.  RELATED WORK 

Many ways have been proposed for the automatic 

tuning of Hadoop MapReduce parameter settings, 

one of which being PPABS [7] (Profiling and 

Performance Analysis-Based Self-tuning). In this 

framework, the Hadoop MapReduce parameter 

settings are tuned automatically using an analyser 

that classifies MapReduce applications into equal 

classes by modifying k- means ++ clustering and 

a simulated annealing algorithm. Furthermore, 

recogniser is also used to classify unknown jobs 

into one of these equivalent classes. However, 

PPABS cannot tune parameters of an unknown 

job not included on these equivalent classes. 

Another approach, called Gunther, has been 

proposed for Hadoop configuration parameters 

optimisation using genetic algorithm. However, 

all MapReduce jobs have to be executed 

physically to evaluate the objective functions of 

required parameters, because Gunther does not 

have an objective function for each of them. 

Moreover, the execution time for running 

MapReduce jobs for objective function evaluation 

is very long [8]. Panacea framework has been 

proposed to optimise Hadoop applications based 

on a combination of statistic and trace analysis 

using a compiler guided tool. It divides the search 

place into sub places and subsequently performs a 

search for best values within predetermined 

ranges [9]. A performance evaluation model of 

MapReduce is proposed in [10].This framework 

correlates performance metrics from different 

layers in terms of hardware, software, and 

network. Industrial professionals proposed the 

Rule-Of-Thumb (ROT), which is merely a 

common practice for Hadoop parameter settings 

tuning [11, 12]. In [13] an online performance 

tuning system for MapReduce is proposed to 

monitor the execution of a Hadoop job and it 

tunes associated performance-tuning parameters 

based on collected statistics. [14] optimises 

MapReduce parameters by proposing profile to 

collect profiles online during the execution of 

MapReduce jobs in the cluster. In [15] a self-

tuning system for big data analytics, called 

starfish, is proposed to achieve the best 

configurations of a Hadoop framework so as to 

utilise cluster resources better in terms of CPU 

and memory. Narayan proposed the integration of 

SDN technology and Hadoop. The main idea of 

the proposed work is to identify the traffic of 

Hadoop intermediate data and the background 

traffic by using the flow rules, subsequently 

applying different quality of service (QoS) for 

them. The experimental results of this work 

showed that the execution time of a MapReduce 

job went down due to the sufficient amount of 

bandwidth being allocated for the shuffle traffic. 

However, this method is only suitable for small 

scale clusters and not for large ones in a data 

centre network with a large number of switches 

and servers [16]. The work proposed in [17]  

presents an application-aware SDN routing 

scheme for Hadoop to speed up the data shuffling 

of MapReduce over the network. Another work 

was proposed in [18] to improve the job 

completion time. An application-aware network 

in SDN (AAN-SDN) for Hadoop MapReduce 

was suggested to provide both underlying 

networks functions and specific MapReduce 

forwarding logics. A flexible network framework 

(FlowComb) was proposed in [19] for big data 

applications to achieve high bandwidth utilisation 

and fast processing time by predicting the 

network application transfers. Yi Lin and Yu 

Liao, in [20], used an SDN app for a Hadoop 

cluster to speed up the execution time of 

MapReduce jobs. The proposed method involved 

implementing the SDN app in the Hadoop cluster 

for easy deployment of the flow rules for Hadoop 
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applications. However, only a small cluster with 

one physical switch was investigated and hence, 

the impact on the performance of Hadoop jobs in 

large clusters in a data centre network using this 

method was not assessed. 
 
III.  HADOOP MAPREDUCE PARAMETERS SETTINGS 

Hadoop is a software platform written in java that 

enables distributed storage and processing of 

massive data sets using clusters of computer 

nodes. It provides large storage of any type of 

data (structured, semi structured and unstructured 

data) due to its scalability and fault tolerance. 

Furthermore, it has more than 150 tuneable 

parameters that play a vital role on the flexibility 

of Hadoop MapReduce jobs and some of them 

have remarkable influence on performance of 

Hadoop jobs. Table I presents the main 

parameters of Hadoop system that have the most 

significant impact on the performance of a 

Hadoop job. 
 

TABLE I. THE MAIN PARAMETER SETTINGS OF HADOOP 

FRAMEWORK 

Parameters Default 

MapReduce.task.io.sort.mb 100 

MapReduce.task.io.sort.factor 10 

Mapred.compress.map.output false 

MapReduce.job.reduces 1 

Mapreduce.map.sort.spill.percent 0.80 

MapReduce.tasktracker.map.tasks. 

maximum 

2 

MapReduce.tasktracker.reduce.tasks. 
maximum 

2 

Mapred.job.shuffle.input.buffer.percent 0.70 

 

Below further description of the main parameter 

settings mentioned in the table I. 

 

1) MapReduce.task.io.sort.mb: During sorting 

files, amount of buffer memory is required for 

each merge stream. This amount is determined by 

this parameter and by default it is set to be 1MB 

for each merge stream and the total amount is 100 

MB. 

 

2) MapReduce.task.io.sort.factor: This parameter 

determines the required number of merged 

streams during sorting files process. The default 

value is set to be 10 as explained in table I.  

 

3) Mapred.compress.map.output: The output 

results generated from mappers should be sent to 

the reducer through the shuffle phase. However, 

high traffic is generated during the shuffling 

process especially when the output data of 

mappers is large. Therefore, the results generated 

from mappers should be compressed to reduce the 

overhead in the network during the shuffling 

process and thus accelerate the hard disk IO. 

 

4) MapReduce.job.reduces: a specific number of 

map tasks are required to perform the process of 

MapReduce job in Hadoop cluster. Number of 

map tasks is specified by this parameter. The 

default settings of this parameter are assigned to 

1. Furthermore, this parameter has a significant 

effect on Hadoop job performance. 

  

5) Mapreduce.map.sort.spill.percent: the default 

setting of this parameter is 0.80 which 

represents the threshold of in memory buffer used 

in the map process. The data of in memory buffer 

is spilled to the hard disk once the in memory 

buffer reaches to 80%. 

 

6) MapReduce.tasktracker.reduce.tasks.maximum 

: each  

MapReduce job has several Map and Reduce 

tasks running simultaneously on each data node 

in Hadoop cluster by task tracker. Reduce tasks 

number is determined by this parameter and its 

default setting is set to be 2. This parameter can 

have an important impact on the performance of 

Hadoop cluster when better utilising the cluster 

resources in terms of CPU and memory by tuning 

this parameter to the optimal value. 

 

7) MapReduce.tasktracker.map.tasks.maximum: 

while number of reduce tasks is determined by 

parameter 6, this parameter defines number of 

map tasks running simultaneously on each data 

node. The default value of this parameter is 2. On 

the other hand, any change in the default settings 

of this parameter can have a positive impact on 

the total time of MapReduce job. 
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8)MapReduce.reduce.shuffle.input.buffer.percent: 

the output of mapper during the shuffling process 

requires a specific amount of memory from the 

maximum heap size for storage purposes. The 

percentage of this mount is determined by this 

parameter and its default value is set to be 0.70. 

 

 
IV.  EVEOLVING HADOOP MAPREDUCE PARAMETERS 
WITH GENETIC PROGRAMMING 

Genetic programming (GP) [16] is a technique 

used to solve problems automatically with a set of 

genes and chromosomes. These are evolved using 

two essential genetic operations: crossover and 

mutation. In this work, GP is employed to create 

an objective function of the MapReduce 

parameters. The parameters of Hadoop 

MapReduce are represented as (k1, k2, ……,kn,) and 

here, eight parameters are tuned using a genetic 

algorithm (GA). An objective function should be 

built first using GP. Hence, a mathematical 

expression or function between these parameter 

settings needs to be determined. GP is used to 

evolve an expression between these parameters 

using arithmetic operations (*, +, -, /). The fitness 

assigned to each parameter during the population 

process in GP should reflect how closely the 

output of the mathematical expression (function) 

for this parameter is to that for the original one. 

The arithmetic operations in GP are called 

functions, while the parameters (k1,…,kn) are the 

leaves of the tree, which are also called terminals. 

The mathematical expressions between the 

Hadoop MapReduce parameters are determined 

based on their data type. The mathematical 

expression should have same input data type and 

same number of input parameters. After its 

determination, the completion time of these 

functions needs to be calculated and compared 

with the real one. The best mathematical 

expression among the parameters (k1,…,kn)  will 

be selected based on its approximated completion 

time, which should be very near to the real one. 

The tree in GP is used to hold both functions and 

terminals. As mentioned above, arithmetic 

operations (*, +, -, /) are called functions and 

(k1,…,kn) are called leaves or terminals. Fig. 1 

shows an example of the representation of 

parameters using GP. 

 

 
 

FIGURE 1. An example of a genetic algorithm 

 

The figure shows that the function (*) has two 

input arguments, which are (+) and (/) and the 

function (+) also has two (k1, k2). The completion 

time of MapReduce job of Hadoop parameters 

can be represented as f (k1, k2,.., kn). The 

approximated completion time of Hadoop 

MapReduce job represents the evolved function 

that will be compared to the real completion time 

of Hadoop MapReduce that pertains to the target 

function. According to [16], the approximated 

completion time of Hadoop MapReduce (evolved 

function) should be very near to the real 

completion time of the job (target problem or 

function). Algorithm 1 shows the procedures of 

GP.  

 

Algorithm 1

 Input: Hadoop MapReduce job samples 
Output: Relation between MapReduce 

parameters

 
1: For i = 1 to population size do 

2: Create chromosome (i) with functions and        

terminals; 

3: Fitness (i) =0; 

4: i++; 

5: end for  

6: while n < iterations terminated do 

7:  move chromosome(i) into form of tree(i); 

8: for x = 1  to population size do 
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9: Compute estimated execution time for (x) 

10: if difference between estimated and real time 

<     TS THEN 

11: fitness (i)++; 

12: end if 

13: x++; 

14: end for 

15:  x++; 

16: end for 

17:  Compute the fitness (i) of chromosome i 

18: If fitness(i)= number of samples  then 

19: Chromosome(i)= best chromosome; 

20: End while 

21: If fitness(i)>best fitness value then 

22: Chromosome(i)= best chromosome; 

23: Fitness(i)= best fitness; 

24: End if 

25: Use selection, mutation and crossover on 

chromosome(i); 

26: Gen= Gen+1; 

27:  i++; 

28: End for  

29:   n++; 

30: End while 

31: Return best chromosome

 
 

In this work, a list of MapReduce jobs is used as 

input datasets and a large number of experiments 

was run for both Word count and Tera sort 

applications, being used to process different sizes 

of these input datasets, as presented in section 

VII. The implementation of GP is performed to 

find all possible expressions between the Hadoop 

MapReduce parameters by generating hundreds 

of chromosomes and in this work, 600 were 

initially generated. All linear chromosomes are 

represented into form of graph tree and the fitness 

value of each is calculated based on the 

completion time of a Hadoop MapReduce job for 

each training dataset. The completion time of a 

Hadoop MapReduce job f (k1, k2,.., kn) for training 

datasets generated from genetic chromosomes is 

compared with the real completion time of the 

Hadoop MapReduce job. The difference between 

the approximated and real completion time of the 

Hadoop MapReduce job should not be more than 

40s, which is referred as TS. The chromosome 

with the high fitness value is selected. The 

measure of fitness value is the same as the 

number of Hadoop MapReduce job used in this 

process. This measure is supposed based on the 

example of soccer player to test the fitness in 

[17]. The evolution process will terminate once 

the best fitness value is obtained, i.e. when 

reaches to the number of Hadoop MapReduce 

jobs used in the process. Moreover, genetic 

selections and operators are applied, such as 

mutation and crossover, to produce new 

chromosomes and update the current ones. The 

expression between the parameters is obtained 

after 40,000 iterations. Equation1 below 

represents the mathematical expression and the 

relation between the Hadoop MapReduce 

parameters, which is used as an objective 

function in the next algorithm (GA).  

 
 f(k1,k2,…,k8) =  (k3+k7)*(k5/k2)+(k1*k6)-(k4+k8)              (1)  

 
 
V.  HADOOP MAPREDUCE PARAMETER SETTINGS 
TUNING USING A GENETIC ALGORITHM 

A genetic algorithm (GA) is a metaheuristic one, 

which belongs to the group of evolutionary 

algorithms (EA) and was first proposed by John 

Holland to provide better solutions to complex 

problems. GAs are widely used to solve many 

optimisation problems based on natural evolution 

processes. They work with a set of artificial 

chromosomes that represent possible solutions to 

a particular problem. Each chromosome has a 

fitness value that evaluates its quality as a good 

solution to the given problem [18]. GAs start with 

generating a random population of chromosomes. 

A set of essential genetic operations, such as 

crossover, mutation and update are applied on the 

chromosome to perform recombination and 

selection processes on solutions for specific 

problem. The selection process of chromosomes 

is performed based on their fitness value. The 

chromosome with high fitness has the chance to 

be chosen and create an offspring to generate the 

next population [19]. Algorithm 2 describes the 

procedure for GA implementation, where the 

equation 1 generated from GP is used as an 

objective function that needs to be minimised, 

which is expressed as: 
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f (k1, k2,.., kn) =  (k3+k7)*(k5/k2)+(k1*k6)-(k4+k8)               

 

Algorithm 2

Input: Data sets (MB) 
Output: Optimised Hadoop MapReduce 

parameters

 
1: GA_process ( ) { 

2:    Gen = 0 

3:     P= Intial_population ( ); 

4:     fitness = evaluate_population ( ) ; 

5:     repeat { 

6: repeat { 

7: Use selection, crossover and mutation on 

population; 

8: finess = evaluate_population ( ) ; 

9: Gen = Gen+1; 

10 :} until fitness (i) = bestfitness , 1 ≤ i ≤  

popsize or generation ≥ iteration number; 

} 

} 

 
 

 

In algorithm 2, an initial population of 

chromosomes is randomly generated and each 

MapReduce parameter is represented as one of 

these. It means that chromosome(i) = k1,k2,..,kn , 

where n is the number of parameters. As 

aforementioned, in this work, there are eight 

parameters that need to be tuned. After the 

generation of the population, the fitness value of 

each chromosome in it is evaluated based on the 

objective function f(k1, k2,.., kn). The 

chromosome with high fitness is selected and 

genetic operators, which are selection, crossover 

and mutation, are applied to update the current 

population and generate a new one. The 

procedures are repeated until the best fitness 

values of chromosomes, which represent the 

optimised MapReduce parameters, are obtained 

or the number of iterations is finished. In this 

algorithm, 15 chromosomes are used as a 

population size and the number of iterations set to 

be 100. Furthermore, the probability of crossover 

Pc =0.2 and the probability of mutation Pm =0.1 

are empirically determined and used as genetic 

operators. Roulette wheel spinning is employed 

as a selection process. The ranges and 

recommended values of the eight Hadoop 

MapReduce parameters are presented in table II. 

 
TABLE II. HADOOP MAPREDUCE PARAMETERS 

RECOMMENDED FROM THE GENETIC ALGORITHM 

 

 
VI.  PERFORMANCE EVALUATION ENVIRONMENT 

The proposed work was implemented and 

evaluated using eight virtual machines (VMs) of a 

Hadoop cluster placed on Microsoft azure cloud. 

Each VM was assigned with 8 GB memory, 4 

CPU cores and 320 GB storage for the whole 

cluster. Hadoop Cloudera (Hadoop 2.6.0-

cdh5.9.0) was installed on all nodes, with one 

being configured as a master and the rest as 

slaves. The master node could also be run as a 

slave. For fault-tolerance purposes, we set the 

replication factor of the data block at 3 and the 

HDFS block size was 128 MB. Table III presents 

the specifications of the Hadoop cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hadoop 
MapReduce 

parameters 

Range Parameters name 

K1 100-165 MapReduce.task.io.sort.mb 

K2 10-160 MapReduce.task.io.sort.factor 

K3 True Mapred.compress.map.output 

K4 1-16 MapReduce.job.reduces 

K5 0.60-0.80 MapReduce.task.io.sort.spill.

percent 

K6 2-4 MapReduce.tasktracker.map.t
asks. 

maximum 

K7 2-4 MapReduce.tasktracker.reduc
e.tasks. 

maximum 

K8 0.70-0.71 MapReduce.reduce.shuffle.in

put.buffer.percent 
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TABLE III. HADOOP CLUSTER SETUP 

 

Intel Xeon X5550 

server1 
and 

uxisvm04 server 2 

CPU 4 cores for each 

VM 

Processor 2.27 GHz 

Hard disk 360 GB 

Connectivity 1 GBit  Ethernet 

LAN 

interconnectivity 
between two 

servers 

memory 64 GB 

Operating System Host 

Operating 

System 

Microsoft 

windows server 

2012 R2 

Guest 

Operating 

System 

Ubuntu 14.04.4 

LTS (GNU/Linux 

4.2.0-27-generic 

x86_64) 

 

 
VII.  EXPERIMENTAL RESULTS 

Both the Word Count and Tera sort applications 

have been run as real job programs for Hadoop 

MapReduce framework to evaluate the 

performance of our proposed work on a Hadoop 

cluster. It can be clearly observed that there is a 

difference among the tuned configurations of the 

Hadoop MapReduce parameter settings using our 

proposed system, the default one and Gunther’s 

method. For instance, figure 2 shows that when 

the value of io.sort.mb increases, this leads to a 

decrease in the execution time of the Hadoop 

MapReduce job. Moreover, the io-sort-factor 

parameter defines the number of data streams to 

merge during the sorting of files. From figure 3, it 

can be clearly seen that when the value of this 

parameter goes up, the execution time of the job 

goes down. It can also be observed from figure 4 

that when the number of reduce tasks is increased 

from 5 to 10, the execution time of the Hadoop 

MapReduce job decreases. However, increasing 

the number of reduce task results in longer 

execution time due to the overhead of network 

resources as well as over utilisation of computing 

resources, such as CPU and memory. Moreover, 

it is evident that any further increase in reduce 

tasks leads to the generation of high network 

traffic and consequently, an increase the overall 

time of the Hadoop job. Figure 5 shows that 

increase in the slots of map and reduce can play 

crucial role for better utilisation of cluster 

resources and accordingly minimise the overall 

time. One slot has been configured per CPU core, 

in the cluster setup 4 cores has been allocated for 

each cluster node and therefore 4 slots has been 

employed to maximise the utilisation of CPU. If 

additional slots are included in the setup, this 

exhausts the CPU and results in a delay in the 

processing time of the MapReduce job. Figure 6 

shows the completion time of MapReduce jobs 

for different sizes of datasets by applying a 

compression parameter. It is observed that 

applying this parameter by switching its Boolean 

value empirically from false to true can reduce 

the completion time of a MapReduce job by 

alleviating the traffic consumption of the network 

and reducing the pressure on the I/O operation. 

However, the compression of input data and 

reduce output data is not available in some 

applications such as Tera sort. Moreover, the 

performance of this parameter is reduced when 

massive datasets are used such as, 40 or 50 GB. 

The reason for this is that any increase in dataset 

size leads to the generation of high volumes of 

shuffling traffic, especially in a static IP network 

environment. As a result, a software defined 

network is implemented on a Hadoop cluster to 

reduce the shuffling traffic generated from a 

MapReduce job. The following section describes 

the implementation of a Hadoop cluster based on 

SDN. 

 

 
FIGURE 2. The effect of the io.sort.mb parameter. 
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FIGURE 3.  The effect of io.sort.factor. 

 

 
FIGURE 4. Reduce tasks influence. 

 
FIGURE 5.  Map and Reduce slots influence on MapReduce job. 

 
 

 
FIGURE 6.  The influence of compression parameter. 

 
 

 

TABLE IV. HADOOP MAPREDUCE PARAMETER SETTINGS 
RECOMMENDED BY A GENETIC ALGORITHM ON EIGHT 

VIRTUAL MACHINES 

 

 

Table IV shows the optimised values of the 

Hadoop MapReduce parameters for each size of 

dataset on eight virtual machines. To show the 

performance of our method, different sizes of 

data, including 1 GB, 10 GB and 20 GB, were 

generated. The tuned parameters were used for 

both the Word Count and Tera sort applications. 

The execution time of both the word count and 

Tera sort applications based on the tuned settings 

by our proposed method is compared with the 

execution time of the two applications based on 

the default setting as well as the settings achieved 

by Gunther. Both Word count and Tera sort were 

run twice and it emerged that our proposed 

method can improve the performance of a 

MapReduce job in a Hadoop cluster, most 

notably with large input data sizes. Figure 7 and 

figure 8 show the completion time of a Hadoop 

MapReduce job using the proposed method in 

comparison with the default one and Gunther’s 

method. From figure 7, it can be observed that the 

performance of the Hadoop Word Count 

Application is improved using the proposed 

approach by 63.15% and 51.16% for the 1 GB 

Name Default Optimised Values using 

Genetic algorithms 

1GB 10GB 20GB 

mapreduce.task.io.sort.mb 100 

 

100 140 165 

mapreduce.task.io.sort. 
factor 

10 

 
50 125 160 

mapred.compress.map. 

output 

false 

 

True True True 

mapreduce.job.reduces 1 

 

16 10 10 

mapreduce.map.sort.spill.percent 0.80 

 
0.87 0.68 0.77 

mapreduce.tasktracker.map 

.tasks.maximum 

2 

 

4 4 4 

mapreduce.tasktracker. 

reduce.tasks.maximum 

2 

 

4 3 4 

mapreduce.reduce.shuffle 
.input.buffer.percent 

0.70 0.70 0.71 0.71 
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dataset when compared with the default and 

Gunther’s settings, respectively. Furthermore, the 

experiments carried out on a 10 GB dataset show 

that our proposed method improves the 

performance of the Word Count Application by 

69% and 37.93% when compared with the default 

and Gunther’s method, respectively. Finally, the 

proposed method also achieved better 

performance than the default and Gunther settings 

on the Word Count application by 69.62% and 

30.31%, respectively, for 20 GB.  

From figure 8, it can be clearly seen that our 

proposed method improved the Tera Sort 

application performance by 52.72% over the 

default system and 44.28% when compared to the 

Gunther settings for 1GB. For 10 GB, the 

performance was improved by 55.17% as 

compared to the default one and was 51.25% 

better than with Gunther’s method. Finally, Tera 

Sort application performance for 20 GB was 

improved by 73.39 % and 55.93 % more than the 

default and Gunther settings, respectively. 

 
FIGURE 7.  Comparison of Word Count Application. 

 

 
FIGURE 8.  comparison of Tera sort application. 

 
VIII.  A HADOOP CLUSTER BASED ON SDN 

Software defined networking (SDN) [20] is an 

emerging technology that provides agile and 

dynamic management for the network through 

central and intelligent programming. In this novel 

technology, the control plane is decoupled from 

the data plane to provide more flexibility and 

agility, which leads to network performance 

improvement by obtaining better routing 

decisions. The controller communicates with the 

OpenFlow switch through the OpenFlow 

protocol. In this work, SDN is implemented to 

improve the performance of Hadoop networking 

by efficient utilisation of bandwidth for shuffling 

traffic. Different sorts of traffic are generated 

from a Hadoop cluster, such as shuffle phase 

traffic, HDFS data transfer, HDFS read and write 

along with Hadoop monitoring messages. It is 

worth noting that the shuffling traffic represents 

the most traffic produced by both Word Count 

and Tera Sort in a Hadoop cluster followed by 

HDFS read and write. In the proposed system, 

SDN is employed with OpenVswitch to allocate 

more bandwidth for the traffic generated by the 

shuffling phase when the mapper transfers its 

output to the reducer. However, identifying the 

network resources of shuffling traffic is a 

challenging task, because the core framework of 

Hadoop does not include sufficient information 

regarding network resources demand for this 

traffic. A Hadoop cluster has a single job tracker 

and several task trackers. The progress of Hadoop 

jobs is monitored by the job tracker, whilst each 

task tracker sends heartbeat messages to the job 

tracker about its status. However, these messages 

lack sufficient information about the network 

resources. To address this, our proposed system 

installs software engines on each Hadoop host to 

record the required information of network 

resources for each shuffling flow. This 

information contains the size of map output data 

(intermediate data) being transferred over each 

flow to the reducers. Furthermore, software 

engines determine the required network 

bandwidth for each shuffling flow and record 

sufficient information, such as the IP address of 

the source and destination nodes as well as the 

size of each flow.  Then, all the required 

information is delivered to the SDN controller to 

assign an efficient bandwidth for shuffling flows. 

The SDN controller installs flow entry in each 
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Open vSwitch for each shuffling flow and moves 

the shuffling flows to a queue with higher 

bandwidth. On the other hand, flow rules are 

installed in Open vSwitch for other types of 

traffic, such as control messages and HDFS 

read/write, to switch them to another queue with 

low bandwidth allocation. The TCP 

communication between the task trackers to send 

the map output data in a Hadoop cluster is 

performed using port 50060. Open vSwitch 

matches the incoming packets to identify them by 

their port number.  In the proposed system, 14 

virtual machines, installed on two servers, were 

used with two packages of Open vSwitch 

installed on two PCs, with one floodlight SDN 

controller being installed on one PC. SDN 

application was also installed on one PC. The two 

servers were connected to two open virtual 

switches, which are connected to a single 

physical switch with 1GB link capacity. Figure 9 

shows the proposed cluster based on an SDN 

environment. Both Word Count and Tera Sort 

applications were used to evaluate our proposed 

system using SDN technology. The experimental 

results show that our proposed system based on 

an SDN environment improves the performance 

of the Word Count application by reducing the 

completion time up to 12.4% for 30 GB when 

compared to a TCP/IP environment. Moreover, 

this rises to 21.9% for 40 GB, while for 50 GB, 

the completion time is reduced by 32.8% when 

compared to a TCP/IP Hadoop cluster, as shown 

in figure10. Figure11 shows the performance for 

the Tera Sort application using the proposed 

system for different data sizes ranging from 30-50 

GB. It emerges that the proposed system reduces 

the completion time of Tera Sort for 30 GB on 

average by 53%. Furthermore, the completion 

time for 40 GB and 50 GB is reduced by 48.1 % 

and 38.7%, respectively, over a TCP/IP 

environment. It is worth noting that performance 

of Tera Sort application decreases with larger 

data sizes due to the high volume of shuffling 

traffic that is generated form these  jobs. 

 

 
 

FIGURE 9.  Small Scale Hadoop cluster in an SDN environment. 

 

 
FIGURE 10.  Word Count Performance in an SDN environment. 
 

 
FIGURE 11. Tera Sort performance in an SDN environment. 

 
 
IX.  A HADOOP CLUSTER BASED ON SDN IN A DATA  
CENTRE NETWORK 

We expanded our set up to be implemented in a 

data centre network with a large scale Hadoop 

cluster with many switches and computing nodes. 

The advantage of using many switches is the 

capacity for utilisation of bisection network 

bandwidth. We employed SDN in the data centre 

network to achieve intelligent services and agile 



 

12 
 

network management. Furthermore, we used 

large the Hadoop cluster with different sizes of 

network topology to measure the convergence 

routing. The following section explains some 

adopted routing techniques and network 

topologies in a Data centre network. 
 

A- Routing techniques and network topologies 

Before the discussion of our proposed work, it is 

important to explain some routing techniques, 

like ECMP and some data centre network 

topologies. Multipath techniques are widely used 

in the modern data centre network for forwarding 

and distributing flows across multiple paths so as 

to achieve better bandwidth utilisation. ECMP is 

used to distribute the flows across multiple equal 

cost paths to exploit the full capacity of network 

bandwidth. However, it has some limitations, 

such as the static scheduling of flows across 

multiple paths. That is, it uses a hashing value 

policy to allocate flows with certain paths. It also 

lacks a global view of the entire network, missing 

its current load as well as the individual 

characteristics of flows and their future network 

demand. As a result, we propose in this paper an 

effective routing algorithm based on application 

level information to estimate the demand of all 

shuffling flows during the MapReduce process, as 

explained in section B.  

The characteristics of the most popular topologies 

of three-tier architectures, like fat tree topology, 

have been studied. From this study, we have 

identified some limitations and bottlenecks of this 

topology. Fat tree topology is divided into 

multiple pods, with each including the switches 

of the edge and aggregation layers. The 

connection inside the pod is considered as a local 

pod connection, because the traffic remains inside 

it. On the other hand, the connection between 

different pods is considered as a remote 

connection, because the traffic of connecting pod 

passes through one or more core switches. This 

hierarchical architecture limits the locations of 

end hosts and also creates loops in the network 

due to the redundant paths that connect the end 

hosts when multipath techniques are used, like 

ECMP. As a result, a spanning tree is used to 

prevent loops by selecting a single path and 

disabling all other redundant paths. However, this 

routing scheme of a spanning tree leads to poor 

network utilisation, because the flows in the data 

centre network will employ few paths and leave 

others redundant, only reutilising them in the case 

of any outage or failure. We illustrate some 

examples of flow transfer based on fat tree 

topology.  

  

There are three cases of transfer flows between 

two hosts in a data centre based on fat tree 

topology. The first, involves sending shuffling 

flow from host 1 to host 2. In this case, there is 

only a single path between them, because both 

hosts are located in the same rack. Hence, all 

possible paths between the two hosts go through 

edge switches only and the generated traffic 

remains inside the rack, with there being no need 

to traverse any aggregation switches. In the 

second case, host 1 sends its flow to host 4, which 

is located in a different rack, but within the same 

pod. In this case, the connection between them is 

an intra-pod connection, because all the possible 

paths between these two hosts will pass through 

edge and aggregation switches. The third case is 

in relation to transferring flows between two 

hosts located in different pods, such as host 2 and 

host 8. In this case, there are multiple paths 

between them to transfer flows. However, the 

produced traffic between the two hosts has to 

traverse edge, aggregation and core switches, 

because each host is located in a different pod and 

all possible paths should go through different core 

switches. The situation becomes more 

sophisticated when some hosts in different pods 

exchange shuffling flows at the same time and 

might contend for the same links, especially in 

the aggregation and core switches, thus creating 

congestion that makes the bandwidth utilisation 

of the core and aggregation links becoming over-

utilised.  

It is supposed that multiple hosts exchange their 

flows at the same time. Specifically, host 2 sends 

its flow to host 6, host 10 sends it flow to host 16 

and host 5 sends its flow to hosts 15, respectively, 

all simultaneously. Fig. 12 illustrates the path 

between hosts 2 and 6 as well as that between 

hosts 10 and 16 in bold lines. It is observed that 
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there are multiple paths between all the hosts. 

However, it is noted that there is a challenge to 

assign even a single path among the multiple 

paths in the data centre network for hosts 5 and 

15 because of the congestion that has occurred in 

the network. The main cause of this is the 

architecture of fat tree topology that constrains 

the location of end hosts. Since host 5 is located 

in pod 2 and host 15 is in pod 4, it is a 

challenging task to assign a path between the two 

hosts even though we selected the right side of 

pod 2 to avoid the overlapping. It is impossible to 

avoid the overlapping in pod 4, because the right 

side in pod 2 can only reach the left side of pod 4 

and consequently, this creates congestion 

between the two hosts. As a result, it has become 

crucial to design an efficient type of data centre 

architecture, like leaf-spine topology. Unlike fat 

tree topology, this consists of two layers. The first 

is the leaf layer that includes several switches 

connected to end hosts in the network. It is 

connected to the spine layer that represents the 

second or top layer. Leaf-spine topology is 

widely adopted in large data centres and cloud 

networks due to its remarkable features, such as 

scalability, reliability and effective performance. 

However, applying multipath algorithms, such as 

ECMP, as a forwarding technique for shuffling 

flows to utilise more bandwidth in the leaf-spine 

topology is not an effective way, because it is a 

static scheduling algorithm and it does not 

consider the network utilisation or flow size. For 

instance, there are three different hosts in the 

same rack, which are connected to the same 

switch in the leaf layer transferring their flows to 

other hosts in different racks. The first case, is 

when host 2 sends its shuffling flow to host 8, 

whilst the second, is when host 4 sends its 

shuffling flow to host 6 and the third case is when 

host 3 transfers his shuffling flows to host 10, as 

shown in fig.13. We observed that host 3 might 

compete for the same heavy loaded link in the 

leaf switch, because of the allocation technique of 

ECMP, whereby it might choose the same heavy 

loaded link for two large shuffling flows, thus 

resulting in a congestion and collision. The 

reason for this, is because, as aforementioned, 

ECMP lacks a global view of entire network. 

Moreover, with ECMP algorithm, the flow is 

routed based on its hash value. Hence, flows 

might result in using the same path and creating 

congestion in some links in the leaf and spine 

switches. It is also seen in fig.13, that all possible 

paths of shuffling flows for all cases might 

compete for the same leaf and spine switches, 

which leads to overload on some link switches. 

Furthermore, crashing or failure might occur on 

some links that belong to the allocated path for 

shuffling flows in the leaf and spine switches. As 

a consequence, we propose an effective routing 

algorithm based on SDN that performs the 

routing process, which respects the network 

resources demand of each shuffling flow as well 

as their size and number. The proposed algorithm 

is also able to reroute the shuffling flows to 

another available path in the case of any failure or 

crashing on any link in the network. The 

proposed algorithm is explained in the following 

section. 

 

 

 
FIGURE 12. Path allocations challenging in fat tree topology 
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FIGURE 13. Path allocation using ECMP in leaf-spine topology 

 

B- The implementation of the proposed method 
for a Hadoop cluster in a data centre network  

Our proposed work consists of three modules as 

follows. 

1- Link monitor module: This module monitors 

network link status, such as link loading in the 

network and computes the link weight. It 

periodically gets the statistics information of all 

links loaded in the data centre network from all 

the connected OpenFlow switches at specific 

intervals. Statistics such as per-table, per-flow 

and per-port are collected and stored as 

snapshots. All switches in the network are 

connected to the SDN control. However, the SDN 

controller lacks the required information of all 

links between the switches and hence, a link layer 

discovery protocol (LLDP) [16] is used to 

identify the needed information of all links and 

the switches layer in the network topology. 

Statistic information about links loading is used 

by the routing module to calculate the paths 

accordingly. The current load of each link in the 

data centre network is computed by using N 

transmitted bytes from the port within recent 

interval t over the bandwidth (B) of the link. The 

formula below calculates the current load of the 

link: 

 

LLk =      (2) 

 

 

It is supposed that all links have the same 

bandwidth and each has a fixed weight (W), in 

this case it is set to 1. It is very important to check 

whether the current load of each link (LLk) 

reaches or does not reach the peak of link 

depending on the link weight (W) by comparing it 

with (LLk). If LLk<1, it means that is has not yet 

reached the peak of the link. However, if Lk=1, it 

means that it has and this may cause link 

overloading, because of some heavier flows and 

consequently, result in improper path allocation. 

Hence, the weight of each link should be 

estimated based on the number of flows and the 

throughput of each. The natural demand of 

shuffling flows is estimated by the Hadoop 

engine module. It is worth noting that the current 

load reaches the link capacity, if it exceeds 

threshold γ which has been set to be 90% of the 

link capacity. Furthermore, we compute the path 

load for all flow paths in the leaf and spine 

switches by using the maximum load of each link, 

which belongs to the path as explained in the 

equation below. 

 

Lp =      ll                                       (3) 

 

Where, (p) is defined as the path used to route the 

shuffling flow from source to destination. Each 

link that belongs to the path (p) is represented by 

(l) and (ll) pertains to the load of each link that 

traverses the path at the leaf and spine switches 

from the source node to the destination node. 

Once the path load of each link is computed, all 

information is delivered to the scheduling and 

routing component to select the convenient path 

that has the least path load (Lp). Then, it installs 

the flow entries into a set of switches of the 

selected path.  

 

2- Hadoop monitor engine: In a Hadoop cluster 

environment when the map task in the mapper 

node writes its output data to the reducer node, 

shuffling traffic is generated during the shuffle 

phase of a Hadoop job. This traffic needs 

sufficient network bandwidth to accelerate the 

processing time of the Hadoop job. However, the 

main Hadoop framework does not contain 

sufficient information about the required network 

resources. Therefore, this module is proposed to 

identify the data transferred from the mapper 

node to the reducer node in a Hadoop cluster 

during the shuffle phase of a Hadoop job. The 
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data is transferred through a number of flows 

during the shuffling phase. This module is 

responsible for recording all the required 

information of these flows from all the connected 

Hadoop servers. In a Hadoop cluster, as 

aforementioned, there is one job tracker and 

several task trackers.  The job tracker is 

responsible for monitoring the progress of 

Hadoop jobs by receiving heartbeat messages 

from each task tracker, but these messages do not 

include information about the network resources. 

To obtain such information, a software engine has 

been installed on each Hadoop server.  This 

engine detects when a map task has finished and 

starts to send its shuffling information to the 

reducers, whilst then recording the size of the 

map output data, which is transferred over the 

flow to the other reducers. After this process, the 

Hadoop engine will obtain the required network 

bandwidth for each shuffling flow. It maintains a 

table that contains all shuffling flows with their 

networking demands. Furthermore, all the 

collected shuffling information includes the 

source IP address, destination IP address and the 

size of each shuffling flow. The Hadoop monitor 

engine also determines the total amount of 

shuffled data and the number of shuffling flows 

transferred over each link. All information about 

shuffling flows is delivered by the Hadoop 

monitor to the scheduling and routing module to 

assign proper paths, according to the bandwidth 

needed for each shuffling flow and the current 

load of link utilisation.     

3- Scheduling and routing module: In the 

forwarding module of the OpenFlow floodlight 

controller, a packet-in message is generated to 

notify the controller that new flows have arrived 

at an OpenFlow switch. The switch checks the 

packet and if there is no match with its flow 

entries, the packet is forwarded to the controller. 

On the other hand, a flow-removed message is 

also generated when a flow expires in an open 

flow switch. In this work, we propose a 

scheduling and routing module to assign efficient 

paths for the exchangeable shuffling flows 

between different hosts in the data centre 

network. This module performs the scheduling 

and routing of the shuffling flows on the chosen 

paths and it has two tasks. The first is the 

calculation of the possible paths based on the 

statistics from the link monitor module that 

includes the loads on all links in the network. It 

also uses the collected information by the Hadoop 

monitor engine to compute the possible paths of 

different shuffling flows. The collected 

information by the Hadoop engine module 

contains a list of shuffling flows including 

source/destination IPs, flow size and transfer 

volume over each link. All this information is 

recorded in a network table to be used for the 

calculation of the path load in the routing process. 

This table also contains scheduled flows and 

available capacity for each of them. Once all the 

information of shuffling flows has been received 

by the scheduling and routing module, it will 

compute the possible paths with low load based 

on the information collected from the link 

monitor module and Hadoop monitor engine. The 

second task is to assign efficiently the best 

possible paths for all shuffling flows, according 

to the bandwidth needed for each flow. We 

propose a scheduling and routing algorithm based 

on SDN to obtain an effective routing technique 

for shuffling flow, according to network 

utilisation and flow size by computing the current 

load of all possible paths in the leaf and spine 

switches. Once the current load is determined 

according to equation 2, the shuffling flows are 

routed onto the proper paths. Our proposed work 

moves the large shuffling flows from heavy 

loaded links to lightly loaded ones so as to 

prevent congestion. What is proposed is 

demonstrated in Algorithm 3.  

 
Algorithm3 

 
1: For each shuffling flow (SF) do 

2:  Collect SF size and its network resources   

demand from the SDN controller 

3:  Compute the current load of all possible 

paths for each SF according to equation3 

4:  Compare the size of each SF with the 

current load of all possible paths 

5:  Choose the shortest available path for SF 

and check 
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6: If the link of shortest path is active and its 

current load does not override the pre-defined 

threshold then 

7:  Keep SF routing on this path; 

8: Else 

9: If there is any failure in the link of the shortest 

path or its load exceeds the pre-defined 

threshold then 

10:  Choose another available path with light 

loaded or unused links calculated by 

equation3; 

11:  Re-route the shuffling flow on new chosen 

path; 

12:           End if 

13:     End if 

14: End for 

 
 

In this algorithm, we determine the size of the 

shuffling flow and the demand of the network 

resources using the Hadoop engine module. This 

module sends all the required information to the 

SDN controller. After that, the current load of all 

possible paths of each shuffling flow between any 

two hosts is computed using the information 

received from both the link monitor and Hadoop 

engine model, as mentioned before. Then, the 

shortest path with minimum load will be chosen. 

If the link of the shortest path is active and there 

is no failure or congestion, the routing of the 

shuffling flow is kept on this path. However, if 

there is any crash in the link or its current load 

exceeds the pre-specified threshold, which is set 

to 90% of the link capacity of this path, as 

mentioned for the link monitor module, then 

another unused or light loaded shortest path 

should be chosen. This is also computed based on 

equation 3 and the information received from the 

Hadoop engine and the shuffling flow is rerouted 

accordingly. It is worth noting that the SDN 

controller receives all the required information of 

link loading for all the Open vSwitches in 

different layers from the link monitor module, as 

detailed above. 

 
X.  EXPERIMENTAL RESULTS AND DISCUSSION 

Two experiments were carried out on a Hadoop 

cluster based on SDN in the data centre network 

to evaluate the performance of the proposed 

work. In the first experiment, we used EstiNet 

emulator software to build two different 

topologies: fat tree and leaf-spine topology. In 

both SDN and conventional networks, three 

layers of switches were used for fat tree topology. 

The first was the edge layer, which was assigned 

with eight switches at the top of the rack. The 

middle layer or aggregation layer was also 

allocated eight switches and finally, four switches 

were used for the core layer. The emulated leaf-

spine topology consisted of two layers, with the 

bandwidth of all the links in the SDN and 

conventional network being set at 10 Mbps, 

whilst the link delay was 1ms. We used 16 

Hadoop nodes, with each being allocated four 

CPU cores and 8GB of RAM. All the Hadoop 

hosts were connected to the emulated fat tree and 

leaf-spine topology using EstiNet emulator 

software. The traffic produced by each Hadoop 

host went into the emulated network. We used the 

previously utilised two real application programs, 

namely Word Count and Tera Sort to evaluate the 

work performance. All switches in the emulated 

fat tree and leaf-spine topology were connected to 

the SDN (Floodlight) controller using a TCP 

connection. Another TCP connection was 

deployed to connect the floodlight controller to 

the Hadoop engine. The fat tree topology of data 

centre network based on SDN was compared with 

the conventional network to evaluate the 

performance of Hadoop MapReduce jobs. The 

leaf-spine topology based on SDN was also 

compared with the conventional network. Open 

shortest path first (OSPF) was used for the 

conventional network. Figure14a shows the fat 

tree topology of the proposed work based on 

SDN using 20 switches. The leaf-spine topology 

with 12 switches is shown in figure14b.The 

second experiment also involved the same 

software emulator in the first experiment, but 

with different network topology size, as shown in 

figure15a. In both the SDN and conventional 

networks, we used eight switches in the edge and 

aggregation layers and only two in the core layer. 

On the other hand, six switches were used in the 

leaf-spine topology for the SDN and conventional 

network, as shown in figure15b. The evaluation 
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of the proposed method using both types of 

network was made based on the routing 

convergence time in the case of link failure. We 

also ran the Word Count and Tera Sort 

applications to evaluate the performance of 

Hadoop jobs under different network topology 

sizes for data centre network.   

To evaluate the routing convergence time in the 

case of link failure, we proposed that the failure is 

occurred in any link of all possible paths 

specified for each shuffling flow in both 

topologies. The routing change of the packets in 

the conventional network needs some time, 

because any change or update in link status and 

routing computation has to be performed by each 

router in the entire network. While in SDN, the 

controller is the brain of the entire network 

management and maintains the routing process of 

the whole network in a centralised manner. We 

used floodlight controller in SDN to manage and 

maintain the status of all links in the data centre 

network using the link layer discovery protocol 

(LLDP), whilst the information of the network 

topology was maintained by the topology service 

responsible for calculating the routing 

computation. In the conventional network, the 

routing module uses the flooding method to 

transmit the information of link status to other 

routers in the data centre network in a distributed 

manner. Two experiments were conducted to 

evaluate the convergence time of the routing 

process. As can be seen in figure16, the 

convergence time of the routing process for 

different sizes of topology is minimised using the 

SDN network for the leaf-spine topology, which 

is not the case with the conventional network. 

The reason for this, is because the convergence 

process in the SDN network is more flexible and 

faster than with the conventional network. The 

convergence process of the latter depends on the 

routers, whereby each maintains a routing table 

which forwards and queries each packet in the 

network using a specific path. When any change 

or update occurs in the routing process of packets, 

like link failure, router 1 will send its update to its 

neighbour router 2 that will check for any 

required changes or updates in its routing table, 

then sending its update to its neighbour and so on. 

This is means that the changes and updates will 

broadcast over the whole network and 

consequently, it leads to slowing of convergence 

time in the conventional network, especially 

when the size of network topology is increased. 

This is because the routers will be scaled when 

the size of network is increased. On the other 

hand, the floodlight controller in the SDN 

network is responsible for any change or update, 

such as link down, by using the OpenFlow 

control that installs flow entries into the switches. 

The controller can also add, delete and modify 

flow entries for all connected switches in the 

network. The SDN controller detects whether any 

link failure has occurred using PORT_STATUS. 

Furthermore, switches in the network notify the 

controller of any link down through error 

messages. When the controller receives the error 

messages from the connected switches, it 

computes new available routes based on the flow 

tables. As a result of the centralised manner of the 

SDN control, this makes the convergence routing 

time more rapid and agile.  We ran the Word 

Count and Tera Sort applications to evaluate the 

performance of a Hadoop job using the proposed 

system in the leaf-spine topology. We used the 

optimised values of the Hadoop parameters in the 

proposed SDN network under different sizes of 

network topology. Moreover, different sizes of 

datasets ranging from 1GB to 5GB were used. In 

the first experiment, it can be clearly observed 

from figure17 that the execution time of the 

proposed work based on SDN is reduced when 

compared to the conventional network for the 

Word Count application. The execution time of 

Tera Sort application is also decreased using our 

proposed approach when compared to the 

conventional network. In the second experiment, 

the execution time of Word Count and Tera Sort 

applications is also shorter than with the 

conventional network as shown in figure 18. 

Furthermore, the execution time of both 

applications under 12 switches in the proposed 

SDN network was relatively same as that using 

six switches due to the centralised management of 

the SDN controller, which can deal with any 

issues of the routing process, such as congestion 

or link crashing, irrespective of network topology 
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size. However, the execution time of both 

applications in the conventional network using 12 

switches was increased when compared to 

utilising six. As we mentioned above, the routing 

convergence time is increased when we use a 

larger network topology size, because of the 

distributed technique of the conventional network 

in case of congestion or link down. The dynamic 

routing of the scheduling and routing process 

based on an SDN environment has a significant 

impact on the performance of Hadoop jobs, 

which is not present in the static environment of a 

conventional network. We also run Word Count 

and Tera Sort applications using both fat tree and 

leaf-spine topology under different sizes of 

datasets to evaluate the performance of a Hadoop 

jobs under different topologies further. Figure 19 

shows the execution time of a Hadoop job for the 

Tera Sort application using both of fat tree and 

leaf-spine topology under different numbers of 

reducers. From this figure, it can be clearly 

observed that the execution time of shuffling 

flows in the leaf-spine topology can be reduced 

when compared with the fat tree topology. The 

reason for this is that fat tree topology is mainly 

designed to process north-south traffic (i.e form 

the core switches to the edge switches). On the 

other hand, the traffic between hosts (west-east 

traffic) in the fat tree topology is representing a 

challenging task, because some hosts in the 

network might connect to the same port and then 

compete for bandwidth, which results in a delay 

in the response time. Furthermore, the 

communication between two hosts in the fat tree 

topology needs to traverse through a hierarchical 

path from the edge layer to the core layer, thus 

resulting in latency and traffic bottlenecks. 

 

 
 

FIGURE 14a. Fat tree topology with 20 switches based on SDN 
 

 
 
FIGURE 14b. Leaf-spine topology with 12 switches based on SDN 

 
 

 
 

FIGURE 15a.  Fat tree topology with 10 switches based on SDN 
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FIGURE 15b.  Leaf-spine topology with 6 switches based on SDN 

 

 
 

FIGURE 16.  Routing convergence time using different topology 
sizes 

 
FIGURE 17. Hadoop execution time within leaf-spine using 12 

switches 
 

 
FIGURE 18.  Hadoop execution time within leaf-spine using 6 

switches 
. 

 

 
FIGURE 19.  Shuffling execution time of the Tera Sort application 
using different numbers of reducers for both fat tree and leaf-spine 

topology 
 
 
XI.  CONCLUSION 

Both a genetic algorithm and genetic 

programming have been used to tune the 

configuration parameters of Hadoop MapReduce 

automatically. By optimising the configuration 

parameter settings, the computing aspect of a 

Hadoop framework has been improved. This 

improvement has led to reduce the completion 

time of Hadoop MapReduce jobs. Further 

optimisation has been performed using software 

defined network technology. Two applications, 

namely Word Count and Tera Sort, have been run 

to evaluate the MapReduce job performance of 

the Hadoop framework. This work was evaluated 

using a cluster consisting of 14 VMs placed on 

the internal cloud at Brunel University London. 

Another cluster of 14 virtual nodes was employed 

based on SDN. The results in the traditional 

network using 14 VMs have shown that our 

proposed method betters the MapReduce job 

performance in a Hadoop cluster over Gunther’s 
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approach and the default system in a traditional 

network. Moreover, the results using 14 VMs 

based on an SDN environment have demonstrated 

that the performance of Hadoop jobs is superior 

to that for the traditional network. Another 

experiment was run to evaluate the performance 

of Hadoop jobs in a large scale network, namely a 

data centre network also using SDN. The 

experimental results showed that the performance 

of Hadoop jobs is higher than for a conventional 

data centre network. 
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