

A Decentralised Semantic Architecture for

Social Networking Platforms

A thesis submitted for the degree of

Doctor of philosophy

By

Yasir Iqbal

Brunel Business School

Brunel University London

October 2018

A Decentralised Semantic Architecture for Social Networking Platforms

2

Abstract

Social networking platforms (SNPs) are complex distributed software applications exhibiting

many challenges related to data portability. Since existing platforms are propriety in design,

users cannot easily share their data with other SNPs, however decentralisation of social

networking platforms can provide a solution to this problem. There is a difference of opinion,

the way the research and developer communities have pursued this issue. Existing

approaches used in decentralisation provide limited structural detail and lack in providing a

systematic framework of design activities. There is a need for an architectural framework

based on standardised software architectural principles and technologies to guide the design

and development of decentralised social networking platforms in order to improve the level of

both data portability and interoperability.

The main aim of this research is to develop an architectural solution to achieve data portability

among SNPs via decentralisation. Existing proposed decentralised platforms are based on a

distributed structure and are mainly for a specific aspect such as access control or security

and privacy. In addition to this, existing approaches lack in practicality due to underdeveloped

and non-standardised design. To solve these issues a new architectural framework is needed,

which can provide design and development guidelines for the decentralised social networking

platform.

The goal of this thesis is to study, design and develop an architectural framework for social

networking platforms that can incorporate the requirements of the decentralisation, to make

portability possible. The synergies between the software engineering principles and social web

technologies are investigated to create a standard approach. The proposed architecture is

based on component-based software development (CBSD) and aspect-oriented software

development (AOSD), a unified approach known as CAM (Component Aspect Model). The

foundations of the proposed architecture are based on decentralised social networking

architecture (DSNA), architectural style which is derived from CAM. Components and aspects

are the building blocks of the proposed decentralised social networking platform architecture.

From a development perspective, each component represents a social network functionality

and aspects represent the properties and preferences that are used to decentralise the

functionality. The model for the component composition is a major challenge because the use

of CAM for social networks has not been attempted before.

A Decentralised Semantic Architecture for Social Networking Platforms

3

The proposed architecture comprehensively integrates the DSNA architectural style into each

architectural component. Portability among SNPs by means of decentralisation can be

summarised into three steps. (1) Definition of the architectural style, (2) implementation of the

architectural style into components and (3) integration of the component composition.

To date component composition approaches have not been used for social networks as a way

to develop social network functionality. The concept of middleware has been adapted to

achieve the composition feature of the architecture. In the architecture Social Network Support

Layer (SNSL) functions as middleware to facilitate component composition. Existing

middleware solutions still lack integration of CBSD and AOSD concepts. This limitation is

characterised by, a lack of explicit guidelines for composition, a lack of declarative

specification and definition model to express component composition and a lack of support for

role allocation. This research overcome these limitations.

The application of the architecture is based on the W3C SWAT (Social Web Acid Test)

scenario. A Messaging application is developed to evaluate the scenario based on the Design

Science Research Methodology. The architectural style is defined in the first stage of design

followed by the component-based architecture. The architectural style is defined to guide the

architecture and the component composition model. In the second stage, the design and

implementation of composition technology (that is SNSL) are developed with architectural

style and the rules defined in the first stage. The refined version of the architecture is evaluated

in the third stage, according to WC3 SWAT test. The definitive version of the proposed

architecture with the benchmarked result can be used to design and build social networking

platforms, allowing users to share and collaborate information across the different social

networking platforms.

A Decentralised Semantic Architecture for Social Networking Platforms

4

Table of Contents

Abstract .. 2

Table of Contents ... 4

List of Figures ... 9

List Of Tables .. 11

Dedication .. 12

Acknowledgement .. 13

List of Acronyms ... 14

Chapter 1 - Introduction ... 15

1. Chapter Introduction .. 15

1.1. Conceptual foundations ... 15

1.1.1. Personal Information Space ... 15

1.1.2. Collaborative Knowledge Space .. 16

1.1.3. Social Web Networks ... 17

1.1.4. The Social and Semantic Web ... 18

1.1.5. Data Portability and Interoperability .. 19

1.1.6. What is Decentralisation .. 20

1.2. Research Motivation .. 21

1.3. Problem Definition .. 23

1.4. Research Aim and Objectives .. 24

1.4.1. Aim .. 24

1.4.2. Objectives .. 25

1.5. Research Methods ... 26

1.6. Thesis Structure ... 28

1.7. Chapter Conclusion ... 32

Chapter 2 - A Literature Review on the Decentralised Social Web, An Architectural

Perspective .. 33

2. Chapter Introduction .. 33

2.1. Literature Review Methodology.. 33

2.2. Background ... 35

2.2.1. Concept of Abstraction and Software Architecture ... 35

2.2.2. Architectures styles and views ... 37

2.2.3. View, View Types and View Points ... 39

2.3. Software Architecture Engineering (SAE) and Distributed Applications 41

2.3.1. Component Based Software Development (CBSD) ... 41

2.3.2. Aspect Oriented Software Development (AOSD) ... 42

A Decentralised Semantic Architecture for Social Networking Platforms

5

2.3.3. Integrating CBSD and AOSD ... 42

2.4. Distributed Application Architecture .. 43

2.4.1. Web Application Architectures ... 44

2.4.2. Social Web Architecture .. 47

2.5. The Decentralisation Problem Scenario ... 51

2.6. Distributed and Decentralised Social Web Architecture ... 51

2.6.1. Decentralised Network Architecture .. 54

2.6.2. Decentralised Social Network Architecture .. 56

2.7. Drawbacks in the Existing Social networking Platforms... 58

2.7.1. Breach of trust ... 58

2.7.2. SNP Business Model ... 59

2.7.3. Walled Garden .. 59

2.7.4. Centralisation .. 60

2.8. Decentralisation in the Social Network Platforms ... 61

2.8.1. List of standards and Protocols .. 63

2.8.2. Decentralised Social Networking Projects .. 65

2.9. Social Network Platform Decentralisation Initiatives... 66

2.9.1. Distributed Networking Initiatives ... 67

2.9.2. Open Sourced Initiatives ... 68

2.10. Existing Versions of Decentralised Social Networking Architecture 69

2.11. Drawbacks of Decentralisation in the Social Network .. 74

2.11.1. User Acceptance .. 74

2.11.2. Performance .. 75

2.11.3. Usability ... 76

2.11.4. Functionality .. 76

2.11.5. Data Storage ... 76

2.12. Literature Review Finding and Research Direction ... 77

2.13. Chapter Conclusion ... 80

Chapter 3 - Research Methodology .. 82

3. Introduction .. 82

3.1. The Need of Research Methodology .. 82

3.2. The selection of Research methodology .. 83

3.2.1. Design Science Research (DSR) and Agile Methodologies 84

3.2.2. Requirements for the Methodology Selection .. 85

3.2.3. DSR As Problem Driven Approach .. 86

A Decentralised Semantic Architecture for Social Networking Platforms

6

3.2.4. Software Engineering Research .. 88

3.2.5. Agile and ADSRM .. 89

3.3. DSR Process ... 93

3.3.1. The Model ... 94

3.3.2. Research Guidelines.. 96

3.3.3. Research Process explained .. 96

3.4. DSR Outputs ... 97

3.4.1. Artefacts ... 98

3.5. DSR Evaluation .. 99

3.5.1. Purposes of Evaluation in DSR .. 99

3.5.2. Selection of Evaluation Methods .. 99

3.6. The Practical Application of DSR ... 101

3.6.1. Awareness of the Problem and type of solutions (Phase 1) 103

3.6.2. Suggestions on Conceptual Design .. 104

3.6.3. Design and Development (Phase 3) Iteration 1... 105

3.6.4. Implementation (Iteration 2) .. 107

3.6.5. Evaluation (Iteration 3) .. 109

3.7. Chapter Conclusion ... 111

Chapter 4 - Iteration 1 .. 112

Chapter 2 Decentralised Design of the Social Networking Applications .. 112

4. Chapter Introduction .. 112

4.1. DSNA Requirements ... 113

4.1.1. Security and Privacy Requirements .. 115

4.1.2. User Link-ability Requirements .. 115

4.1.3. Data Portability Requirements .. 115

4.1.4. Profile Reusability Requirements ... 115

4.2. Social Network Functional Requirement Characterisation .. 115

4.2.1. Identity Management ... 116

4.2.2. Contact Management .. 117

4.2.3. Content Management .. 117

4.2.4. Context Awareness .. 117

4.2.5. Social Network Awareness or Network Awareness .. 118

4.3. Designing the DSNA Platform Functions .. 119

4.3.1. Foundations of the DSNA Style ... 119

4.3.2. C2 Architectural Style .. 121

A Decentralised Semantic Architecture for Social Networking Platforms

7

4.3.3. Fundamental Principles of C2 PACE Style .. 123

4.3.4. Component based PACE Architectural Style ... 126

4.3.5. Component based Architecture and Separation of Concerns 128

4.3.6. Design Mechanism of DSNA Style .. 129

4.3.7. Design of Social Messaging Application Using CAM ... 131

4.3.8. Components and Aspects of the Social Messaging in DSNA 132

4.3.9. Architectural Style of DSNA .. 135

4.4. Deploying DSNA Platform Functions .. 137

4.4.1. Deploying Aspects in DSNA ... 139

4.4.2. DSNP’s Component based Conceptual Architecture Explained 142

4.4.3. Application Layer of DSNA ... 143

4.4.4. Social Network Support Layer (SNSL) .. 144

4.4.5. Data Access Layer ... 146

4.4.6. Communication Layer .. 147

4.5. Evaluating the DSNA ... 148

4.5.1. Importance of DSNA Evaluation .. 148

4.5.2. Application Skeleton .. 148

4.5.3. Tools and Application Behaviour ... 150

4.5.4. Demonstration of the Messaging Application... 152

4.6. Discussion ... 156

4.7. Chapter Conclusion ... 157

Chapter 5 - Iteration 2 .. 158

DSNP Prototype Implementation ... 158

5. Chapter Introduction .. 158

5.1. Prototype Design .. 160

5.1.1. Design Challenges ... 160

5.1.2. Analysis of the Requirements ... 163

5.2. Prototype Deployment ... 169

5.2.1. Deployment Levels of Component and Aspects Definition in the DSNA

Prototype ... 170

5.3. Prototype Evaluation .. 177

5.3.1. Prototype Skeleton ... 177

5.3.2. SNSL Implementation (Stage 1) .. 180

5.3.3. Application skeleton ... 182

5.3.4. Technology Stack ... 184

A Decentralised Semantic Architecture for Social Networking Platforms

8

5.3.5. Application Behaviour .. 185

5.4. Chapter Conclusion ... 191

Chapter 6 Iteration 3 – Final Evaluation of DSNA ... 192

6. Chapter Introduction .. 192

6.1. Extended Design of SNSL .. 193

6.1.1. Analysis of Requirements ... 193

6.2. Component Composition and SNSL ... 193

6.2.1. Component Configuration Service and DSNA Factory ... 194

6.3. Deploying SNSL Stage 2 .. 195

6.3.1. Reusing Functionalities through SNSL Middleware ... 197

6.4. Final Evaluation .. 201

6.4.1. SNSL Implementation .. 201

6.4.2. Performance Evaluation .. 204

6.4.3. Method Selection .. 204

6.4.4. The Social Web Acid Test (SWAT) ... 205

6.4.5. Performance analysis .. 206

6.5. Chapter Conclusion ... 209

Chapter 7 Discussion and Conclusion .. 211

7. Chapter Introduction .. 211

7.1. Research Overview .. 211

7.2. Research the Achievements ... 212

7.3. Research Contributions ... 213

7.4. Conclusion and Future Challenges ... 215

References .. 217

Appendix 1. Iteration 1 ... 240

Appendix 2. Iteration 2 ... 243

Deployment of Messaging App .. 245

Message Sharing Interface ... 245

Messaging Connector .. 246

Messaging Component ... 247

Messaging Prototype Component ... 247

Component Composition ... 248

Appendix 3. Iteration 3 ... 249

A Decentralised Semantic Architecture for Social Networking Platforms

9

List of Figures
FIGURE 1-1: THESIS STRUCTURE .. 30

FIGURE 2-1: LITERATURE REVIEW MAP .. 34

FIGURE 2-2: SOFTWARE ARCHITECTURE DESIGN STAGES: ADOPTED FROM FIELDING AND TAYLOR (2002) AND

MODIFIED. .. 36

FIGURE 2-3: RELATIONSHIPS BETWEEN VIEWS, VIEW TYPES AND VIEW POINTS .. 39

FIGURE 2-4: SOFTWARE ARCHITECTURE VIEWS (BASS ET AL., 2011) ... 40

FIGURE 2-5: ARCHITECTURE OF THE WEB USED IN CERN PROJECT, TAKEN FROM BERNERS

LEE ET AL. (1992) .. 43
FIGURE 2-6: THE BASIC WEB ARCHITECTURE; ADOPTED FROM (CONALLEN, 1999) AND

MODIFIED ACCORDING TO THE NEED OF THIS RESEARCH. .. 44

FIGURE 2-7 CURRENT WWW STRUCTURE (W3.ORG) .. 45

FIGURE 2-8: CONVENTIONAL 3 TIER WEB APPLICATION ARCHITECTURE 47

FIGURE 2-9: LAYERED ARCHITECTURE (GENERIC), FROM HILL, (2009) .. 48

FIGURE 2-10: AN EXAMPLE OF SOCIAL WEB ARCHITECTURE WITH ITS BASIC COMPONENTS

TAKEN FROM (YEUNG ET AL. 2008) AND MODIFIED .. 49

FIGURE 2-11: WWW AND SEMANTIC WEB (W3C, 2013) .. 50

FIGURE 2-12: TYPES OF SOCIAL NETWORK ARCHITECTURES .. 52

FIGURE 2-13: TYPES OF SYSTEM ARCHITECTURE .. 53

FIGURE 2-14: CENTRALISED ARCHITECTURE EXAMPLE .. 53

FIGURE 2-15: DISTRIBUTED NETWORK ARCHITECTURE EXAMPLE .. 54

FIGURE 2-16: DECENTRALISED NETWORK ARCHITECTURE ... 56

FIGURE 2-17: DEPICTION OF WALLED GARDEN BY YEUNG ET AL. (2008) 60
FIGURE 2-18: DISTRIBUTED HOST-BASED DECENTRALISATION (AN EXAMPLE) ADOPTED

AND MODIFIED (TANDUKAR AND VASSILEVA, (2012) .. 67

FIGURE 2-19: FOAF PROFILE EXAMPLE ... 68

FIGURE 2-20: A FRAMEWORK OF DECENTRALISED ONLINE SOCIAL NETWORKING (YEUNG

ET AL. 2008) .. 69

FIGURE 2-21: SAFEBOOK ARCHITECTURE (CUTILLO ET AL. 2009) .. 71

FIGURE 2-22: P2P BASED DECENTRALISATION (TANDUKAR AND VASSILEVA, 2012) 71

FIGURE 2-23: BASIC DECENTRALISED SOCIAL NETWORK ARCHITECTURE BASED ON

EXISTING RESEARCH .. 73

FIGURE 3-1: BASIC CONCEPTUAL MAP OF THE PROBLEM BASED RESEARCH (ELLIS AND

LEVY, 2008). .. 85

FIGURE 3-2: A MULTI-METHODOLOGICAL APPROACH TO IS RESEARCH TAKEN FROM

NUNAMAKER ET AL.(1991) ... 88

FIGURE 3-3: AGILE DSRM RESEARCH MODEL ... 91
FIGURE 3-4: DESIGN SCIENCE RESEARCH PROCESS MODEL TAKEN FROM KUECHLER AND

VAISHNAVI (2012). .. 94

FIGURE 3-5 DESIGN SCIENCE RESEARCH METHODOLOGY PROCESS MODEL (PEFFERS ET

AL. 2008) .. 97

FIGURE 3-6: RELATIONSHIP BETWEEN DSR OUTPUTS (MARCH AND SMITH, 1995). 98

FIGURE 3-7: OUTLINE OF THE RESEARCH MAIN PHASES .. 102

FIGURE 3-8: STRUCTURE OF THE DEVELOPMENT STAGE AND ITERATIONS TAKEN FROM (MARCH AND SMITH,

1995) AND MODIFIED .. 103
FIGURE 3-9: STRUCTURE OF CONCEPTS AND THEIR RELATIONSHIPS WITH EACH OTHER IN

PHASE 2 .. 104

FIGURE 3-10: ITERATION 1 STRUCTURE .. 105

file:///C:/Users/yasir/Desktop/DocTempBac/Lit%20Rev%20V2/Final%20Draft%20v2016_3.docx%23_Toc526828401
file:///C:/Users/yasir/Desktop/DocTempBac/Lit%20Rev%20V2/Final%20Draft%20v2016_3.docx%23_Toc526828409
file:///C:/Users/yasir/Desktop/DocTempBac/Lit%20Rev%20V2/Final%20Draft%20v2016_3.docx%23_Toc526828410

A Decentralised Semantic Architecture for Social Networking Platforms

10

FIGURE 3-11: ITERATION 2 STRUCTURE .. 107

FIGURE 3-12: ITERATION 3 STRUCTURE .. 109

FIGURE 4-1: ITERATION ONE STRUCTURE ... 112

FIGURE 4-2: PROBLEM SCENARIO BASED ON SWATV1 .. 114
FIGURE 4-3: STRUCTURE OF SOCIAL NETWORK FUNCTIONALITIES IMPLEMENTATION

PERSPECTIVE, ADOPTED FROM RICHER AND KOCH, (2008) AND MODIFIED 116

FIGURE 4-4: CONCEPTUAL MAP OF DESIGN PHASE OF DEVELOPMENT STAGE 119

FIGURE 4-5: SYNCHRONOUS AND ASYNCHRONOUS INTERACTIONS ... 120

FIGURE 4-6: ARCHITECTURAL STYLE'S COMPONENTS INTERACTIONS RULES 122

FIGURE 4-7: EXTERNAL ARCHITECTURE OF PACE (SURYANARAYANA ET AL. 2006) 125

FIGURE 4-8: SAMPLE INTERNAL ARCHITECTURE DESIGNED IN PACE STYLE (GENERIC),

(SURYANARAYANA ET AL. 2006) .. 126

FIGURE 4-9: CAM META MODEL, (FUENTES ET AL. 2003; PINTO ET AL. 2005) 130

FIGURE 4-10: CAM MODEL OF MESSAGE FUNCTIONALITY OF THE DSNP 134

FIGURE 4-11: ARCHITECTURAL VIEW OF DSNA STYLE ... 137

FIGURE 4-12: KEY BUILDING BLOCKS OF COMPONENT COMPOSITION IN DSNA BASED

APPLICATION ... 138

FIGURE 4-13: EXAMPLE OF AUTHENTICATION ASPECT IN CONTEXT TO WEAVING 140

FIGURE 4-14: LOGINVERIFY ASPECT EXAMPLE .. 141

FIGURE 4-15:COMPONENT BASED CONCEPTUAL DSNA .. 143

FIGURE 4-16: SNSL AS MIDDLEWARE ... 145

FIGURE 4-17: APPLICATION CODE SKELETON ... 149

FIGURE 4-18: SYSTEM LEVEL BEHAVIOUR OF DSNA BASED EXAMPLE APPLICATION 152

FIGURE 4-19: DSNA BASED APPLICATION LOGIN ... 153

FIGURE 4-20: DSNA BASED SN MESSAGING APPLICATION ... 154

FIGURE 5-1: ITERATION TWO STRUCTURE ... 158

FIGURE 5-2: PROTOTYPE DESIGN CHALLENGES ... 163

FIGURE 5-3: EXTENDED SWAT SCENARIO-BASED USE CASE .. 164

FIGURE 5-4: COMMON SETTING OF THE DSNA COMPONENTS FOR PROTOTYPE DSNP 165

FIGURE 5-5: DEFINITION OF USER IN THE PROPOSED DSNP ... 166

FIGURE 5-7: DESIGN PROCESS OF SIMPLE FORM OF CONTENT SHARING IN DSNP 168

FIGURE 5-8: DEFINITION LEVELS OF COMPONENT AND ASPECTS ... 170

FIGURE 5-9: DEPLOYMENT FLOW OF THE PROTOTYPE ... 171

FIGURE 5-10: DSNA MESSAGING COMPONENT SHARING DESIGN IN AOADL............................ 173

FIGURE 5-11: AOADL LEGENDS DESCRIPTION .. 173

FIGURE 5-12: DSNA MESSAGING COMPONENT AND CONNECTOR .. 174

FIGURE 5-13: AOADL NOTATIONS FOR THE MESSAGE SHARING .. 175

FIGURE 5-14: STAGE 1, STRUCTURE OF SNSL MIDDLEWARE ROLE IN DNSP 178

FIGURE 5-15: PROTOTYPE APPLICATION CODE SKELETON ... 179

FIGURE 5-16: EXAMPLE OF SIMPLE ADAPTER ADAPTED FROM (LARMAN, 2012) 180

FIGURE 5-17: DSNP APPLICATION TECHNOLOGY STACK IN DJANGO PLATFORM .. 184

FIGURE 5-18: DSNP STRUCTURE IN THE LINE OF DNSA SCENARIO .. 185

FIGURE 5-19: ADAPTER ALGORITHM .. 187

FIGURE 5-20: SEQUENCE DIAGRAM OF SNSL STAGE 1 IMPLEMENTATION 189

FIGURE 5-21: DSNP MAIN PAGE.. 190

FIGURE 5-22: DSNP DASHBOARD .. 190

FIGURE 6-1: ITERATION 3 ... 192

FIGURE 6-2: SNSL STAGE 2 DESIGN... 194

FIGURE 6-3: SNSL AS MIDDLEWARE STAGE 2 DEPLOYMENT ... 196

file:///C:/Users/yasir/Desktop/DocTempBac/Lit%20Rev%20V2/Final%20Draft%20v2016_3.docx%23_Toc526828435
file:///C:/Users/yasir/Desktop/DocTempBac/Lit%20Rev%20V2/Final%20Draft%20v2016_3.docx%23_Toc526828435
file:///C:/Users/yasir/Desktop/DocTempBac/Lit%20Rev%20V2/Final%20Draft%20v2016_3.docx%23_Toc526828459

A Decentralised Semantic Architecture for Social Networking Platforms

11

FIGURE 6-4: SNSL AS MIDDLEWARE STAGE 2 CLASS MODE IN AN EXECUTION

ENVIRONMENT .. 197

FIGURE 6-5: SNSL AS MIDDLEWARE STAGE 2 EXECUTION ENVIRONMENT 198

FIGURE 6-6: SNSL NOTATION IN XML .. 199

FIGURE 6-7: SNSL HIGH LEVEL FUNCTIONAL DEFINITION ... 200

FIGURE 6-8: SNSL STAGE 2 SEQUENCE DIAGRAM .. 202

FIGURE 6-9: IMAGE IMPORT PAGE ... 203

FIGURE 6-10: IMAGE SELECTION .. 203

FIGURE 6-11: APPLICATION LOAD TEST .. 206

FIGURE 6-12: APPLICATION SCENARIO LOAD TEST .. 207

FIGURE 6-13: SUCCESSFUL TEST RESULT .. 207

FIGURE 6-14: TEST TO CONNECT THE SOCIAL SERVICES .. 208

FIGURE 6-15: NETWORK RESPONSE TIME .. 208

FIGURE 6-16: TABLE SHOWING THE OVERALL RESULTS. .. 209

List Of Tables

TABLE 1-1: CLASSIFICATION OF DSR ARTEFACT IN THIS RESEARCH ... 28

TABLE 2-1: SOFTWARE ARCHITECTURE DEVELOPMENT, BASED ON KRUCHTEN, (1995), SHAW AND CLEMENT,

(1997), CLEMENT ET AL. (2003), BASS ET AL. (2011). .. 38

TABLE 2-2: EVOLUTION OF THE WEB ARCHITECTURE COMPONENTS TOWARDS SOCIAL

WEB ARCHITECTURE .. 46
TABLE 2-3: MAIN PROBLEMS IN CURRENT SOCIAL WEB PLATFORMS (HALPIN AND TUFFIELD,

2010) ... 61
TABLE 2-4: PARAMETERS FOR SOCIAL NETWORK MESSAGING SERVICE (HU AND LAU, 2013)

 ... 63

TABLE 2-5: LIST OF OPEN STANDARDS USED FOR SOCIAL WEB APPLICATIONS

DECENTRALISATION ... 64

TABLE 2-6: DECENTRALISED SOCIAL NETWORKING PROJECTS ... 65

TABLE 2-7: ARCHITECTURAL COMPONENTS OF DECENTRALISED SOCIAL NETWORK

PLATFORM (BERNERS LEE, 2009) ... 72

TABLE 2-8: LIST OF KEY PUBLICATIONS .. 79

TABLE 3-1: SHORT COMPARISON OF THE KEY METHODOLOGIES ... 90

TABLE 3-2: 7 DESIGN SCIENCE RESEARCH GUIDELINES (HEVNER ET AL. 2004) 96

TABLE 3-3: OUTPUTS OF DESIGN SCIENCE RESEARCH... 98

TABLE 3-4: DESIGN EVALUATION METHODS (HEVNER ET AL. 2004) .. 100

TABLE 4-1: APPLICATION FUNCTION OUTLOOK .. 149

TABLE 4-2: CODE RELATED DESCRIPTION OF DSNA IN SIMPLE APPLICATION 150

TABLE 4-3: DSNA BASED SN MESSAGING APPLICATION IMPLEMENTATION 155

TABLE 5-1: PROTOTYPE FUNCTION OUTLOOK .. 178

TABLE 5-2: APPLICATION FUNCTIONALITY OUTLOOK ... 183

TABLE 5-3: CODE RELATED DESCRIPTION OF ADAPTER ... 184

TABLE 5-4: ALGORITHM TERMINOLOGIES ... 186

A Decentralised Semantic Architecture for Social Networking Platforms

12

Dedication

I would like to dedicate this PhD thesis to my mum. She is the one who bear all the tough time

in my absence and supported me with all the possible means. Even when she was extremely

sick and weak, she was the one who gave me strength, love, and encouraged me to carry on

and conclude my journey of achieving PhD. She is my source of strength and without her

unconditional support I would not be here, and this work would not be concluded.

My special thanks to my wife Asma who was always there for me in my tough times. I also

would like to thank my sister Farah who looked after all sort of things in my absence and

supported me in the time of needs. I am a blessed person and for that, I am thankful to

almighty.

A Decentralised Semantic Architecture for Social Networking Platforms

13

Acknowledgement

The completion of this work was only possible due to help and collaboration of certain people.

I would like to express my gratitude to all those people. At the beginning of my PhD I spent

my time at school information systems and computing which was an immense pleasure to be

with world-class faculty and some wonderful people. My time at Brunel Business School was

amazing and it was a wonderful privilege. I was very lucky to have Dr Sergio de Cesare as my

supervisor. I Also want to thank Dr David for his encouraging feedback during the examination

of my thesis. Their passion for quality research inspired me to always try my best. Thank you

for believing in me and providing me with all the necessary support.

Now I would like to take this opportunity to express my sincere appreciation and heartiest

gratitude to my principle supervisor Dr Sergio de Cesare for his exceptional support,

encouragement and guidance during all the stages of my research. It would not be wrong if I

say, Dr Sergio, installed a desire for excellence in my mind and taught me the principles of

superior quality research and helped me think independently and creatively. He always takes

time out to listen to me to hear my thoughts and never discouraged me on my mistakes. His

beautiful mind and excellence academic intuition made him an oasis of ideas that inspired me

to be a better researcher.

A Decentralised Semantic Architecture for Social Networking Platforms

14

List of Acronyms

AI Artificial Intelligence

ACL Access Control Layer

DSN Decentralised Social Network

DSNA Decentralised Social Networking Architecture

DSNP Decentralised Social Networking Platform

DSR Design Science Research

FOAF Friend of a Friend

RDF Resource Description Framework

SN Social networks

SNS Social Networking Services

SNSP Social Network Service Providers

SNP Social Networking Platform

SWS Semantic Web Service

SNCS Social Network Connect Services

XML Extensible Markup Language

SNSL Social Network Support Layer

SA Software Architecture

SAE Software Architecture Engineering

WWW World Wide Web

SWT Semantic Web Technologies

XMPP Extensible Messaging and Presence Protocol

SQL Structure Query Language

AOP Aspect Oriented Programming

AOSD Aspect Oriented Software Development

CBSD Component-Based Software Development

AO Aspect Orientation

CAM Component Aspect Model

AOADL Aspect Oriented Architecture Description Language

ADL Architecture Description Language

OWL Ontology Web Language

URI Universal Resource Identifier

URL Universal Resource Locator

PHP Personal Home Page

A Decentralised Semantic Architecture for Social Networking Platforms

15

Chapter 1 - Introduction

1. Chapter Introduction

A large part of our everyday activities centres on the handling of information in one way or

another. Searching for information, grasping it, sharing innovative ideas and results with other

people are some of the key activities performed for work or leisure. With the recent growth of

Information Technology (IT), people now have multiple ways in which they communicate and

share information. This growth has produced an increase in the use of Social Web

applications. For example, to access resources available on the Web people are asked to

create personal information records to use the services available. By doing so, they are

recreating substantial amounts of their information. Management of such information across

multiple social web platforms in not commonplace, and currently primarily carried out in a

manual manner. Access and use cross-platform data on different social network platforms in

a systematic and architecturally sound manner is a problem not currently resolved in an

effective manner. The focus of this research is such a problem, i.e. accessibility, dissemination

and portability of personal data across social network platforms in a consistent manner.

1.1. Conceptual foundations

1.1.1. Personal Information Space

The Web was invented with the intention of providing a “shared information space” (Berners-

Lee et al. 2001) where humans and machine could communicate. The people who intended

to use this system were located around the world, connected through heterogeneous

mediums. The challenge was to build such a system that can provide a consistent interface to

this information coming from different interconnected platforms (Berners-Lee et al. 2001;

Hendler and Berners-Lee, 2009).

The study of information (information science) is an interdisciplinary field that deals with the

analysis, collection, classification, manipulation, storage, retrieval and dissemination of

information. Borko, (1968) defines information science as a discipline that investigates the

properties and behaviour of information and the forces that govern the flow of information and

means of processing information to its highest level of accessibility and usability.

Personal information in the context of the social web can be interpreted as information about

an individual who uses services provided by an organisation, which stores that individual’s

information like date of birth, address details etc. Boardman, (2004) defines ‘personal

A Decentralised Semantic Architecture for Social Networking Platforms

16

information’ as information owned by a person and is under his direct control so the person

can alter information without any restrictions.

Personal information space can be described as a repository of an individual’s personal

information. It includes all the items (emails, e-documents) used by a person while using the

web. According to Jones, users upload their personal details to acquire services from the

service providers. The stored information is normally under a person’s control but not

exclusively (Jones, 2007). For example, when a person sends an email message, before

coming into their inbox it goes through a “relay” (Crocker, 2009) which store and transmits

message towards its destination. Even if the message is deleted, it is very likely still around

somewhere in the system.

Personal information space is an information source, which can be used in several ways. For

example, it can be used to customise the way the web is used. It can be used to increase the

usability of information. There are some security and privacy concerns that are explained in

the upcoming sections. The next section describes the evolution of the web towards the social

web and outlines the principles, that playing a significant role in making it collaborative

knowledge space.

1.1.2. Collaborative Knowledge Space

Several concepts are used to support the foundation of this research. The concepts of

personal information and collaborative space gives some initial awareness about the problem,

which is related to management of user information, and data in a way that it can be used or

re-used across the social web platforms. The problem investigated by this research strongly

relates to information science with the focus on the ways in which information is managed and

flows across different social media platforms on the World Wide Web.

The World Wide Web (WWW) was designed as a common information space where people

can communicate by sharing information. The Web, which is now used by people so generally

that it has become a reflection of the way people do work and socialise (Berners Lee et al.

2001).

The Web 2.0 is a second phase in the evolution of the WWW. It is an umbrella term

accompanying various new web technologies (Murugesan, 2007). The term web 2.0 coined

by Tim O’Reilly to describe this new generation of websites (O’Reilly, 2005). It encourages

users to generate content such as blogs, wikis, and feeds, share their content, upload images

and videos. Web 2.0 binds to the web in a more interactive and collaborative manner by

A Decentralised Semantic Architecture for Social Networking Platforms

17

promoting social interaction and collective intelligence and presents new opportunities by

engaging the users more effectively (Heitmann, 2010).

Web 2.0 is a collection of open source technologies collaboration, interactive and user

controlled applications expanding the experiences, knowledge and user power as participants

in business and social processes. These applications support informal network of users to

facilitate the flow of ideas and knowledge and allowing them to generate, disseminate, share

and edit users created content (Constantindes and Fountain, 2008; Murugesan, 2007).

Collaboration and sharing are the most important characteristics of knowledge availability,

which requires that all participants (i.e. people and applications) must have common grounds

to share and collaborate (Sharman et al. 2007). Therefore, the interoperability is required

between different systems, databases and applications to share collaborate and execute

various services on the Web. To achieve this vision, the World Wide Web (W3C) developed a

new set of technologies for the web called semantic web or Web 3.0 (Heitmann, 2010).

The ubiquitous and seemingly distributed nature of the web has taken the flow of information

on the internet to an extreme level. This increase in user created content and services offered

by social web networks have raised some important questions in relation to information

management, data portability and interoperability between the social networks. The next

section discusses the social and semantic web in the context of this research.

1.1.3. Social Web Networks

The phenomenon of the social web is characterised and defined differently in the field of social

science and computer science. The social web is composed of a set of social relations

between the people linked through the WWW. Social web centres on the definition of social

interactions and their contents. The field of computer science provides the foundations, in term

of algorithmic means and the design and development of web that foster social interaction,

hence called social web (Halpin and Tuffield, 2010).

The term social network is a theoretical construct used in social science to study the

relationship between the social interaction of two or more people or organisations. A social

network is a combination of social structures made by a set of actors and a complex set of

relationship between these actors (Wasserman and Faust, 1994). The combination of

computer science concepts and information sciences theoretical constructs forms a social

networking service, which is an online platform or website that facilitates building social

relationships.

A Decentralised Semantic Architecture for Social Networking Platforms

18

In regard to this research, both “Social Network Platform” and “Social Networking Site” are

suitable term as they cover both the technical (development and implementation) and social

(people-to-people) context of people interactions on the web. The review of available

definitions of the social web or social networks is beyond the scope of this research, but

essential in term of laying down the conceptual guidelines.

1.1.4. The Social and Semantic Web

Tim Berners-Lee envisioned the term Semantic Web (SW) as the next stage in the evolution

of WWW to enhance the ability of the current web. The semantic web can be thought of as a

mechanism for representing, describing and processing information on the web in a way that

can be processable by machines.

The SW is intended to reduce human involvement in performing different tasks and to enhance

automation, coordination and scheduling of services between different platforms. According

to Tim Berners-Lee, the idea of the semantic web is to extend unstructured information with a

machine-processable description of the meaning of information and to provide missing

background knowledge where needed (Berners-Lee et al. 2001). The need is evident to

enhance the ability of the web, to be more people-centric and with advanced filtering and

recommendation services (Dasgupta, 2010 and Sfakianakis, 2010) by providing data

portability and integration between different websites and networks (Sfakianakis, 2010).

In the semantic enabled social web, content can be easily connected, integrated, navigated

and queried. Semantic web technologies can be used to add rigour and descriptive structure

to the content of the user contributions in a way that will enable powerful computations and

help better manipulation and distribution of data (Gruber, 2007).

Currently, social web applications are more focused on the management of social contents

and interactions rather than focusing on the provision of semantically enabled data description.

Blogs, search engines and messaging are some prominent features of the social web, can be

enhanced using the SW (Sfakianakis, 2010). For example, Valencia-Garcı́a et al. (2010) used

social semantic technologies to constitute a platform, which is capable of automatically

managing and suggesting new member of a project team based on their best suitable skills

for the development of the software project.

According to the findings of Halpin and Tuffield, (2010), the social web does not suffer from

lack of standards as it was a few years ago. Numbers of diverse groups are formed in this

area. The data model formats and communication protocols used by the web have been

A Decentralised Semantic Architecture for Social Networking Platforms

19

revitalised by their efforts. Lots of work is done on the standards to address the basic issues

of identity management and user login information portability. However, not enough is done to

solve vital and complex issues such as privacy policy portability and user data portability within

and across the network boundary. These issues present scope for further development and

research.

1.1.5. Data Portability and Interoperability

Data portability is defined by DataPortability,org (Dataportability, 2015), as the ability of people

or applications to reuse their data across different interoperable applications, by allowing the

people or application to be able to control their various forms (i.e. identity or media related) of

data. Breslin et al. (2009) refer to data portability as a combination of methods that allow

people to port their data from one place to another. In the social network, the user cannot

access their data and share it across social networking platforms. Data portability in the

context of social networks is concerned with, allowing data to be accessible and available to

the user and social networking applications within the same or across SNPs. With data

portability, different components of the application can be reused within or across the platform.

In contrast to data portability, interoperability is very well defined and standardised, according

to ISO 15926, interoperability is the ability of different types of computers, networks, operating

systems and applications to work together effectively, without prior communication, in order to

exchange information in a useful and meaningful manner (ISO15926, 2016). Kosanke, (2006),

reviewed interoperability standards and available research, in order to provide not only a single

version of interoperability definition but also how different interoperability standards have been

used in engineering, manufacturing and computing research. Another ISO standard, ISO-

14258 (ISO-14258:1998, 2014), is used by t organisations, seeking integration between their

different independent systems, to define rules and concepts for their enterprise models with

the intent to guide the process of interoperation. According to ISO-14258, interoperability may

occur between two or more than two different entities that are connected to each other in three

ways; integrated (where there is a standard format for all the devices and systems

constituents) unified (where there is a common meta level structure across basic models,

providing a means for establishing semantic equivalence) and federated (where models must

be dynamically accommodated rather than having a predetermined meta-model) (Kosanke,

2006).

Based on the above description, in reality, it is very unlikely that complete interoperability can

be made possible following any of the ways mentioned in ISO-14258 because current global

information and communication environments do not support global unification, integration

A Decentralised Semantic Architecture for Social Networking Platforms

20

and federation of existing systems and make interoperability a difficult task. Similarly, data

portability and interoperability between different social networking platform can be hard to

achieve as there is no standardised method or architecture available to guide the

interoperability process at all the levels of social networking platform. Decentralisation of social

networking platform (SNP) is one of the ways to achieve interoperability between SNPs.

1.1.6. What is Decentralisation

The software engineering and software architecture literature has not embraced a formal

definition of decentralisation (Khare and Taylor, 2004). Even now it has been described

differently in the context of research and mainly considered as a synonym for distribution.

The research community sees decentralisation as a solution to some of the issues with

existing social networking platforms. However, decentralisation has its own issues. The area

is still underdeveloped, and the process of standardisation is not efficient enough, thus

suffering from a lack of available implementation standards. Decentralisation is mainly

dependent on open source community standards (explained in chapter2) and the definition of

decentralisation and related concepts are based on the opinion adopted by the researcher.

In the Oxford Dictionary, decentralisation is described as the process of transferring authority

of decision making to lower level. In the field of computing decentralisation is an allocation of

resources to individual clients. In the field of database management, decentralisation is about

storing data on clients at multiple locations however the clients are not interconnected by

central network or database. Therefore, a decentralised database is best regarded as a

collection of independent databases rather than a geographical distribution of single database

(Slater et al. 2015).

The earliest related conceptual relevance can be found in McLeod and Heimbigner, (1980) in

which, they described decentralisation in the context of databases and in their opinion,

decentralisation is a logical combination of components or entities having their own logical and

conceptual schema. These components are related but independent and they may or may not

be disjoint.

Decentralisation in the context of social web network can be defined as a collection of entities,

called peers or nodes that interact with each other without the presence of a trusted central

control authority. Each one of them works towards achieving its individual goal (Suryanarayan

et al. 2005). Therefore, there is no single point where the decisions are made, and every peer

makes decisions towards its own behaviour.

A Decentralised Semantic Architecture for Social Networking Platforms

21

1.2. Research Motivation

The available research in social web decentralisation is mainly done in user privacy, Profile

data portability, activity and identity-related issues. There are three main approaches widely

used in research to decentralise the social web, distributed web server hosting, federated layer

and P2P approaches. The majority opinion goes with the federation of social networking

platforms, which is still underdeveloped and has opposition in social network service providers.

The general trend in research is, to have portable social data by using semantic web

technologies but they do not provide any standard way for social data to be portable. Another

popular opinion described in Berners Lee, (2009) is user-centric social data management that

is providing personal information space, where the users can manage their information and

data based on their own needs, with service providers only providing the interface.

Lack in the implementation of software architectural principles standards and

guidelines.

The work done in this thesis addresses new challenges and opportunities for the

decentralisation in social networking platforms, that are posed by lack of architectural

guidelines, current infrastructure, protocols, standards and service providers restrictions. The

proposed solution introduces changes in a way decentralised social network platform should

be designed and develop. To serve this goal a comprehensive decentralised architecture for

social networking platforms is designed under the guidelines of the proposed architectural

style. The overarching goal to achieve by building an application based on the proposed

architecture is portability of data at the functional level of different social networking platform.

The solution envisioned in this research attempts to solve the problem of data portability

between social networks at the functional level by using a decentralisation approach. The

methodology used to build the decentralised architecture, uses similar standards and

protocols as used by existing architectures, however, it differs on the principles, whether

decentralisation should be done at the central level such as the Federated Social Web, widely

explored or at the functional level, which is unexplored. Using the proposed architecture users

will be able to decide which functionality they would like to use across their social network

platforms i.e. if the user decided to use the message related functions then they will be able

to send post to another platform they are registered to.

A Decentralised Semantic Architecture for Social Networking Platforms

22

Lack of data portability and interoperability caused by a centralised form of

architecture.

Traditionally social web networks are based on centralised architecture, making the

companies providing these services the sole owner of user’s data. Due to this reason data

stored on these websites is not accessible to another site, and users are not allowed to reuse

their own data on other similar sites, thus forming data silos, an isolated island of data (Yeung

et al. 2008). Each social application has its own data not knowing of the relevant data available

on the other applications and platforms, exposing the lack of interoperability between the

applications and services they provide. Similarly, due to these restrictions, ordinary users are

unable to have the ownership of their own data and therefore cannot reuse their data and

profile information on the other social network platforms (Tandukar and Vassileva, 2012).

These deficiencies in social web architectures affect the user experience and cause problems

such as data Portability or interoperability, User Identity and profile reusability, Linkability and

privacy of user data (Halpin and Tuffield, 2010). In addition, in recent years’ platforms like

Buddycloud and Higgins are built with the same goal. Diaspora is a social network centred on

the idea of data hosting at different locations connected together in one autonomous network.

These and similar platforms are either insufficient schema agnostic or seemed not to address

needs concerning sharing i.e. pertaining to keeping subscriber informed of the changes.

Access control was also done in an ad-hoc, non-standard compliant ways and there are some

security issues like system data being exposed to external apps (Smith et al, 2012).

Lack of data integration between different SNPs and duplicity of data.

An important requirement for an SNP architecture is to provide seamless integration of data

in a distributed setting. In the Nepomuk Semantic Desktop project (Sintek et al. 2009) group

collaboration architecture is proposed based on semantic web technologies and peer to peer

networks to enable communication between different applications running on different

networks. Nepomuk is an ontology-driven and support group collaboration which is an

essence of social networking. Although Nepomuk was successfully implemented, it is a

desktop application that meant to improve the desktop experience rather than web experience.

Desktop applications are becoming increasingly obsolete that is why current research

investigate an architecture to facilitate decentralisation in social networking platforms.

A Decentralised Semantic Architecture for Social Networking Platforms

23

In PrPl (Seong et al. 2010) decentralised social networking infrastructure is described, which

allows users to share their personal data in a distributed network of peers through butlers.

Personal cloud butlers are used as decentralised data storage to index user personal data.

While similar to this research, PrPl requires its applications to be developed in a specialised

language called SocialLite (Seong et al. 2010) which reduces its adaptability by the developer

community. Whereas the proposed solution is not dependent on any specific language or

standards and is based on the open web standards.

The solution proposed in this research is inspired by the existing Internet Mail (also known as

Email) architecture which appeared to be only standardised architecture available that can be

used to enable user communication between different websites using messaging protocols.

According to Ballester et al. (2010) each Social network stores user information differently. If

the user is interested in using the services offered by others than the site he is registered, with

then he may have to register again. As a result, the user may be registered on several social

networks, causing data to be scattered, duplicated and disorganised. If it is possible to

represent information in a common language or standards like email, then social networks

may be able to interoperate.

The envisioned solution provides a mechanism or constructs, rules and guidelines in the form

of an architecture to help decentralisation in social networking platforms. A platform that can

enable end users to integrate, reconcile and consolidate their different identities from multiple

social networking platforms and reduce duplicity of data, as compared to existing centralised

social network the proposed solution has a number of advantages that is the most important

motivational point of this research.

1.3. Problem Definition

The best known social networking sites such as Facebook, MySpace, Twitter and etc, have

limited themselves to relationships between the people on one site, the social web should be

extended to the entire web. For example, people can call each other no matter what service

provider they are using, similar to people sending a message to each other using email

irrespective of their service provider. The social web should allow people to create a network

of relationships across the entire web by giving people access to their data and privacy (Halpin

and Tuffield, 2010; Hu and Lau, 2013). To solve this, issue a truly open and decentralised

architecture for the social web platform is required.

A Decentralised Semantic Architecture for Social Networking Platforms

24

For example, person A is a member of social network SN1 declares person B as his brother.

Person C is a member of SN2 and the aunt of person A and B. There no way for her to get in

touch with her family members, without joining their social networks. This is because of there

being no mechanism of transferability in import or export of personal data across social

networking platforms.

1.4. Research Aim and Objectives

The rationale established in the conceptual foundations, problem definition and motivation

regarding the problem in current social network platforms abilities to allow complete or partial

information portability is not a resolved issue. None of the previous work on web architectures

provides enough guidelines on social web architectures, also, there are deficiencies in the

software architecture principles implementation to provide concrete guidelines for the design

and development of the software architecture for the platform that can help the enablement of

social data portability among different social network platforms.

The aforementioned shortcomings in the subject area encourage the proposition made in this

research proposal, which is to design and develop an architectural framework for the

decentralisation of the social networking platforms following software architectural guidelines.

The main contribution of the proposed architecture is to the concept of the social networks

interoperability and software architecture engineering, by using the methodology that is a

combination of software architecture and semantic technologies, modern web languages and

open-source message transfer protocols to achieve the desired goals.

1.4.1. Aim

The inability of current social networking platforms in providing the data portability and

limitations in the existing architectural approaches to provide a satisfactory solution for the

data portability by the means of decentralisation in an unsolved problem. Therefore, to solve

this problem social networking platforms service providers need a new architecture, which is

the aim of this research.

The aim of this research is to investigate the application of software architecture principles

and synergies between social and semantic technologies, to design and develop the

decentralised architecture that can enable data portability between different social networking

platforms.

A Decentralised Semantic Architecture for Social Networking Platforms

25

1.4.2. Objectives

To achieve the aim, it is imperative that the following objectives are met.

O1: Derive basic components of the social web architecture by analysing literature on

software architectures and web architectures.

This objective is about finding the underpinning knowledge related to this research, such as

the role of software architecture engineering in the design of the social web applications. The

main emphasis is on analysing and synthesising the literature on the software and web

architecture to understand the key components that are used by the industry and academia to

design the web applications and their architectures. Finally, analysing how much the building

blocks of the proposed web applications in the literature are influenced by software

architecture engineering principles and can be used as the components of social web

architecture.

O2: Investigate the literature on synergies between software engineering principles,

semantic technologies and social web networks to derive the components considered

as necessary to build the decentralised social network platform (DSNP), that can enable

data portability between different social networking platforms (SNPs)

This objective is aimed to critically analyse the concerned literature and synthesis of the

concepts, approaches and methodologies relevant to data portability issues, in the existing

social networking platforms. Moreover, identify the role of decentralisation and semantic

technologies towards the data portability in SNPs. The purpose of this objective is to help

discover the gaps in the research done so far in concerned area and identify the relevance

and disagreement of opinions to present the governing rules for the design of proposed

architecture. In regard to the software engineering principle, the integration of CBSD and

AOSD is investigated to find how functional independence in the components can be

achieved.

O3: Build the design of the component based architecture and architectural style to

provide a framework of principles for the design and development of decentralised

social networking platform at a functional level.

This objective is aimed at providing component based architecture DSNA and DSNA

architectural style to decentralise the SNPs at the functional level. Achieving this objective

consists of five steps. In the first step requirements of proposed DSNP are illustrated under

A Decentralised Semantic Architecture for Social Networking Platforms

26

the extended SWAT scenario (as explained in chapter2). Requirements are used to

characterise SN functions. In the second step, the key foundation principles of the design are

explained. These principles are based on CBSD based PACE and AOSD. In the third step,

detailed design of DSNA architecture having its foundation in the DSNA style is described.

The purpose of DSNA style is to equip the application developer with rules, properties and

guidelines to design and develop DSNP. In the fourth and fifth step, the architecture is

implemented on simple SN function, components and aspects implementation are also

described.

O4: Build a prototype by implementing the DSNA on SWAT scenario and demonstrate

the composition of aspects and components in the implementation.

The purpose of this objective is to implement the proposed DSNA on SWAT. The requirement

analysis identifies the challenges and needs of the design. Interaction, communication,

composition and allocation are identified as four main challenges towards implementation.

Design phase explains the design related challenges and build phase handles the

implementation related challenges. Dynamic Component and aspect composition are handled

at the middleware level. SNSL (Social Network Support Layer) handles the composition of

components. Social messaging application prototype is built to evaluate the functioning of the

application.

O5: Perform SWAT based evaluation of the DSNA and find the significance in current

literature and drawbacks.

The aim of this objective is to define the SWAT evaluation metrics. According to which the

application is tested on the basis of interaction and communication. At the end, the improved

version of DSNA is presented with the overall findings and challenges.

1.5. Research Methods

The research objectives are concerned with answering the questions raised during the

research. Therefore, a research method should be selected based its compatibility to the

research objectives. The key motivation behind any research is the desire to build and improve

new environments by introducing innovation in building new artefacts and that is a key

characteristic of Design Science Research (March and Smith, 1995; Hevner et al., 2004).

To achieve the research, aim and objectives this research follows design science research

methodology. DSR is an iterative activity where solution artefacts are designed and developed

A Decentralised Semantic Architecture for Social Networking Platforms

27

through various cycles, processes, activities, inputs and outputs. The goal of a DSR is to

generate a purposeful artefact that addresses a practical problem, especially, when elements

of the problem are not completely understood (Hevner et al., 2004).

DSR provides a suitable approach and comprehensive framework for the analysis of the

systems and architectures in question. It comprises of two main activities i.e. construct and

evaluate (March and Smith, 1995), to resolve the research problem. DSR supports the design,

construction and evaluation of the Decentralised Social Networking Platform (DSNP) through

the means of DSNA. The framework of March and Smith, (1995) is selected to support artefact

design process. The framework provides foundations for the execution of the research project

by articulating the artefacts in four outputs, Constructs, Model, Method and instantiations.

In the current research, DSR is associated with all main activities to the end result of creating

and an architectural solution called DSNA. The DSNA has been evaluated to verify its

applicability according to the desired objectives. Kuechler and Vaishnavi, (2012), has given a

broad outline of the development stages, that has been followed in order to direct the research

finding process.

In Kuechler and Vaishnavi, (2012), framework an iterative process of design has been followed

to ensure the continuous improvement in designing the artefact. There are five main phases,

(1) Awareness of the problem and type of solutions (2) Suggestions for the design (initial

Conceptual Design) (3) Design and Development (4) Demonstration and (5) Evaluation. Each

phase feeds back the knowledge gained construction and evaluation into the design of the

iterations. For the sake of evaluation, Hevner et al. (2004) methods of evaluation have been

adopted. The detailed scenario in the area of social network functions has been built to test

the utility of the DSNA. Further explanation of the iterations and phases is given in chapter 3.

Artefact Category Iteration 1 Iteration 2 Iteration 3

Construct None None

Model DSNA style

DSNA component

architecture

DSNA Deployment

Design

DSNA Component
composition model

Method DSNA framework

Aspect component

composition

SNSL component and

aspect composition

DSNA evaluation

mechanism

A Decentralised Semantic Architecture for Social Networking Platforms

28

Instantiation

None

DSNA prototype

DSNA interaction

evaluation

DSNA communication

evaluation

Table 1-1: Classification of DSR Artefact in this research

The artefacts are realised after evolving through the 3-stage development process. The

development of DSNP prototype is done in three main phases ‘design and development’,

‘Implementation’ and ‘evaluation’. Each phase goes through the process of ‘build’, ‘deploy’

and evaluate, as described in March and Smith, (1995). The DSR process can be iterative or

incremental in nature (Markus et al. 2002). The 3-stage design process can be repeated or

incremented during each phase until satisfactory artefact is obtained. In iterative DSR, the 3-

stage design process is repeated to improve the quality of the artefact. Whereas in incremental

DSR the design artefact is decomposed into granular artefacts each one is developed and

evaluated in each increment (Simon, 1996). The DSNA is designed and evolved in the 3-stage

process, artefacts are designed, deployed and evaluated using suitable evaluation methods.

The research in this thesis is iterative in nature however, some artefacts are decomposed into

multiple iterations for attaining the complete functionality.

1.6. Thesis Structure

Chapter 2 presents literature review with the purpose to provide contextual analysis of

research done in social web network’s capacity to enable data portability and to outline the

existing research approaches and methodologies used to deliver the portability of data and

information between social networks. Chapter 2 is basically survey based and the first section

focuses on software architectures, its elements and styles. The purpose of this section is

twofold; (1) examine which software architectural principles and design techniques are used

in Web architectures, proposed by the research community and (2), understand if those

principles and techniques can contribute towards the design of social web architectures. The

second part of this chapter exposes the shortcomings in the current social web network

architecture within the domain of data portability between different social web network

platforms. The attempt is made to critically analyse the current state of research on social web

platforms architectures with the focus on data portability between different platforms and the

role semantic technologies have played to achieve it.

Chapter 3, introduced DSR methodology and its application within this research. The stages

adopted to implement the DSR are illustrated in Vaishnavi and Kuechler (2004; 2012). There

A Decentralised Semantic Architecture for Social Networking Platforms

29

are three main stages, awareness of the problem and type of solution, development and final

evaluation. There are three iterations between development and final evaluation that are

described as design, deploy and evaluate. For the construction of artefact (Construct, method,

model and instantiate), (March and Smith, 1995) guidelines are used. For evaluation, each

iteration and artefact follow criteria described in Hevner et al. (2004).

A Decentralised Semantic Architecture for Social Networking Platforms

30

Figure 1-1: Thesis Structure

Cahpter 7 - Discusion and Conclusion

Research Overview Contributions Limitations Future Work

Cahpter 6 - The Evaluation

Iteration 3

Evaluation Method Selection of Method Execution of Evaluation Final Prototype

Cahpter 5 - The Implementation

Itration 2

Requirement Analysis
Implentation Rules and

Principles
Implentation Design

Application Build
Up

DSNA
Components
Composition

Cahpter 4 - The Design

Iteration 1

Requirements and
Scnario

SN Functional
Requirement

Characterisation

Designing of the DSNA
Platform

Building DSNA
Platfrom Function

Evaluating the
DSNA

Cahpter 3

Research Methodlogy

Software Engieering
Reserach

DSR and ADSRM DSR Process
Application of DSR
(Interation 1,2,3)

Chapter 2

Literature Review

Background
Key Software
Archtiectural

Principles

AOSD and CBSD
Paradigms

Social Web
Decentralisation

And Analysis
GAP Analysis

Chapter 1

Introduction

Introduction Conceptual Foundation Reseach Problem
Problem Definition And

Aim And Objectives

Chapter 4, introduces the component based conceptual architecture. As the result of the first

iteration, the conceptual architecture of DNSA is presented. The research in this chapter

provides a detailed description of the architectural components. The description of

Architectural components is required to provide grounding structure to build proposed social

networks architecture. In the context of this research, the standardised sets of components for

the formation of conceptual architectural view are important. In order to achieve its purpose,

DSNA must provide a feasible and reliable way for the users of different social platforms to

interact and communicate without duplicating their data.

Chapter 5, presents the refined version of DSNA after its successful implementation in the

prototype. This chapter describes the prototype implementation of DSNA proposed in chapter

4. The prototype is the result of SWAT Scenario that has been used to check the practicality

of the DSNA. The DSNA is tested against most possible Scenario that the DSNA can be

implemented. In this perspective, the Implementation of DSNA is done at the functional level

of social networking platform, using content sharing functions, such as messaging.

Chapter 6, extends the implementation into the more realistic scenario. In the final iteration,

DSNA is implemented in multiple cross-domain social networking scenarios. To test the

scenario SWAT v1, which is an initiative social web group at W3, is used. SWATv1 provides

test scenario and a set of guidelines for evaluating the decentralised social networking

applications.

Chapter 7, presents the summary of the thesis. In this chapter, a brief review of activities

performed within the entire chapter is provided. A brief account is provided, about how each

objective is realised. The chapter ends with the description of the research limitations and

recommendation for future work.

A Decentralised Semantic Architecture for Social Networking Platforms

32

1.7. Chapter Conclusion

The chapter presented the introduction of the research conducted in the remainder of the

thesis. Beginning with motivation for undertaking this research and literature reflecting the

need, importance and current state of the research. The main problem is defined with the aim

and objectives to be completed to fulfil the aim. In the next stage, which research methodology

is selected to address the research contributions, is explained. Finally, at the end, the content

of each chapter is summarised

A Decentralised Semantic Architecture for Social Networking Platforms

33

Chapter 2 - A Literature Review on the Decentralised Social Web,

An Architectural Perspective

2. Chapter Introduction

An understanding of the elements required for the design of any software architecture is an

important step. To realise this step, this chapter reviews different software architectural styles

and components with the aim of providing guidelines for the design of social web architectures

and key elements representing the building blocks of such architectures, are also highlighted.

These building blocks are discussed in the context of both, theory and practice.

This chapter addresses objectives 1 and 2 of this research, which is (1) to analyse the best

practices on software and web architecture to derive basic components of social web

architecture, and (2) to investigate the synergies between the semantic web technologies and

social web to determine the components needed to design a required decentralised social

web architecture.

The overall goal of this chapter is to provide contextual analysis of research done in social

web network’s capacity to enable data portability and to outline the existing research

approaches and methodologies used to deliver the portability of data and information between

social networks. The review also helps, to discover gaps in the research done so far that are

still to be addressed and to identify relevant and applicable elements to set governing rules

for proposed research. Another important aspect of this chapter is the analysis of the existing

tools and technologies have been used by academia to formalise the solution required for data

portability between social networking platforms.

2.1. Literature Review Methodology

This literature review is done in four steps, to form the fundamental conceptual study required

to build the coherent and systematic outlook for the literature review. In the first step. 70

articles from journals and conferences relevant to the research topic were selected. The

details of the articles are maintained in a table having columns; Title of the article, Type (i.e.

journal, conference, book, report), Summary, and Relevance to the research. In the second

step, selected articles were skimmed, duplication was removed. The skimming process

shaped the literature review and in the third step. literature review map is built, which gives

the visual presentation to the literature review shown in figure 2-1. In the fourth step, a final

literature review is built, from the summaries taken from the skimmed articles. The articles

were collected using library database Athens, Google Scholar, universities research group

A Decentralised Semantic Architecture for Social Networking Platforms

34

portals and direct from authors (in some specific cases). The literature review map is built

using conceptual mapping technique of concept analysis mentioned in Martin and Hanington,

(2012). Conceptual mapping is a visual framework that can be used to allow readers to absorb

new concepts towards the understanding of new domains to build new meanings. Its main

purpose is to connect a large number of ideas and events as they relate to a specific domain.

It provides the scaffolding that can help the readers or designers to visualise the structure of

various connected concepts and ideas (Martin and Hanington, 2012).

Figure 2-1: Literature Review Map

The literature map in the figure 2-1 consists of key domains, related concepts and linking

words. The linking forms the meaningful statement. The linking words are distinguished by

A Decentralised Semantic Architecture for Social Networking Platforms

35

placing two asterisks **, and one asterisk * at front of the words. Two asterisks ** shows the

findings one asterisk * are the linking concepts to form a meaningful statement.

The rest of the chapter is organised as fellow. The first section is a theoretical analysis of

fundamental software architectural principles, for example, abstraction and different ways to

achieve it. For that reason, architectural style and views and their relevance in Web

architectures are discussed, moreover, the current research on the Web and social web

architectures and technologies that influence the design of the architecture are also discussed.

2.2. Background

The development of an architecture, for any software, is the main activity during its design.

There is a consensus in the literature that software architecture depicts the structure of the

software components, with the purpose to provide a functional description of the software

structure, components and component interaction. It is also important to adhere to software

engineering principles during the architectural design to deliver the details regarding the key

elements of the architecture such as component selection, standards, policies, design

methods and implementation infrastructure (Gerber et al. 2008). In this research, the term

architecture when unqualified is a synonym of software architecture.

2.2.1. Concept of Abstraction and Software Architecture

The core of software architecture is the principle of abstraction, which is about encapsulating

the details of a system in order to better identify and sustain its properties (Shaw, 1990). The

architecture of complex software might have multiple levels of abstraction to represent the

behaviour of the system and architectural components functionalities (Bass et al. 2011).

According to Perry and Wolf (1992), architectural elements provide the abstract view to

software architecture. They define “software architecture as a set of architectural elements

that have a particular form explained by a set of rationale”. Garlan and Shaw (1994) introduced

some of the key principles in software architecture research and described various

architectural styles. They described the architecture of a system as a collection of

computational components connected through connectors. The role of components is then

further clarified in Shaw and Clements (1997), according to them a component is an abstract

unit of software instructions that performs some functions during runtime and provides a

transformation of data via an interface. For example, programs, objects and processes. This

A Decentralised Semantic Architecture for Social Networking Platforms

36

explains the difference between the software architecture, which refers to the abstract

structure of software system behaviour and the component as part of software architecture.

The significance of elements in software architecture

Software architecture is defined by the configuration of its elements and their composition

according to given requirements to achieve the desired architectural properties (Fielding &

Taylor, 2002). The elements are the core of any software architectures. Based on the

particular behaviour of the system, there are three basic types of elements, data, processing

and connecting elements. Processing elements; process components that perform the

transformation of data, data elements are those elements that contain information about the

system functionality that is used and can be reused, if called back again during system

deployment; the connecting elements are the glue that holds the different elements together

(Perry and Wolf, 1992; Shaw and Clements, 1997).

The architecture of a software system often has multiple abstraction levels and each may have

its own architecture. For example, in a Web application architecture, a configuration file

(Web.config) will be treated as a “data element” (Perry and Wolf, 1992) during start-up as it

contains the information that has to be shared with other elements of the architecture.

However, during the normal processing of the application, it will not be considered as an

element because the shared information is distributed throughout the application and no

longer needed until the instance of the application returns to start-up level.

Figure 2-2: Software Architecture Design Stages: Adopted from Fielding and Taylor (2002) and modified.

Therefore, it is important to understand and implement the behavioural properties of the

software. To do so the designer may need to design the start-up architecture, processing

architecture and re-initialization architecture.

In general, the architecture must be capable of describing not only the operational behaviour

of the software such as the communication between the elements but also the transition

between different phases (Fielding, 2000). In another opinion, the architecture of an

information system or software application is a mixture of structure or structures of a system,

which is made of software elements, the externally visible properties of those elements and

relationship among them. In the area of software architecture engineering the externally visible

A Decentralised Semantic Architecture for Social Networking Platforms

37

properties are those assumptions that elements make about other elements, when different

functionalities and behaviours showed by elements to provide services, to solve performance

issues or fault handling (Bass et al. 2011).

The definition

As described above, there is no shortage of opinions, when defining the software architecture.

The definition used in this research is taken from IEEE std 14712000 (1471, 2000) which was

further improved in IEEE P42010/D9, is considered as a standard definition of the software

architecture. In IEEE 1471, the software architecture is defined as “the fundamental

organisation of a system embodies in its components their relationship to each other and to

the environment and the principles guiding its design and evaluation” (IEEE-1471, 2000). This

definition incorporates the idea that there is a difference between architecture description and

an architecture. An architectural description is a concrete artefact, but an architecture is a

concept of a system (Maier et al, 2001). IEEE-P42010/D9, (2011), distinguishes between the

architecture description and architecture of a system. According to the standard, architecture

description is a work product whereas the architecture is an abstract shape of the system

consisting of concepts and properties (IEEE-P42010/D9, 2011).

Certainty, the definitions of software architecture are different, but there are also so many

commonalities as well. For example, most of the definitions indicate that the architecture is

concerned with elements, structure and behaviour of the system.

Furthermore, the architecture description concerns with views and styles, are influenced by

key stakeholders and system environment.

The elements are a basic pillar of any software architecture and made by a set of components,

containers and connectors. When these elements are working together, in a well-connected

manner then they adopt a form of a view and unique styles (Bass et al. 2011) discussed in the

next section.

2.2.2. Architectures styles and views

Perry and Wolf (1992) divided software architecture into architectural styles and views based

on the functionalities of the system. Kruchten, (1995) extended this work into the object-

oriented environment and proposed four categories of architectures, logical, development,

processing and physical architectures. The complex software may have multiple architectural

styles to describe its functionalities in depth.

A Decentralised Semantic Architecture for Social Networking Platforms

38

In the literature, there is no hard-dividing line between architectural style and architecture. It

is one person’s decision, as an architectural style of one person may be the architecture of

another. Architecture is an organised arrangement of elements, but an architectural style

provides a specific abstraction of the elements regarding their system functionalities (Perry

and Wolf, 1992, Shaw and Clements, 1997). Network, distributed, layered, client server and

Service Oriented Architectures are examples of specific architectural styles.

The architectural style is also known as an architectural structure. According to Bass et al.

(2011), the complexity of a software system can make it difficult for a designer to grasp all the

information. Instead, they can restrict their attention to one specific software structure of the

system. The development of web systems is done in many phases. Each phase may have its

own architectural view. View holds the important information regarding the development of

software architecture. The architectural view (or simple View) is a representation of a coherent

set of architectural elements as described by key system stakeholders. It consists of elements

and relationships between the elements (Brown and McDermid, 2007).

Another perspective on Architectural view is described in IEEE reference standards.

According to that architectural view is a description of architecture as specified by its

stakeholders, with the purpose to express the architecture of the system of interest in

accordance with architectural “Viewpoints” (explained in next section) (IEEE-P42010/D9,

2011).

 Software Architecture Development Explanation

1. Software Architecture and
Architecture Styles

2. Architectural Views

3. Methods

Examples: Layered, Network, distributed or Service
Oriented Architecture, Composed of Elements
Modules, Components and connectors, Allocations or
relationship
Divides architecture into different perspectives to reduce
complexity during the design process

 Conceptual View

 Logical View

 Physical View
From each view, separate architecture emerges with all
the information needed to build complete software.

Style and Views (Perry and Wolf, 1992)
4+ 1 Views (UML based) (Kruchen,1995)
Attribute Driven Design (Bass et al. 2011)
RUP (Clement et al. 2003)

Table 2-1: Software architecture development, based on Kruchten, (1995), Shaw and Clement, (1997),
Clement et al. (2003), Bass et al. (2011).

Table 2-1 summarises the main points proposed by Perry and Wolf (1992), Kruchten (1995),

Shaw and Clements (1997), and Fielding and Taylor (2002).

A Decentralised Semantic Architecture for Social Networking Platforms

39

Clement et al. (2003) proposed an approach to describe software architectures using a set of

Views, ViewTypes and ViewPoints. Bejar et al. (2009) used Clement et al. (2003) approach to

design an architectural style for Spatial Data Infrastructure (SDI) as a part of an information

system to examine geographical data. One of the main reasons to use this approach was to

enhance the ability of designer and system architect to describe the complex functionalities

and behaviours of the system. Chen et al. (2008) also included Views and ViewTypes to

describe their proposed architecture from a specific perspective.

Advancements in software development technologies and a blend of mobile and web

applications have changed the requirements and needs of software architecture development.

To meet new challenges IEEE Architecture Planning Group (APG) and Software Engineering

Committee, revised software architecture description standard and included View and

ViewType and ViewPoint as key components to describe software architecture (IEEE-

P42010/D9, 2011).

2.2.3. View, View Types and View Points

A view is a graphical representation of elements and their relationship (Perry and Wolf, 1992).

Bass et al. (2011) described the view as a representation of a coherent set of architectural

elements as written by and read by system stakeholders. ViewType is a definition of allowed

element types and relationship types, which can be used to describe a system from a specific

perspective. For example, a view of a web application could be a diagram showing web

services as boxes and arrows as the relationship between the services and ViewType could

be a constraint saying only web services are represented as boxes and arrows as relationships

(Clement et al. 2003).

View Has View Types View PointsRefer to

Governs
1 1

1..* *..1

Figure 2-3: Relationships between views, view types and view points

Viewpoint provides a specific perspective of the system by focusing on certain concerns

regarding the system. For example, the security viewpoint focuses on the security perspective

of the system with relevant elements by suppressing details and providing simplified versions

(Bejar et al. 2009). Figure 2-3 shows the relationship between views, view types and view-

point. The relationship between the views, view-types, and view-points can vary, depend on

A Decentralised Semantic Architecture for Social Networking Platforms

40

the architecture description but the relationship between view and view-point will always be

one to one (IEEE-P42010/D9, 2011). As described in above section that architecture design

process can have multiple phases.

In the research community, there are different opinions on the number of steps should be

involved in the software architecture design. The approach described in Clement et al. (2003),

IEEE P42010/D4 standard and Bass et al. (2011) are widely practiced, although the

components are expressed in a different manner but main steps to express those components

are same. There are three basic types of views, module view, component and connector view

and allocation view as shown in figure 2-4.

The module view describes the modular structure of the software. It is a static view and

expresses static division of software as a set of units. Component and connector is a dynamic

view and describes runtime entities and their runtime behaviour and interactions. The runtime

entities include process, thread, object, client server and data store (e.g. concurrency). The

allocation view expresses the mapping of software. It describes the different software and non-

software structure of the system and their relationships and interactions with each other (Kim,

2006 and Bass et al. 2011).

 Step 1

 Step 2

 View Types

Step 3

The comparison between the viewpoint and architectural view or style comes to the almost

same conclusion, which is explained in Table 2-1. However, Bass et al. (2011) have given

more detailed picture of architecture by describing the conceptual, logical and physical

dimension of the software architecture. For example, in figure 2-4 view-types of module, view

View

Module Component

& Connector

Allocation

Class

Decomposition

Uses

Layered

Client

/serve

Process

Concurrency

Shared

Work

Deployment

Implementation

Conceptual Viewpoint

Logical Viewpoint Physical Viewpoint

Figure 2-4: Software Architecture Views (Bass et al., 2011)

A Decentralised Semantic Architecture for Social Networking Platforms

41

is a conceptual dimension and represents a conceptual view-point of software architecture,

similarly component and connector view represent, and logical viewpoint and allocation view

represent the physical viewpoint of software architecture.

The current discussion is not on the historical dimensions of software architecture or its

adoption by the industry. However, the goal of the above discussion is to develop some

understanding about areas that are relevant to this research. The next section discusses the

key software architectural methods, that are used in the design and development of the

distributed software applications.

2.3. Software Architecture Engineering (SAE) and Distributed

Applications

Traditional methods provided by software engineering are not sufficient enough to cope with

the complexity of modern distributed systems (Pinto et al. 2005). The decomposition of the

software application into smaller independent and interoperable modules is a major concern

of current web development. CBSD (Component based software development) and AOSD

(Aspect oriented software development) can provide a solution for the development of the

independent and interoperable application. (for details chapter 4).

2.3.1. Component Based Software Development (CBSD)

CBSD is also known as component based software engineering, is a branch of software

engineering that focuses on the decomposition of software components into functional or

logical components with well-defined interfaces. It comprises of reuse based approach of

defining, composing and implementing loosely coupled components (Kwong et al 2010). The

main advantage of CBSD is, that various processes and functions of the system can be kept

into separate components, so that data inside each component can be semantically related.

This phenomenon is known as separation of concerns.

The separation of concerns is a design principle used in CBSD to separate the computer

program into different sections addressing a separate concern. With all the benefits, such as

clear traceability from requirement to the implementation, the modularisation of concerns in a

complex system can cause two problems known in the literature as scattering and tangling.

Scattering is when, implementation code spread out on many modules, attached to one

concern. The concern influences the implementation of the module. Therefore, the

implementation is not modular. The tangling is occurred when the concern is intermixed with

other concerns in the code (Kiczales and Mezini, 2005, Pessemir et al. 2008). These issues

can be addressed by using AOSD.

A Decentralised Semantic Architecture for Social Networking Platforms

42

2.3.2. Aspect Oriented Software Development (AOSD)

In literature, AOSD is described as a technique that can be used to improve the separation of

concerns in a complex distributed software application. Traditional software application

development focuses on the decomposition of main functionalities into smaller units. AOSD

focuses on the identification, specification and representation of the cross-cutting concerns.

AOSD is based on abstraction called aspects. Aspect encapsulates the functionality that may

be needed at the several places in a software program (Brichau et al., 2008). Therefore, AOSD

is aimed at the automated modularisation of the cross-cutting concerns, the modularisation

that goes beyond the generalised procedures.

The approach for adopting the aspect to the architecture can be either symmetrical or

asymmetrical. In asymmetrical approach, only the module with the tangled or scattered

concerns are modularise using aspect. In symmetrical approach, aspects are represented as

components and all the concerns are modularised using aspects (Brichau et al., 2008). The

main benefit of this approach is reusability of aspect because components are considered as

highly reusable entities. (Chapter 4 describes the adoption approach for the aspects and

components)

2.3.3. Integrating CBSD and AOSD

The research in the area of CBSD and AOSD integration is now quite mature as compared to

when attempted in Kiczales and Mezini, (2005), Masuhara. and Kiczales, (2003) and Kiczales

et al. (2001). The benefits of integrating CBSD and AOSD are discussed in Pinto et al. (2005)

and Pessemir et al. (2008). AOSD and CBSD are two different technologies. Integrating AOSD

principles into CBSD can help to improve the evolution and maintainability of components by

extracting crosscutting concerns from components and putting them into aspects. In addition

to that, those crosscutting concerns can be managed separately without affecting the whole

functionality of the components. Kiczales and Mezini, (2005)

The functional independence provided by AOSD to the component can be the key to solving

the problem of decentralisation. However, AOSD approaches mentioned in Kiczales and

Mezini, (2005), Kiczales et al. (2001) and Duclos et al. (2002), prevent the aspects to be

reused in a different context. Therefore, a model is required which can integrate the AOSD

and CBSD. Such a model (component and aspect model) is proposed in chapter 4, using the

fundamental principles described in Brichau et al. (2008), Pinto et al. (2005) and Pessemir et

A Decentralised Semantic Architecture for Social Networking Platforms

43

al. (2008). Based on this model each component of DSNA (Decentralised Social Network

Architecture) are designed and implemented.

The next section describes the use of SAE (Software Architecture Engineering) principles in

designing and implementing distributed applications.

2.4. Distributed Application Architecture

The web is perhaps the largest distributed application. Learning about the key principles and

architectural style underlying the current web can be helpful in explaining its technical success

and may lead to improvements in other relevant aspects of the web (Fielding and Taylor,

2002). This part of the chapter attempts to explain the architecture of the web as a distributed

application, its key components and how these component works together in different

architectural styles.

Figure 2-5: Architecture of the web used in CERN Project, taken from Berners Lee et al. (1992)

Figure 2-5 shows the architecture of the system developed by Berners-Lee and team in the

CERN project to integrate different source of information. For that purpose, a system was built

based on client, server and browser. The main function of that system was to exchange

documents located on different systems. A presentable interface (i.e. Browser) was built to

make the interaction between various systems possible (Fielding, 2000).

Due to growth in data, soon after this early design, a web community exceeded its limits. The

need was to attach and generate pages and data dynamically based on the services needed

by the users. On the other hand, the concept of web application also affected the way web

architectures were developed. This led to the integration of software engineering and

A Decentralised Semantic Architecture for Social Networking Platforms

44

hypermedia system principles to help develop the architectures for the modern web (Webber

et al. 2010).

2.4.1. Web Application Architectures

In the modern web architecture, the elements interact with each other by the means of an

interface. The interface encapsulates the detailed view of the system and partitions it in public

and private views or sides. There are two partitions in traditional client-server architecture-

based web system, one for public view (client side) and another for the private view (server

side) (Bass et al. 2011). The web application is a complete piece of software with application

and business logic attached to the data and governs by software engineering principles

(Langegger et al. 2005).

Perry and Wolf, (1992), Garlan and Shaw, (1994), Kruchten, (1995), Conallen, (1999)

proposed concept was originated from the software engineering principles and attempts to

cover most of the aspects of the modelling process of web application, however, lacked in

providing a framework to integrate the later investigated concepts into the field, for example,

web services.

Conallen’s basic web architecture did build consensus among the research community on its

applicability for building modern web applications, however, has failed to change the stateless

nature of the web. For example, the communication between the client and web server is

stateless and to manage the session state, either cookies or IIOP (Internet Inter-Orb Protocol)

elements must be added and this is accomplished by using different architectural styles

(Fielding and Taylor, 2002; Booch, 2001).

Figure 2-6: The basic Web Architecture; adopted from (Conallen, 1999) and modified

according to the need of this research.

A Decentralised Semantic Architecture for Social Networking Platforms

45

The shortcomings of basic architecture were resolved by REST proposed by Fielding, (2000)

in his PhD thesis, to overcome the deficiencies of early web architectures. His work resulted

in the set of operation with consistent semantics to build an architecture that can support any

type of web applications. REST (Representational State Transfer) architecture describes the

web as a hypermedia application, which linked resources by exchanging their states. REST is

based on client cache, client connector and stateless server.

Figure 2-7 Current WWW structure (W3.org)

Table 2-2 summarises important research publications, architectural concepts and their

implementations to cover the evolution of the process that software architectures went through

towards Web architectures and social web architectures. In the architectural concepts column,

software architecture concepts are listed that are discussed in the publications and in

implementation column the technologies used to realise those concepts.

A Decentralised Semantic Architecture for Social Networking Platforms

46

Publications Architectural Concepts

Implementation

Shaw, (1990) The Concept of abstraction Software components

Perry and Wolf, (1992) Architectural Elements, Views and

Style
UML-based architectures

Berners Lee et al. (1992)

Network architecture for WWW Component-based client-server

architecture for the web

Garlan and Shaw, (1994)

Architectural styles as
computational component of a
system

Used Components and connectors
to describe the style

Kruchen, (1995)

Architectural styles, views and
elements with Object Orientation

UML Models

Shaw and Clement, (1997) Component and connectors further
clarified

Set of a software instruction
functions through data and
interface. Object and process

Conallen, (1999) Web Architecture Elements UML

Fielding and Taylor, (2002) Redefine and subdivide elements

into data, processing, connecting
elements

 REST based Web Architecture

Clement et al. (2003) View, View types and view
Points

Set of elements, Constraints and
styles

Anderson, Graham
and Wright, (2000)

Conceptual Architecture Client/Server architecture

Bejar et al. (2009) Conceptual architecture

Architecture of web base
information system

Zachman, (1998),
Noran, (2003)

Logical Architecture
Physical Architecture

Data Model
Process Model

Zachman, (1998),
Noran, (2003),
Garland and
Anthony, (2003)
Rozanski and Woods,
(2005)

Physical Architecture

Implemented with the combination
of Rules, process, data, functions,
structure and structure location

Berners Lee et al. (2006),
Berners Lee et al. (2007)

Web Architecture elements and
structure of implementation
components

HTTP, HTML and URI

Bass et al. (2011) Implemented Web Architecture

Implemented using Attribute
Driven Design, see figure 3.

Meier et al. (2008)

Web Application Architecture
element describe according to the
need of the modern Web

Multi-Tier,
Multi Layers
(Data, Logic, Presentation) and
REST styles

Yeung et al. (2009) and

Hendler and Berners-Lee, (2010)

Berners Lee et al. (2006)
Berners Lee et al. (2007)

Social web application
architectures and necessary
improvements needed for the next
generation Web

Semantic web technologies

Table 2-2: Evolution of the Web architecture components towards Social web architecture

A Decentralised Semantic Architecture for Social Networking Platforms

47

2.4.2. Social Web Architecture

The social web networks are a mixture of different types of web applications, developed to

provide certain functionalities to the users. The success of Social Web Networks is very much

due to the use of new software development and communication paradigms such as AJAX

(Asynchronous JAVAScript and XML), REST (Representational State Transfer), JSON

(JavaScript Object Notation), and web services. In this section, social web architecture is

investigated with the aim to present its global version based on software architecture

principles. To demonstrate this, an architecture of a prototype application is presented.

Figure 2-8: Conventional 3 Tier web Application architecture

The Social Web architectures can be designed in various forms-based needs of the

application. For Example, multiple tiers-based architecture (Figure 2-8) may enable you to

operate multiple environments based on your operational requirements and system resource

usage. Different components can be deployed onto the tiers based on matching resources to

increase the operational performance (Meier et al. 2008). However, the increase in tiers and

component distribution on tiers can reduce the performance, increase the operational cost and

complexity. Serious consideration should be taken in choosing the communication paths,

protocols and states between the tiers, i.e. Stateless or state-full (Hill, 2009).

A Decentralised Semantic Architecture for Social Networking Platforms

48

Figure 2-9: Layered Architecture (Generic), from Hill, (2009)

Figure 2-9 is an example of layered architecture. According to (Hill, 2009) layered design can

help you to decompose a complex system design into a logical grouping of software

components. Layered architecture helps you to differentiate between the different type of tasks

that will be performed by different components of the systems, make it easier to create a

design and increase the reusability of the components.

Yeung et al. (2008) and Hendler and Berners-Lee, (2010) work on the social web and

decentralisation is fundamental and used to define the very basic structure of social web

architecture as shown in Figure 2-13. The architecture consists of 3 main components Client,

Server and external APIs. Each component is attached to other components, according to a

specific rule.

The social web architecture above complies with the software architecture principles proposed

in Perry and wolf (1992), Garlan and Shaw, (1994), Kruchen, (1995), Celment et al. (2003)

Bass et al. (2011). Based on Bass et al. (2011) the above structure is a structured set of

elements bind together in certain rules. The architecture shown in figure 2-10 is a conceptual

A Decentralised Semantic Architecture for Social Networking Platforms

49

architecture of the social web and the first step towards much complex architecture proposed

discussed later in this research.

Figure 2-10: An example of Social web architecture with its basic components taken from
(Yeung et al. 2008) and modified

The above research can be helpful to form an opinion that, the social web architecture needs

standardisation of components in the same way as the architecture of the WWW, because of

the changing requirements and new technologies. The work of Laine et al. (2011), Bejar et al.

(2009), Brambilla et al. (2006), Langegger et al. (2005), Tiwana and Bush, (2001) on web

architectures is either platform specific or done under certain criteria that reduce the chance

of the artefact produced in that work, to be used independently.

The work of W3 Technical Architecture Group of WWW proposed an architecture of the web.

The purpose was to standardise the essential elements needed to build architecture for

modern web applications (W3C, 2004). W3 architecture describes basic needs and concepts

but does not provide a solution to integrate modern technologies to produce complex web

systems. The recommendations made by the research community to W3 for improvements,

A Decentralised Semantic Architecture for Social Networking Platforms

50

opened up new possibilities, leading to the recognition of Semantic Web also known as Web

3.0 or Open Web. Figure 2-11 Demonstrate how the future of the web will look like.

Figure 2-11: WWW and Semantic Web (W3C, 2013)

The understanding of the key functions of the Web architecture’s components and their

contribution towards the design of social web architecture is key for finding the relevance

between software and social web architecture. The findings of this study will help towards the

design of the main artefact. The next section extends the research to semantic enhancements

of social web architecture.

A Decentralised Semantic Architecture for Social Networking Platforms

51

2.5. The Decentralisation Problem Scenario

In the light of above discussion and to make the vision of this research on social networks

more explicit, a scenario has been described to shed light on the problem. The argument is

made on the usability of various social network functions across different SNP. The SWAT v1

(W3.org, 2015) is adopted as a standardised scenario. SWATv1 is described in various

dimensions of the decentralised social web such as data portability, which is used to test the

data portability between DSNPs.

Alice has a profile on SN1 (or server 1) and she manages another profile for photo sharing at

SN2, as it provides better multimedia functionalities. Her friends Bob and Tony uses SN3 and

want to share their photos with Alice. To do so they must join each other’s networks. Their

data is stored on a centralised platform and restricted. Because of restrictions posed by the

service providers, it is not possible to interpret the data across different networks.

In the decentralised social networking platform, according to SWATv1, Alice should be able to

send a message to Tony, and Bob and they should be able to reply back.

In the context of this scenario, there are various opinions in the literature and in open sourced

community, to understand and solve this problem. In order to gain insight knowledge, the

section explains how various methods and technologies are used to solve the problems in

decentralising the SNPs.

In the following sections, the term peer(s) and node(s) are used as a synonym to the user(s)

or client(s) and the term social web and social web platform when unqualified is a synonym to

the social network and social networking platform.

2.6. Distributed and Decentralised Social Web Architecture

Despite the issues of communication and data portability, another issue decentralised

architecture faces is research related that includes the uncertainty and confusion about,

whether the decentralised architecture is a distributed architecture or not and if not then how

to describe it. In Berners Lee, (2009) view decentralised social networks are the application of

semantic web. Tramp et al. (2012), proposed distributed social network architecture based on

three basic principles, linked data (for data publishing), service decoupling (enable users to

able chose between different services), and protocol minimalism (enable RDF to triple to

communicate between different nodes of social network).

A Decentralised Semantic Architecture for Social Networking Platforms

52

The term distributed social networks is frequently but incorrectly used to describe all the

decentralised social network (Narayanan et al. 2012).

In literature, social network architectures are described in four categories, federated (still

experimental, an ecosystem of interoperable implementations in the client server mode)

distributed (peer to peer), decentralised and centralised architecture. The research done in

the different areas of the decentralised social network is mainly specific to certain aspects of

social network and lacks in the generalisation of requirements that are required to design an

architecture. That is why there was a need to illustrate general requirements for the

decentralised social network as described in the above scenario.

There is a common consensus (Chowdhury et al. 2015), (Famulari and Hecker, 2013)

(Buchegger et al. 2009) and (Datta et al. 2010) that current social network structure is highly

distributed having central authority (server) but they are not decentralised (Maurer and

Labitzke, 2014).

Therefore, this raises an important question that is when to call a social network architecture

a decentralised architecture and which rules, standards, and principles a social network

architecture must adhere and adapt.

To answer this question, in the next section an attempt is made to differentiate software and

system architecture briefly because distributed, decentralised or centralised are considered

as architecture structural decision (Bass et al. 2011) which must be made before the actual

design of the software or system architecture.

Federated Distributed

P2P

Centralised Decentralised

Social Network

Architecture

Figure 2-12: Types of Social network architectures

A Decentralised Semantic Architecture for Social Networking Platforms

53

As defined in section 2 of this chapter and in short, software architecture is the fundamental

organisation of system components, their relationships, and interaction, with the objective to

understands and improve complex application structures (García-Castro et al. 2008).

Whereas, system architecture describes the mapping of software architecture components on

to the machines (Traz, 1994). The system architecture is divided into four main types,

centralised, decentralised, distributed and hybrid, recently federated architecture term is also

introduced not in the scope of this chapter.

Centralised architecture, traditionally client server architectures (explained in section 2), in

which architecture is divided into two logical division client and server. Figure 2-14 show how

different (node or peer) communicated with the server in the centralised structure.

For example, In the given below figure user Alice and Tony are connected to a centralised

social network SN1 and in the same way, they are connected to SN2 to communicate with

their other friend Bob. In the centralised SN, the data is proprietary and is not shared with

another SN, therefore it is not possible for Alice, Tony, and Bob to communicate with each

other.

Figure 2-14: Centralised architecture example

System Architecture

Decentralised Centralised
Distributed Hybrid

Figure 2-13: Types of system architecture

A Decentralised Semantic Architecture for Social Networking Platforms

54

2.6.1. Decentralised Network Architecture

To establish the consensus on concepts of the decentralised and distributed architecture, it is

important to shed some light on their grounding principles and distinguish between them. In

the distributed network system, nodes are located on networked computers communicate and

coordinate with each other by passing message in order to achieve common goals. The main

purpose distributed network architecture is to describe and define the components their

interactions, relationship and deployment (Coulouris et al. 2011).

Figure 2-15: Distributed Network Architecture example

In the context of social networking, distributed mean processing of information is shared

across the multiple nodes but the decision making may still be centralised. According to Han

et al. (2011), a distributed social network does not have a central server but connected peers

(nodes) acting as servers. Each peer has its own read or writes data access permissions as

authorised by the central server. Peers may be open to communicate and share data with

other peers, but the decision is very likely to be made on the central servers and may be

connected as well, shown in the above figure 2-15.

For instance, in figure 2-16, SN1 and SN2 are connected through the third-party medium or

service (which can be an application). This allows Alice, Tony, and Bob to communicate and

share information with each other. At the architecture level, SN1 and SN2 are independent

servers but connected nodes or users are made to share information. The next main concern

about distributed network architecture is how the user data is stored. In distributed network

architecture, data related components are spread physically across multiple locations and are

connected to a single logical storage by a communication link.

A Decentralised Semantic Architecture for Social Networking Platforms

55

In Han et al. (2011), they implemented similar concepts and attempted to extend the

distributed social networks data access related functions. They proposed a flexible distributed

storage to allow users to organise their personal contents at the place of their choices like

cloud storage or personal device. Similar personal data storage projects include the

LockerProject (Miller and Smith, 2010) and Owncloud (owncloud,org), BuddyCloud

(buddycloud.com), and all of them provide some degree of easy to create personal cloud

storage.

Indeed, the distributed networking-based platforms have their own benefits, related to data

access and management, mentioned in (Coulouris et al. 2011). But the social platforms

designed and developed so far are either insufficiently schema agnostic to be an application

platform (as in Diaspora) or seemed not to address the need concerning sharing, that is

pertaining to keeping the subscribers notified of changes. Similarly, access control

functionalities provided in these platforms are also done in ad-hoc nonstandard complaint

ways (Smith et al. 2012).

McLeod and Heimbigner, (1980) differentiated between distributed and decentralised

database systems. They described decentralisation in the context of databases and according

to them, decentralisation is a logical combination of components having their own logical and

conceptual schema. These components are related but independent and they may or may not

be disjoint. The figure 2-16 shows, how different peers (nodes) are connected to each other

in a decentralised network environment. There is no server to server contact, each node can

have connection to multiple servers.

According to the scenario, Alice is connected to SN1 and wish to communicate with her

friends, irrespective of which SN they belong to. In the example decentralised SN shown in

figure 2-19, Alice can communicate with any SN by fulfilling their requirements. The given

depiction of DSN is only to show how DSN should work according to the above-mentioned

scenario.

A Decentralised Semantic Architecture for Social Networking Platforms

56

Figure 2-16: Decentralised network architecture

Currently, decentralised architectures are described in the context of author’s perspective in

the selected research and involved principles. In the current context, the opinion adopted on

the conceptual description of decentralised network architecture is based on, how

decentralisation is explained in computer networks and decentralised database related studies

as earlier mentioned.

To sum up, a decentralised architecture or decentralised network architecture is a collection

of entities called peers or nodes that interact with each other without the presence of a trusted

central control authority. Each peer work towards achieving its individual goal (Suryanarayan

et al. 2005). Therefore, there is no single point where the decisions are made. Every peer

makes decisions for or towards their own behaviour. The next section describes the

decentralised network architecture in the context of social networking.

2.6.2. Decentralised Social Network Architecture

The research in the decentralised social networks is mainly in the areas of security, privacy,

and trust related issues. The research on these issues has described the decentralisation

within these contexts. For example, Suryanarayana et al. (2005) explained decentralised

architecture in context to trust enablement, between different peers in decentralised

applications. Similarly, Seong et al. (2010) presented a decentralised social networking

architecture which is security and privacy centric. The fundamental function of the

decentralised architecture is to provide an open environment to different applications to

interact with each other.

A Decentralised Semantic Architecture for Social Networking Platforms

57

In open decentralised architecture, there is no authority preventing the addition of peers.

Therefore, each decentralised peer is responsible for the task of determining the validity of

information received from other peers. This local autonomous determination is the defining

principle of open decentralised architectures (Suryanarayana et al. 2005, Khare and Taylor

2004).

Problems with the decentralised peer to peer applications are discussed in (Suryanarayana

and Taylor, 2004) and (Suryanarayana et al. 2005), in which they emphasized on the

placement of central authority that can coordinate the behaviour of different peers within the

application. But the purpose of the decentralisation prevents the existence such central peer

or authority in the architecture. Therefore, to solve this issue they introduced trust layer in the

decentralised architecture. The purpose of this layer is to add trust component on each side

of peers with the aim to handle all the information related queries including seeking, sharing

and storing information. Hence in their view, it is essential that decentralised architecture-

based applications must enable efficient storage and a reliable search mechanism for them.

The research literature is quite vague on decentralised social network architectures and limited

to few architectural perspectives such as peer to peer. To define the DSNA and describe its

structure, the effort was to differentiate between decentralisation and distributed architectures.

Therefore, the above presented research shows the evidence that structurally, distributed

(peer to peer) and decentralised architecture are different.

Berners Lee, (2009) view on the social network decentralisation which is mainly adopted by

the research community, in which he described decentralisation as an implementation of

semantic web and open standards into the social networks. However, in his paper he has

illustrated components (mainly mixture of open and semantic web standards) of the

architecture needed to decentralise the social networks but unable to give generalise

description of decentralised social network architecture which is made up of the component

he illustrated. Similar lacks are shown in (Chowdhury et al. 2015) and (Seong et al. 2010), as

they described existing research efforts such as (Famulari and Hecker, 2013), (Buchegger et

al. 2009), and (Datta et al. 2010) and in their opinion, the decentralisation offered by these

systems is based on peer to peer architecture, therefore decentralised architecture and peer

to peer architecture is equivalent.

To describe decentralised architecture in the context of social networks, McLeod and

Heimbigner, (1980) provides conceptual ground that is, a decentralised architecture is a logical

combination of components having their own logical and conceptual schema. These

components are related but independent. Suryanarayana et al. (2005) defined decentralised

A Decentralised Semantic Architecture for Social Networking Platforms

58

network architecture in a context when two different application need to communicate in a

decentralised way. These different applications are mentioned as entities that are also called

peers, nodes or users. In this regard, decentralised network architecture is a collection of these

peers that interact with each other without the presence of central authority and each peer is

responsible for its own behaviours. Based on these aspects, a decentralised architecture is

divided into two layers of abstraction, external architecture and internal architecture. The

external facilitates the interaction between peers by describing the topological arrangement of

peers and basic network infrastructure. The internal layer is responsible for describing the

behaviour of the peers towards achieving their goals.

From the above discussion, it is plausible to conclude that the definition of decentralised social

network architecture depends on how the components associated to, the role of the peers,

nodes or users, the interactions between peers, nodes or users and the rules to relate those

components are defined. As mentioned in chapter 1 section 1.1, a social web network is a

combination of social structures made by set of actors and complex set of relationship between

these actors (Wasserman and Faust, 1994). With all that is said, a decentralised social

network architecture must be able enable description of components that are associated to

the nodes role and interactions.

Within the context of this research, a decentralised social network architecture (DSNA) can

be define as an architecture that embodies internal (i.e. the components responsible for

internal functions of the social networking platform) and external (i.e. the components

responsible for the external functions of the social networking platform such as

communication) components, composed within the constraints and rules illustrated in

architectural (DSNA) style (See DSNA Style in chapter 4 for details).

2.7. Drawbacks in the Existing Social networking Platforms

Since the focus of this research is on the functional design of the SNPs. Therefore, the

drawbacks of the existing social networking platforms functionalities should derive the need of

decentralisation to their structure.

2.7.1. Breach of trust

Unwanted information disclosure caused by the functionalities that allow third party

applications to use user personal information. These applications are facilitated by the SNSPs

to enhance the user experience and given full control over the user information. This exchange

of information is explained in term of service document. In reality, only few users understand

the meaning of this data exchange. In the architecturally decentralised SNP users have more

A Decentralised Semantic Architecture for Social Networking Platforms

59

options in term of which information should they share with other and where it will be stored,

thus avoiding the breach of turst problem.

2.7.2. SNP Business Model

Another major drawback of existing SNPs is their advertisement centric approach. Due to that

reason they lock user’s data and exploits their personal information for targeted ads and other

marketing purposes. Because of the network controls, it is not hard to envision a situation

where information of very large part of the population can end up in the hand of an individual

or a group. Considering the obvious privacy concerns this will ultimately harm the end user.

The business model of the social network service providers (SNSPs) is centred around the

ads and users, and not much changes are made to improve the access to information for

users. Recently, there was data breach in the Facebook services. A large amount of Facebook

user’s personal information, which meant to be used for data mining was used for other

purposes without the consent of the users (Kayes and Lamnitchi, 2017).

The drawbacks in the design and model of the existing SNPs needs system of principles and

guidelines to solve the issues related to the user security and privacy, data, and its usage.

The drawbacks of the existing SNPs are very well documented in (Seong et al. 2010) (Paul et

al. 2012)(Zhong and Sastry, 2017) (Bahri et al. 2018) and propose various solutions, among

them decentralisation of the SNPs is commonly discussed. However, their debate is mainly

restricted around the concepts of distributed data storages, peer to peer structures and dealing

with security and privacy of the user data.

Halpin and Tuffield, (2010), sum up the drawbacks in two main categories, walled garden, and

Centralisation. These two main categories are used to further identify the problems in the

SNPs, also how the need of decentralisation reflects on solving the main issues.

2.7.3. Walled Garden

The open and distributed nature of the web as universal space of information and knowledge

collaboration have always been a key to its success. Until recently, the phenomenon of the

social web has created a problem known as Walled Garden. The problem is caused by

restrictions posed on the access and manipulation of user personal data via proprietary

interfaces, so creating a "wall" around connections and personal data (Yeung et al. 2008), as

illustrated in figure 2-17.

A Decentralised Semantic Architecture for Social Networking Platforms

60

The best known social networking sites such as Facebook, MySpace, Twitter and etc, have

restricted themselves to relationships between the people on one site, the social web should

be extended to the entire web. For example, people can call each other no matter what service

provider they are using, same as people can send a message to each other using email

irrespective of their service provider. The social web should allow people to create a network

of relationships across the entire web by giving people access to their data and privacy (Halpin

and Tuffield, 2010; Hu and Lau, 2013). This issue can be solved using a truly open and

decentralised architecture for the social web platform is required

Figure 2-17: Depiction of Walled Garden by Yeung et al. (2008)

2.7.4. Centralisation

Traditionally social web networks are based on centralised architecture, making the

companies providing these services sole owner of user’s data. Due to this reason data stored

on these websites is not accessible to another site, and users are not allowed to reuse their

own data on other similar sites, thus forming data silos, an isolated island of data (Yeung et

al. 2008). Each social application has its own data not knowing of the relevant data available

on the other applications and platforms, exposing the lack of interoperability between the

applications and services they provide. Similarly, due to these restrictions, ordinary users are

unable to have the ownership of their own data and therefore cannot reuse their data and

profile information on the other social network platforms (Tandukar and Vassileva, 2012).

The above-mentioned issues in social web architectures affect the user experience and cause

the following problems, shown in the table 2-3, such as data Portability or interoperability, User

Identity and profile reusability, Linkability and privacy of user data (Halpin and Tuffield, 2010).

A Decentralised Semantic Architecture for Social Networking Platforms

61

Problems Description

Data Portability

The user cannot access their data and share it as they like

(they have limited options). Information available on the

social websites can be accessible to other applications but

current limitations and restrictions hinder the usability share

their information across the different social web.

User Identity and

Profile Usability

When user goes to a new site, they have to recreate the

profile and all profile information and entice the friend

again

Link-ability

There is no way of being notified for users if they are

mentioned in any other social web, they are not a member

of. There are restrictions that do not allow the users to

create and distribute links between different social web

platforms.

User security and privacy

Because existing social web platform are centralised that

is why user access to their data is limited, which raise

security and privacy concerns. For example, the user

cannot control the way their information is viewed using

various social web applications.

Table 2-3: Main problems in current social web platforms (Halpin and Tuffield, 2010)

2.8. Decentralisation in the Social Network Platforms

Developers are already using semantic web technologies to enhance the ability of the social

websites to link, create and reuse content. According to Berners Lee, (2007), online

communities can serve as a rich data source for semantic web technologies, and this linked

up data can enhance the view of individual or community across social web platforms.

There are many proposal and implementation in the field of social network data portability at

industrial, developer and academic research levels. They all address some issues associated

with current social web platforms, e.g. identity management, content management etc.

However, few of them managed to jump start and only a few of them grown to millions. There

are different aspects of portability problem between the social web platforms. For example,

according to Ballester et al. (2010) solving security and privacy problem can help to achieve

total or partial data portability.

Ballester et al. (2010), presented semantically enabled security architecture using

decentralised approach. The proposed semantic interoperability and access control layer

(SIAC) is intended to make applications independent from data, privacy policies and empower

A Decentralised Semantic Architecture for Social Networking Platforms

62

users to take control of their own personal information. This approach attempts to give users

an ability to define their own access control rules. Their suggested architecture will be able to

collect information distributed all over the social networks, using Semantically-Interlinked

Online Communities (SIOC), (Breslin et al. 2005 and SIOC-Project, 2015) to aggregate

information and FOAF (Foaf-Project.org, 2013) vocabulary to describe user information,

allowing users to have one global version of their information. In their research, much of the

focus is on the security of user’s data, not on the organisation of knowledge gathered from

different resources, such as blogs, message boards, online discussion and mail posting.

The technologies mentioned in Ballester et al. (2010) research can provide services for social

networks independently like FOAF provide profile portability by semantically describing user

information using RDF graphs and SIOC to aggregate user information from distributed

resources. The combination of security rules and access control layers embedded with

semantic technologies are also suggested by Sloni, and Sharma, (2011) and Seong et al.

(2010).

However, the work of Seong et al. (2010) is unique in a way as they used Personal Cloud

Butlers (PCB) as decentralised data storage to index user personal data. Personal cloud butler

is a program that manages user personal could of information on his or her behalf (Song et al.

2010). Berners-Lee, (2009), presented socially aware cloud storage for user personal data,

which is conceptually similar to cloud butlers, but the elements of implementation are different.

According to Breslin and Decker, (2007), Sintek et al. (2009) and Cena et al. (2013) there is

not a single consistent, standardised approach or method available to allow two different social

web networks to interoperate and enable complete system-wide data exchange.

For example, Internet Mail (also known as Email) architecture is appeared to be only

standardised architecture available that can be used to enable user communication between

different websites using messaging protocols. As compared to the Internet Mail, there is no

seamless way of communication between two different social web networks (Sintek et al.

2009).

Each Social network stores user information differently. If the user is interested in using the

services offered by other than the site he is registered, then he may have to register again. As

a result, user may be registered on several social networks, causing data to be scattered,

duplicated and disorganised (Ballester et al. 2010).

 If it is possible to represent information in a common language or standards like email, then

social networks may be able to interoperate. From this perspective Email or SMS can provide

A Decentralised Semantic Architecture for Social Networking Platforms

63

guiding principles for the development of an architecture for data portability (Hu and Lau,

2013). Given below table provide four parameters to transfer message within social networks.

The link can be static or dynamically created on the initiation of interaction between the users.

The message or the communication is either unidirectional (one-sided) or bidirectional (two-

sided). Accessibility is, how the message will be displayed or viewed. Verification is about the

authentication of the message and sender. In table 2-4, the parameters that can be attached

to the social message have been listed.

 Parameters Values

Links Static, Dynamic

Direction Unidirectional or Bidirectional

Accessibility Read, Write

Verification Authorisation, Authentication

Table 2-4: Parameters for social network messaging service (Hu and Lau, 2013)

2.8.1. List of standards and Protocols

The decentralisation of the social web is standardised at identity, profile, privacy and activity

levels. The main assumption is that all these frameworks, protocols and standards should be

working together seamlessly in an architecture of the federated social network.

Federated social network aimed at creating an ecosystem of standards-based interoperable

implementations of social networks. For example, Diaspora is a hybrid social network that

means a combination of both distributed and federated, OStatus, being coordinated by W3C,

uses existing protocol for microblogging, rather developing them from scratch, which is a

positive side (Narayanan et al. 2012).

The use of so many protocols and standards to solve social network problems is one of the

flaws decentralised social network has, which not only complicate the development but also

affects the friendliness of user interface. Table 2-5 below, highlights the list of protocols and

various standards that are the part of decentralisation initiative in social network platforms to

achieve portability.

A Decentralised Semantic Architecture for Social Networking Platforms

64

Identity Profile Privacy Activity

OAuth (Server Side)

Purpose: Token-based

Authentication protocol

Status (Stable)

XRD or YADIS (XML

and RDS)

Purpose: Portable

Contact Information

Status (Ongoing Work)

P3P (Platform for Privacy

Preferences)

Purpose: Expressing Privacy

via machine-readable languages

Status: Some features

Implemented in IE and FireFox

later discontinued.

(Too complex and unstable)

XMPP (Extensible Messaging and

Presence Protocol) or Jabber

Purpose: Initially developed as

messaging services now can be used

for passing XML message or data

between machines

Status: Stable, widely used by

Google GTalk and open source

messaging projects

OpenID (Server Side)

Purpose: Centralised

Authentication

Status: Stable

VCard or VCARD 3

Purpose: Portable

contacts (Mail

Programs)

Status (Stable)

POWDER (Protocol for Web

Description Resources)

Purpose: Privacy Description

Describing group URIs and

linking them to XML and RDF.

Status: (Discontinued, failed to

describe single URI)

Pubsubhubbub (Publisher

subscriber hub)

Purpose: (Provide push request

architecture over Pull based HTTP

web architecture) used with ATOM to

provide feeds and status updates

Status: Stable with ongoing work

deployed in STATUSNET and

DIASPORA projects

WebID or FOAF+SSL

(Client Side)

Purpose:

Decentralised

authentication

Status (Stable)

FOAF (XML, RDF, URI)

Purpose: Describe

social network user

information (support

Decentralise

applications)

Status (Stable)

AIR (AMORD in RDF)

Purpose: Policy description

language

Status (Stable but with only

RDF data) No practical

implementation

ActivityStreams

Purpose: List the activities

performed by the user. With Atom

serialisation, the goal is to make

functions like Status Updates cross

platform.

Status: Stable with ongoing work

(JSON Serialisation) widely deployed

in Facebook, Google and the BBC

InfoCard (Client Side)

Purpose: Identity

Authentication and

storage

Status: (Ongoing Work)

PortableContacts

(VCAD4XML, XML and

RDF Support)

(VCard 3.0 extension,

OAuth integration)

Purpose: Profile

Provider, Rich in

attributes

Status (Stable)

XACML (eXtensible Access

Control Markup Language)

Purpose: Express access

control rules in machine-

readable format

Status: (Stable with ongoing

research on extending it to

control privacy on social web)

OStatus:

Purpose: Manage user status

updates in the open social web. It

works in conjunction with other

activity standards as mentioned

above.

Status: (Stable with ongoing

research) HTTP based meta-

architecture to provide Activity

based functionalities in social web

applications

XAuth

Server Side

Purpose:

Identity Connect

Protocol

Status: (Ongoing Work)

OpenSocial

JavaScript APIs

Purpose: Get access to

Profile data using Open

Authentication Protocols

Status (Stable)

RIF (Rule Interchange Format)

Purpose: Exchange rules

languages between different rule

engine

Status (stable but not practically

mature, limited to research

projects)

 ORDL (Open Digital Rights

Language)

Purpose: Express policy in

machine-readable format (XML,

RDF)

ORDL 2, additional functions of

access control and permission

control and privacy control.

Status: (Stable, Used in

OneSocialWeb Project for

policy, privacy and control

description) Ongoing work on its

binding with XMPP

Table 2-5: List of open standards used for social web applications decentralisation

A Decentralised Semantic Architecture for Social Networking Platforms

65

2.8.2. Decentralised Social Networking Projects

In recent years, a lot of work undertaken towards making decentralised social networking real.

The projects listed below meet W3 FSW standards, are implemented in various forms and have

major followings. Decentralise Social Networking Project are divided into three main

approaches, web server hosting, federated server approach and distributed server or nodes

approach (P2P).

Projects Status Protocols Features Privacy
Supports

Approach

StatusNet Work in
progress

OStatus, OpenID,
 FOAF

Microblogging None Web server
hosting

OwnCloud Work in
progress

WebDAV, Open
Collaboration
Services,
Distributed
Repositories

Photos, Media
sharing, RSS

Yes Web server
hosting

GNU social Work in
progress

Status, StatusNet,
Mysql and PHP

Microblogging None Web server
hosting

OneSocialWeb Beta version,
work in progress

XMPP Microblogging,
Profile

Yes Federated

Higgin's
Project

Inactive, work in
progress

RDF, OWL,
Personal Data
Store

Social
Networking

Yes Federated

Diaspora Stable with work
in progress
started in 2014

OAuth, OpenID,
Ruby

Social
Networking

Yes Federated +
distributed
nodes

Disco Project Under
Development

OpenID, OAuth Microblogging None Web server
hosting

SMOB Work in
progress

FOAF, SOIC Microblogging None Web server
hosting

Google Wave Work in
progress

XMPP Messaging,
Microblogging

Yes Federated

FriendIka Work in
progress

Atom,
Pubsubhubbub,
Salmon,
ActivityStream,
OpenID

Social
Networking

Yes Federated

Elgg Work in
progress

FOAF,
Pubsubhubbub,
REST API, RDF,
ActivityStream

Profile,
Microblogging,
Stream

Yes Federated

Table 2-6: Decentralised Social Networking Projects

The table 2-6 highlights some important features and projects related to social network

architecture. The mentioned solutions to solve SNPs aforementioned problems are a complex,

mixture of many standards, protocols and lacks in too many successful implementations. In the

literature, there are various viewpoints available regarding the complexity of decentralised SNP.

A Decentralised Semantic Architecture for Social Networking Platforms

66

For example, according to Hu and Lau, (2013), building a decentralised platform from scratch

is unwise, instead, they proposed a network of all social network a Meta Social Network. To

achieve this, cross-platform middleware is proposed to unify interfaces and data structure at the

services level.

2.9. Social Network Platform Decentralisation Initiatives

The social network connects service (SNCS), use architecturally decentralised form of platform

to provide identity authentication services to the user. Major social networking sites are

providing third party websites connection services such as Facebook Platform, Google Friends

Connect and MySpaceID using various kinds of open standards. These services allow third-

party sites to build applications or (APIs) to extend social network access to their users without

building their own social network.

For example, a third-party website can utilise the authentication services provided by social

networking website to draw the attention of the users using that social networking site and the

users can avoid creating more login and profile; instead, users can draw some bits of basic

information of their social network profile to the third-party website.

Ko et al. (2010) and Tapiador et al. (2012), analysed SNCS services and done a comparison

between different connect services. Google has a decentralised platform for social connect

services, which can provide users with more customisation options regarding the handling of

their data and profile, whereas Facebook and Myspace use their own platform and proprietary

interface for data handling. In their opinion, a decentralised platform such as Google Friends

Connect can enhance the user’s experience, but it increases the administration cost of data

handling as compared to Facebook, which uses centralised platform.

The decentralisation of the social web is standardised at identity, profile, privacy and activity

levels. The main assumption is that all these frameworks, protocols and standards should be

working together seamlessly in an architecture of the federated social network.

Federated social network aimed at creating an ecosystem of standards-based interoperable

implementations of social networks. For example, Diaspora is a hybrid social network that

means a combination of both distributed and federated, OStatus, being coordinated by W3C,

uses existing protocol for microblogging, rather developing them from scratch, which is a

positive side (Narayanan et al. 2012).

A Decentralised Semantic Architecture for Social Networking Platforms

67

The use of so many protocols and standards to solve social network problems is one of the

flaws decentralised social network has, which not only complicate the development but also

affects the friendliness of user interface. Table 2-6 above, highlights the list of protocols and

various standards that are the part of decentralisation initiative in social network platforms to

achieve portability.

2.9.1. Distributed Networking Initiatives

The decentralisation of the social web demands standardised means of exposure of social data

to structured data web. Basically, Implementation of decentralised architecture is an application

of semantic web and it relies on semantic web technologies and protocols (Berners Lee, 2009).

The groundwork to build a decentralised social network is available to certain level. There are

certain projects developed that grown to millions, such as Diaspora, (Diasporafoundation, 2013)

is an open source project based on distributed social networking, instead of having a centralised

server they used PUBSUBHUB mechanism to allow the user to host their profile to a POD while

networking. POD is like an independent space on an independent server. It allows publishing

of your profile feeds through “ActivityStream” (Snell et al. 2011) and import or export your profile

data. However, it does not have the notion how to deal with profile data scattered on different

PODs. For example, someone steals your data and you do not know from where he got your

data as POD send your data to servers you do not know without your consent. In the case of

The Facebook or Myspace, you know the operator.

Figure 2-18: Distributed Host-based Decentralisation (an example) adopted and modified (Tandukar and

Vassileva, (2012)

The rest of this section discusses details regarding the relevant efforts that are underway in

open source community as well as novel platforms and architectures.

A Decentralised Semantic Architecture for Social Networking Platforms

68

2.9.2. Open Sourced Initiatives

FOAF is a machine-readable ontology describes person’s activities, their relations to other

people and objects. The FOAF project, which defines the FOAF vocabulary, is considered as

one of the first open standards for a social semantic application that constitutes of RDF

technology with social web concerns (Brickley and Millers, 2007). Foaf-O-Matic is a first

application that creates FOAF profile, enabling users to describe themselves using FOAF

(Foafproject, 2013) properties and generating RDF based FOAF profile.

The main drawback of this application is the fact that it does not support the editing of the

profile. Thus, to modify the profile one has to recreate from scratch or edit the RDF file. Bojars

et al. (2008), presented the improved version of FOAF by adding more detailed about

describing social network using SIOC ontologies. The following code snippet is an example of

FOAF profile.

Figure 2-19: FOAF Profile Example

Bojars et al. (2008) does provide the solution to reusability but does not provide any solution

for how different profile should share the same URI to identify the same person.

In figure 2-20, a FOAF-based decentralised social network system architecture is illustrated.

The proposed system allows users to manage their information on a trusted server (as shown

in the figure, there are 2 trusted servers A and B) relying on some access controls policies to

enable social network applications to use their information from FOAF for social network

activity. A user manages data by themselves and central access point manages for social

network applications, are some key points of their architecture (Yeung et al. 2008).

A Decentralised Semantic Architecture for Social Networking Platforms

69

On the weak side, trusted server information repository can affect the reliability of social

network services. Whenever there is a change in application user has to update the

information repository in order to enable access to new services. According to Bortoli,

Palpanas and Bouquet, (2011) opinion user should have the ownership of their data but the

social network service providers should keep attending the privacy issues to provide better

services to the users.

Figure 2-20: A framework of decentralised online social networking (Yeung et al. 2008)

2.10. Existing Versions of Decentralised Social Networking Architecture

Decentralised social network platforms are the application of semantic web, which not just

about putting data on the web but also about making links so that people or machine can

explore the web of data (Berners Lee, 2009). Decentralised architectures are distributed

structures with trusted network of servers to provide a safe haven (Tandukar and Vassileva,

2012). These notions are the basic principles of social network decentralisation to achieve

data portability.

Seong et al. (2010) presented an architecture for a decentralised social networks platform that

has relevance to this research. Their proposed platform allows the user to retain control over

their data by using distributed, decentralised storage, handled by butlers (explained in 2-4).

Open APIs are used to access distributed data, which has integration with the access control

APIs to avoid personal information disclosure. OpenID and certificate authority are used foster

A Decentralised Semantic Architecture for Social Networking Platforms

70

trusted communication and query propagation across the distributed personal data. The data

is stored in RDF triple and ontologies are used to describe the system and user resources.

According to Yeung et al. (2008), a platform that allows users to share and communicate social

data with other users. A prototype data browser “Tabulator” (Berners Lee, 2008) and linked

data (RDF) editor is developed as an interface to provide a mechanism for user interaction.

These types of platforms encourage users to store their data on the web in open standard

formats such as OpenID, RDF and it should be accessible through URI. Therefore, users can

use any social application that supports these open standards to access their profile and its

data.

In the figure 2-22 platform, users are hosting their social data in an independent storage.

Another perspective on decentralised platforms is the use of P2P architecture. In P2P,

architecture data is stored at the peers and the availability of social data depends on the online

behaviour of peers. However, this approach lacks in standards and stable solutions for user

social data propagation and dissemination between the peers.

Cutillo et al, (2011), presented Safebook, a platform based on 3-tier architecture for online

social networking platform, having focus on security and privacy. The first-tier handles data,

storage, user relationship, content, and communication privacy. The middle tier is P2P overlay

provides the application services, for example, look up services. The top tier consists of

internet, transportation, and communication services. Social networking tier is core of the

Safebook architecture. The users are connected in circles called logical rings. The innermost

ring handles the relationship and trust between the friends. The outermost handles the

requests for accessing the data and pass them to the inner rings. The safebook is an

interesting concept but still to be implemented in any SNP.

A Decentralised Semantic Architecture for Social Networking Platforms

71

Figure 2-21: Safebook architecture (Cutillo et al. 2009)

According to Tandukar and Vassileva, (2012), if the user stores their data on the web in a

standard format like RDF which can be accessed through URI attached to an independent

interface, will give the user more accessibility of their data. The architecture they sketched

down, gives the users the access, to host their data to their trusted hosts. A machine can host

data of more than one user, but its accessibility is control through applications and by the

users. As shown in figure 2-22, the system is a multi-agent system where agents are

distributed on different machines. Each agent is a web application having its own database to

store social data and accessible through URI. One machine can have more than one agent

and can connect to each other in their respective social graph (Tandukar and Vassileva, 2012).

Figure 2-22: P2P based Decentralisation (Tandukar and Vassileva, 2012)

A Decentralised Semantic Architecture for Social Networking Platforms

72

Berners Lee, (2009) and Bortoli et al. (2011) proposed decentralised social network

architectures. At the centre of it are the same open standards such OpenID, WebID,

distributed independent storage, but Berners Lee, (2009) separated the user access data and

social data. There are many open web data initiatives, and some have been standardised

shown in below table 2-7. Federated social network is one of the long awaiting outcome of

these standards. A global social network based on decentralised architecture and open

standards, where all centralised social networks can combine to give user data portability and

data ownership, that is one global version.

Indeed, there are some commonalities in above-mentioned research, which leads to open

standards such as OpenID, WebID, and distributed repository for semantic data that can be

queried using SPARQL. Based on the comprehensive analysis, main decentralised

architectural components are listed as follow.

Architectural Components Details

WebID Originally Known as FOAF+SSL is a single sign on system
which binds the user to its URI in the web. OpenID anther single
sign on system that can also be used.

URI URIs are used as names for users, groups and documents on
the web.

RDF Ontology Such as FOAF can be used to allow URI of people to be looked
up and return from the group of people.

Access Control Ontology A simple ontology of terms that allows the access control

WebDav Gives tools for creating, updating and rewriting data files.

SPARQL The query language is used to making changes to the data
repository.

Table 2-7: Architectural Components of decentralised social network platform (Berners Lee,

2009)

A Decentralised Semantic Architecture for Social Networking Platforms

73

Figure 2-23: Basic Decentralised social network architecture based on existing research

The Decentralised architecture shown in figure 2-23 is a result of Berners Lee, (2008), Bortoli,

et al. (2011) and Halpin and Tuffield, (2010), (See Table 2-6) work and above described

standards and protocols. The general trend to develop a decentralised social platform is by

adding a federation layer, which is a middleware (Open Standard Middleware) structure

composed of open standards on top of the social network platform, with the aim to provide a

structure of technologies to enable portability between social networks.

Instead of taking a global approach, using standards and protocol that are underdeveloped,

current research attempts to undertake bottom-up approach that is from functional level to

federation level. For example, enabling portability between the social network’s functions, which

can be extended based on user needs. The notion of using functional approach is based on

results of the research taken in the field of social and computer sciences.

A Decentralised Semantic Architecture for Social Networking Platforms

74

2.11. Drawbacks of Decentralisation in the Social Network

With all the advantages, decentralised architecture for social networking has some

underappreciated drawback. Not all the drawbacks apply to the architecture in question, nor

is any of the drawbacks may have a tendency to decisively affect the implementation of the

architecture. But they may help explain why decentralisation of social networking faces the

steep road ahead and why the implemented decentralisation may not provide the estimated

benefits.

There are many types of computations that are hard to implement without a unified view of

data. Fraud detection, spam, search collaborative filtering and analytics are some example.

Network unreliability, lower data consistency and availability are some that can be mentioned

here. Other than that, data duplication is another important challenge (Narayanan et al. 2012).

Decentralising the existing functionality of the SNP requires finding ways for distributed

storage of data, update sharing, protocols for search and security, mechanism to find friends,

openness for third party applications and meeting user demands for resource availability, are

some of the known challenges (Datta et a. 2010). Meeting these challenges towards the

decentralisation leads to certain drawbacks.

2.11.1. User Acceptance

The lack of user acceptance and adaptability of the decentralised social networks is the most

known drawback. Centralised SNPs have larger established user base and more accessible

infrastructure, which enhances their ability to attract more users and generate more revenue.

Convincing these traditional SNP users to migrate their data to decentralised platform can be

difficult, because there is not a single well established decentralised platform. The study of the

user behaviour to understand the usability of SNP functions, is done by using Social Network

Analysis (SNA) techniques. SNA techniques are useful to identify the usability, performance

and effectiveness of SNP functions but not the behavioural and psychological factors that led

to the acceptance of SNP functions.

For decentralised or centralised social network site, attempts to understand user’s behaviour

to adopt these online technologies, have not yet achieved much success (Rad et al., 2014).

According to, Pai and Arnott, (2013) and Vannoy and Palvia, (2010), the most current

information system research on technology adoption has focused upon the technology

adoption in organisations, mainly utilising Technology Acceptance Model (TAM) (Davis, 1989).

It has been suggested that a new perspective on technology adoption is needed, to fully

capture the nature of the technology acceptance in social networks, where the technology is

A Decentralised Semantic Architecture for Social Networking Platforms

75

embraced rather than just accepted by the user and where the actions made by technologies

are seen as a behaviour, embedded in society (Vannoy and Palvia, 2010). Task Technology

Fit(TTF) (Goodhue and Thompson, 1995), argues that individual will adopt a technology based

on the fit between the technology characteristics and task requirements.

According to Rad et al., (2014), the research on technology adoption is the most mature

stream of IS research but missing the social factor. Collaboration is the key component of the

social networking sites. In the context of collaboration Brown et al. (2010), measured the

technologies performance based on their progression. Rad et al. (2014) integrated UTAUT

(Unified Theory of Acceptance and Use of Technology) model (Venkatesh et al. 2003) and

TTF, to study the Social Research Networking Sites (SRNS). In another attempt, to overcome

the missing social factor in technology Vannoy and Palvia, (2010) proposed Social Information

Model (SIM). The SIM model posits to inform the current knowledge by the development of a

social influence construct applicable to technology adoption where social influence results at

the confluence of four phenomenon, social computing action, social computing consensus,

social computing cooperation and social computing authority (Vannoy and Palvia, 2010).

As social networking become prevalent, new ways are needed to examine the human

behaviour toward such technologies. The complexities of decentralised social networking may

not fit into existing methods. The solid research in the area of decentralised social networking,

in the context of user behaviour is not available. The research community have more focus on

the importance of the networking structure and factors such as performance and storage, in

which users have keen interest.

2.11.2. Performance

Another crucial factor that hinder the acceptance of decentralised social networking site is

their performance. To determine decentralised social network performance, one has to

assume that they need to become as useful as their counterpart centralised platform. Existing

P2P approaches causes message transfer and profile update delays, because P2P replaces

the database queries with node messaging. Cachet (Nilizadeh et al. 2012) introduced data

caching strategy to improve the performance, by maintaining the encrypted channels to

friends. This strategy can be successful in smaller network but in the larger network data

caching itself cause maintenance issue. Comparable to the centralised SN, a single authority

responsible for updates and data management, optimises the caching and reduce the cause

that leads to performance related issues.

A Decentralised Semantic Architecture for Social Networking Platforms

76

2.11.3. Usability

Since the selling point of the DSN (Decentralised Social Networks) is security and privacy

therefore, knowledge about the cryptography may be necessary to use the DSN. For example,

in certain networks user may need to know how to exchange public keys. In the above-

mentioned approaches the user may need to install the client software which also may require

administrator privileges, that user may need to install on the local machines. Using the

decentralised social network should be simpler and any web connected device should be able

to use it, without the obstacles of learning about key exchanges and software installations, to

achieve better usability comparable to centralised platforms.

2.11.4. Functionality

The DSNP approaches are based on academic ideas rather being more practical, which can

be used by users. This is one of the reason why existing DSNPs are backward in their

functions. The most commonly use functionalities such as recommender systems, search

functions and third-party applications, influence the users. In P2P based DSNP peers are

connected to each other in the form of ring like structure. The absence of social graph, which

index the users based on social links, reduces the ability of the sophisticated search

mechanisms, because in the graph-based structure one can search user friends (neighbours)

and extended friends. However, one can also argue that such search and recommendation

capabilities affects the user privacy. Hence challenge the core concept of decentralised social

networking, according to which such functionalities should be available in the privacy

preserving manners.

2.11.5. Data Storage

One of the main architectural elements of decentralised architecture in a social network is

decentralised autonomous storage mechanism, however, an architecture without a single

point data storage may have many disadvantages. One of the major concerns of the user is

about their content data and how it will be stored in the decentralised platform. Will it be stored

exclusively at the node run by user or will it be encrypted and stored at random node. The

selection of data storage type characterises how the DSNP will be designed. Since the data

may be stored at many places, based on node location. This may increase risk of data

duplication, data unreliability and data unavailability

A Decentralised Semantic Architecture for Social Networking Platforms

77

2.12. Literature Review Finding and Research Direction

In this chapter, the literature is reviewed on the social networking platforms (SNPs), the

application of semantic technologies and software architecture principles, to enable data

portability through the mean of decentralisation. The main emphasis was on the technologies

and software architectural designs principles that can be helpful in implementing such

architectural structure on top of SNPs to enable decentralisation. Not many attempts are made

such as Bortoli et al. (2011), in which they emphasised on the description of social network user

functions rather than creating and following federated social network (a network of the

networks).

The assumption of using different frameworks and protocol together to produce harmonisation

of standards in order to enable wide variety of improvements across the social networking

platforms and applications is only possible with the combined effort of interoperable

architectures, instead of single monolithic architectures.

The purpose of the above mentioned (section 2-10) frameworks (such as semantic web, hybrid

distributed or P2P) in most of the social network decentralisation research seems to make web

resources machine understandable, shareable and reusable among different applications. This

phenomenon already used by many websites that interoperate user generated content and

semantic annotations. The use of semantic technologies to add extra semantics to the user

generated content has provided ways to represents reuse and share information across the

web platforms (Cena et al. 2012). On the other hand, SNS providers have independent control

of the data, creating the value of this data coming from the different application is one of the

main roles of decentralisation.

Existing SNP research, in the domains of decentralisation and data portability, is mainly done

in user privacy, Profile data portability, activity and identity-related issues. There are three main

approaches widely used in research to decentralise the social web, distributed web server

hosting, federated layer and p2p approaches. The majority opinion goes with the federation of

social networking platform, which is still underdeveloped and has opposition in SNS providers.

The general trend among the SNS providers to achieve complete or partial data portability

between SNPs, is by using the semantic web technologies however there is no standard

mechanism available. The standards and protocols mentioned in tables 6 and 7 are used to

solve the problem, but there are not easy to use. Another popular opinion described in Berners

Lee, (2009) is user-centric social data management that is providing personal information space

A Decentralised Semantic Architecture for Social Networking Platforms

78

(section 1.2) where the user can manage their information and data based on their own needs,

service providers can only provide the interface.

The appraoches mentioend in the above literature are specific towards solving one part of the

problem related to decentralisaiton. Indeed, the standards and protocols mentioned in the

above sections 2.8.1 have the potential to produce a viable solution but building a decentralised

platform from scratch is a difficult and cumbersome task that is why widely unwelcomed among

the Service Providers. Therefore, SNS providers are keen in adopting technologies like SN

integrators and social connect services. The complexity of design requirement, the difficulty of

distributed data storage management, cost of network availability, are some of the known facts

behind the failure of existing DSNP approaches (P2P, hybrid and federated).

The focus of the existing research on the social network decentralisation is on developing tool

and technologies to use distributed networking approaches to build tools that may allow

portability of data. The alternative would be to work towards to set standard design and

development principles using software engineering standards and to come up with the technical

architectural framework for design and development of the DSNP. The framework may illustrate

the need of semantic technologies and other standards based on the design requirements.

This research attempt to solve the problem of data portability between social networks at

functional level by using decentralisation approach. The methodology which is used to build

decentralised architecture, uses similar standards and protocols as used by existing

architectures, however, differentiate on the principles, whether decentralisation should be done

at the central level such as the Federated Social Web, widely explored or at the functional level,

which is unexplored.

The functional level approach gives user control on their social network functionality. Using

proposed architecture users will be able to decide which functionality they would like to use

across their social network platform that means if the user decided to use the message related

functions then they will be able to send scrap or post on another platform they are registered

to.

The functional level approach is based on CBSD and AOSD. Each function of the SNP is

designed as a component, under the guidelines of CBSD. According to which, a component is

equal to a functionality and each functionality has a certain behaviour. The behaviour of the

functionality is controlled by an aspect. In the context of current research, an aspect contains

the attributes that are required to decentralise the functionality. Based on this opinion, if social

network functions are described semantically following the decentralisation protocols and

A Decentralised Semantic Architecture for Social Networking Platforms

79

Key Publications Concepts

Analysis

Suryanarayana and Taylor,
(2004)

Suryanarayana et al. (2004)
Suryanarayana et al. (2005)
Suryanarayana et al. (2006)

Trust management in peers of
the P2P decentralised
application

An event based architectural
style is presented to show how
various kind of technologies
can work together in different
decentralised platforms
towards the management of
trust among the connected
peers.
The concept of separate
architectural style for
decentralised application is
adopted and mapped on DSNP
with the help of component and
aspect-based design
analogies.

Fuentes et al. (2003)

Model Driven Application
(MDA), AOSD
CBSD

They presented MDA based
joint model of CBSD and
AOSD and lay the foundation
of CAM.
CAM is a key element of the
proposed decentralised
architecture. CAM is mainly
used for the design of
distributed applications. The
use of CAM to develop
decentralised software
application is never been done
before.

Pinto et al (2003)
Pinto et al. (2005)
Pinto et al (2011)

CBSD, AOSD, CAM
Aspect Oriented architectural
description language (AOADL)

Further to their previous
research they solidify the
concept of CAM and how the
combined form of AOSD and
CBSD can be used to design
and develop complex
distributed application.

The CAM model is crucial to
the proposed decentralised
architectural style. The key
attributes of the proposed
architectural style are
component and aspect.

Pessemier et al. (2008)

Component and aspect
integration.
Component, aspect binding,
that is component to
component and component to
aspect.

They described the general
model for components and
aspects integration. They also
argue that in certain conditions
aspect can be used as a
component.
The similar concept is adopted
to describe the behaviour of the
functionality of the DSNP.

Table 2-8: List of key publications

A Decentralised Semantic Architecture for Social Networking Platforms

80

standards then this idea can negate the need of building a completely new decentralised social

network. With this innovation, existing social network will be able to interoperate at the functional

level.

Since key concepts, tools and technologies have been described. The question that should be

answered in the further research is, can the integration of CBSD and AOSD help achieving the

data portability by the mean of decentralisation. As mentioned in section 2-3, the integration of

CBSD and AOSD has improved the performance of complex distributed systems. The functional

independence, reusability, and adaptability of components provided by integrating the CBSD

and AOSD can be ground-breaking in decentralising the social network at the functional level

and should be investigated further.

2.13. Chapter Conclusion

In the context of current research, the study of software architecture for intended social web

architecture has evolved around the observation of the software design principles and that

designer or software architect follow when they take actions while working on the application.

The web architectures and their related concepts as mentioned above are useful in certain

specific environments and they all can do a good job to some extent but they all have limitations.

The web application produced by the early Web architectures were stateless, static, and

asymmetric in nature. The work of Berners-Lee et al. (1992) and Fielding, (2000) is considered

as fundamental, there were some issues, which later on solved by JAVA-Scrip, AJAX and Web

Service. Perry and wolf, (1992), Garlan and Shaw, (1994), Kruchen, (1995), Conallen, (1999),

Celment et al. (2003) and Bass et al. (2011), works provides the fundamental software

engineering concepts and are used by researcher in most of the Web architecture related

studies. UML approaches used by Kruchen, (1995), Conallen (1999), Ceri et al. (2000) and

Booch, (2001) to developed web application provide an alternative for web development.

The decentralisation of the social web to achieve data portability is complex. The research

community attempted to develop various tools technologies using P2P, hybrid and federated

style of architectures to achieve decentralisation in social web. But so far there are no

successful implementations. This research proposed CBSD and AOSD based architectural

guidelines in the form of technical architecture to set the standards for the design and

development of the decentralised social networking applications. The section 2.6 differentiate

between the distributed and decentralise architectures and argue on why P2P or hybrid

architecture-based applications are not decentralised. Building on the key concepts related to

decentralised network architectures and define the decentralised social network architecture.

A Decentralised Semantic Architecture for Social Networking Platforms

81

In the section 2.7, the drawbacks of existing social networking platform as discussed and why

do people need decentralised social networks. The breach of trust, business model and

centralisation are the highlights of the existing SNP drawbacks.

The critical analysis of the existing decentralised social networking tool, technologies, protocols

and standards, gives the insight knowledge necessary to understand the user needs with

respect to decentralised social networking platforms. The analysis of the existing DSNP shows,

user acceptance, performance, usability, functionality and data storage are the main issues

hindering the adoption of the DSNPs. Lastly, the literature review provides the grounding for the

main artefact by describing the fundamental needs of the decentralised social web architecture.

The basic form of decentralised social web architecture based on existing research and shows

best combination of tools and technologies proposed in well cited academic research. In doing

so this chapter addressed the objective 1 and 2 of the research and also provided the

knowledge needed to address rest of the research objectives.

A Decentralised Semantic Architecture for Social Networking Platforms

82

Chapter 3 - Research Methodology

3. Introduction

This chapter outlines the research activities seeking to improve the theoretical and

methodological approaches available to study decentralisation in social networks. A series of

approaches are investigated to develop an approach to analyse the different aspects of social

networks to help enable decentralisation in social networking platform. Therefore, to achieve

this goal research methodology is presented to shape the research process and guide the

investigation. The suitable research method that is adopted by this research is design science

research (March and Smith, 1995; Hevner et al. 2004; Peffers et al. 2008). DSR is an iterative

activity where solution artefacts are designed and developed through various cycles,

processes, activities, inputs and outputs. The goal of a DSR is to generate a purposeful

artefact that addresses a practical problem, especially, when elements of the problem are not

completely understood (Hevner et al. 2004).

3.1. The Need of Research Methodology

The architecture proposed in this research follows both existing and previous work on

decentralised environments and theories. The proposed artefact is guided by a research

methodology for the delivery of desired goals. This section describes the need for suitable

research methodology and its application to the proposed research. Peffers et al. (2008),

describes research methodology as a system of principle, practice and procedures applied to

a specific branch of knowledge. An effective research methodology can enable the researcher

to conduct research successfully by fulfilling requirements of a particular task and activities.

This thesis addresses an area that has been identified as significant but lacks in researched

based implementations. The addressing of interoperability challenges in social networks is

one aspect, the other challenge this research face is related to the need of right research

methodology to implement this research finding. The proposed framework uses software

engineering and information sciences principles as its foundation. The required methodology

can be based on multi-pragmatic and mixed method approach. For example, Gacenga et al.

(2012) proposed a research approach which is based on behavioural science and design

science paradigm.

A Decentralised Semantic Architecture for Social Networking Platforms

83

In the development of the software for any system, tasks and activities are performed under

the guidance of software engineering methodologies. Software development methodologies

such as Agile is widely used for quick systematic deliverance of software product.

The main purpose of the research methodology or software development methodology is to

provide systematic, plan-driven guidelines, that are to be processed through valid information

and rational decision making. In the perspective of this research, the most important aspect

of both paradigms will be the support for software architecture through-out the development

cycle.

In general, to support the cycle of software engineering, the artefacts are designed and

developed using various software development processes and methodologies such as RUP

(Rational Unified Process) and Agile methodology. The design and development process of

the software can also be based on mixed approach as few authors (Gacenga et al. 2012 and

Conboy et al. 2015) have proposed in their research. ADSRM (Conboy et al. 2015), is a similar

attempt in which DSR best practices and Agile methods more pragmatic approaches are

aligned to compose new components by amending the existing DSR best practices.

The Information Systems research is mainly influenced by referring to prior published ideas.

For example, the literature relevant to the Design Science Research is discussed reflecting its

evolution with the key methodological guidance referring to Hevner et al. (2004) work, which

draws extensively on March and Smith, (1995) and similarly Gregor and Jones, (2007) work

which is based on Walls, Widmyer and El Sawy, (1992). Similar approach is taken to compare

DSR methods with agile methods in the next sections, taking the analysis further to selection

of research methodology.

3.2. The selection of Research methodology

The systematic study of design, the development and evaluation processes with the aim to

establish a sound solution for the research problem based on theory, requires a methodology.

The methodology adopted in this research to solve the portability problem between the SNPs,

comes from the comprehensive comparison between the explanatory research, software

engineering design paradigms (such as Agile) and design science research paradigms (such

as DSR).

The paradigms are composed of, assumptions about knowledge, how to acquire it and about

the physical and social worlds (Hirschheim and Klein, (1989) and Gregg et al. (2001). There

A Decentralised Semantic Architecture for Social Networking Platforms

84

are three questions that need to be addressed in order to define the paradigm. What is the

nature of the reality (ontology)? What is the nature of the knowledge (epistemology)? What

approach is the best approach to understand and obtain the desired knowledge

(methodology)? Positivist or Post-positivist and the Interpretive or Constructivist are two main

paradigms of interests for IS researchers (Gregg et al. 2001).

There is an evidence based on previous research, such as (Mertens, (1998) and Schwandt,

(1994) and recent research such as (Gregg et al. (2001) and Gacenga et al. (2012), Positivist

or Post-positivist and the Interpretive or Constructivist paradigms provides the good basis for

the majority of the IS research, but they do not fully address the requirements software

engineering-based research projects.

The software processes and methodologies used for the application of technological success

to the IS systems is mainly based on the understanding of the organisational units. The

Positivist or Post-positivist and the Interpretive or Constructivist paradigms are used in IS

research to understand impact of technological success, but not the creation of unique product

associated with the development of the software system, which is the case in this research, a

design and development approach is created and implemented.

In another example, building a hypothesis using explanatory research, to find the explanation

behind the decline of the people interest in a specific type social network, is possible. Also,

the hypothesis results can be helpful to obtain certain process to improve the social network

ratings, but these features can not be used to obtain the components required for the technical

framework design of the social network.

To alleviate limitations of the fundamental IS research paradigms and to describe the software

engineering practices in IS research Nunamaker et al. (1991) presented multi-methodological

approach, March and Smith, (1995) presented design science and Gregg et al, (2001),

presented Socio-technologist / Develop-mentalist approach. The main purpose is to build the

connection between the software contributions and scientific knowledge building and provide

the suitable method to describe the whole process.

3.2.1. Design Science Research (DSR) and Agile Methodologies

At this point, it is important to distinguish between the design and development research and

software product development. One could develop and launch a successful software

application or product but does not meet criteria for design and development research. In

A Decentralised Semantic Architecture for Social Networking Platforms

85

general, research involves, addressing an acknowledge problem based on existing literature

and making an original contribution to the body of knowledge (Ellis and Levy, 2008).

Figure 3-1: Basic Conceptual Map of the problem based research (Ellis and Levy, 2008).

The conceptual map shown in the figure 3-1 is a testbed on which theoretical foundation of

the research can be built on. In the figure 3-1, there is a two-way relationship between the

research problem, the goals and the research questions. A research goal is the main intended

objective to solve the problem. To find the answers to those research questions, the cycle

continues between activities known as determine, produce, permit and answer. By attaining

the answer to the research questions, that means the research problem is solved and

contribution is made (Creswell, 2005). Furthermore, in solving the research problem the

methodology directly impacts the driving of the research. Since methodology is a step to find

the answers to the research questions, therefore the grounding for the needs and

requirements for the methodology need to be known before selection.

3.2.2. Requirements for the Methodology Selection

Software designing is a theoretical and empirical study of software creation and modification

including its methodology. In DSR, the design is a research method, which depends on its key

elements, theory and design process (Hevner et al. 2004). Still, there is an ongoing work on

A Decentralised Semantic Architecture for Social Networking Platforms

86

design process in term of understanding and implementation. In the cu rrent research, the

aimed methodology should support problem-solving using architectural design.

The main requirements that should be fulfilled by the research methodology in current

research perspective are,

 The methodology should support and focus on the problem-driven approach,

 Theorising of the problem so the solution can be extended in case there are many

solutions,

 Product-centric, in case there is an end-product of the research, practicality support is

required so that solution can be more practical based on the theory presented and

lastly,

 The methodology should support the identification of clear and original contribution to

the knowledge.

3.2.3. DSR As Problem Driven Approach

Simon established the foundation of the Design Science by emphasising on the uniqueness

of the sciences of the artificial. The science of the artificial focuses on the artefact that serves

a human purpose (Simon, 1996). The key motivation behind DSR is the desire to build and

improve the new environment by introducing new and innovative artefacts and processes for

building those artefacts. Good design science research often starts by identifying opportunities

and problems in actual application environment (Hevner, 2007). DSR also compliments from

behavioural science research and natural science (Hevner et al. 2004).

The expected outcomes of design research are discussed in detail in March and Smith, (1995),

Gregor and Jones, (2007)) and Gregory and Muntermann, (2014) with their different

perspectives. In Information Technology, there are two kinds of scientific research interests,

descriptive and prescriptive research (March and Smith, 1995) that can be used to explain

DSR outputs (Gregory and Muntermann, 2014).

3.2.3.1. Descriptive vs Prescriptive

In information systems, DSR is described in two perspectives for the understanding of

technological and social environments (design science and behavioural science) and their

relationship within the IS discipline. The behavioural science perspective is concerned with

the theory development, justification and evaluation. It primarily uses the natural science

research, considering IT artefacts as extant objects to be studied. The Design Science

A Decentralised Semantic Architecture for Social Networking Platforms

87

perspective is more concerned with building and evaluating the artefact that addresses

important human and organisation problems (March and Smith, 1995; Hevner et al. 2004).

The descriptive research aims at understanding the nature of IT systems and prescriptive

research aims at improving them. This division of interests has caused confusion among the

researcher over what constitutes legitimate scientific research method. However, regardless

of the dichotomy of interests, both descriptive and prescriptive research relates back to natural

and design science. According to March and Smith, (1995) natural science is descriptive and

explanatory in intent, whereas Design Science offers prescriptions and creates artefacts that

represent those prescriptions, hence more relevant to existing research problem.

In a multi-disciplined paradigm, such as problem-based research and specially in the software

system development cycle, the primary purpose is to add the body of knowledge about the

creation and evaluation of software design. Also, document the activities during development

and implementation to enhance the understanding of the issues related to the research

problem. In the DSR framework proposal of Hevner et al. (2004), DSR is an iterative activity

where problem’s solution is designed and developed through various cycles, processes,

activities, inputs and outputs. The goal of a DSR is to generate a purposeful artefact that

addresses a practical problem, especially, when elements of the problem are not completely

understood (Hevner et al. 2004).

In Hevner et al. (2007) and Hevner et al. (2004), they focused on three design cycles for the

development of IS research outputs (artefacts and theories). The relevance cycle (bridges the

contextual environment of research project with the design science activities), the rigor cycle

(connects the design science activities with the knowledge base of scientific foundation,

experience and expertise that informs the research project) and the design cycle (iterates

between the core activities of building and evaluating the design artefacts and processes of

the research).

The selection of the research approach is often dependent on the domain the research is

conducted in (Gregor and Jones, 2007). In the current research, the domain is software

architecture engineering. The next section discusses software engineering methodology

(SEM) or software development methodology (SDM) and to what extent SEM could be or

cloud not be adopted as a research methodology to solve problem-driven research.

A Decentralised Semantic Architecture for Social Networking Platforms

88

3.2.4. Software Engineering Research

The software development methodology (SDM) has been omitted from most of the

classifications of the research methods. Mainly due to the assumption that system

development does not lie within the research domain (Burstein and Gregor,1999). The

legitimacy of the system development methodology (SDM) as valid research activity was first

debated by Nunamkaer et al. (1991). They compared IS research methods such as design

science and system development methods and proposed multi-methodological research

framework to guide IS research activities. The approach consists of four strategies, that are

observation, theory building, system development and experimentation as shown in figure 3-

2.

The software development approach as a research method can be used to bridge the gap

between the technical and social side of the IS research (Burstein and Gregor,1999). There is

numerous recent research attempts to extend the framework of IS research and software

development components integrated, to form a research cycle, that can present complete,

comprehensive and dynamic research process. This will allow multiple perspectives and

methods to be considered in various stages of the research process (Bai et al. 2013).

Figure 3-2: A Multi-methodological approach to IS Research taken from Nunamaker et al.(1991)

A Decentralised Semantic Architecture for Social Networking Platforms

89

Morrison and George, (1995), described the objectives of software engineering research, are

to investigate all the aspects of the software development process including, software

formulation, description, implementation and evaluation (Morrison and George,1995).

The software development methodologies (Gregg et al. 2001), such as Agile which is regarded

as highly effective software development methodology in many studies, (Cao et al. 2009)

(Vidgen et al. 2012) is used when the rapid transformation of system design to the prototype

is required. It starts with implementing confirmed and well-understood requirements and

continuously refines and add more functionality to the developed system based on user

feedback (Bai et al. 2013).

In general, the agile software development is characterised in, incremental (refers to small

software releases with rapid development), cooperative (refers to close customer and

developer interaction), adaptive (refers to the ability to make and react to the last moment

changes) and straightforward (refers to easy to learn and easy to document development

process) (Abrahamsson et al. 2003). For further detailed discussion on the characterisations

of agile methods, readers are referred to (Cao et al. 2009, Vidgen et al. 2012 and Fowler and

Highsmith, 2001).

3.2.5. Agile and ADSRM

Since social networks are continuously changing and building new ways to improve their

services. To achieve this, they stay in a continuous development process. Maintaining the

changing need of the DSNP rapid software development approaches such as Agile, can be

useful but the most incumbent part of this process is the knowledge attained and how this

knowledge can be useful in solving the pursued research problem.

Therefore, the main question that arises is from the above discussion is, whether software

engineering methods can be considered as a research process? The answer is quite vague

as far as the academic literature is concern. However, the integration of software engineering

process of software development to problem-driven research can enhance the understanding

of the software operational environment. Conoby et al. (2015), Vidgen et al. (2012) and Jalali

and Wohlin, (2012), proposed research methodologies that are composed of multiple methods

such as the integrated approach of Agile and DSR.

A Decentralised Semantic Architecture for Social Networking Platforms

90

Methodologies When to use

and Limitations

Type of research questions

and examples

Exploratory Study Should be used when there is

high level of uncertainty,

problem is not understood and

very little existing research on

the subject. Can cause

indecisiveness when

concluding the research.

What is the case or key success

factors? For example, what

are the key critical success

factor of the decentralised

social networks

Explanatory study Identify the links between the

factor and variables relate to

the problem. Used for case

control study. Limited in the

ability to provide deep

contextual data

Based on the explanatory

nature of the research

question. Explains why a

phenomenon is happening. For

example, why the crime rate

high, or examining various kind

of social trends.

Design Research Solutions oriented, problem

driven, can be used when new

knowledge based on artefact is

formed. Prototype may not be

similar to real world.

Mechanism complexity may

exceed to the level where it

become difficult to manage.

Based on the descriptive

nature research question. For

example, an application is

required for to find social

trend based on already

available data.

Software Engineering Research

and

(ADSRM)

Solution oriented, problem

driven, can be used to

investigate the software

development, including

formulation, description,

implementation and

evaluation. SDM limitation

such as lack in identification of

knowledge contribution.

Based on descriptive in nature

research question. For

example, social network is

getting used for message

sharing and next version is

needed to add multimedia

sharing functionality.

It can used for the

development of the next

version
Table 3-1: Short comparison of the key methodologies

Agile methods consist of the set of practices for software development aiming to overcome

the limitations of plan-based methods by changing system requirements, with the focus on

intensive collaboration between the customer and developers. As Agile methods rely heavily

on frequent communications and requirement gathering, therefore there are challenges

associated with this combination to make it work effectively (Boehm and Turner, 2005). The

main challenges can be related to communication, personnel, trust and knowledge

management (Jalali and Wohlin, 2012).

A Decentralised Semantic Architecture for Social Networking Platforms

91

Conboy et al. (2015), extended DSR using the best practices of Agile. The aim is to enhance

the ability of DSR to balance the procedural rigour with the need to consider empirically driven

problem or solution and improve the handling of unanticipated problems. The model of

extended DSR is referred as ADSRM as shown in the figure 3-3.

Figure 3-3: Agile DSRM research model

ADSRM is a fundamental epistemological shift for DSR which encourages the use of the Agile

approach to problem identification. The integration of Agile elements to DSR allows for greater

rigour and knowledge accumulation, in how it is conducted analysed and reported. Moreover,

it can create a more detailed understanding of the design for researchers. The main

contribution of ADSRM is the introduction of two additional components to the DSRM model.

Problem backlog and hardening spring.

In practice, customers are not aware of the capabilities of the until the first version of the

product is released and the related concepts and issues made tangible. To better capture this

scenario the ADSRM introduces problem backlog. This component represents the broader

problem space from which individual problem can be identified and motivated. The feedback

from the later stages of development can be added to problem backlog, representing the ability

of that stage to provide insights into the problem.

A Decentralised Semantic Architecture for Social Networking Platforms

92

The concept of “hardening sprint” (Conboy et el. 2015) is applied as an additional design

component. This component consists of three main mechanisms, (1), Freeze the problem (2),

Freeze the process and (3), Add to the process. They are used to enhance the change with

agility into the rapidly changing design environment, a level of rigour is added where

improvisation is allowed (Conboy et el. 2015), under the principle stated in the “Agile

Manifesto” (Fowler and Highsmith, 2001).

3.2.5.1. Why DSR?

Based on the requirements mentioned in the section 3.2.2, and overall above discussions,

they are some commonalities and differences between DSR and software development

methods. DSR practice is entirely different than SDM but there is relevance on how the

objectives are achieved and communicated throughout the design process. Like identifying a

problem that is useful and sustainable in an organisation and communicated with the relevant

stakeholders during the cycle of development.

Hevner et al. (2004), addresses the difference between the routine system design and DSR

by defining the design as an application of knowledge to solve previously unsolved problems.

DSR main position is more design oriented driven by the use of existing theory to solve the

problems and validate them on the basis of experiences. In contrast, the software or system

development methodologies such as agile, literature do not explicitly demand that system

design should be based on a theory. In the academic literature, multi-methodological

approaches are proposed to fix these lacks. Already discussed in the above sections.

A good example of some of the lacks can be, Peffers et al. (2007) have described four initiation

contexts for a DSR project namely (1) problem centred initiation, (2) objective centred solution,

(3) design and development centred initiation and (4) client context initiation, are considered

as important. Yet, these contexts could be based on observations or non-DSR based

approach, analysing and explaining important considerations that would help the designer

(Gleasurea, 2015).

The DSR literature contains many unsolved questions, for example differentiating between

definitions of practical problem and knowledge problem. Which is more suitable to define the

whether the problem is DSR problem or not. In general, DSR is considered and mentioned as

a problem-driven framework to solve an ununderstood problem. Important tasks in the

problem-driven investigation are describing the problematic phenomena, formulating and

testing the hypothesis about their causes and priorities for problems to be solved (Wieringa,

2009).

A Decentralised Semantic Architecture for Social Networking Platforms

93

On the contrary side, the researcher may adopt other investigative approaches like goal-

driven, solution-driven and impact-driven approaches or the mix-theory approach to support

the foundation and desired results. For example, Adipat et al. (2011) study adopts the DSR

approach to address the prescriptive problem and incorporate both cognitive fit and

information foraging theory to understand the user searching and browsing behaviour on the

mobile web applications. The prescription element of their research helped them to understand

and explain the need for cognitive fit theory support for mobile web applications.

The proposed research has substantial technology-based artefact content. The multi-

mythological approaches are suitable in case the proposed artefacts are getting used to

improve an existing structure or platform which is not the case. The approach proposed in

Conboy et al. (2015) (ADSRM) is likely to be more suitable for complex projects. Their

approach is still underdeveloped and is more appropriate to be used to solve the problems

that are well established. For example, next version of the already developed application. To

support this, they added problem backlog component explained in the above (section 3.2.5)

discussion.

The expansion of DSR using agile practices can be seen as an alternative to solve the problem

where the problem space and solution space both are evolving. In contrast to that, the

standard DSR focuses on the problem and evolution of the problem. In the current research

perspective and to keep the concentration on the process of design and development, this

research adopts the standard DSR approach proposed by Hevner et al. (2004) and Kuechler

and Vaishnavi (2012), as they satisfy the very basic requirements illustrated in section 3.2.2

to formalise the research methodology.

The important characteristics that distinguish the DSR from SDM is the clear identification of

contribution to the archival knowledge base of foundation and methodologies, (Hevner et al.

2004), systematic documentation of a discussion of design choices made, option considered

and alternative (Ellis and Levy, 2008) and use of rigorous, accepted research methods

(Hevner et al. 2004).

3.3. DSR Process

Drawing on the above discussion, the key element that separates the design science research

from routine system development is the creation of the design. Design means “the art or action

of conceiving of and producing a plan of something before it made” (Oxford Dictionary, 2017).

Thus, design deals in planning and creating a new artefact. If the knowledge required to create

an artefact that already exists then that design is routine design, else it is innovative. The

innovative design called for new knowledge to fill the gaps in the current knowledge. Problems

A Decentralised Semantic Architecture for Social Networking Platforms

94

in routine design can lead to DSR. Thus, DSR is used to find out the missing knowledge in the

new area of design.

The focus of this section is to describe the selected research methodology. The methodology

is described in the hierarchy of model, guidelines, and process.

3.3.1. The Model

The final objective of a DSR process is to provide a mental model for the characteristic of

research outputs. A mental model is a small-scale model of reality, constructed from

perception and imagination to form a logical understanding of the structure to form formal rules

and theories (Peffers et al. 2008).

Similarly, DSR process model should provide some guidance about what to expect from DS

research. The model shown in figure 3-4 is a design process model taken from Kuechler and

Vaishnavi (2012), which shows different phases of design research process and activities

carried out within various phases.

Figure 3-4: Design Science Research Process Model taken from Kuechler and Vaishnavi

(2012).

With reference to above figure, typical design science research proceeds as follows,

A Decentralised Semantic Architecture for Social Networking Platforms

95

Awareness of problem: This is the first phase of DSR process for the investigation of any

research problem. According to Kuechler and Vaishnavi, (2012), the awareness of an

interesting problem may come from studying multiple sources including new developments in

the industry. Investigating related discipline may also provide the opportunity for the

application of new findings. The output of this phase is a proposal for new research.

Suggestion: The second phase follows right after the proposal and is connected with

tentative design. A tentative design which is the output of the suggestion phase is a prototype

based on the initial design. Basically, this phase is a creative process in which new

functionalities are envisioned based on a novel configuration of new or existing elements. This

phase is not very well understood in the design science research as human creativity is poorly

understood in cognitive science (Kuechler and Vaishnavi, 2012). However, the main purpose

of this phase is to gain insight knowledge into the problem domain to form initial design and

increase human curiosity to solve the problem.

Development: This phase is about the development and implementation of the tentative

design. The process for implementation is different depending on the artefact to be created.

Evaluation: The evaluation of the artefact is done in this phase based on the criteria made

explicit in the proposal. In this phase, all glitches hindering the expectation, both quantitative

and qualitative must be carefully noted and explained (Kuechler and Vaishnavi, 2012).

Hypotheses are made to explain the behaviour or the artefact. If the results are unsatisfactory

then design process goes back to the initial phase. Otherwise, the cycle moves to conclusion

phase.

Conclusion: This phase could be the end of the research efforts. The final effort is the

satisfactory behaviour of the artefact from the evaluation. If the artefact behaviour deviates

from the desired results then revised hypothesis results are judged as “good enough” (Simon,

1996). During the hypothesis revision cycle, the knowledge gained is processed by the

designer and guidelines are built for the practitioners as part of the “communication” (Hevner

et al. 2004), explaining how to use the artefact. The leftward arrow (figure 25) coming out

conclusion indicates the knowledge contribution (Kuechler and Vaishnavi, 2012).

Other Models:

There are a number of excellent process models, guidelines and descriptions of design

science research process such as Peffers et al. (2008), Hevner et al. (2004), Purao, (2002),

March and Smith, (1995) and Nunamaker et al. (1991). The above-described model of

Kuechler and Vaishnavi, (2012) is similar to these models but its focus is more on the

generation of the knowledge.

A Decentralised Semantic Architecture for Social Networking Platforms

96

3.3.2. Research Guidelines

In order to assist researchers Hevner et al. (2004) prepared seven guidelines to help

understand the need for effective Design Science research and implemented them using their

information system research framework. The fundamental principle from which these seven

guidelines are derived is knowledge and understanding about the problem are acquired in the

building and application of the artefact. Hevner et al. (2004) guidelines are described in Table

3-2.

Guidelines Descriptions

Design as an Artefact Design science research must produce a viable artefact in the form of a

construct, a model, a method, or an instantiation

Problem Relevance The objective of design-science research is to develop technology-based

solutions to important and relevant business problems

Design Evaluation The utility, quality, and efficacy of a design artefact must be rigorously

demonstrated via well-executed evaluation methods

Research Contributions Effective design-science research must provide clear and verifiable

contributions in the areas of the design artefact, design foundations, and/or

design methodologies.

Research Rigor Design science research relies upon the application of rigorous methods in

both the construction and evaluation of the design artefact

Design as a Search Process The search for an effective artefact requires utilising available means to

reach desired ends while satisfying laws in the problem environment

Communication of Research Design science research must be presented effectively both to technology-

oriented as well as management-oriented audiences.

Table 3-2: 7 Design Science Research Guidelines (Hevner et al. 2004)

March and Smith, (1995) and Hevner et al. (2004), guidelines for DSR influenced Peffers et

al. (2008) Design Science Research Methodology (DSRM) process model to enable

researchers to conduct their research by following the commonly understood framework.

3.3.3. Research Process explained

The DSRM presented by Peffers et al. (2008) incorporates principles, practices and

procedures required to carry out design research to meet objectives. As shown in figure 3-5,

the DS process consists of six steps following each other.

The process is structured in sequential order but there is no exception that researchers

would always process in sequential order starting from any step until the demonstration

step, depending on purpose and objectives of the research (Peffers et al. 2008).

A Decentralised Semantic Architecture for Social Networking Platforms

97

Figure 3-5 Design Science Research Methodology Process Model (Peffers et al. 2008)

This model as compared to the model shown in figure 3-4, breaks the awareness of the

problem phase into two phases, identify the problem and motivate and define objective of a

solution, merges the suggestion and development phase into a single phase, design and

development breaks the evaluation into two phases demonstration and evaluation and

conclusion is renamed as communication (Kuechler and Vaishnavi, 2012).

The outcome of the DS research depends on how theory and design are tested, and process

model should provide some guidance about what to expect from DS research outputs (Peffers

et al. 2008). March and Smith, (1995), gave the essentials of the DS research outputs. Hevner

et al. (2004) further elaborated the essential elements of the DS outputs. The next section

explained the role and importance of the DSR outputs.

3.4. DSR Outputs

The output of DSR can be an artefact or DS theory or both. March and Smith, (1995) purposed

four general outputs for the Design Science research and each output referred as an artefact.

For example, constructs (specific data modelling formalisms), models (a set of interrelated

data modelling formalisms), methods (data modelling language) and instantiation (the

realisation of model method and construct in an environment) can be the artefacts produced

during implementation of the design research (March and Smith, 1995).

A Decentralised Semantic Architecture for Social Networking Platforms

98

3.4.1. Artefacts

The artefact can be a prototype, an architecture or set of guidelines for the improvements. In

the case of current research, the architectural framework of the decentralised social network

platform can be considered as an artefact. In the research, literature artefact is described in

various contexts, but the most common description of artefact can be found in Simon, (1996).

According to Lee, (2010) for the science of the artificial, the first and the foremost requirement

of knowledge building is its efficiency and effectiveness for bringing into existence an artefact

to solve the given problem.

Outputs Descriptions

Constructs The conceptual vocabulary of a domain

Model A set of propositions or a statement expressing relationships between constructs

Methods A set of steps used to perform a task

Instantiation The operationalization of constructs, model and methods

Better theories Artefact construction as analogues to experimental natural science together with

reflection and abstraction

Table 3-3: Outputs of Design Science Research

Simon conceptualised an artefact as a man-made product that “can be thought of as a meeting

point” which is an interface between various environments (Simon, 1996). According to the

Simon, (1996) the designer main concern should be “how things ought to be” and focus on

prescription and finding ways in which that “adaptation of means to environments is brought

about” until a satisfying solution is found. Table 11 summarises the way concept of output is

described in the DS research. March and Smith, (1995) divided DS output into four types table

3-3.

Figure 3-6: Relationship between DSR outputs (March and Smith, 1995).

The evaluation of an artefact is basically, demonstration of the artefact’s ability to solve the

planned problem. Having explained the DSRM and its outputs, the next section describes the

DS research evaluation.

A Decentralised Semantic Architecture for Social Networking Platforms

99

3.5. DSR Evaluation

There is little guidance available in DSR literature about the adoption and choice of strategies

and methods for evaluation (Venable et al. 2012). It is necessary to demonstrate that the

developed artefact coincides with functionalities and requirements established during the

design and development phase. The artefact must be evaluated to check its validity in the

context of the problem described. The researcher must ensure that the prototype produced

some viable results in addressing the problem (Ellis and Levy, 2010).

According to March and Smith, (1995) the evaluation of the artefact is a process of finding

how well the artefact perform, that is the rigorous demonstration of the utility of the artefact.

3.5.1. Purposes of Evaluation in DSR

Venable et al. (2012) outlined 5 purposes for evaluation from DSR literature.

(1) Evaluate an instantiation

(2) evaluated the formalised knowledge,

(3) evaluate a designed artefact by comparing it with the formalised knowledge to understand

whether it achieves a similar purpose,

(4) evaluate designed artefact with the purpose to know the consequences of evaluation,

(5) evaluate the designed artefact to find weakness and areas of improvement for an artefact

under development.

According to Hevner et al. (2004), evaluation of an artefact is established by the requirements

set by the business environment. Therefore, evaluation is an integration of the artefact within

the technical infrastructure of the business environment. In notable DS literature (March and

The form of artefact also affects the criteria of requirements in which the artefact will be

evaluated. As shown above (figure 3-4 and 3-5) DS research is an iterative and incremental

activity, the evaluation phase provides feedback to the design and development phases to

improve the requirements and quality of artefact. This cycle can continue until the artefact

satisfies all the requirement and constraints meant to be solved (Hevner et al. 2004; Peffers

et al. 2008).

3.5.2. Selection of Evaluation Methods

There are different methods discussed in the literature for DSR evaluation, such as Hevner et

al. (2004), Peffers et al. (2008 and Venable et al. (2012) have identified some methods for DS

evaluation. This research adopts scenario-based evaluation style from the descriptive

A Decentralised Semantic Architecture for Social Networking Platforms

100

evaluation methods described in Hevner et al, (2004). The description of evaluation methods

is given in table 3-4.

Method Description

Observational Case Study: Study artefact in depth in a business environment.

Field Study: Monitor use of artefact in multiple projects.

Analytical Static Analysis: Examine structure of artefact for static qualities (e.g.,

complexity)

Architecture Analysis: Study fit of artefact into technical IS architecture

Optimisation: Demonstrate inherent optimal properties of artefact or

provide optimality bounds on artefact behaviour

Dynamic Analysis: Study artefact in use for dynamic qualities (e.g.,

performance)

Experimental Controlled Experiment: Study artefact in controlled environment for

qualities (e.g., usability)

Simulation: Execute artefact with artificial data

Testing Functional (Black Box) Testing: Execute artefact interfaces to discover

failures and identify defects

Structural (White Box) Testing: Perform coverage testing of some metric

(e.g., execution paths) in the artefact implementation

Descriptive Informed Argument: Use information from the knowledge base (e.g.,

relevant research) to build a convincing argument for the artefact’s utility

Scenarios: Construct detailed scenarios around the artefact to

demonstrate its utility

Table 3-4: Design Evaluation Methods (Hevner et al. 2004)

Furthermore, the selection of evaluation methods must be matched appropriately with the

designed artefact and the selected evaluation criteria. In Prat et al. (2013), Cleven et al. (2009)

and Hevner et al. (2004) goals, environment and system structure is mentioned as key

dimensions of evaluation criterion. For example, goals can be subdivided into efficacy, validity

and generality. The criterion of evaluation also depends on the artefact development and

objectives of the research. The evaluation can lead to the final conclusion or further

modifications or both as mentioned in Peffers et al. (2008) and Kuechler and Vaishnavi (2012).

In order to realise the final version of DSNA, this research adopts the scenario-based

evaluation method. According to which detailed scenarios are built to verify the practicality of

the proposed final artefact. The goal criteria of evaluation are on the basis of which

requirements of evaluation and scenarios are illustrated. For example, the interaction between

the users of the different social network can be evaluated on the basis of efficiency or efficacy.

The evaluation is explained in chapter 6. The next section describes the application of the

DSR to the current research.

A Decentralised Semantic Architecture for Social Networking Platforms

101

3.6. The Practical Application of DSR

This section describes the application of DSR methodology in the proposed research and

outlines the development of phases as conducted by following the general DSR methodology

of Kuechler and Vaishnavi, (2012) under the guidelines of Hevner et al. (2004) and Peffers et

al. (2008). The research process is divided into five main phases;

(1). Awareness of the problem and type of solutions

(2). Suggestions (or Conceptual Design based on literature)

(3). Design and Development

(4). Demonstration or implementation and

(5). Evaluation.

The first phase forms the understanding of the problem and the knowledge required to enable

the development of the DSNA. During this phase, guidelines based on academic literature and

industry sources are analysed to form the understanding of social web architectures and role

software architectures for the development of decentralised architecture. To form the

understanding regarding the portability problem in social web networks, various available

solutions in academia are analysed to construct a basic conceptual framework of components

needed to design and develop general purpose decentralised social network architecture. The

purification of knowledge from the awareness of the problem phase leads to the initiation of

design and development phase. The whole development process concludes with an

evaluation of developed artefacts implementation and further improvement to the final

solution.

A Decentralised Semantic Architecture for Social Networking Platforms

102

Figure 3-7: Outline of the research main phases

The development of artefact has been done in three phases and is called development stage.

Each phase in the development stage is completed under the guidelines of Mark and Smith,

(1995) 3 stage iteration strategy i.e. design, deploy and evaluate.

The first version of general social web architecture based on theory and academia is produced

in phase 1. The requirements and components of the architecture are illustrated in phase 2

that gives the conceptual architecture for social web platform based on software architecture

and decentralisation principles. The cycle of iteration continues between 3, 4 and 5 until an

effective solution is found. The iteration stops when either the process is interrupted or

required criterions are met and effective solution is found.

A Decentralised Semantic Architecture for Social Networking Platforms

103

Figure 3-8: Structure of the development stage and iterations taken from (March and Smith, 1995) and modified

The outcome of the “Awareness of the Problem and Type of Solution” phase suggests an

initial conceptual framework of components for the decentralised semantic architecture for the

social web, based on already available solutions in academia of similar problems. The

knowledge from chapter 2 is used in chapter 4 to list the requirements for artefact design. In

chapter 5 more logical underpinning of the proposed architecture is formulated based on the

requirements. The artefact which is in the current case is decentralised semantic architecture

is evaluated in chapter 6 on the scenario-based implementation of the proposed artefact. The

evaluation continues in iteration until the set objectives are achieved.

3.6.1. Awareness of the Problem and type of solutions (Phase 1)

This phase investigates the lacks in the application of the software architecture guidelines in

the formation and standardisation of social web architecture. The necessary groundwork for

this research is done by deriving initial requirements based on the research objectives. The

primary activity in this phase is the formalisation of social web architecture components and

requirements needed to build initial conceptual architecture.

In this phase, the differences between the various areas in software architecture discipline are

investigated. That also includes the study of software architecture basic principles, design

elements (components, styles, views) and their adoption to visualise the components required

for general social web architecture.

There are three main activities performed, that are deemed helpful in addressing the research

problem.

A Decentralised Semantic Architecture for Social Networking Platforms

104

 Determine the requirements for architectural design

 Identifying Web Architecture reusable components

 Generalisation of the solutions

3.6.2. Suggestions on Conceptual Design

The work done in this phase is grounded in three main areas, software architecture

engineering, web application architectures and the semantic web technologies. The issues

identified in the first part of the literature review are investigated in the context of data

portability between social web Network platforms. The attempt made in this phase to critically

analyse three main domains of this research

As illustrated in figure 3-9, with the aim to review the existing research, approaches,

methodologies and tools that can be used to enable data portability between social network

platforms.

Figure 3-9: Structure of Concepts and their relationships with each other in phase 2

The literature reviews also helped to discover the gaps in the existing research and helped to

identify the relevant components, rules and principles for the proposed artefact. The construct

of the decentralised semantic architecture is based on 3 domains as mentioned in figure 3-9.

Software architecture engineering provides design and development rules and principles,

starting from requirement gathering to the identification of components, services,

dependencies and constraints between the components. The study of Social web application

architectures provides the essential knowledge, approaches and tools required to enhance

the ability of current social network platforms.

A Decentralised Semantic Architecture for Social Networking Platforms

105

3.6.3. Design and Development (Phase 3) Iteration 1

As part of the development stage which consists of three iterations, this first iteration presents,

how the integration of CBSD based PACE principles and AOSD based CAM gives the

framework of rules and components that are required to build DSNP. The DSNP which is

decentralised at a functional level. The component-based conceptual architecture is derived

from the literature explained in earlier phases. The derived architecture is based on

component-based software development (CBSD) architecture C2 style and Aspect-oriented

based software development (AOSD) CAM style. The PACE architecture which is an

extension of C2 style provides fundamental principles required to define and describe selected

DSNA components. On top of it, CAM is used to provide a component composition and

relationship rules.

To demonstrate the functionality of the DSNA in this iteration very basic messaging application

is built. The key principles of the DSNA style and architecture are followed during the design,

deploy and evaluation phase of this stage.

Figure 3-10: Iteration 1 structure

Requirement Engineering

 Standard Scenario

 Functional Requirement Characterization

Software Architecture Design (Designing DSNA)

 Detailed Design

 DSNA Architectural Style

Deploying the DSNA

 Building Aspect in DSNA

 Component based DSNA

Evaluating the DSNA

 Deployment of Aspect in DSNA

Iteration 1

A Decentralised Semantic Architecture for Social Networking Platforms

106

3.6.3.1. Requirement Engineering

The purpose of this step is to illustrate the requirement for the DSNA based application. The

requirements are based on the W3 SWATv1 scenario which is explained in chapter 2. The

same scenario is extended to include the needs of the decentralised SN application.

3.6.3.2. Software Architecture Design (Designing DSNA)

In this step of the iteration, the foundational design principles required to build the DSNP are

explained. The attempt is made to provide the justification regarding the need for the

prescribed rules and guidelines. The rules and guidelines include how the communication

between the different component will take place. The component communication guidelines

are based on C2 architecture. In the advanced stage of this part explains the CBSD and AOSD

role in supporting the architecture, which can help enable the decentralisation in SNPs. The

core part of this whole procedure is the integration of the CBSD based PACE style and AOSD

based CAM. As result of this integration, an architectural style (DSNA style) is obtained. The

DSNA style provides specific instructions for the design and development of DSNPs. The role

component and aspect are defined moreover, how the component and aspect are described

in the architecture.

3.6.3.3. Deploying the DSNA

This step of the iteration is aimed at providing the description of the component required to

design and build the DSNP based on the DSNA. During this iteration, the focus is on the

composition of components and aspects. The implementation of aspect is demonstrated in

the simplest form of functionality. A DSNA conceptual view is explained, including the key

elements of the architecture. At this stage, how components and aspects are distinguished,

their representation in the overall platform is explained.

3.6.3.4. Evaluating the DSNA

At this final step, of iteration one DSNA is evaluated against the simple messaging

functionality. According to the research design process, each of the above steps has

contributed to the evolution of DSNA. Each step produced an improved version of the DSNA.

The initial version of artefact obtained from this phase is a result of design and deployment

phase of DSR. In this stage of iteration, the main pillars of DSNA, that are Component, Aspect

and Role are demonstrated in the messaging application. Tools and technologies used for

the demonstration of all the important components are explained. System sequence diagrams

are used to demonstrate the behaviour of the application. The end results from the

A Decentralised Semantic Architecture for Social Networking Platforms

107

demonstration are used to build better, evolved version of DSNA in the next stage of the

development phase.

3.6.4. Implementation (Iteration 2)

This stage is aimed at introducing the improvements required under the guidance of the

iteration one and by following the DSR process. As per iterative design guidelines,

improvements are made in the artefact. In this version of DSNP application, DSNA is

implemented in a complex application than the one in iteration 1.

Figure 3-11: Iteration 2 Structure

3.6.4.1. Requirement Engineering and Prototype Design

Based on the scenario already explained in chapter 2 and extended in chapter 4, in this step

of the iteration the requirements are illustrated to describe DSNP application design. W3

SWATv1 scenario is improvised to accommodate the needs of the design. The challenges

involved in the implementation of the prototype are described in four categories, interaction,

communication, composition and allocation. Design related challenges are handled in

designing and deployment related are handled in the deployment of the DSNP

Requirement Engineering and Prototype Design

 Extended Scenario

 Design Challenges

 Detailed Design

DSNA Application Prototype Deployment

 Aspect Component Composition

 Components and Aspects in the Prototype

Evaluating the DSNA

 Description of standards and Prototype structure

 Deployment of Social APP in DSNP

Iteration 2

A Decentralised Semantic Architecture for Social Networking Platforms

108

The detailed design of the DSNP application describes the core aspects of the component

and Aspect-Composition design. Detailed design not only describe the component

composition of the DSNA, but also explain how SNSL can be used as middleware to handle

the composition of the components.

3.6.4.2. DSNP Prototype Deployment

The aim of this step is the deployment of DSNP application. Which is built under the

requirements of the design scenario. DSNP social messaging functionality is built under the

guidance of DNSA. All related protocols and standards are explained to provide the knowledge

required to procure the decentralisation in SNP’s.

During this iteration, the problem related to the DSNA component interpretation in the form

DSNP, is solved. Which is done by defining the components based on their roles. The

allocation of roles is done in three levels, functional, distributional and co-ordinational. To

achieve the full benefits of the DNSA, dynamic component composition is crucial, and the

allocation of role describes how it can be achieved at the component specification level.

Another part of the component composition is an Adapter design pattern. Adapter act as a

bridge between the DSNP and other SNPs. Adapter work in conjunction with role allocation

and interpret the data related to functionalities and make it portable to DSNP.

3.6.4.3. Evaluating the DSNA

The evaluation of DSNA is done by demonstrating the social messaging app. The purpose of

the evaluation is to discover the effectiveness of the artefact in the proposed design. Also,

explaining the importance of the contribution made by the solution.

As part of the evolving research process, the artefact is evolved to solve more complex

problem of component composition. There are two important part of the DSNP prototype

function, one is SNSL, second is an Adapter. To implement the DSNP protype, the design part

adds Adapter as a new addition to the evolution process of the DSNA. The purpose of an

Adapter is to guide, interpret and connect DSNA components through the Social Network

Support Layer (SNSL). By doing so DSNP accomplish user profile reusability and data

probability. To demonstrate DSNP social app is built and behaviour of the application is shown

in the sequence diagram.

A Decentralised Semantic Architecture for Social Networking Platforms

109

3.6.5. Evaluation (Iteration 3)

The aim of final stage of the three-phased iteration process is to measure the effectiveness of

the solution, to have the final version of DSNA. The SA evaluation can be performed for

number of reasons, but the common goal for most of the evaluation is to evaluate the potential

of design and to facilitate the achievements of the quality attributed of the architecture.

Iteration 3 is aimed at fulfilling the goal of component composition by implementing the stage

2 of the SNSL.

Figure 3-12: Iteration 3 Structure

3.6.5.1. Extended Design of the SNSL

This step of the evaluation is aimed at providing the extended needs that are required to

building the definitive version of the DSNA. The lesson learned in the previous iterations are

also used in the new design for the evaluation of the DSNP application.

Requirement Engineering

 Extended Scenario

 DSNP Social Interaction Design

Extended Design of the SNSL

 SNSL implementation stage 2

Deploying SNSL Extended Version

 Deployment of Social APP in DSNP

Iteration 3

Prototype Evaluation

 Final prototype evaluation

 Final Version of DSNA

 Challenges and Improvements

A Decentralised Semantic Architecture for Social Networking Platforms

110

To meet the prescribed requirements, an extended scenario of SWATv1 is used to evaluate

the finalised version of the DNSA based prototype. A specific criterion is set to test the social

interaction between the different SNPs in the DSNP environment.

The iterative process of development stage is completed, when the design requirements are

met, and final version of the artefact is accomplished. DNSA architecture’s better version is

produced during the protype implementation. To complete the development cycle, DNSA’s

SNSL stage 2 is implemented so that final version of the DSNA can be evaluated.

3.6.5.2. Deploying DSNP Extended Version

Lessons learned from the implementation of the SNSL stage one, are used to improve the

next version of DNSA. Some issues appeared during the implementation of DSNP, that are

regarding the data consistency and persistence. To resolve these issues SNSL second stage

propose necessary components. These components are part of DSNA’s SNSL and work in

conjunction with an Adapter.

3.6.5.3. Prototype Evaluation

After the successive iterative phases, this stage produces the refined version of the DSNA

based on the lesson learned from the previous iterations. The challenges posed to the success

of the implementation of the DSNA are described. The importance of the inclusion of the

various components is explained. For example, why the dynamic composition of the

component is required to accomplish a key task that is crucial for the implementation of the

DSNA. At last stage of evaluation, the prototype behaviour is evaluated based on the SWAT

scenario and prototype interaction and communication with other SNPs is assessed.

A Decentralised Semantic Architecture for Social Networking Platforms

111

3.7. Chapter Conclusion

The chapter presents the detail of the research activities performed in this thesis. The centre

of these activities is research methodology. The research methodology adopted for this

research is design science research methodology. The methodology consists of the

construction and evaluation of the artefacts that resolve a significant and recognised problem

(March and Smith, 1995). The design science research is used to get the reliable and practical

outcome from the implementation of the DSNA. In addition to that DSR methodology is an

iterative activity where solution artefacts are designed and developed through various cycles,

processes, activities, inputs and outputs. The goal of a DSR is to generate a purposeful

artefact that addresses a practical problem, specially, when elements of the problem are not

completely understood (Hevner et al. 2004) thus increasing the validity and reliability of the

artefact.

The principal guidelines of DSR dictate that the initial artefact must be refined in the form of

constructs, model, methods and instantiation to propose an effective solution to the problem.

For instance, to identify the issues with current social networking platforms, a literature review

was done and used to produce a solution that evolved and improved in three iterations, in the

design and development phase. Now the research methodology in place, in the next chapter

component based DSNA is produced as a result of the first iteration.

A Decentralised Semantic Architecture for Social Networking Platforms

112

Chapter 4 - Iteration 1

Chapter 2 Decentralised Design of the Social Networking

Applications

4. Chapter Introduction

The main contribution of this iteration is to present the design of the architecture and

architectural components to support the realisation of decentralisation in different SNPs. This

chapter also provides a detailed description of the architectural components. The description

of architectural components is required to provide a structure in which to ground the proposed

social networking architecture. In the context of this research, it is important to have

standardised set of components for the formation of conceptual architecture.

Figure 4-1: Iteration one structure

Requirement

Engineering

Designing the

DSNA, Deploying

and evaluating

DSNA

Artefacts

DSNA Style

DSNA Component
Architecture

DSNA Messaging

Application

Iteration One

Stages

Iteration Two

Iteration Three

A Decentralised Semantic Architecture for Social Networking Platforms

113

This iteration focuses on objective 3, which is about Designing a component-based

architecture (DSNA) to achieve decentralisation between social networking platforms by

decentralising the social networking functions. Another part of the objective is to describe the

suitability of available architectural styles for DSNA, define and describe the DSNA

architectural style and the main components required for the conceptual architecture of the

proposed decentralised social networking platform (DSNP).

The architecture is realised by combining the component-based software development

(CBSD) architecture C2 style and Aspect oriented software development (AOSD). PACE

which is an extension of the C2 style grounding principles is used to define and describe the

foundation of DSNA and its components. The Component Aspect Model (CAM) is used to

define the DSNA architectural style and its main elements. The style explains how every

component in the architecture should be designed and develop.

Iteration one is mainly design focused. The design provides a foundation in term of

components and rules. Iteration one produces three artefacts, evolving through three phases

of development stage (design, build and evaluate). DSNA style, The DSNA style and its

architectural component provides the blueprint for integrating the required technologies into

the social network platforms and DSNA messaging application is built to demonstrate the

architecture. The extended version of architecture is Instantiated in chapter 5 where the

prototype architecture is implemented.

4.1. DSNA Requirements

Drawing on the problem scenario described in chapter 2, this part of chapter 4 extends the

problem scenario so that explicit and detailed requirements for the proposed DSNA can be

defined. This is done by using a standard test scenario proposed by SWAT v1 (Social Web

Acid Test) (W3.org, 2015). SWAT v1 is an extension of SWAT v0. SWATv1 is described

separately in various dimensions of the decentralised social web such as data portability,

messaging, content deletion etc. According to SWAT, each test should be used to test the

level of decentralisation at the functional level between different platforms.

The Scenario

The scenario explains the nature of functionality required from the proposed platform.

 Users

Alice, Bob and Tony

 Social Networks

A Decentralised Semantic Architecture for Social Networking Platforms

114

SN1, SN2, SN3

 SN Functions

Data Portability

Messaging

 Description

- Alice has profiles on SN1 and SN3. She also has another profile for pictures

sharing on SN2, as it provides better multimedia functionalities.

- Her friends Bob and Tony uses SN3 and want to share their pictures with Alice.

- After Alice joins SN2 Bob and Tony are still her friends

 Goal

In the decentralised social networking platform, according to SWATv1, Alice should be

able to use messaging functions to send a message to Tony, and Bob and they should

be able to reply back. Data portability between the different SNPs should allow such

shared functionalities.

Figure 4-2: Problem Scenario based on SWATv1

In the figure 4-2, dotted lines show how the data portability should enhance the connectivity

between the different SNPs according to SWATv1.

Based on the analysis in Chapter 2, the basic requirements for the proposed architectural

framework are divided into four main categories that the decentralised social network

architecture is required to fulfil.

1. Security and Privacy

2. User Link-ability

3. Data portability

A Decentralised Semantic Architecture for Social Networking Platforms

115

4. Profile reusability

4.1.1. Security and Privacy Requirements

R1. The proposed architecture should provide components to achieve security and

privacy by providing more control to the user of their data and privacy.

4.1.2. User Link-ability Requirements

R2. The proposed architecture must provide components to resolve or convert user profile

preference to standardised identification, which can be understood by rest of the platform.

This is required to improve user link-ability in the DSNP and other SNPs the user belongs

to.

4.1.3. Data Portability Requirements

R3. The proposed architecture (DSNA) should provide components to enable data

availability across other SNPs. Which means the user should be able to access their data

from the proposed platform (DSNP) and other SNPs they are connected to.

R4. DSNP should provide data access and aggregation service to the user profile,

accessing from multiple SNPs. A user profile registered with one social network should be

able to gain access to other SNPs.

4.1.4. Profile Reusability Requirements

R5. The DSNP should provide components to enable the user to gain access, even if their

profile-ID is unknown to the platform user intended to gain access. For example, the third

party connect services can provide profile neutrality feature to the user. Third party connect

service is explained in chapter 2.

4.2. Social Network Functional Requirement Characterisation

Since the proposed architecture must provide support to the general types of social network

functions, therefore, this section analyses the social network functional requirements and the

role decentralisation in the different areas of SNPs with more recent examples. Furthermore,

analyse how social network function may work in a decentralised environment. The main

purpose is to define the proposed platform functional level requirements. This is achieved by

characterising basic functions of SNPs and comparing them with existing DSN environment.

A Decentralised Semantic Architecture for Social Networking Platforms

116

The diverse nature of available research on social networks makes a characterisation of SNPs

functionalities a cumbersome process. Richer and Koch, (2008) and Kietzmann et al. (2011)

work on SNPs functionalities is found relevant to this research, as they provide insight and

clear description of functionalities in term of their implementation and usability. Richer and

Koch, (2008) characterized social network functions in six basic functionalities.

They are

1. Identity Management,

2. Expert Finding,

3. Context Awareness,

4. Contact Management,

5. Network Management and (6) Exchange as shown in the figure 4-3.

4.2.1. Identity Management

Identity management means the management of identity information availability, that is how

the information is stored, setting the access rights i.e. who is allowed to see what (Richer and

Koch, 2008). User profiles and group memberships are the most enablers of this functionality.

In addition, Kietzmann et al. (2011) suggested identity block (as shown in figure 4-3) that

identity management is also responsible to control, to what extent users want to reveal

themselves on the social media. For example, to what extent they want to disclose their

information such as age, gender, location etc.

Figure 4-3: Structure of Social Network Functionalities implementation perspective, adopted from

Richer and Koch, (2008) and modified

A Decentralised Semantic Architecture for Social Networking Platforms

117

One of the many requirements of decentralised social network environments are

confidentiality and integrity of user profile related data that are stored in distributed and

untrusted storage nodes. The user should be able to have complete control over the

permissions to content they create (Nilizadeh et al. 2012).

4.2.2. Contact Management

According to Richer and Koch, (2008), Contact management is a combination of all

functionalities that enable maintenance of the personal network. Linking up with other people

using tags and adding access restriction to the profile contents are the example of contact

management. Kietzmann et al. (2011), described contact management as to the extent user

can communicate with other users in each social network environment.

The purpose of contact management in a decentralised environment is related to providing

the ability to users that allow them to control their visibility in a social network environment.

For example, management of, how the conversation between certain contacts will be

displayed and shared in a social network environment.

4.2.3. Content Management

Content exchange combines all possibilities to exchange information directly (messages) or

indirectly (photos or messages via wall) (Richer and Koch, 2008). Kietzmann et al. (2011)

explained content sharing in a context to the social network as a mode to exchange content

between the users. Therefore, management of exchange, sharing and distribution of content

from a central interface is content management. The function of content management is to

provide a mechanism to store and organise content related data.

In the decentralised social network environment, mainly users are responsible for managing

their content. That means user choose where their content will be stored. Up till now research

on social networks provides various ways as proposed by Nilizadeh et al. (2012) and Aiello

and Ruffo, (2012) to achieve this functionality however strong security and privacy control

must be enforced to ensure the safety of user data.

4.2.4. Context Awareness

A social interactive environment such as Facebook, LinkedIn and etc, were not capable of

acquiring the information based on common intelligence (Irfan et al. 2013). The term context

refers to the relevant information that can be used to categorise the situation of an entity. An

A Decentralised Semantic Architecture for Social Networking Platforms

118

entity means a person, place or object considered relevant to the interaction between users

and an application, including users and applications themselves (Abowd et al. 1999).

In current social network environments, context awareness provides an appropriate platform

for the integration of information that can be collected from tagging of a picture or joining the

same group. That context related information referred to user profile giving a basic

understanding of the user’s behaviour.

In the decentralised social network, context awareness is subject to requirements. As

decentralised architectures are more user centric therefore it’s easier to implement context

aware functionalities, (Google hangout is the best example, in which user can feed data that

is later used to make context aware decisions and recommendations) therefore context

awareness can be used to make recommendations and decisions based on people personal

experience or the experiences of other associated people.

4.2.5. Social Network Awareness or Network Awareness

Communication technologies are not enough to promote communication and information

sharing. It is important to be aware of other sources of information in a network, to

communicate and collaborate. Therefore, social environments must provide means to

communicate social cues and context information (Cadima et al 2010).

Cross et al. (2001) and Cadima et al (2010), accentuates that, the accessibility of information

in social networks is directly connected to social network awareness, which in their perspective

is the awareness of social relationships within the community, the awareness of “who knows

whom” and “who knows what”. Social network awareness can be helpful to map access

relations at as network level to understand who can reach whom.

In decentralised social network environment as peers, nodes or users are mainly independent

that can lead to deeper mutual awareness, more expressive communication, and coordination

of ideas between the peers, nodes or users. These functionalities are implemented differently

than centralised platforms. All centralised SNP provides sharing status update feature,

however, in decentralised SNP messages are distributed in an efficient way with more privacy

features.

By summing up here, to achieve decentralisation at the functional level of SNPs, an

architecture is required provide principles, guidelines, standards and protocol support to

achieve this goal.

A Decentralised Semantic Architecture for Social Networking Platforms

119

4.3. Designing the DSNA Platform Functions

In iteration one, the first version of the DSNA is designed. The aim is to utilise principles of C2

based PACE and CAM to ground a style on which the DSNA is built. The architecture is then

deployed and evaluated using a messaging functionality of the proposed platform (DSNP).

Figure 4-4: Conceptual map of design phase of development stage

Figure 4-4 provides an overview of how the different concepts are associated with each other

in the DSNA.

In pursuing the design goal of the research, iteration one attempts to fulfil the design

requirement R1 and R2 of by developing a messaging application under the guidelines of the

proposed architecture.

4.3.1. Foundations of the DSNA Style

Component Communication Rules

The search for a suitable architectural style for the decentralised architecture of software

application begins by recognising that nodes (peers or users) are autonomous as they can

choose when and how to respond to the information they receive (Suryanarayana et al. 2005).

The interactions between nodes and components are divided into two types.

1. Internal interactions

A Decentralised Semantic Architecture for Social Networking Platforms

120

2. External interactions

Since there will be Internal (in context of this research, the communication with the browser

and other nodes within the network) and external (which is the communication of components

with external SNPs), interactions of architectural components, an architectural style capable

of supporting dynamism between coupled components is required (Dooren et al. 2013).

The interactions happen between nodes in the decentralised architecture either synchronously

or asynchronously. In the context of message communication, synchronous interactions are

suitable for scenarios in which a sender must need a response back and wait until the

response and asynchronous interactions are suitable for a scenario in which responsiveness

is important and the sender is not sure about the availability of the target.

Figure 4-5: Synchronous and Asynchronous Interactions

For example, in the figure 4-5, process A communicates with process B synchronously, that

means A send a message to B and waits for B to reply. Process A does not do anything until

it gets a reply from process B. In contrast to that when communication is done asynchronously

process C continue with another task while waiting for the reply from process D.

One of the drawbacks of asynchronous communication is network connection uncertainty that

means it does not guarantee network connectivity or target availability. In Morandi et al.

(2013), they suggested using store and delivery mechanism to avoid losing the message.

When choosing store during the design process consider the use of local caches should be

considered to store messages for later delivery in case of network or system failure.

A Decentralised Semantic Architecture for Social Networking Platforms

121

The proposed architectural style is formally summarised as a network of concurrent

component hooked together by message communication (Taylor et al. 1996). Event based

architectural styles have been successful in addressing constraints of asynchronicity,

dynamism and loose coupling. The C2 (Component and Connector) architectural style fits

within these constraints and also provides support to facilitate rapid development

(Suryanarayana et al. 2005).

4.3.2. C2 Architectural Style

The building blocks of C2 architectures are components (computational element) and

connectors (interconnection elements). This segregation of two architectural concerns that

are, computation and communication enable the construction of flexible, extensible and

scalable system. The style places no restriction on the implementation languages or

granularity of components and connectors, allowing the style to use multiple interoperability

technologies for its connectors (Natarajan and Rosenblum 1998).

Drawing from the above section where asynchronous communication is described. C2 is an

asynchronous event based architectural style which promotes reusability, dynamism and

flexibility through limited visibility (i.e. component independence). In this style, components

are arranged in a layered fashion, and a component is completely unaware of the components

below. This independence of the layers shows a clear potential for the fostering substitutability

and reusability of components across the architecture (Natarajan and Rosenblum 1998;

Suryanarayana et al. 2005). Complexity is the main issue with this architectural style, caused

primarily by the prevalence of asynchronous behaviour which must be managed by making

the interaction between the components more consistent.

Regarding the structure of C2 style, components and connectors have a defined top and

bottom that allow them to be arranged in layers. Because of this arrangement the components

communicate by passing messages or notifications, travels down in the architecture and

requests travels up (Taylor et al. 1996).

Component Interaction Rules

Components can interact with each other following the rules described below and proposed

by (Taylor et al. 1996; Natarajan and Rosenblum 1998).

1. The top component can connect to the single connector at the bottom of the layer.

2. The bottom component can connect to the single connector at the top.

3. There is no limit on the number of components or connectors that may be connected to

the single connector.

A Decentralised Semantic Architecture for Social Networking Platforms

122

4. When two or more connectors are connected to each other, they must be connected

bottom to the top of the other.

5. Components can only communicate through connectors.

Figure 4-6: Architectural style's components interactions rules

The figure 4-6 shows the relationship between the components and connectors in a top to the

bottom approach of C2 style.

Conceptual architecture based on C2 style can be extended and instantiated in a number of

different ways. Many potential issues such as interaction constraints and performance are

discussed in (Suryanarayana et al. 2006) and (Pinto et al. 2005). In the context of this

research, an extension of the component style is required which can be used to conceive the

design of DSNA style.

Comparing C2 and PACE

PACE (Suryanarayana et al. 2006) stands for Practical Architectural Approach for Composing

Egocentric Trust. The PACE is an improved variation of the C2 style. PACE imposes additional

constraints on the structural behaviour of C2 components in the context of peers to address

trust management issues in the decentralised application architecture.

A Decentralised Semantic Architecture for Social Networking Platforms

123

PACE is a trust-centric architectural style that addresses the concerns of trust management

in decentralised applications. PACE provides explicit guidance on the incorporation of trust

mechanisms. The adoption of PACE to the proposed research is based on the approach, that

provides the mechanism for integrating communication, data, trust models within an internal

architecture (explain in next section) to support the properties that allows trust and data privacy

related challenges to be addressed in the decentralised social networking platforms.

Furthermore, the PACE architectural style is selected because it can facilitate the

incorporation of trust model into the architecture of the decentralised network. The PACE is

about the guidelines and about the components that should be included in the peers, as well

as their arrangement and their interactions (Suryanarayana et al. 2006; 2005). Peer

corresponds to a system and peers represent a network of systems or nodes connected in a

decentralised manner. (Chapter 2 section 2.6 describes the terms nodes and peers)

PACE gives detailed guidelines and implementation strategy of the existing distributed

networks to incorporate trust by using the decentralisation in peers. In contrast, social

networks are also made of large distributed networks and peers connected to each other by

the mean central authority. Therefore, an attempt is made to utilise principles of C2 PACE

architecture to achieve seamless decentralised behaviour among the users or peers

connected to one or more social networks.

4.3.3. Fundamental Principles of C2 PACE Style

4.3.3.1. Digital Identities

Identity is defined as a set of attributes related to an entity and digital identity is an information

on an entity used by the computer system to represent that entity. An entity can be a person,

concept, thing, or group (ISO/IEC 24760-1, 2011). Identity management is crucial to the

success of the decentralised social networking platform.

The concepts of identities both physical and digital are necessary to facilitate meaningful

relationships. The purpose of digital identities is to identify peers in the system through their

digital identities allowing the possibility that a single user may pose as multiple peers by using

multiple electronic identities. Each digital identity carrying trust information is separately

determined and maintained irrespective of the physical identities it represents (Suryanarayana

et al. 2006).

A Decentralised Semantic Architecture for Social Networking Platforms

124

There are few constraints that arise because one to one mapping between digital and physical

identities may not be possible as one person may have multiple digital identities. Therefore, it

is not possible to attach a digital identity to one physical individual. Instead, critical criteria of

trust relationships in decentralised applications should be the actions performed by digital

identities not by physical identities. Therefore, PACE considers trust relationships only

between digital identities (Suryanarayana et al. 2006). For example, in the context of trust

management in decentralised SNP, an anonymous user may be present and resisting the

acceptance of digital identification. In that case it is not possible to attach a digital identity to

one physical individual.

4.3.3.2. Separation of Internal and External Data

This is how the information related to a peer’s interactions is stored in a proposed

decentralised application. The distinction is made between the internal and external interaction

of the peers.

The separation of internal and external data helps to resolve conflicts between externally

reported information and internal perceptions. Therefore, PACE makes clear distinctions

between the internal beliefs of a peer and the beliefs communicated externally to it by the

other peers in the system. Such a distinction is required as there may be a chance that the

information received from other peers may be faulty. Therefore, PACE explicitly divides data

storage between internal and external information repositories (Suryanarayana et al. 2006).

4.3.3.3. Explicit Trust

In a decentralised application, trust must be visible to other components in the architecture to

make accurate decisions. For example, trust related information should be available to the

components to make decisions internally with the architecture. This will enhance the

collaboration among the peers and provide them the knowledge to make decision related to

their privacy.

Each peer needs information to make decisions without the influence of controlling authority.

Active collaboration between the peers may provide enough knowledge to make their local

decisions. The trust related information can be processed only when it is not localised to one

component but distributed across the entire architecture. Each component in the peer is

responsible for making local decisions and take the advantage of the trust perceived from

other components (Suryanarayana et al. 2006).

A Decentralised Semantic Architecture for Social Networking Platforms

125

Figure 4-7: External Architecture of PACE (Suryanarayana et al. 2006)

4.3.3.4. Implicit Trust

In a decentralised platform, the purpose of the implicit trust is to handle the internal

communication of architectural components.

The components in the internal architecture (Shown in figure 4-8) of PACE are linked via an

implicit trust. The only difference is the communication layer (explained in next section)

because it is not responsible for validating the messages from other peers. Any notification

sent by the communication layer cannot be trusted. (Suryanarayana et al. 2006).

As shown in the figure 4-8, the communication layer handles the external communication of

the peers and situated at the top of the architecture. It issues communication requests to other

layers and it originates from the components of the layers below the communication layer.

Since the request is for the internal communication of the components and it is considered as

implicitly trusted. Because of this, the components of the architecture treat communication

request differently. An internal request is generated for the communication of the components

within the architecture and an external request is generated to communicate externally with

other peers (Suryanarayana. and Taylor, 2004; Suryanarayana et al. 2004).

For example, the information layer (explained in the next section) only allows requests to

query, update or delete stored information and prevents the notification from external peers

received through the communication layer to do the same (Suryanarayana et al. 2006).

A Decentralised Semantic Architecture for Social Networking Platforms

126

4.3.4. Component based PACE Architectural Style

Drawing on the above principles, PACE divides the decentralised architecture into four layers,

communication, information, trust and application layers. Each layer and architectural

component must adhere to the fundamental principles (explained in section 4.3.4) during the

design and development of the platform.

In this section, PACE architectural style is introduced with its specific topological and

component constraints. This architectural style is used in the designed and development of

the proposed platform. The fundamental principles i.e. identification of identities, separation of

data and separation of trust are adopted with the style of architecture to design and develop

the component architecture of the DSNA. The figure 4-8, below illustrate the sample

architecture constructed in PACE style.

Figure 4-8: Sample internal architecture designed in PACE style (Generic), (Suryanarayana et al. 2006)

The components shown in the above figure are generic and can be replaced based on the

requirements of the system.

A Decentralised Semantic Architecture for Social Networking Platforms

127

4.3.4.1. Communication Layer

The purpose of this layer is to handle the communication between the peers in the system.

This layer has three main functions,

 Provide abstraction to underlying connection protocols

 Provide a mechanism for multiple connections

 Identity management

To achieve maximum flexibility, the type of data is used by underlying protocols is isolated to

protocol handler component. Each protocol handler is managed by communication manager.

Underneath the communication manager, there is a signature manager that verifies the

communication messages inside the architecture (Suryanarayana et al. 2006).

As shown in the above figure, there are three main components of communication layer.

 Communication Manager

 Protocol Handler

 Signature Manager

The protocol handler enables multiple network communication which is responsible for

translating internal events into the format understood by the associated external protocol and

vice versa. The communication manager responsible for the dynamic creation of protocol

handlers and the signature manager is responsible for signing and verification of requests

(Suryanarayana et al. 2006; 2005).

4.3.4.2. Information Layer

The purpose of information layer is to store data and separate the internal information of the

peers from external peers. The information layer consists of two components.

 Internal information component

 External information component

Internal information stores request messages that originate from internal components and

external information stores the request messages from external peers. The data related to

internal information is persistent, to allow the peers to keep the record of their actions. In

contrast, the data in external information components need not to be persistent.

4.3.4.3. Trust Layer

The trust layer is a combination of components that enable trust management and policies at

the local peer level. To achieve this, the layer is divided into three components;

A Decentralised Semantic Architecture for Social Networking Platforms

128

 Key Manager

 Trust Manager

 Credential Manager

The key manager is responsible for generating and storing the public-private key or a unique

key pair for the message authentication in the internal information components. The purpose

of a credential manager is to manage the credential of the local peers and that is done by

storing peer identity at locally situated cached in information layer or internal information

components. Finally, the trust manager is responsible for assessing and computing trust

between the peer's based prescribed models and algorithm decided in the requirement design

of the trust manager.

4.3.4.4. Application Layer

The application layer consists of application specific components, that means the component

is dependent on the specific need for the application. Therefore, these components should be

decided during the requirement design process by the developer. In PACE application layer

includes application trust rules and application components. Trust rule encapsulate the rules

that are assigned to the semantic meaning of the messages and the application component

may include the components that may represent the behaviour of the peer, which may include

a user interface.

4.3.5. Component based Architecture and Separation of Concerns

The component based architecture such as PACE relies on achieving an accurate functional

decomposition of a system into independent components. The goal is the reduction of cost,

development time and efforts while improving the flexibility and maintainability of the final

application (Pinto et al. 2005).

The advantages of loosely coupled application are well accepted but at some point, when

many different applications are interacting with each other in a decentralised environment and

producing new objects, then at some point there may be chances of having duplicate

functionalities caused by duplicate code. This problem may arise because of low cohesion

between the components in the PACE architecture, hence reducing modularity.

The monolithic description of components provided in PACE lacks in the level of modularity

(grouping of the logically related element of the application) required to achieve appropriate

“separation of concerns” (Dijkstra, 1982) across the different architectural views and roles.

This lack of modularity may reduce the ability of PACE managing the multiple variations of

A Decentralised Semantic Architecture for Social Networking Platforms

129

applications and functionalities developed and deployed in decentralised social networking

platforms.

Therefore, this research adopts the concept, separation of concerns (which is used in the

development of highly distributed application under the principles of aspect orientation) (Pinto

et al., 2005; Pessemier et al. 2008), to achieve a higher level of modularity, cross-functional

integrity and reusability between decentralised applications.

In computer sciences, separation of concerns is a design activity that is used to divide the

program into separate distinct sections and each section addresses a separate concern. A

concern is a set of information that affects the code. A concern can be some general detail or

as specific as some name of the class (Laplante, 2007).

The separation of concern is the core design activity in both AOSD and CBSD. The problem

solved in this research is software design related and from that perspective, various concerns

are identified and implemented. A concern of an application is related to the functionalities the

application provides. For example, a calculator application needs to provide mathematical

operators and a user interface to interact with operators. The implementation of operators and

user interface are two separate concerns.

During the implementation, the concerns are scattered over many modules. When the

concerns crosscut, each other it becomes problematic and creates the code tangling problem.

This breaks the key principle of the separation of concerns, according to which each module

should not contain more than one concern. This issue hampers the code reusability and effects

the modularisation of concerns (Sommerville, 2006).

The aspect orientation is used to tackle the crosscutting concern problem using an aspect

(see chapter 2 for definition). In the light of, Kiczales et al. (2001), aspect is used to modularise

the SN functions, for the composition or decomposition of aspects is implicit to the mechanism

placed for the implementation of the aspect. The next section explains the design mechanism

which will instantiate the proposed style of the DSNA.

4.3.6. Design Mechanism of DSNA Style

The core concern of any system are those functional concerns that are related to the system’s

primary purpose. For example, social network functionalities are the core of an SN and

concerns are related to the primary purpose. A general mechanism in the form of concern

should be put in place to guide the SN functions in term of their implementation. This

A Decentralised Semantic Architecture for Social Networking Platforms

130

mechanism is guided by an architectural style which is mentioned in this research as a DSNA

style.

At the core of DSNA style is a unified approach, which is a combination of component-based

style such as PACE and Aspect Oriented Software development (AOSD) concept of

separating the concerns (Pessemier et al. 2008). A detailed description of AOSD technologies

can be found in (Pinto et al 2011; Fuentes et al. 2003).

Figure 4-9: CAM Meta Model, (Fuentes et al. 2003; Pinto et al. 2005)

To derive architecture style for DSNA, both aspect based, and component-based techniques

are combined to obtain their mutual advantages. In the current case, CAM (Component

A Decentralised Semantic Architecture for Social Networking Platforms

131

Aspect Model) is used. The CAM provides foundation rules for the component composition of

DSNA. The CAM defines the basic entities and structure of the system from the architectural

point of view. In the case of DSNA components and aspects are the basic building blocks.

The figure 4-9 is a UML diagram with the basic entities of CAM and the relationships that can

be established among them. The above diagram is known as UML profile for CAM.

UML Profile: According to, Alhir, (2002) UML profile purpose is to provide an extended

mechanism for customising UML models for specific domains or platforms. Stereotypes tags

and constraints are used to define profile elements such as classes, activities, entities,

attributes and operations. A collective combination of the elements customised to represent a

particular domain can be called as UML profile of that domain (Alhir, 2002). The figure 4-9 is

a UML profile of CAM with stereotypes and constraints, to design application using CAM.

There are two main entities of CAM, components and aspects. Both components and aspects

are required to have STATEATTRIBUTE that represent their current state that is public or

private. ROLE and PROPERTY are assigned to the components and aspects to distinguish

them from the final implementation of the application (Pinto et al. 2005). The next section

describes them in further detail in the context of design.

4.3.7. Design of Social Messaging Application Using CAM

As part of the iteration one, the next step towards the instantiation of DSNA, social network

functions such as messaging, or scraping is mapped in CAM. The figure 4-10 shows the

design of SN messaging application using the CAM. The core behaviour of the application is

modelled, as per rules described in Pinto et al. (2005) and Fuentes et al. (2003) the application

of separation of concerns allows the separation of crosscutting functional requirements such

as authentication or message filtering. This method makes easier to reuse that social network

function components that may have or may not have their properties changed. Pinto et al.

(2005), have mentioned that the aspectual properties of the entities that can also be reused

in another context.

For example, authentication aspect of the component is applied when the user wants to join

the social network to send a message, that means the user must enter some relevant

identification information as required by the application. A local instance for messaging

function component is created only when the user is authenticated and registered in the

network.

A Decentralised Semantic Architecture for Social Networking Platforms

132

Another example could be if the requirements are changed from simple messaging to

messaging with chat functionality. In this case, persistent chat aspect can be added or called,

which stores the states of the chat component in the data storage. The figure 4-10 describes

the relationships between the component and aspects in an implementation of CAM in social

network messaging functionality.

4.3.8. Components and Aspects of the Social Messaging in DSNA

In this section, the role of components and aspect in DSNA is described. Moreover, this

section also explains the associated entities of the components and the aspects, their

relationship principles and how the effective cohesion between all the entities is formed to

form an effective DSNA style.

The main entities of the CAM are components and aspect as shown in figure 4-10. In principle,

there are no restrictions on the granularity of these entities because of the distributed nature

of the application and the way they are composed. The components are disturbed they interact

with each other by exchanging messages and aspect are attached to the components to

impose some recommendation regarding the level encapsulation. Both components and

aspects are considered as course-grained encapsulated entities and act as a unit of

composition with contractually specified interfaces and explicit dependencies (Pessemier et

al 2008; Fuentes et al. 2003).

4.3.8.1. State Attributes

In the CAM based architecture or models, aspects are treated as a special kind of component

having some shared common features with components. The components may have a set

StateAttributes to represent their public statements, for example, the information that should

be made persistent to restore the state of component or aspect. This information can be used

to implement some properties (Pinto et al. 2005).

4.3.8.2. Roles

In their implementations of CAM pinto et al (2005), Fuentes et al. (2003) and Pessemier et al.

(2008) have used a new class of ROLE (see Role class in figure 4-9 and 4-10), in order to

detach component and aspect interfaces at the final implementation of the application. A

unique role name is assigned to identify both component and aspect classes. A specific

functionality is encapsulated inside the role that can be executed by the component when it’s

called. According to, Pinto et al. (2005) role names are architectural names that are used for

A Decentralised Semantic Architecture for Social Networking Platforms

133

component and aspect composition and interaction allowing loosely coupled communication

among them.

To demonstrate CAM implementation, simple social network messaging functionality is

selected. In the figure 4-10 component, aspect and their relationships with other entities are

shown in the context of DSNA messaging functionality.

In the functionality, components with the Role Name ‘ChatRole’ ‘MessageRole’ and three

aspects ‘Authentication’, ‘Persistence’ and ‘Filter’ are added. It is quite possible that in a

decentralised or distributed application’s several components have the same role, for

example, a user using more than one functionality such as having a conversation with more

than one person at the same time. To handle such variations, RoleInstance is introduced,

which is created on the initiation of any interaction between the users and allocated to the

component (Basically it is an instance of the component created by the component).

In the light of the scenario explained in section 4.1.1, a message interaction between user

BOB and ALICE will create a MessageRole (Name=Message) and new RoleInstanceMessage

(Message_UserNames) and similarly if the BOB and ALICE turns the messaging to chat, then

a new RoleInstance, RoleInstanceChat (Chat_UserName) and Role name ChatRole

(Name=Chat) are created to differentiate between different chat or message Roles.

4.3.8.3. Component

Differentiating between the component and component instance will be another subject and

out of the scope of this research. As there are various definitions of the components are

available as such in Shaw and Garlan, (1996) and Szyperski, (2002) (see chapter 2).

In the purposed DSNP the components are made of a set of classes assembled and executed

as a single functionality to be deployed by the social networking platform. The implemented

form a component in the DSNP is the SNP functionality with specific aspects, properties and

roles when initiated by the user as a request.

4.3.8.4. Property

One of the main goals of CAM is to keep aspect unaware of other aspects information and

that is applied at the same time to the components as well (Kiczales et al. 2001). This hinders

the composition of aspects and components. Fuentes et al. (2003) solved this problem by the

adding the adding an extra class PROPERTY. Property is identified by a unique name, type

and value. Therefore, in CAM aspects, directly or indirectly resolve their dependencies by

A Decentralised Semantic Architecture for Social Networking Platforms

134

sharing properties. The main purpose of the property is to define truly independent component

having any kind of data dependency as a shared property (Pinto et al. 2005).

Figure 4-10: CAM Model of Message Functionality of the DSNP

The figure 4-10 shows an example of Property called Name. The figure shows that aspect with

the role name AUTHENTICATION and FILTER shares the property USERNAME. The

purpose of this property is to authenticate the user once the user information is authenticated,

A Decentralised Semantic Architecture for Social Networking Platforms

135

authentication aspect set the value of the property to username and stores it. In case, the user

does not want to see the message of the specific user this is where FILTER aspect gets the

value, that how the message to be displayed or not to be displayed.

4.3.8.5. Relationships

CAM follows standard practices of C2 or CBSD i.e. component based architectural style for

the communication between all the entities of the CAM. In CAM component interact with each

other by exchanging messages and events. According to, Rathfelder et al. (2014) messages

are sent to communicate with specific target entity and events are also a form of a message

that is asynchronously transferred between the components to trigger a certain behaviour.

The value of CAM

 The use of properties in CAM will allow the description of data dependencies and more

independent and reusable entities during the design phase.

 The information generated in the description by aspects may have been generated by

components as well. This provides a standardised information sharing mechanism

between the components and aspects. For example, a PROPERTY USERNAME is

created by an AUTHENTICATION aspect based on consultation from MESSAGE

component, similarly, it can also be consulted by the CHAT component.

To implement and deploy such architecture in a realistic setting, one must take this into to

account that, nowadays the infrastructure of SNP’s is continuously evolving. New

functionalities (related to publishing, authentication or profiling) are added to deal with new

trends. Various functionalities from multiple platforms can make the problem of cross-cutting

concern very complex and AOSD, CAM provides a quality solution.

4.3.9. Architectural Style of DSNA

The purpose of the architectural style is to provide a specific abstraction of the elements

regarding the system functionalities. According to Fielding, (2000) a style provides set of

architectural constraints to restrict the roles and features of the elements and relationships

between the elements.

A unified approach is used to combine the component-based style such as PACE and Aspect

Oriented Software development (AOSD), to obtain mutual advantages to conceive a style of

an architecture that can solve the complex issues related decentralisation problem between

A Decentralised Semantic Architecture for Social Networking Platforms

136

social networking platforms. This section presents DSNA style main entities based on the

detailed description mentioned in section 4.3.8.

Fielding, (2000) definition can be adapted to define DSNA style, according to which DSNA

style is an architectural style that provides architectural constraints to restrict the roles and

feature of the element and their relationship with other elements. The main elements of the

DSNA style are;

 Component

 Aspect

 Role

 Property

In the context of this research, the component is a set of classes assembled and executed as

a single functionality that to be deployed by social networking platform. In the context of the

scenario, BOB wants to send a message to TONY. But first BOB will login to a web application

which will initiate, for instance, a login component. Login component has various aspects such

as CreateCookie, Authentication etc. initiating login also initiate aspects its roles and

properties. When BOB presses login button Authentication aspect is used to check whether

BOB is register with the website or not. For this purpose, Property USERNAME is called which

check the user validity and set the value in response the user either enter the website or more

information is asked.

For the relationship between the components, as mentioned in above section CBSD rules are

applied to DSNA. In the case of aspects as they are applied to the component, therefore

‘applies to’ is considered for DSNA style as for of relationship between the components and

aspects.

A Decentralised Semantic Architecture for Social Networking Platforms

137

Figure 4-11: Architectural view of DSNA style

Aspects are applied whenever the components are created, and this is same with the role.

Figure 4-11 basically shows the higher-level relationships between the elements of DSNA

style using UML diagram. It shows that DNSA (here DNSA mean the application based on

DSNA) is a superclass of the components. Each component is associated to roles and

aspects. A component may have many roles and many aspects. The aspect and property are

associated to with each other in ‘dependency’ relationship. The outcome from the property

can directly or indirectly affect the component.

4.4. Deploying DSNA Platform Functions

As part of iteration one, the transformation of principles and methods proposed in the design

of DSNA style is done in the building and deploying of DNSA platform. In this stage, an attempt

is made to describe how the DSNA style can be used to help (the developer) decentralisation

of social networking platform functionalities. The build process of components and aspects of

SN application are described to show the functional view of the DSNA.

In the build stage of the iteration one, DSNA is applied to achieve the very basic function of

social network, such as chat messaging function. The most important part of DSNA

deployment is the composition of aspects and components to demonstrate their working in the

DSNA based platform.

A Decentralised Semantic Architecture for Social Networking Platforms

138

The approach taken in this thesis consists on focusing the SN decentralisation at functional

level. This is achieved by separating the behaviour of SN functions at component level, by

using non-limited set of aspect component, that are then further used to describe the

behaviour of the component interface. With this approach, the SNP functions can be

addressed separately and thus enhancing the level of decentralisation among the SNPs.

Figure 4-12: Key building blocks of component composition in DSNA based application

One of the core feature of DSNA is the dynamic composition of component and aspect at

runtime level. Which is achieved by following the DSNA style and the design mechanism

described in section 4.3. In CAM aspects are represented as components, to increase the

reusability of aspects. Figure 4-12 describes the place and work of the component in DSNA.

The figure which is a simple depiction of larger architecture shows the relationship between

A Decentralised Semantic Architecture for Social Networking Platforms

139

the component, platform and SN functions. The figure also shows the key building blocks of

component building in the DSNA based application. SNSL and composition of the components

are discussed in more details in chapter 5.

4.4.1. Deploying Aspects in DSNA

The core development concept of any application developed using modern languages is the

breaking down of the problem into separate objects and each object grouping together data

and behaviours into a single entity. The aspects in DSNA uses the same design, with addition

of concerns. DSNP is composed of component and each component is deployed based on

the need of the user. Each component represents the functionality used by user of the SNP

and it can be either in use or needed to be deployed. Aspect allow user to decide which

functionality of the SNP they want to use, and concern make this possible by solving that

functionality concern. As explained in CAM ` model a concern is an additional class

associated to each aspect and it represent the application requirement which may have been

described in the requirement or arises during the application building process.

The CAM approach uses four main functions, that are part of pointcut-advice model of AOSD

(Mouheb et al. 2015). Therefore, the implementation of aspect components is done using

these four main functions.

Pointcut is an expression in an aspect component that designates set of jointpoints. Basically,

pointcut is a statement included in an aspect that defines joinpoints. Pointcut also exposes

data from the execution context to the joinpoint.

JoinPoint is a point or an event in the aspect component or any point in the code where

aspect is called or executed. Therefore, joinpoint can be method invocation or calls,

exceptions, constructor or a catch block. This is the point where joinpoint provide service to

the object or class (Mouheb et al. 2015, Sommerville, 2007).

Advice or advice code is the implementation of the concern in an aspect. A concern

implements the behaviour into the aspect component. A behaviour can be injected or called

anywhere in the code dynamically. For example, according to the current requirement, that

can be used to create a behaviour of such as adding SN functions based on user request.

Like class or method, the behaviour of an aspect can be split into many types of advice codes.

During the DSNA design model as the flow reaches any joinpoint, it is bound to trace the

advice to implement the behaviour.

A Decentralised Semantic Architecture for Social Networking Platforms

140

Weaving is about putting the jointponts in the place where it needs to be executed. The

inclusion of an advice at the joinpoints specified in the pointcut is the main responsibility of the

weaver. The waving function from CAM is used in the DSNA to perform the final execution of

the application with the desired aspects included at the specified component.

Figure 4-13: Example of Authentication Aspect in context to Weaving

SN Authentication Function Aspect

The user authentication and authorisation functions are the most used in any system, they

may have to be included in several different places based on the requirements. In the CAM,

based system an aspect can represent any change or any concern that requires additional

functionality. For example, updating user password or user security related malfunctioning

which may trigger various events like forget password, policy change and may need to call

multiple methods at multiple places in the system to fix the problem. In the case of CAM,

aspect can be called as soon as required based on rules as defined in the aspect, therefore

the need of recreating the methods and calling them at various level may not be required when

using aspect. This enhances the distributed behaviour of the system at the semantic level and

enhances the reusability of code.

The notion of decentralising the SNPs at the functional level by changing the very semantics

of the way they work can be achieved by an aspect representing a function and each function

representing a component. The figure 4-13 shows how an aspect includes a specification of

where the raised concern need to be woven into the component at the code level.

A Decentralised Semantic Architecture for Social Networking Platforms

141

The notations that are used in the authentication aspect example follows AspectJ (Kiczales.

2000) style but modified and simplified so that it can be understandable to anyone. AspectJ

is one of the earliest AO extension written in JAVA. With few new constructs, it provides the

support for AOSD.

Figure 4-14: LoginVerify Aspect Example

The Weaving can be used to add additional functionality to the code. As shown in the figure

4-14, if there are multiple request to create a functionality then instead recreating the methods

or calling a method at several places, an Aspect can be used with the specification of where

the functionality needs to be woven (Created, In CAM terms). Following this procedure SN

functionality can be created dynamically. Chapter 5 discusses the implementation of whole

CAM based architecture in further details.

Aspect LoginVerify {

Before: call (public void Authenticate* (…)) // start of pointcut, pointcut is a

collection of jointpoints . Before execution of any method start with the authenticate ,

pointcut should be executed. The Advice carry out the execution.

{

//From here you can add jointpoints based on advice that should be woven at runtime.

//Joinpoint with advice

Int loginAttempts =0;

Declare String UserPassword

//compare user password with entered password

UserPassword= Password.get (loginAttempts)

//set the rules which is a part of advice and start of the point

while (loginAttempts < 3 and userPassword != thisUser.password) {

//Rule: User is allowed 3 attempts

loginAttempts = loginAttempt + 1

UserPassword = Password.get (loginAttempt)

}

//This is a usual code

If (UserPassword != thisUser.password ())

//Then redirect to forgotten password or log out.

System.logout (thisUser)

}

}

A Decentralised Semantic Architecture for Social Networking Platforms

142

4.4.2. DSNP’s Component based Conceptual Architecture Explained

As explained in chapter 2, components are the most basic unit of architecture composition

that specify interfaces and set of requirements. Component based software engineering,

which is used to define, implement and compose loosely coupled independent components

into a form of a system (Somervile, 2007). Component based engineering depends on

independent components specified by their interfaces and component standards that facilitate

the integration of component into middleware that provide software support for the

components integration and deployment (García-Castro et al. 2008).

To finalise the component based conceptual architecture of DSNP this section provides basic

description of architectural components. The architecture is divided into 4 layers.

1. Application Layer

2. Social Network Support Layer

3. Data Access Layer

4. Communication Layer

The architecture is based on DSNA style, which has foundations in PACE (component-based

style) and CAM. The combination of PACE and CAM provides rules and structure that is

required to build a decentralised social network platform. The components in DSNA

communicates each other asynchronously based on descriptions mentioned in section 4-3 In

the next section DSNA components are explained. The relationship between the components

is govern by the rules discussed in above section 4-3.

A Decentralised Semantic Architecture for Social Networking Platforms

143

Figure 4-15:Component based conceptual DSNA

4.4.3. Application Layer of DSNA

The application layer consists of application specific components, that means the component

are dependent on the specific need of the application. Therefore, these components must be

decided during the requirement design process by the developer. DSNA includes the

component that are considered important to build an application layer for DSNP. The

application layer of DSNA consists of the following components;

 GUI Components

 Application Functionalities

 Key Manager

 Credential Manager

 Third Party Application

GUI Components are the combination of components that makes the user interface and

described differently for different applications. Their main purpose is to provide a human

accessible interface for navigating the application enabled with different technologies (such

as semantic technologies).

A Decentralised Semantic Architecture for Social Networking Platforms

144

It provides social network user to perform basic user interface (UI) tasks such as messaging

or posting. Dadize and Rowe, (2011) and Seong et al, (2010) have given the overview of the

approaches used for enabling visual interface to decentralised social network applications

based on semantic technologies. The most discussed are Python, Java, PHP and JavaScript

as they have rich set of libraries to support the semantic enabled applications

The implementation of the interface can be standard dynamic navigation based on data or

metadata. The presentation of the interface should be in a standard social application format,

for example, all most social applications allow users to post content.

 The application functionalities are the functional component of application layer that

are initiated by the user. This gives user control of which functionalities he/she would

like to decentralise and share with another user on DSNP.

 The main function of key manager in DSNP is authentication. It is responsible to

provide authenticated communication between the components, by generating and

storing the public private key or unique key pair for the message authentication in the

internal components.

 In DSNP, the purpose of credential manager is to manage the credential of the users

and that is done by storing their identity at locally situated cached in data access layer.

 In the DSNP, the third-party application component handles the association of the

DSNP with external applications. For instance, how the external applications will

interact with DSNP and at what level they have access to DSNP functions.

4.4.4. Social Network Support Layer (SNSL)

The purpose of social network support layer components is to implement the rules and

protocols to determine how the data will be used across the social network. It comprises of 4

main components;

 Application Logic Component

 Social Network Support Component

 Publishing / Subscribing

 Access Rules

The role of Application logic provides interface between data and user interface components.

A Decentralised Semantic Architecture for Social Networking Platforms

145

The application logic is not always same in the social networks. For example, the format of

application logic in the Facebook is different than Myspace. In the Facebook, a common

mechanism to submit a request to use external API (see chapter 2) services include PHP,

AJAX, HTML and XML. The main difference would be the structure of the mechanism as the

same request call in JavaScript may have different implementation structure than the one in

PHP (Nathan et al. 2015).

The purpose of social network support components is to provide rules and protocols, on

how social data will published and accessed over the social network.

Another important feature of SNSL is to provide middleware functionality for DSNP

applications. Similar concept DOAP is proposed by pinto et al. (2003) as an architectural

language to help AO based distributed applications for runtime composition of aspects. Some

of feature of DOAP were found suitable and adapted to realise the concept of SNSL.

Figure 4-16: SNSL as Middleware

SNSL act as global configuration entity that performs the dynamic composition of component

and aspects. Chapter 5 describes the functions and implementation of SNSL in details.

SNSL AS

Middleware
DSNP

Component

Composition

A Decentralised Semantic Architecture for Social Networking Platforms

146

4.4.5. Data Access Layer

Data access layer is also known as graph access layer or data layer. The main purpose of this

component is to provide interface to application logic to access the data sources. Moreover,

this component translate data from native data model of the programming language to local

level (in which the data will be stored, for example for graph based data RDFStore can be

used as storage, but to store data it may need to be converted to data model of RDF.

According to Tramp et al. (2012), data access layer provides resources for the description and

representation of the data. In addition to this data access layer provides an abstraction on to

top of storage and data integration services. It consists of the following components;

 Data Integration Service

 Data Storage

 Internal Data

 External Data

 User Data Management

Data integration service is used in the decentralised application to aggregate data of different

forms coming from multiple sources. Mainly its purpose is to provide means to solve semantic

and structural issues caused by heterogeneous form of data resulted from data access. By

addressing this issue, it provides homogenous view of data for all the applications. After the

homogenisation, the data is stored into the database.

In the decentralised application data integration service or integration of data is mainly handled

at external servers. The implementation of data integration may not be very important in

decentralised applications. Conceptually data is distributed in the decentralised applications

and it depends on the implementation strategy of the applications.

Data Storage is the most important component of the decentralised applications. The purpose

of this component is to provide persistence storage to homogenised data. According to survey

done by Heitmann, (2014), RDFStore is the most used storage in the decentralised

applications for graph based data and MySQL is used for relational data. The data storage is

accessed through data integration service. Bizer and Schultz, (2009) have given an overview

of the features and the performance of RDFStores as part of their experiment.

Data storage implementation strategy in decentralised applications is mainly based on open

sources standards and protocol. RDFStore is a possible standard for storing RDF based data.

Another option is use relational database to store RDF data. SQL and SPARQL can be used

as query languages to explore the data.

A Decentralised Semantic Architecture for Social Networking Platforms

147

The separation of internal and external data is one of the key grounding principles of DSNA.

The aim is to resolve the conflicts between the data that is generated locally or internally (that

means from the network where user is registered) and externally. The internal data is

originated from internal components of the social network and stored internally, and external

data stores the data generated for or by communicating the external users (that user of

another social network).

Therefore, DSNA explicitly divides data storage between internal and external data

repositories. The internal and external data is persistent in order to allow users to keep the

track of their actions.

Finally, the purpose of user data management component is to provide tools to users for their

data access. (Explained in detail in chapter 5).

4.4.6. Communication Layer

The purpose of this layer is to handle the communication between the users of different social

network. This layer has three main components,

 Communication Manager

 Protocol Handler

 UserID Resolver

Communication layer has two main functions,

 Provide abstraction to underlying connection protocols

 Provide a mechanism for multiple connections

In order to achieve maximum flexibility, the type of data is used by underlying protocols is

isolated to protocol handler component. Each protocol handler is managed by communication

manager. The purpose of communication manager is to dynamically create protocol handler

on the initiation communication request by the users, it also verify the authenticity of the

request by verifying the identity of the user.

The use of protocol handler in DSNA is to enable multiple network communication by

translating the internal events into the format understood by the associated external protocol

and vice versa.

The conceptual architecture for decentralised social network and its components are explored

and instantiated in detail in chapter 5.

A Decentralised Semantic Architecture for Social Networking Platforms

148

4.5. Evaluating the DSNA

In this stage of iteration one, the architectural style DSNA is implemented using the social

messaging application. The effectiveness of artefact is assessed based on the results

achieved in this evaluation. The purpose is to demonstrate the successful application of the

DSNA. To demonstrate the functioning DSNA, in this stage of the iteration, key elements of

the architecture are developed, including Component, Aspect, Role, Properties. The main aim

to achieve from this iteration is an application that can prove that the requirements R1 and R2

of decentralisation scenario are met.

4.5.1. Importance of DSNA Evaluation

Evaluation of the DSNA can provide the detail about, how useful can the DSNA be towards

the decentralisation of SNP. The application of the DSNA can be helpful in making the

reusability and adaptability of the SN functions to different SNPs. The assumption, if the DSNs

are designed using DNSA and its services are accepted by the SNPs service providers then

users should be able to choose the functions they wish to decentralise, hence creating DSNP

which is customisable based on user needs. On principles, this eventually can achieve all the

requirements set in SWAT scenario in section 4.1.

The decentralisation of the SN functions to build a DSNP which can allow customisation of SN

functions is not in the current scope and is considered in the future work because of the huge

implications. That is why evaluation of DSNA is important to prove, to what extent it can

successfully achieve the desired goals. With the more success, the scope can be extended to

the complex assessments.

4.5.2. Application Skeleton

The application skeleton is based on simple messaging requirements that are extended from

already described scenario in section 4.1. The USER 1 BOB login to SN1, which is on server

S1 and send message to ALICE on SN2 which is server S2.

This whole interaction between BOB and ALICE is designed using DSNA. The activities

performed by both users are explained in the table 4-1.

A Decentralised Semantic Architecture for Social Networking Platforms

149

User Activity Function DSNA element

Alice Security related Login Component.py,
Aspect.py, Role.py

Bob Security related Login Component.py,
Aspect.py, Role.py

Alice User Link-ability Messaging Component.py,
Aspect.py, Role.py

Bob User Link-ability Messaging Component.py,
Aspect.py, Role.py

Table 4-1: Application function outlook

Figure 4-17, shows the messaging application basic design in the context of evaluation. Three

main classes are created to handle the functionality requested by the users.

Figure 4-17: Application Code Skeleton

The table 4-2, define the roles key the elements of the DSNA style. As shown in the figure 4-

17, each element is represented by a Class. Aspect.py, Component.py and Role.py are

basically designed as libraries so that they can be included anywhere in code during the

development stage of DSNA application. Detail is given in the next section.

Component

Aspect Role

Messaging App

Function

Compoent.py

Role.py

Aspect.py

A Decentralised Semantic Architecture for Social Networking Platforms

150

DSNA components Life Cycle Definition

Component.py Dynamic Component.py represents the

component Class and how it forms the

functionality in the assumed DSNP.

For detail, reference see Appendix 1

Aspect.py Dynamic Aspect.py represents all the properties

for the aspect and all the functions.

See Appendix 1a for reference

Role.py Dynamic Role.py represents all information

related to the role of the functionality.

See Appendix 1b for reference.

Table 4-2: Code related description of DSNA in simple application

4.5.3. Tools and Application Behaviour

The purpose of this section is to describe the tools that are used to develop the DSNA based

application. In addition, application behaviour is also explained in the form of system sequence

diagram.

4.5.3.1. Tools and technologies

Tools and technologies are selected on the basis of their best suitability for the paradigms

(CBSD and AOSD) DSNA depends on and social network platforms. Considering the

importance of AOSD in this research Java based ApsectJ (Kiczales, 2000) is deemed suitable.

The reason is stability and range or support available, however, AspectJ seriously lacks in

supporting SN related tools and technologies. There are various extensions of AspectJ in

various popular languages that support new SN platforms.

Python is selected to develop the application, because of its open sourced and dynamic nature

and support for component-based platform. There are many strategies proposed in python

platform to support AO development. For example, Spring Python (Turnquist, 2010) and the

list is long.

4.5.3.2. Component.py

Following the AO concepts, the Component.py has been created as main class that links all

the feature of the component to aspects and reset of the DSNA. The Compoment.py

represents component of the DSNA and functionality that need to be produced based on the

A Decentralised Semantic Architecture for Social Networking Platforms

151

user request. A DSNA component made of set of classes assembled and executed, to create

new functionalities. Complete reference to the Component.py available at Appendix 1.

4.5.3.3. Aspect.py

Aspect.py is based on an open sourced project, AspectLib (python-aspectlib. 2016) is modified

for the need of this research. The Aspect.py is general purpose class that can be initiated by

simply using an import function of the python.

Property: The role of property is very important in Aspect generation. As it changes the

behaviour of the functionality based on the Advice. For example, BOB would like to add some

extra feature to message functionality he is using. Aspect will be able to change the request

and new component will be initiated and new properties to the functions will be added.

4.5.3.4. Role.py

The purpose of the ROLE class is very important as it decides which aspects are going to be

added into a specific functionality. A unique role name is assigned to identify both component

and aspect classes. A specific functionality is encapsulated inside the role that can be

executed by the component when it’s called.

In the light of the scenario explained above, a message interaction between user BOB and

ALICE will create a MessageRole (Name=Message) and new RoleInstanceMessage

(Message_UserNames) and similarly if the BOB and ALICE turns the messaging to chat, then

a new RoleInstance, RoleInstanceChat (Chat_UserName) and Role name ChatRole

(Name=Chat) are created to differentiate between different chat or message Roles.

4.5.3.5. Application Behaviour

This section describes the behaviour of the DSNA based application at the system level. For

example, in the context of the scenario, Bob initiates a functionality (It is assumed that Bob is

already logged in to the DSNA based platform and have the access to the SN1 by the mean

of his ID).

The request is received at the Component.py, which send the request to ComponentProducer.

The CompumentProducer act as Aspect activator. Here, IdentifyAspect() is invoked.

ComponentProducer want to know what features of the SN functionality can be decentralised.

Similarly, IndentifyRole() is invoked to add any additional role the functionality need, to be fully

functional. ComponentUpdate receive the ComponentUpdateAdvice() from Aspect with all the

parameter that are required by the component that need to be updated. These parameters

A Decentralised Semantic Architecture for Social Networking Platforms

152

transform into new component. UpdateProducer Sends the component with the

UpdateReceived(). Lastly, Bob get the decentralised functionality.

Figure 4-18: System level behaviour of DSNA based example application

4.5.4. Demonstration of the Messaging Application

To evaluate the DSNA, in light of the scenario, Bob (SN1, S1) should be able to send message

to Alice (SN2, S2) to prove the R1 and R2 requirements of the decentralisation scenario. To

demonstrate how DNSA based application achieve functional decentralisation. Sequence

diagram is built to depict the communication pattern between the User and DSNA

components.

A Decentralised Semantic Architecture for Social Networking Platforms

153

Figure 4-19: DSNA based Application Login

To enable the feature of DSNA based application there are certain precondition to make sure

the design criteria of the DSNA is met, to ensure the stability.

Preconditions:

Bob is a member of SN1 and a member of DSNP (DSNA based platform)

Alice is member of SN2

Bob and Alice must have access to their accounts on SN1 and SN2 respectively.

Activities Performed by Bob

The first step to use the DSNA based platform is to login to the platform. To do various

components are come into use to verify user. When Bob login to DSNP he can either make a

new ID, use the same ID as of SN1 or he can use universal WebID, which can be generated

by the Protocol Handler IDResolver function. Once login conditions are met the Bob can

choose which functionality he wishes to use to connect to Alice.

A Decentralised Semantic Architecture for Social Networking Platforms

154

As soon he initiates the functionality, the above-mentioned cycle initialises to decentralise his

chosen functionality. In the context of the scenario, which is messaging.

Figure 4-20: DSNA based SN Messaging Application

A Decentralised Semantic Architecture for Social Networking Platforms

155

User DSNA

Components

Functions Explanation

Bob ->

InitialiseChat

(SendText)

Component

(Interface)

InitialiseChatComponent()

CheckChatApsects()

InitialiseChatComponent()

Creates the messaging

function and

CheckChatApsects()

check the feature and

content required by Bob

request of message

 Aspect Authentication ()

SetProperty(String)

State ()

SetProperty(Text)

AllocateRole()

ApplyAspect()

Aspect component

assess the request from

the main Component and

set properties and Role.

AllocateRole () set the

Aspect according the

context of the request.

ApplyAspect(), apply the

changes to the

component

 Role SetRole(Chat) In the context of the

request, function role is

set to chat

 Property Set additional properties Any additional properties

are added by Property.

Alice ->

ProcessRequest ()

Component

(Interface)

ChatRequest () The new functionality is

shared with Alice in the

context of Bob request.

Message is received at

the Alice end. The

component stay active

Until the connection is

terminated by Bob or

Alice.

Table 4-3: DSNA based SN Messaging Application Implementation

DSNA is successfully implemented on the messaging functionality and thus decentralising

functionality between SN1 and SN2, in the context of scenario requirement R1 and R2.

The login functionality is used to assess the security and privacy (R1), and messaging

functionality is used to assess user link-ability (R2). Figure 4-19 and Table 4-3 shows how

assessment is done. Appendix 1C includes the screenshots of the application. Lesson learned

and challenges are explained in the next section.

A Decentralised Semantic Architecture for Social Networking Platforms

156

4.6. Discussion

Leaning the CAM and DSNA is important to describe and clarify, how decentralisation is

examined in this research and how it can be achieved at the functional level. The functional

approach is selected because in the context of SNP functions and activities are considered as

the lowest denominator. Hence this method can be helpful in introducing the decentralisation

at the semantic level. Here semantic level refers to the data and code levels of the platform.

Understanding, the fundamental guidelines and all three steps of the development stage

reveals learning involved and challenges resolved to reflect the success of the proposed

research. The integration of CAM and PACE remains the main challenge, and the most

learning is reflected in this area. The distributed nature of CAM and PACE was fundamental

towards their adoption, moreover their relevance to the social networks and distributed

database principles that are the core of SNPs as well.

In the current iteration, all key components of the DSNA were created according the design

principles, however the process was time-consuming. Some of the components of the DNSA

involve the use of some static coding techniques for the sake of demonstration. The analysis

of DSNA based application development exposes the need of dynamism for creating

components. This aspect can enhance the ability of DSNP easiness and reusability.

The application developed to demonstrate the feasibility of DSNA is dependent on the tools

and support for AOSD. The process of selecting the suitable language and platform was

crucial for the success of the DSNA deployment. The support for dynamic composition of the

components is available to some extent but the work is still ongoing, and the case is same

with the composition of the aspect. These two remains the key challenges for the success of

the DSNA in achieving the goal of DSNP. In the next iterations, the subject is explored further,

and attempt is made to achieve the dynamic composition in DSNA based social platform and

thus to achieve goal of the complete or partial portability between the SNPs.

A Decentralised Semantic Architecture for Social Networking Platforms

157

4.7. Chapter Conclusion

In this chapter, conceptual architecture of the decentralised social network application is

derived from unified approach of using component-based architecture style such as PACE

and AOSD CAM (component aspect model). The proposed architecture describes the high-

level structure of components and their functionality and how they can be used for developing

decentralised social network platform.

In order to provide solid foundation to the perceived conceptual architecture, component-

based architecture C2 and PACE were explored to provide guiding principles to DSNA. In the

next stage, AOSD CAM approach is used to provide rules, constraints and relationships

guidelines for the composition of DSNA architectural style. Based on DSNA style component-

based architecture of decentralised application was conceived to provided set of components

glued together by component, aspect, role and property elements and relationship rules. In

the last stage, the key principle of architecture is evaluated by implementing them to simplest

chat application.

A Decentralised Semantic Architecture for Social Networking Platforms

158

Chapter 5 - Iteration 2

DSNP Prototype Implementation

5. Chapter Introduction

The architecture presented in chapter four is aimed to provide the guidelines and rules for

component relationship and composition. A unified approach to combine the component-

based style such as PACE and AOSD based CAM style have been used to obtain the mutual

advantages for the design of DSNA style. The architecture is based on the DSNA style which

is grounded in PACE (Component-based style) and CAM. Combining PACE and CAM provide

rules and structure that are required to build a decentralised social network platform. This

chapter describes the prototype implementation of DSNA proposed in chapter four. The

prototype is the result of generic scenario, that have been used to check the practicality of the

DSNA.

Figure 5-1: Iteration Two Structure

Requirement

Engineering and

Prototype Design,

Prototype,

Deployment,

Prototype

Evaluation

Artefacts

DSNA Deployment

Design,

DSNA Component

Definition Model,

DSNP Prototype

Application

Iteration One

Iteration Two

Stages
Iteration Three

A Decentralised Semantic Architecture for Social Networking Platforms

159

To facilitate the possibility and practicality of pursuing DSNA Style based approach for social

network decentralisation, in iteration two an attempt is made to focus more on social network

functions. The iteration one focused more on the architecture design and definition of all the

possible elements of the architecture. The lessons learned from iteration one, are applied in

iteration two, for more evolved version of DSNA.

In iteration one, the proposed architecture and DSNA style is demonstrated in the messaging

function. The goal was to describe fundamental components of DSNA and to demonstrate

their implementation in the form of simple SN functionality. The extended version of the DSNA

in iteration two, attempts towards the core part of implementation, which is the composition of

components and aspects. Demonstration of how DSNA component composition enhances the

portability between SNPs through the mean of DSNP is crucial towards achieving the main

goal of the iteration two.

Iteration two aims to provide more refined version of DSNA by implementing DSNA on social

networking platforms. Iteration two achieve objective 4 by producing the prescribed

implementation framework. The dynamic component and aspect composition are central to

the refined architecture and is handled at the middleware level. The description of SNSL

(Social Network Support Layer) and the handling of component composition by the SNSL is a

key feature of the evolved version of DSNA. At the final stage, the social messaging

application prototype is built to evaluate the functioning of application.

A Decentralised Semantic Architecture for Social Networking Platforms

160

5.1. Prototype Design

In the previous chapter, this research explored the possibility of using existing approaches to

design the Decentralised Social Networking Architecture (DSNA). The successful combination

of component-based architecture PACE and AOSD based CAM have produced suitable set

of rules and components needed to build the DSNP (Decentralised Social Networking

Platform). The result of this unified effort was DSNA style and architectural framework based

on DSNA style. In the next stage, DSNA style component-based architecture of decentralised

application was conceived to provide a set of components glued together by component,

aspect, role and property elements and relationship rules.

The outcome of chapter four is used to refine the architecture. A prototype is developed to

implement the evolved architecture to present the refined version. Since social networks are

distributed in nature, therefore a possible implementation of SWAT scenario can be used in

the distributed enterprise.

An important implication of the proposed architecture can be related todistributed enterprise.

Large organisations build and maintain multipurpose systems to manage their various types

of large amount of data that is used by various type of workers. The steady shift of

organisational landscape from centralised to distributed has given the organisation

opportunities to take the combine benefits of mass collaboration and scalability by using

decentralised networking. One of the challenges that remains and most discussed in building

such a collaborative platform is, how to ensure the consistent availability of the content and

on different peers situated on different domains (Skaf et al. 2008)

5.1.1. Design Challenges

The shift from monolithic platforms to distributed platforms is suitable for a decentralised

approach that can take the distributed nature of user profile with their preferences from

multiple domains into consideration. Thus, the proposed social platform prototype base on

DSNA need to provide support for an open environment where users from different social

platforms can interoperate across their respective platforms, by addressing the four main

challenges;

A Decentralised Semantic Architecture for Social Networking Platforms

161

5.1.1.1. Interaction

Aggregation, integration and resolution of the user profile data produced by the interaction

between SNPs for the desired platform

A thorough consideration is taken in the design of DSNA to address these challenges. For

example, to address the first challenge, according to Tams et al. (2011) data aggregation,

integration and resolution of different social platforms requires efficient data synchronisation

tools, to make relevant retrieval of content. DSNA provides ‘USER ID RESOLVER’

‘PROTOCOL HANDLER’ and ‘COMMUNICATION MANAGER’ components for content or

event exchange in a decentralised environment (described in chapter 4, section 4.4.).

5.1.1.2. Communication

Providing consistent form of communication to the users to make their interactions feasible

and possible.

The ‘Pull’ approach is the most common approach used in the client/server environments. The

communication model is made of request from an active client and response from the passive

server. ‘Polling’ mechanism is related to pull approach that relies on clients, continuously

sampling the server status through repetitive requests. Polling has its issues, such as

scalability and reliability as far as the interactions between client and server are concerns. To

overcome these issues ‘Long Polling’ was introduced, which supports asynchronous delivery

of events with better performance and saleability. Long Polling is based on request/response

model in which the server keep the request open until the response is generated or set timeout

limit is reached. As far as the Push approach is concern, it uses passive client that is actively

kept informed on subscribing to the server, about any occurrence of event (Griffin & Flanagan,

2010).

DSNA uses asynchronous model for the communication between the components and events.

For that purpose, Publish/Subscribe (PubSub) component has been introduced in the

architecture (see chapter 4 section 4.8) to handle the interaction. PubSub is an interaction

paradigm that uses push model. It uses agents to subscribe to a specific event such as profile

updates and receive asynchronous notifications from the publisher whenever the repetition of

event occurs. The benefits of PubSub over Pull approach lie in the optimisation of the number

of requests and synchronisation between the publisher and subscriber (Eugster et al. 2003).

A Decentralised Semantic Architecture for Social Networking Platforms

162

For the proposed DSNA prototype, publish/subscribe interaction model is adopted, as it

supports better decoupling between the distributed parts of the platform, which is important

for successful implementation of decentralised application.

5.1.1.3. Composition of Components

Providing a mechanism to convert user interaction into a form of the component(s).

The composition of distributed components itself is a complex task and suffers complex

interactions between the other components within the architecture and middleware. From the

application developer perspective, the complexity consequences into intense focus on the

programming APIs and middleware components. The component repositories are considered

as solution to the complexity problem and to some extent, tackle the problem by composing

and configuring the components. But at a certain level, the issue tackling the complex

interaction arises again. This problem is considered common within complex distributed

system as mentioned in (Piessens. 2009, Surajbali et al. 2014).

In the DSNA, SNSL (Social Network Support Layer) is functioning as middleware to handle

only the component communication and interaction composition. In DNSA, to solve the

complexity issue dynamic composition of the component has been introduced.

The concept of using middleware for dynamic composing and reconfiguring the component is

promising but still underdeveloped. The main purpose of using such to technology is to solve

two problems with the decentralisation of social network, encapsulating the independent

functionalities into aspects and then using the weaving function to transform that into a system

behaviour.

The DSNA uses already available software technologies for the composition purposes as

some mentioned in section 4.5.3. The core part SNSL is component composition and the key

feature of the prototype deployment phase.

A Decentralised Semantic Architecture for Social Networking Platforms

163

Figure 5-2: Prototype Design Challenges

5.1.1.4. Allocation

Allocation of roles, relationships and aspects to the components towards the creation of

decentralised functions.

The allocation is a part of the component composition. Composition allows the decentralised

social network to add or remove functionality as initiated by users. Allocation guide the

composition, where to be sent, executed based on the rules and guidelines described in DSNA

style.

To overcome these of challenges the proposed platform should fulfil the certain requirements

described in the next section 5.1.

5.1.2. Analysis of the Requirements

How the above challenges are dealt with, is demonstrated in the social data sharing

application. The prototype is based on SWAT scenario (section 4.1) and is required to fulfil

requirements R3 and R4 of Data Portability and R5 of Profile Reusability. To demonstrate

specific functionality, the SWAT scenario is modified to a use case.

A Decentralised Semantic Architecture for Social Networking Platforms

164

5.1.2.1. Prototype Use Case

In order to introduce the prototype in the perspective of the social networking functions, this

section presents a use case as an extension of the SWAT scenario. The use case presents

requirements for the architecture implementation.

The use case is implemented on the supposed social networking environment. As mentioned

in the scenario, in section 4.1 but in the use case the users of the platform are now connected

to DSNP and attempting to share their functionality through the mean of DSNP. What is meant

by functionality and its relationship to the component and aspect is explained in section 4.4.

Figure 5-3: Extended SWAT scenario-based use case

5.1.2.2. Common Setting of the Prototype Design

The requirements and above-mentioned challenges are associated to the main goal of the

prototype design. In the context of design, the purpose of the common setting is to illustrate

the composition of a component in the design process of the prototype. Common setting

describes how DSNA style must be implemented during the design of each component. For

A Decentralised Semantic Architecture for Social Networking Platforms

165

example, in the figure 5-4 the Communication Manager component design is shown that

consists of a style and component application structure.

Figure 5-4: Common setting of the DSNA components for prototype DSNP

In the context of use case, Alice makes a content sharing request. For instance, let’s say the

process starts from the Communication Manager’ which is a ‘Component’ and one of the

‘Aspects’ of Communication Manager is to ‘Authenticate’ Tony. ‘Aspect’ now has a Role

‘Authentication’ that it needs to ‘Fulfil’, as a consequence, the ‘Property’ is assigned to the

‘Aspect’, that contain values required by the user to validate the identity. ‘StateAttribute‘ may

or may not be assigned to the component which is mainly depend on the requirements of the

component. Figure 5-4 shows the implementation perspective of each component mentioned

in DSNA.

5.1.2.3. Separation of Data and Design Process

One of the most important aspect of DSNA is the separation of internal and external data, with

the aim to avoid the conflicts and duplicity in data. In this context, users are directly linked to

their data. Therefore, user are separate based on their data, there are two types of users who

A Decentralised Semantic Architecture for Social Networking Platforms

166

can access proposed prototype, internal user and external user. The internal users are the

registered users of the DSNP and their data is stored in internal data storage. The external

users are the users that are not the registered users of the DSNP but interested in using DSNP

services and their data is stored in external data storage. An external user can be a friend of

an internal user on another SNP than DSNP.

For example, a User (Internal User) registered with the prototype application (DSNP) and

Friends (External Users) registered with other social networking platforms (SN2, which is

FACEBOOK or SN1 GOOGLE CIRCLE). To make the clear distinction between the users

and their description in the proposed DSNP figure 5-5 shows that a user can be internal or

external or friends and the purpose of this distinction is to keep external data which belongs

to external user or friends registered to (SN1 or SN2) separate.

Figure 5-5: Definition of User in the Proposed DSNP

To further describe the use of the components in the DSNA based prototype Figure 5-6,

describes the design process of content sharing functionality to demonstrate the design of the

content sharing application in the DSNP.

A Decentralised Semantic Architecture for Social Networking Platforms

167

The following are the preconditions according the use case;

 Alice has a DSNP account

 Bob is a user of different social network

 Alice has a content in electronic form to share.

In the current example, the external user initiates the request. The communication layer

handles the interaction initiated by the external user and the application layer handles the

interaction initiated by the internal user (the user of DSNP). In the given process, only external

interaction is investigated.

Alice is registered with SN1 and wants to share her content with her friends on other social

networking sites. To achieve this, she can either install/enable DSNP API to her profile in the

Facebook (out of the scope of this research) or she can join DSNP and start sharing content

with other sites. Alice initiates content sharing request.

In the DSNP communication layer ‘Communication Manager’ analyse what kind of protocol is

needed to handle the request and authenticate the user identification, i.e. Alice has a valid

account or not. If the account is valid then the communication manager creates the ‘Protocol

Handler’, which dynamically accesses and creates the protocols needed to communicate with

the network that the user belongs to. If the user is not authenticated by the ‘Communication

Manager’ then the request is sent to ‘User ID Resolver’ that analyse the request and create

universal user ID (like Web ID or Open ID) when authentication is completed, ‘Protocol

Handler’ is generated. This is how communication layer provides mechanism for multiple

connections to DSNP.

In the next step, the request is sent to ‘Data Access Layer’. Frist, it generates the ‘Import Data

Request’. At this point preferences are generated on basis of data, to be imported from the

other SNP (for example Profile data or content data). After the validation of data, the ‘Data

Integration Service’ is called.

A Decentralised Semantic Architecture for Social Networking Platforms

168

Figure 5-6: Design Process of simple form of content sharing in DSNP

Data integration service is used in DSNP to aggregate data of different forms coming from

single or multiple sources. Mainly its purpose is to provide a means to solve semantic and

structural issues caused by heterogeneous form of data resulting from data import. Integration

service decides how the data will be categorised, for example as internal data or external data.

If the data is not valid to be processed, then any information regarding that data is stored and

a message is sent to the user to generate valid import requests. After the data is homogenised,

data store component generates the request for the data that is to be used for the interaction

with the interface. At this point the social network support layer, Application Logic component

A Decentralised Semantic Architecture for Social Networking Platforms

169

creates the necessary support, which include rules, web standards and protocols, required to

generate user interface and data interaction possible.

 In the next step ‘Social Network Support Components’ initiate the support required to

generate the content desired by user. After knowing the content type, method for interaction

is initiated (Pub/Sub component) and how the content will be accessed (access rules are set).

In the last stage, when content type is being check in the social network support layer at the

same time ‘Application Functionalities’ component is initiated which generate the script that is

required to display the content. At this point, the content is tested whether DSNP can display

the content or not. If yes, then content is displayed to its location otherwise message is sent

to the user that the content cannot be displayed, and process of content sharing ends with this

message.

The purpose of the explained application design process is to depict, how the components are

deployed in the DSNA based application.

Considering research design process, under the guideline of iteration 2, the next stage further

investigates the design in the context of deployment.

5.2. Prototype Deployment

As part of iteration 2, this stage follows the research process as defined and the concept of

DSNA progresses further towards the implementation. In the context of application developer,

the design stage described the process of designing each component of the DSNA. The

design scenario is used to facilitate the design process. In light of design challenges and

requirements, the deployment stage attempts to solidify the DSNA by demonstrating the

process of deployment in DSNA style-based development.

During deployment, the main problem which is solved is regarding the connectivity of the

DSNA components in the DSNP with another SNP. The focus is on the composition of the

component and the elements that connect them together and with another SNP. For example,

when Alice attempts to decentralise her social networking functionality using DNSP, how

components making this possible are deployed and the requirements needed to connect the

other SNPs. In the context of data portability requirements (R3 and R4), which is regarding

the user data, this facet of the DSNA deployment is very important.

A Decentralised Semantic Architecture for Social Networking Platforms

170

5.2.1. Deployment Levels of Component and Aspects Definition in the DSNA

Prototype

Allocation of the role to components and aspects and differentiation based on roles in the

application is an issue that must be handled during the implementation of any CAM based

architecture. Role allocation in DSNA is done by defining the components and aspects at

higher level of abstraction to show the architectural pattern.

The figure 5-7 depicts a higher-level view of how DSNA components communicate with other

components. The interface is a part of the DSNA that is used to interpret the services that are

required to be invoked or published by the components and aspects. Defining them

(component and aspect) is an integral part of deployment during the DSNA based application

development.

To configure the components and aspects on the CAM based model and define them as

shown in the figure 5-7, AOADL (Aspect Oriented Architectural Description Language)

(CAOSD, 2017) (Pérez et al.2006) rules are used. AOADL is used to define component and

aspect at the three level, functional, distributional and co-ordinational.

In Pérez et al. (2006) model, they divided an aspect into three levels as per requirement of

their research. In contrast, the DSNA defines the component and aspect in three levels as

described in the figure 5-7. Defining the component and aspect at the functional level is based

on the core objective of this research.

Aspect

Component

Functional

Distributional

Co-ordinational

Interface

Figure 5-7: Definition levels of Component and Aspects

A Decentralised Semantic Architecture for Social Networking Platforms

171

Figure 5-8: Deployment Flow of the Prototype

The main benefit of defining DSNA components at these levels, is enhancement of the

component ability to define and structure the behaviour of the specific concern (Concern refers

to the changes/attributes/properties required to change the functionality based on the SN user

request).

The figure 5-8 gives an overview of the deployment model by showing the sequence of steps

that are performed to deploy, aspect, which update the component. The “Functionality

A Decentralised Semantic Architecture for Social Networking Platforms

172

Deployer” can be a user or SNSL. The SNSL middleware uses API from application logic to

deploy the aspects and components. Based on the specification or preferences that are

attached either by the users / SN or generated by the SNSL, which initiates the “Aspect

Binding”. The component to aspect interaction is managed by aspect binding.

The “Aspect Identifier” is used to uniquely identify the aspect based on semantics, the

capability, functionality and feature that interest the users of the functionality. The binding

initiates the process of weaving, that updates the component based on advice, and the “Input

Data” which is an old data and “Output Data” which is a new updated data, changes are made

to components. The waving ends at the “Exist” advice and new updated component is

executed.

The process shown in figure 5-8, summarises the aspect and component deployment process

which described in the next section. By defining the aspects and components at these levels

helps them to support the concurrent adaptations, which enhances the chance of the aspect

to be executed at the right point.

5.2.1.1. Functional

The functional definition of the component and aspect refer to the functional properties and

behaviour of the functionality, generated by the DSNP for the user. These properties ascribed

to the component interface and the semantics of the interface are defined by the functional

definition of the aspect. A functional component and aspects are defined using AOADL Eclipse

based plugin, which provides the architectural knowledge regarding the semantics of the

content sharing interface.

Appendix 2a contains the snippets of the execution of content sharing functionality using

AOADL under guidance of DSNA.

A Decentralised Semantic Architecture for Social Networking Platforms

173

Figure 5-9: DSNA Messaging component sharing design in AOADL

Figure 5-10: AOADL Legends description

A Decentralised Semantic Architecture for Social Networking Platforms

174

Figure 5-11: DSNA messaging component and connector

The comparison between the figure 5-8 and 5-9 shows how the DSNA components can be

deployed to achieve a certain social network functionality. Figures 5-9,10,11 demonstrate the

use of CAM based AOADL to design and deploy the DSNA based messaging functionality.

This method also helps to assess the application of DSNA to create a certain decentralised

functionality.

For example, figure 5-12 is a snippet from the content sharing functionality deployment. The

figure demonstrates the connector component “Messaging Connector”. The connector

components are used in the DSNA to link the Aspect and components. It enables

communication between the “Message” component and Aspect having Role “ChatRole” by

the mean of the “SharingComponent” interface. After the allocation of the Role, there are two

stages, “Initiate” and “Exit” for aspect to be woven into new functionality. “Aspectual Binding”

is used to bind the attributes specified for the aspect and Input and Output data stores the

changes. For instance, Messaging functionality is required to be decentralised to start content

sharing between SNPs. When the process Initiated, the aspect binding call for Role

Authenticate, which collect information as specified in the aspect attributed and also

communicate with other components if required.

A Decentralised Semantic Architecture for Social Networking Platforms

175

Figure 5-12: AOADL notations for the Message Sharing

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<connector xmlns="http://caosd.lcc.uma.es/AO-ADL/AO-ADLSchema"

name="MessagingConnector" type="Connector">

 <provided_role roleName="MessagingSharing"

role_specification="//interface[@name='SharingComponent']"

type="MSG" minOccurs="1" maxOccurs="1"/>

 <required_role roleName="ChatRole"

role_specification="//interface[@name='SharingComponent']"

type="MSG" minOccurs="1" maxOccurs="1"/>

 <componentBindings>

 <binding name="MessageBinding">

 <source>//provided_role[@name='MessagingSharing']</source>

 <target>//required_role[@name='ChatRole']</target>

 </binding>

</componentBindings>

<description>Triggers messaging functionality</description>

<aspectual_role roleName="Authenticate"

role_specification="//interface[@name='SharingComponent']"

type="MSG" minOccurs="1" maxOccurs="1"/>

 <aspectualBindings>

 <aspectual_binding name="StartMessageSharing">

 <pointcut_specification>

 <pointcut>(//provided_role[@name='MessagingSharing']) and

(//operation[@name='Initiate'])</pointcut>

 </pointcut_specification>

 <binding operator="after" order="first">

 <aspectual_component

aspectual_role_name="Authenticate">

 <advice label="Initiate">

 <attachment>

 <argument_binding

target="UserID [String]"/>

 <argument_binding

target="ContentType [Array]"/>

 <argument_binding

target="DestinationID [String]"/>

 <argument_binding

target="Token [String]"/>

 <argument_binding

target="String [returnType]"/>

 </attachment>

 </advice>

 </aspectual_component>

 </binding>

 </aspectual_binding>

 <aspectual_binding name="EndMessageSharing">

 <pointcut_specification>

 <pointcut>(//provided_role[@name='MessagingSharing']) and

(//operation[@name='Exit'])</pointcut>

 </pointcut_specification>

 <binding operator="after" order="last">

 <aspectual_component

aspectual_role_name="Authenticate">

 <advice label="Exit">

 <attachment>

 <argument_binding

target="UserID [String]"/>

 <argument_binding

target="DestinicationID [String]"/>

 <argument_binding

target="ContentType [Array]"/>

 <argument_binding

target="Token [String]"/>

 <argument_binding

target="String [returnType]"/>

A Decentralised Semantic Architecture for Social Networking Platforms

176

5.2.1.2. Distributional

The distributional definition is applied in a same way as functional. However, when aspects

are required to connect other aspects and components, this level specifies the location of the

components or instances. For example, attribute URL can be added in the DSNA component

and aspect, which can be used if the component or aspects are distributed at different location.

In light of DSNA scenario distributional level is not applicable but it is used to keep the track

of components and aspects, in the case of specific invocation of their instance is required.

5.2.1.3. Co-ordinational

The co-ordinational is most important deification level in the DSNA deployment because its

purpose is to do synchronisation of the data between the architectural components. That

includes components, aspects and their relevant connectors.

In the current scenario, in which the content sharing has to be achieved between different

SNPs through the mean of DNSP. The Messaging functionality is used as it is associated with

all SNPs functionalities. For Data synchronisation, in DSNA “PersistenceService” instance is

adopted from the Pinto et al. (2005) model. This service is deployed with all the components

and handled by SNSL. It stores components and aspect data states and ensure the

consistency when components and aspects are deployed. For reference, check the Appendix

2a for UML deployment model and XML deployment Model.

For the basics on the components and connector see the chapter 2 section 2.1 and 4 section

4.2.

The main advantage of using the AOADL for DNSA prototype deployment is its ability to equip

application developer to manage component and aspect architecture. AOADL enhance the

accuracy and help to test and deploy application logical and physical interface. Appendix 2a

provides the snippets of DSNA prototype deployment.

This section has given the detail account of DSNA based application deployment. To assess

the practically and applicability of the DNSA prototype the next section evaluates the prototype

by implementing the scenario explained in section 5.2 of the requirement design.

A Decentralised Semantic Architecture for Social Networking Platforms

177

5.3. Prototype Evaluation

In the next step of the proposed architecture evolution, the prototype is developed. As a part

of evolving research process, in the iteration 2, the artefact is evolved to solve more complex

challenges towards the implementation of DSNA. In chapter 4, the DSNA is assessed by

developing simple messaging functionality. The implementation prototype concerns more

about solving the core issue by addressing the requirements stated in 4.1 and in above

requirement design. The figure 5-2 depict a very high-level design.

In the deployment stage of the iteration, as a part of the messaging functionality, a foundation

is prepared by demonstrating the connection between the component and aspect.

Furthermore, how aspect deploy the concerns(specification) and change the component to

new component to have new functionality.

In this stage, the deployment is converted into an executable application to demonstrate data

portability between different social networking platforms. The application of the DSNA is same

as done in iteration 1 however the extended scenario-based use case required some changes.

These changes are reflected in the prototype skeleton in the next section.

The objective achieved in this stage is the stage 1 of component composition (in the form of

adapter) and aspect and thus DSNA prototype artefact is produced.

5.3.1. Prototype Skeleton

The purpose of the prototype is to demonstrate the how a messaging (which is content

sharing) functionality can be imported to DSNP and then by the mean of DNSA and SNSL is

used for another social networking. One of the features of SNSL is “Adapter”, introduced which

facilitate the portability of the functionality.

As per SWAT scenario extended use case, Alice wants to send message to Bob. She is

already using DNSP and she wants to use message sharing functionality.

A Decentralised Semantic Architecture for Social Networking Platforms

178

Figure 5-13: Stage 1, structure of SNSL middleware role in DNSP

Figure 5-13, is a depiction of how various components of DSNA have been evolved with more

practical knowledge towards the implementation. The description in figure 5-13, demonstrates

one of the roles of SNSL as middleware. Furthermore, in stage1 SNSL components are

arranged according to the requirements of the prototype scenario.

The implementation steps are the same as proposed in the chapter 4 section 4.5, with the

addition of SNSL adaptor component.

User Activity Function DSNA Element SNSL

Element

Alice (DSNP) Profile

Reusability

Login Component.py,

Aspect.py, Role.py

Adaptor.py,

connector.py

Alice (DSNP) Data Portability Messaging Component.py,

Aspect.py, Role.py

Adaptor.py,

connector.py

Bob NA NA NA Adapter.py,

connector.py

Table 5-1: Prototype Function outlook

A Decentralised Semantic Architecture for Social Networking Platforms

179

Table 5-1, define the key roles of the elements of the DSNA style. As shown in the figure 5-

14, each element is represented as Class. Aspect.py, component.py, Role.py, Adapter.py and

connector.py are basically designed as libraries so that they can be included anywhere in code

during the development stage of the application. Detail is given in section 4.5.2. Adaptor.py is

used only when external connections/actors are involved. The figure 5-11 described an

extended skeleton of application presented in section 4-5. The figure shows, that connector.py

will be used to handle the communication between aspects and components. Adapter.py act

as a wrapper and interprets the external communication (functions) and make them

compatible to the new environment.

Figure 5-14: Prototype Application Code Skeleton

The figure 5-14 depict the whole function of the Adapter in SNSL. The information received

from the adapter is used to define the component and aspect role definition and allocation.

This information is used in the composition of new aspect and component.

Component

Aspect Role

Messaging App

Function

Compoent.py

Role.py

Aspect.py

Functional Distributional Co-ordinational

Connector.py

Adapter.py

A Decentralised Semantic Architecture for Social Networking Platforms

180

5.3.2. SNSL Implementation (Stage 1)

As the research progressed, the need to adhere to the standard pattern and vocabulary for

the deployment of the DSNP increases. For that reason, DSNA style’s rules for the component

and aspect design are proposed. For the graphical representation, AOADL element of CAM

are used to set standard pattern of actives needed to deploy DSNA based application. AOADL

provides standard design element to define the DSNA components based on UML design

pattern. Following the same notion, the concept of adapter is adapted from software design

pattern (Larman, 2012). The concept of Adapter is fundamental for the deployment DSNP

prototype and is central to the process of decentralisation and data portability.

As mentioned in the introduction of the chapter, this stage of design and development phase

attempts component composition issue as the next level in the evolution of DSNA architecture.

There are 2 stages of the component composition in the DSNA. Figure 5-14 describes the

stage 1. The main purpose of stage 1 is to show the SNSL and adapter working, in the form

of DSNP prototype, which is a social messaging application.

Figure 5-15: Example of Simple Adapter adapted from (Larman, 2012)

In the above figure 5-15, the client class depends on a “Target Interface”, cannot reuse the

Adaptee class directly because its interface does not initiate the “Target Interface”. Instead

A Decentralised Semantic Architecture for Social Networking Platforms

181

the client class work through an “Adapter” class to implements the Target interface as a form

of Adaptee.

In contrast, the role of an adapter in the SNSL is communication related and it includes internal

and external components (Internal refers to the communication of components in the DSNP

and External refers to other SNPs, communicating with DSNP section 5.1.2.3 for details). The

important function of the adapter is the conversion of incompatible interfaces (or classes in

software design term) to the one requested by the user. The adapters are placed in the SNSL

to interpret and gather information received from external or internal users (or actors/clients)

regarding the interface. The received information is then used for the procurement of new

interface. In the design pattern, simplest Adapter consists of three main classes, Client,

Adapter and Adaptee, as shown in the figure 5-15.

The above figure 5-15, which is a static class structure, Client refers to the target interface.

Target defines an interface that the Client class requires. Adapter implements the Target

interface as required, by calling SpecficOpertaion() on Adaptee object. Adaptee defines the

new specification in terms of the class that gets adapted (W3sdesign, 2016). The features of

adapter can be accomplished and interpreted in number of ways. In the DSNP prototype

implementation, the adapter design pattern is composed by three methods.

- getConnection

- getAction

- settarget

The SNSL manages the adapter and methods are deployed as per specifications. SNSL which

also act as middleware is in command of the information gathered by the adapter. The

information is retrieved from the external or internal users. This information is used in the

definition of the role’s allocation to the components.

The example of the information retrieved by the adapter for SNSL can be access controlled or

privacy related or it can be simple request by user for data access.

 Each method in the adapter class contains two key parameters.

 ConnectionParameter:

 UrlParameters:

getConnection(), getAction(), setTarget()

A Decentralised Semantic Architecture for Social Networking Platforms

182

SNSL can deploy many adapters based on the ongoing interaction between the users and

DSNP. The deployment of the adapters also depends on the already available information in

the database about the initiated interaction. For example, as per requirements, Alice initiate

the request to interact with Bob on SN3. Bob is not a member of DSNP. To resolve this request

SNSL initiates the adapter and getConnection() method is used based on the already available

information or prescribed information by the user having specific parameters to adhere the

request. Open and Close objects are used to control the getConnection() states until the

specified objective of the connection are met.

getAction(), depends on getConnection() and on the information received from the external

SNP (SN3). This method identify Role based on the information received and update the

database. ConnectionParameters, UrlParameter and specified information by Alice is used to

identify the right Role for the allocation.

In the last step of the adapter functionality setTarget() is deployed. The information from other

two methods is inherited to setTarget() method. Based on that information Role is allocated to

the aspect and the specified information is used to update component.

The entire process is run at the program level. Thus, modifying component at the semantic

level and updating the functionality at the DSNP based on the user need.

The implementation of adapter to facilitate the composition of component is a multifaceted

activity and can enhance the size of demonstration. To keep the evaluation within the iterative

cycle, component composition is divided into two stages. Second stage is a part of next phase

of design and development of DSNA based application.

To present the evolved version of DSNA and demonstrate the above finding social messaging

application is built. The next section describes the tool and technologies used in the form of

DSNP technology stack and application behaviour.

5.3.3. Application skeleton

This part of the evaluation describes the application skeleton of messaging prototype,

developed to show applicability of the DSNA. In the prototype complex requirements are

explored to develop a new version of messaging application based on scenario explained in

section 5.1. In this version of the prototype all three users ALICE, BOB and TONY are

connected to three different social networks (SN1, SN2, SN3). ALICE is connected to SN1

and SN2, BOB and TONY are connected to SN3. They share the functionality F1 by using the

DNSA based platform DNSP.

A Decentralised Semantic Architecture for Social Networking Platforms

183

This whole interaction between ALICE, BOB and TONY is designed using DSNA. The

activities performed by all the users are explained in the table 5-2.

User Activity Functionality DSNA element

Stage 1

Alice Security privacy
related, Profile
reusability

Identity
Management,
Contact
Management,

Component.py,
Aspect.py, Role.py
Adapter.py

Bob Security privacy
related, Profile
reusability

Identity
Management,
Contact
Management

Component.py,
Aspect.py,
Role.py,
Adapter.py

Tony Security privacy
related, Profile
reusability

Identity
Management,
Contact
Management

Component.py,
Aspect.py,
Role.py,
Adapter.py

Stage 2

Alice Security privacy
related, Data
portability, Profile
reusability

Message
Exchange

Component.py,
Aspect.py,
Role.py,
Adapter.py

Bob Security privacy
related, Data
portability, Profile
reusability

Message
Exchange

Component.py,
Aspect.py,
Role.py,
Adapter.py

Tony Security privacy
related, Data
portability, Profile
reusability

Message
Exchange

Component.py,
Aspect.py,
Role.py,
Adapter.py

Table 5-2: Application functionality outlook

Figure 5-14 shows the messaging application design in the context of current evaluation. The

extended version of the artefact contains the Adapter component of the SNSL. Adapter.py

represent the component code structure which is explained in the next section. The process

in which the key elements of the code are explained is same as described in section 4-5.

According to which each class is designed as a library so that they can be included anywhere

in code during the development stage of DSNA application. Detail is given in the next section.

A Decentralised Semantic Architecture for Social Networking Platforms

184

DSNA components Life Cycle Definition

Adapter.py Dynamic Adapter.py represent the components

of the SNSL. The Adapter.py

demonstrates the implementation of

design pattern into the SNSL towards

achieving dynamicity in DSNA

component composition. Its main role

is to interpret the information coming

from the other SNPs to procure the

SN functionality in DSNP.

Table 5-3: Code related description of Adapter

5.3.4. Technology Stack

Key tools and technologies used for the implementation are already explained in the chapter

4. Technology stack explains how the different technologies are used to develop the proposed

DSNP prototype.

Figure 5-16: DSNP application technology stack in Django platform

The figure 5-16 describes a very simplified process of web request from browser to Django

based DSNP application. There are few steps that are important to understand to know how

the request work.

1. In the first step browser send request to the web server.

2. Web server hand over the request to WSGI and SNSL.

3. Unlike web server, WSGI can interpret and run python applications. The request

populates a python directory having necessary description files and environment

variables details.

A Decentralised Semantic Architecture for Social Networking Platforms

185

4. UR configuration is contained in the urls.py of the DSNP application. The file contains

the description of all the web URL attached on each view.

5. The selected view talk to the database, renders HTML/XML or any other formatted

response using templates and if unable to render response raise an exception.

Figure 5-17: DSNP structure in the line of DNSA scenario

The figure 5-17 shows the simplified high-level view of the DSNP prototype in line with the

implementation scenario explained in section 5-1. The figure also explains the place of the

adapter in the application. To see how the application function, next section describes the

behaviour of the application

5.3.5. Application Behaviour

The prototype is developed around the standard guidelines and protocols for user access as

depicted in figure 5-17. Following the same format of procedures as mentioned in section 4-

5, this section describes the behaviour the new extended version of DSNA based prototype.

To enhance system flexibility, the tools and technologies are carefully selected to ensure the

platform independence.

The proposed Adapter pattern plays key role in building and importing functionality, working

together with communication layer and SNSL. Adapter is central to solve the composition

issue related to component towards procuring the SN functionalities. The prototype fulfils the

A Decentralised Semantic Architecture for Social Networking Platforms

186

prescribed requirements of data portability and profile reusability (R3, R4 and R5) at the first

stage of SNSL implementation. To explain the behaviour of prototype in the first step and the

overview of the Adapter algorithm is given, in the second step system sequence diagram is

built, which gives the implementation perspective of the prototype.

Variables Declaration Description

Fn

Ds

Co

Represent the behavioural allocation to the aspect. Fn is

functional, Ds is distributional, and Co is co-ordinational allocation.

Cp

Up

Str

Cp refers to the connection parameters and Up refers to URL

parameters. Str is a string.

Target Target variable is to store information related to the functionality

targeted deployment.

Action

Protocol

Action variable is to store the information related actions (database

related) needed to deploy the functionality.

Protocol contains the information about the protocols required to

secure the connection.

Check Check is used for method call

Uname Username

Pwd Password

Table 5-4: Algorithm Terminologies

Declare class functionality deployer

Class FunctionalityDeployer: //user or source of the functionality

Declare variables

Fn, Ds, Co, Cp, Up, Str, Action, Target, Protocol

Define methods

adapter methods with relevant parameters

Def getCon(Cp, Up, Str):

Def getAction(Cp, Up, Str):

Def setTarget(Cp, Up, Str):

Behavioural Allocation

Fn -> Sn. Functional behaviour (self):

Ds -> Sn. Specify location (self):

Co -> Sn. Data sync (self):

Declare Adaptee

Class TargetAllocation(FunctinalityDeployer):

Method call to check the connection to SN and get the required data

getCon.open (Cp,Up, Str):

open object to open the connection to external SN by the mean to communication layer.

A Decentralised Semantic Architecture for Social Networking Platforms

187

Figure 5-18: Adapter Algorithm

If

Check -> CommunicationManager (Uname, Pwd):

Print (“connection successful”)

getCon.close

Else if

if connection is successful allow the communication otherwise, resolve the ID and protocols

required to secure the communication.

Check -> UserID Reslover(Uname, Pwd):

Print (“connection successful”)

getCon.close

Else if

Check -> ProtocolHandler (protocol):

Print (“connection successful”)

getCon.close

else

getCon.close

return exception

After securing the source, assess the behaviour of the functionality by selecting action

Class TargetInterface:

getAction (Cp, Up, Str):

Based on user preferences get action will secure the necessary needs of the SN function.

Method RoleAllocation is called to assess the role

Check - > roleAllocation (Fn, Ds, Co):

 functionalBehaviour(Fn):

 specifyLocation(Ds):

 dataSync(Co):

//Adapter class is where the process of allocation and adaptation is finalised.

Class Adapter(TargetInterface):

 Call method settarget() to set the functional behaviour to targeted user and component

After checking the basic requirements of the targeted component

 Initialise the target allocation.

setTarget (Cp, Up, Str):

Client class according to adapter pattern

Class Functionality:

 Do all the checks performed in TargetAllocation

 Check connections, use getcon() to secure the connection to the source

 Call getAction()and setTarget()

Check the behaviour and set the target according to the parameters. Do this for all types

of allocations

 FunctionalityDeployer(Fn) = TargetAllocation ()

 Adapter= Adapter(TargetInterface)

 Func = Functionality (Adapter)

 Return

 End

A Decentralised Semantic Architecture for Social Networking Platforms

188

The deployment is performed by the human actors in our case (Alice, Bob, Tony) referred as

functionality deployer (see figure 5-8). These actors are trusted within the boundaries of the

platform or system they are attached to. In the current case, all three users are connected to

their respective SNPs. The functionality is shared and deployed at the DSNP. Alice would like

to share F1 which is assumed as related to the profile reusability and data portability

requirements. The deployment is triggered by an adapter at the SNSL and Aspects are

deployed, un-deployed or replaced based on behavioural needs of the functionality at the run

time level. Aspect Binding function (see figure 5.8) which contains pointcuts, in Aspect.py

updates the component and prepare for the deployment within DSNP or for the targeted SNPs.

To further evaluate the prototype under the prescribed requirements R3 R4 and R5 a

sequence diagram is built to show the complete behaviour of the implemented application.

There are certain preconditions to ensure the requirement design criteria is met for the sake

of stability.

Precondition:

 Alice is a member of SN1 and SN2

 Bob is a member of SN3

 Tony is a member of SN3

 They must have access to their accounts.

The procedure of securing access to the DSNP is done in four steps. Normally, access to any

platform start with the login. Alice, Bob and Tony are declared as one single entity the “User”.

The first step, Alice initiates the request to use DSNP as Alice is not a registered user therefore

Alice either creates new user account with DSNP, as allowed security and privacy policy of

the platform or access the DSNP with existing SNP ID. In the second step “Communication

Manager” which receives the request looks for the relevant methods of access and security

policy. Protocol Handler call method GetIDProtocl() to know the protocols required and UserID

Resolver uses ResolveID() method to give access to the User.

Since Alice wants to use her existing social network ID and profile in the DSNP therefore SNSL

middleware queries access and control service by the mean of an Adapter. In the third step

Adapter calls a set of methods to allocate the behaviour desired to achieve the functionality in

the DSNP. The diagram shows Adapter communicating with SNPs and getting the required

data related to the user’s login details, and during the process it create and update user data.

A Decentralised Semantic Architecture for Social Networking Platforms

189

Figure 5-19: Sequence Diagram of SNSL Stage 1 implementation

In the fourth step Aspectualbinding (section 5-2) method of the Aspect is used, updating the

component interface to provide new functionality in the DSNP as requested by the user. In

current case allowing the user to use their existing profile and credentials to access and share

data on the DSNP.

A Decentralised Semantic Architecture for Social Networking Platforms

190

Figure 5-20: DSNP Main Page

Figure 5-21: DSNP Dashboard

The artefacts produced in this iteration gives the detail knowledge about how the DSNA

components are composed into a functionality. To achieve the set objectives, very specific

requirements are designed under the guidelines of the SWAT scenario and certain challenges

are specified. The implementation of the prototype demonstrates that proposed concept of

DNSA is feasible. Deployment stage of the iteration, key process towards achieving the

component composition in the DSNA are described as role allocation. The purpose is to define

the specification of component so that the composition process has the required information

A Decentralised Semantic Architecture for Social Networking Platforms

191

when interpreting the information coming from other platforms. Adjusting the adapter into the

process of role allocation is very complex and the most tedious task of the implementation.

Still there are complexities and 100% result are not achieved, for example the process of

adaptation become more complex when binding with the Aspect. For example, importing

complex functionalities such as Friend List and historic data of the posts are still an ongoing

work. Although, there is a partial success in achieving objectives of DSNA and setbacks are

due to not enough help related to tools and technologies. Every component is designed from

scratch, the changing access requirements of SNPs makes it more difficult to achieve the

desired goals.

5.4. Chapter Conclusion

The evolved version of the DSNA is presented in this chapter. The rigorous approach is taken

to design, deploy and evaluate the architecture. The architecture of the prototype shows the

necessary structural requirements needed to implement the decentralised social networking

environment. To implement the evolved version of DNSA extended version of SWAT scenario

is used to encompass more complex design requirement.

In the pursuit of the answers regarding the implementation of DSNP, first, the background

knowledge on the DSNP related to architectural components and main challenges that needed

to be addressed, are explained.

The focus of this chapter is to address the interaction, integration, interaction and allocation

related challenges in the design and development of the decentralised social application. In

doing so the goal is to achieve data portability requirements. Component and aspect

composition are the key to the success to the DSNA. SNSL which also act as middleware is

central to the composition problem, as SNSL not only controls the interaction of the DSNA

components to other SNPs but also plays significant role in the composition of the components

by the mean of adapter. The adapter act as bridge between the external information and the

components. At the final stage, the DSNP messaging prototype is build based on design

requirement mentioned in the scenario, to demonstrate the functions of the DSNA with the

addition of adapter.

A Decentralised Semantic Architecture for Social Networking Platforms

192

Chapter 6 Iteration 3 – Final Evaluation of DSNA

6. Chapter Introduction

This chapter presents the research carried out in order to further investigate the practicality of

DSNA by testing it in different domains. In addition to this, new components are introduced

based on lessons learned in iteration 2. The prototype is based on the additional architectural

feature to solve the problem of data consistency and persistence. The evaluation is done on

the criteria mentioned in chapter 4, by using method known as Social Web Acid Test (SWAT

v1) introduced by the W3C federated social web group. This Test provides guidelines and

numerous use cases that can be used to validate the practicality of the decentralised social

web. Due to the complex nature of the experiment, the prototype is evaluated on the basis of

interaction and communication use cases. These use cases are the extensions of the main

scenario.

Figure 6-1: Iteration 3

Requirement

Engineering

Extended Design

of SNSL

Deploying SNSL

Extended Version

Prototype

Evaluation

Artefacts

SNSL components

for composition

DNSA evaluation

Evolved DNSA

Iteration One

Iteration Two

Iteration

Three Stages

A Decentralised Semantic Architecture for Social Networking Platforms

193

6.1. Extended Design of SNSL

In the previous chapter, a prototype of the DNSA is designed and implemented. The key part

of the implementation was to achieve objective 4 of the research by implementing the

component composition method for DSNA. As described in chapter 4 SNSL acts as

middleware and handles component composition. SNSL stage 1 implementation uses the

adapter design pattern to support the data portability and reusability features of DNSA. This

step of the development stage assesses the previous inconsistencies and lesson learned to

contribute to the final version of the design. The focus of the evaluation design is to overcome

the design challenges mentioned in chapter 5.

6.1.1. Analysis of Requirements

To produce the extended version of DNSA, this iteration uses the same requirements

described in the previous chapter. There are also no changes to the common setting of DSNA

components (See section 5.1).

6.2. Component Composition and SNSL

This section describes the additions that are necessary to support component composition in

DNSA.

As already explained in chapters 4 and 5, the main characteristic of the SNSL is that

components and aspects are first order entities that are dynamically composed at the runtime.

The figure describes all the elements of SNSL that are crucial for its middleware role in DSNA.

The SNSL middleware platform interprets the information of the other SN and that information

will become part of the internal data structure of the application. The SNSL middleware

platform will use the information at runtime to perform the weaving and binding between the

aspects and components, with the aim of updating the SN functionality based on the user’s

request.

A Decentralised Semantic Architecture for Social Networking Platforms

194

Figure 6-2: SNSL Stage 2 design

6.2.1. Component Configuration Service and DSNA Factory

Several papers including, Schauerhuber at al., (2007), Pessemier et al., (2008), Pinto et al.,

(2011), have proposed the use of Component Factory and Component Configuration Service

in distributed application. The purpose is to avoid data inconsistency and to reduce the

information gap between design and implementation. Furthermore, the platform will be able to

detect if any component doing design violation.

Aspects and components be can created and destroyed (Pinto et al., 2005). DSNA supports

instantiation and deletion of the components by means of he DNSA Factory, which is an

altered form of the Component Factory. The DSNA Factory keep track of the components

altered to become SN functionalities and their interfaces. The DSNA Factory consists of two

methods.

CreateFunctionality(),

DestroyFunctionality().

The syntax of methods are CreateFunctionality(RoleName String, RoleInstance String

RoleAllocation String), DestroyFunctionality(RoleName String, RoleInstance String

RoleAllocation String)

It should be noted that, Components and Aspects are identified by RoleName, RoleInstance

and Role Allocation (See chapter 5). Using this service, a functionality can be called and

A Decentralised Semantic Architecture for Social Networking Platforms

195

deployed by giving the string RoleName, RoleIsntance and Allocation. Hence improving data

consistency and reusability.

There is an issue regarding recreating and modifying the component based on a user’s

request at runtime, raised during the SNSL stage one deployment. The second element

Configuration Service provides a set of methods to modify the application at runtime, that are

stored in Application Logic component of the DSNA. Configuration Services make it possible

to add, modify or remove the description of the components, aspects, properties and

composition role using the methods in Configuration Service. The information gained from

these methods is used to modify or adapt the description of the components and behaviour of

the functionalities.

The Configuration Service works in conjunction with Persistence Service. For example, in

Iteration one (section 4.4) the messaging application uses the Persistence Service. Few

examples of adaptation can be performed in the chat application and the information has to

be added or modified in the application logic structure. Adding an image sharing feature to the

chat component is another feature of Configuration Service. In the context of application

developer, this service gives easy plugging and unplugging of aspects and components into

application at runtime. For instance, users connected to the chat applications can be found by

changing the Aspect Composition rules and binging aspectual code of tracing to the

component.

Configuration Service is composed of three main methods,

addComponentInfo(Name String, Source String, RoleName String)

addAspectInfo(Source String, Target String, RoleName String)

addRoleInfo(RoleName String, TargetAllocation String)

Considering the research design process, with regards to the guidelines of iteration 3, the next

stage further investigates the design of SNSL in the context of deployment.

6.3. Deploying SNSL Stage 2

This stage of iteration 3, investigates the deployment of stage 2 of SNSL. In the context of the

application developer, design stage has described new features of SNSL based on the lesson

learned from Iteration 2. In the light of design challenges and requirements, the deployment

stage attempts to solidify the DSNA by demonstrating the deployment of SNSL stage 2.

A Decentralised Semantic Architecture for Social Networking Platforms

196

During deployment, the main problem which is solved concerns the data inconsistency and

persistence when importing features from other SNPs. The focus is on component

composition and the elements that connect them together and with another SNP.

The current deployment extends the scenario with the additional features of DSNA factory and

Component Configuration service. During the prototype implementation in iteration 2, one of

the main goals was runtime composition of the functionality from the imported features of other

SNPs functions with the help of DSNA components. Role allocation and Adapter were used

in conjunction with AO composition features of binding and weaving. The positive aspect of

that implementation was that, functionalities were imported successfully, on other hand

recomposing and reusability was not possible.

To resolve these issues Component Factory and Component Configuration Service concepts

were adopted. The design functions of these two are already explained in the above section

6.2. This section describes deployment SNSL stage 2 deployment for SN functionality

reusability.

Figure 6-3: SNSL as middleware stage 2 deployment

A Decentralised Semantic Architecture for Social Networking Platforms

197

The figure 6.3 shows how SNSL acts as middleware and key components that work together

with DNSA to establish a connection between multiple social networks to procure the SN

functionality. To achieve the deployment of the SN functionality within DNSP prototype,

Adapter works with Aspect component Role and Role Allocation, DSNA Factory, Configuration

Service, and Persistence Service.

Figure 6-4: SNSL as middleware stage 2 Class Mode in an execution environment

6.3.1. Reusing Functionalities through SNSL Middleware

Traditional middleware platforms such as J2EE Glass Fish, used for AO based distributed

applications are equipped with serval services to support various functional and non-functional

requirements of the application. The implementation of these services in traditional

middleware platforms is often monolithic, due to a high level of coupling between the

middleware and the services. As a negative consequence, there is no easy way to remove the

class Class Model

Adapter

+ m_Role: var = Role()

+ MIddlewarre: var = SNSL

+ getAction()

+ getCon()

+ RoleAllocaiton()

+ setTarget()

Role

+ MIddlewarre: var = SNSL

+ RoleAllocation()

+ TargetAllocation()

ConfigurationServ ice

+ MIddlewarre: var = SNSL

+ addAspectinfo()

+ addComponentInfo()

+ addRoleInfo()

SNSL as MIddlewarre

{root}

PersistanceServ ice

+ CompositionData()

+ retreiveFucn()

+ retrieveAspect()

+ storeAspect()

+ storeFunc()

Aspect

+ AdviceBinding()

+ AspectBinding()

+ Weaving()

DSNAFactory

+ CraeteFunctionality()

+ DestroyFunctionality()

A Decentralised Semantic Architecture for Social Networking Platforms

198

unneeded service during the implementation of the middleware and install more suitable third-

party services (Landuyt et al. 2011).

This lack of adaptability limits the reusability of traditional middleware services. To tackle these

limitations, SNSL as middleware is introduced in iteration one. Which is mainly based on the

lesson learned in implementation of the messaging in DSNP. SNSL stage 2 accomplishes the

goal of reusability and gives flexibility by providing the components to enhance data

persistence and consistency between the DSNP and other SNPs. The SNSL also gives

flexibility to application developer to adapt according to the changing needs at the network

and communication levels.

Figure 6-5: SNSL as middleware stage 2 execution environment

Figures 6-3, 6-4 and 6-5 describe the deployment of SNSL in the proposed scenario in the

context of deployment. The class diagram gives the simplest outlook of SNSL as middleware

and the components interaction with each other.

A Decentralised Semantic Architecture for Social Networking Platforms

199

Figure 6-6: SNSL Notation in XML

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Adapter" type="Adapter"/>
 <xs:complexType name="Adapter">
 <xs:sequence>
 <xs:element name="RoleInstance" type="xs:int" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Role" type="Role" minOccurs="1" maxOccurs="1"/>
 <xs:element name="SNSL as MIddlewarre" type="SNSL as MIddlewarre"
minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Role" type="Role"/>
 <xs:complexType name="Role">
 <xs:sequence>
 <xs:element name="Co" type="xs:int" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Ds" type="xs:int" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Fn" type="xs:int" minOccurs="1" maxOccurs="1"/>
 <xs:element name="RoleInstance" type="xs:int" minOccurs="1" maxOccurs="1"/>
 <xs:element name="RoleName" type="xs:int" minOccurs="1" maxOccurs="1"/>
 <xs:element name="SNSL as MIddlewarre" type="SNSL as MIddlewarre"
minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ConfigurationService" type="ConfigurationService"/>
 <xs:complexType name="ConfigurationService">
 <xs:sequence>
 <xs:element name="SNSL as MIddlewarre" type="SNSL as MIddlewarre"
minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="SNSL as MIddlewarre" type="SNSL as MIddlewarre"/>
 <xs:complexType name="SNSL as MIddlewarre">
 <xs:sequence>
 <xs:element name="PersistanceService" type="PersistanceService" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="Aspect" type="Aspect" minOccurs="1" maxOccurs="1"/>
 <xs:element name="DSNAFactory" type="DSNAFactory" minOccurs="1"
maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="PersistanceService" type="PersistanceService"/>
 <xs:complexType name="PersistanceService">
 <xs:sequence/>
 </xs:complexType>
 <xs:element name="Aspect" type="Aspect"/>
 <xs:complexType name="Aspect">
 <xs:sequence/>
 </xs:complexType>
 <xs:element name="DSNAFactory" type="DSNAFactory"/>
 <xs:complexType name="DSNAFactory">
 <xs:sequence>
 <xs:element name="RoleInstance" type="xs:int" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

A Decentralised Semantic Architecture for Social Networking Platforms

200

 DSNA Factory and Configuration Service: DSNA Factory provides create and destroy

functionality operations. When the create operation is called, the factory looks for the

functionality RoleName matching it with Role class according the RoleInstance, binds a

component to it, and create a constructor in the SNSL Implementation Class. This constructor

can be remote, depending on the TargetAllocation and RoleAllocation of the component.

Configuration service provides set operations to modify the structure of the application at

runtime, which is stored in the application logic component of SNSL. Configuration service

makes it possible for SNSL to add, modify or remove the description of the components,

Aspects and Roles, using the corresponding methods. This service is a crucial part of SNSL

stage two implementation, and very helpful in configuring application dynamically, adapting it

according the user preferences or any requirement of the connected SNPs.

Figure 6-7: SNSL high level functional definition

The code mentioned in above two snippets, is a description of the DNSA architectural

components interpretation by the mean of SNSL. Following this procedure of deploying social

applications and their functionalities is helpful in testing the application. The execution

environment used for this procedure was already explained in section 5-2.

import Adapter
import PersistanceService
import Aspect
import Role
import DSNAFactory
import ConfigurationService

class SNSL as MIddleware:
 m_Adapter= Adapter()

 m_PersistanceService= PersistanceService()

 m_Aspect= Aspect()

 m_Role= Role()

 m_DSNAFactory= DSNAFactory()

 m_ConfigurationService= ConfigurationService()

A Decentralised Semantic Architecture for Social Networking Platforms

201

Up to now, this section has given a detailed account of the final extension of the proposed

DSNA’s SNSL artefact. To assess the practicality and evaluate on the basis of the proposed

scenario, the next section performs the final evaluation based on the guidelines explained in

section 5.1

6.4. Final Evaluation

The final evaluation of DNSA based prototype is done as part of evolving research process.

As research progresses, complexity and challenges concerning the success of the

architecture increase as well. In this stage of the development process the same research

process pattern is followed as in the previous iterations. The deployment is converted into the

final executable prototype and full implementation is carried out to achieve the research

objectives 4 and 5.

The evaluation is done in two steps. First by explaining the prototype behaviour and second

by explaining the performance evaluation. Performance evaluation is done on the basis of

interaction and communication between the users and the DSNSP. SWAT guidelines are used

to set the use cases.

6.4.1. SNSL Implementation

Section 5.3.4 of iteration 2 explained, the role of SNSL in the platform during the

communication between the SNPs. The SNSL middleware platform is prototyped on Apache

WSGI and the combination of JSON and WebSocket. Component interfaces and

implementation can be defined in any python-based interpreter. Remote method invocation

calls are asynchronous and involve a python web framework built in objects for communication

between the components. The interaction between the components is verified by the Cpython

Compiler.

The SNSL stage two implementation is tested by importing the messages from other SNPs to

the DSNP. The process of application behaviour testing is already explained in section 5.3.3.

Precondition:

 Alice is a member of SN1 and SN2

 Bob is a member of SN3

 Tony is a member of SN3

 They must have access to their accounts.

A Decentralised Semantic Architecture for Social Networking Platforms

202

Figure 6-8: SNSL Stage 2 Sequence Diagram

Alice, Bob and Tony are declared as one single entity the “User”. In the first step, Alice initiates

the request to use DSNP as Alice is not a registered user therefore Alice she either creates

new a user account with DSNP, as allowed by the security and privacy policy of the platform

or accesses the DSNP with an existing SNP ID. In the next step “Communication Layer” which

receives the request looks for the relevant methods of access and security policy. The Protocol

Handler call method GetIDProtocl() to know the protocols required and UserID Resolver uses

ResolveID() method to give access to the User.

A Decentralised Semantic Architecture for Social Networking Platforms

203

Figure 6-9: Image import page

Figure 6-10: Image Selection

After gaining access Alice want to share some photos. SNSL handles the requests for any

social sharing activity. roleAllocaiton(fn) and getImage() are called. Getimage() holds the

information about the user request whereas roleAllocation(fn) contains interpretation detail

regarding the to be imported functionality. The final step of importing is handled by Adapter

and which interprets the information and behaviour of the requested functionality.

ImageDataReceived() invokes the aspect and Aspectual Binding operations are called to bind

and weave the new feature to the existing DSNP functionality. DSNA Factory recreates the

A Decentralised Semantic Architecture for Social Networking Platforms

204

functionality and stores it. Configuration Service add the new information to the component,

aspect and role. This information is reused for dynamic composition of the components and

functionalities. SNSL stores the abstract of the received information and generates a response

to the user Alice with new image sharing features. Figure 6-9 shows a description of the

information required from the users to import the images. Figure 6-10 shows the imported

images from that used for further sharing with other SNP users.

The next section evaluates the performance for the final evaluation of the DNSP application.

6.4.2. Performance Evaluation

To evaluate the performance of the DSNP prototype an overhead thread has been created.

Apache JMeter (jmeter.apache.org. 2018) has been used to create the test bed. Overhead

thread is evaluated based on the information provided in the test bed. The test bed is used to

evaluate the resource usage, increased data access, increased network load, and increase

computation resource.

The test bed is based on SWAT use cases of interaction and communication. Interaction and

communication between the multiple users attached to different SNP is analysed. The analysis

is carried out on JMeter by creating the SWAT scenario.

6.4.3. Method Selection

This section describes the notion of evaluation in web architecture research to explain the

evaluation method selection. The research on evaluation methods for purpose of web

architecture evaluation is quite vague and mostly evaluation is done to check the quality and

performance of the architecture when implemented as a prototype such as attempted in

Lundar et al. (2013) and Laine and Säilä, (2012).

The literature on software architecture evaluation methods is mainly focused on the

implementation of methods with different criteria to find the weaknesses. The implementation

of evaluation methods such as Kazman et al. (2005), Mattsson et al. (2006) provides detailed

information on the analysis of the architecture evaluation methods but lacks in providing any

guidelines for the selection of architecture evaluation methods, which makes the selection a

cumbersome process.

In the context of design science, according to Venable et al. (2012), the artefact designed

using DSR must be rigorously evaluated. But how should rigorous evaluation be designed and

conducted? What kind of strategies and methods should be used for the evaluation in a project

A Decentralised Semantic Architecture for Social Networking Platforms

205

grounded in design science? How can evaluation be designed effectively and efficiently

(Venable et al. 2012). As described in chapter 3, the evaluation should have the following

purposes, (1) evaluate an instantiation (2) evaluate the formalised knowledge (3) evaluate a

designed artefact by comparing it with formalised knowledge to understand whether it achieve

the purpose (4) evaluate designed artefact with purpose to know the consequences of

evaluation and finally (5) evaluate the designed artefact formatively to identify weakness and

areas of improvement for an artefact under development.

Hevner et al. (2004) proposed utility, quality and efficacy as the key aspects of the architecture

to be evaluated. In addition, they proposed, the artefact should be evaluated on the basis of

functionality, completeness, consistency, accuracy, usability, reliability and performance

furthermore the artefact must be adaptable to the functional environment the artefact is

intended for (Hvener et al. 2004). Therefore, in the light of research guidelines on artefact

evaluation the SWAT process is chosen, because SWAT can be helpful in evaluating the

decentralised and distributed social web application.

6.4.4. The Social Web Acid Test (SWAT)

The W3C federated social web group proposed SWAT to test decentralised application at data

levels such as data portability, messaging social discovery etc. The evaluation further

simplifies the SWAT use case to demonstrate the data portability and focuses on the

interaction and communication use case.

Interaction: According to the SWAT test case, there are 3 platforms running on 3 servers.

 Alice -> SN1 or server 1

 Bob -> SN2 or server 2

 Tony -> SN3 or Server 3

Alice has an account on SN1 and she is working with Bob (SN2) and Andy (SN3) on the same

project. She would like Bob and Andy to join her on SN1, so they can stay update on the

project related notifications. In the context of SWAT for portability to be successful, Bob and

Andy should remain friends with her. If any post on Bob’s social dashboard on SN2 should be

visible on her social dashboard on SN1 and if any post is done by Alice on SN1 then Bob

should get a notification on SN2.

Communication: What are the means of communication in DSNP, provides a consistent form

of communication to the users to make their interactions feasible and possible?

Alice has an account on SN1 and she is working with Bob (SN2 and Tony (SN3) on the same

project. As now Bob and Andy are already on SN1. Alice initiates a group chat and she adds

A Decentralised Semantic Architecture for Social Networking Platforms

206

Bob and Andy. Now when carol sends message to Bob and Andy they should receive the

message while they are using SN2 and SN3.

The purpose of above-mentioned use cases is to give attributes to test quality and

performance of interaction and communication.

The test bed to evaluate the application consist of multiple scenarios as explained in iteration

2 section 5.1, each scenario running the application for max 50 users for the duration of 30

seconds.

6.4.5. Performance analysis

The runtime overhead DSNP is evaluated in terms of resource usage, increased data access,

increased network load, and increase computation resource. The application files and log file

are loaded at the start up time of the application. In case of data access, which is initiated

when application load is successful. Latency is the main performance bottleneck because its

magnitude is larger than other evaluation matrices.

Figure 6-11: Application load test

A Decentralised Semantic Architecture for Social Networking Platforms

207

Figure 6-12: Application scenario load test

Figures 6-11 and 6 -12 shows the successful application load for test bed and scenarios. After

data access the next important overhead thread is network overhead. The role of SNSL

middleware evaluation is important to calculate the right result. CAM components such as the

AspectBinding, AspectWeaving and AdviceBinding methods cause increase in latency of data

access and increase network response time as compared to other DSNA methods. The cause

of this significant increase is in the use of external services and APIs used for interaction with

SNPs.

Figure 6-13: Successful Test result

A Decentralised Semantic Architecture for Social Networking Platforms

208

For example, figure 6-13 shows the successful attempt to deploy the social service and figure

6-14 shows the failed attempt to deploy the social service.

Figure 6-14: Test to connect the social services

Figure 6-15: Network response time

A Decentralised Semantic Architecture for Social Networking Platforms

209

The graph indicates that as the number of users accessing the application increases the

network response time increases as well.

Figure 6-16: Table showing the overall results.

The domain SNSL includes various algorithms, used for weaving and composition of the

components, for example the Adapter. There is a significant increase in the overall access

and deployment time of the Adapter during the allocation process. Component composition

and the role of Adapter is crucial. Some appropriate measure has to be taken to reduce the

overhead time, for example by using better weaving algorithms.

6.5. Chapter Conclusion

In the previous iterations design and implementation of DSNA has evolved the DNSA to be

practical and implementable. Such was the goal of this chapter, to demonstrate the results of

DNSA when evaluated on reality based scenario. The main goal to achieve is implementation

of the SNSL stage two to complete the research process cycle. This chapter proposed a new

addition to SNSL the solve the problem of data inconsistency and persistence. DSNA Factory

and Component configuration service are introduced. The final application behaviour is

explained, and images are successfully imported from another SNP to DSNP.

The characteristic and aspects of the evaluation on the basis of which prescribed DSNA

enabled platforms are evaluated. This laid the foundation for the selection of the evaluation

method for the final version of DSNA. In the next step a multiple, social networking domain

scenario is illustrated to test the scenario and SWAT v1 is used. Which is suggested by the

W3C federated social web group. The test use cases are applied to validate the practicality

of the DSNA interaction between the user and communication between the platforms. The

evaluation of the artefact reflects that the DSNA is practical however more large-scale

implementations are required to improve and understand the weaknesses of DSNA. The

performance evaluation focuses on the issues related to data access and network usage.

A Decentralised Semantic Architecture for Social Networking Platforms

210

More efficient algorithms should be used for component composition to avoid the data access

and composition related issues.

A Decentralised Semantic Architecture for Social Networking Platforms

211

Chapter 7 Discussion and Conclusion

7. Introduction

This chapter summarises the contribution made by this research. A decentralised social

network architecture is presented to resolve the problem of portability between different social

networking platforms. The architecture is based on a conceptual architecture and architectural

style. This chapter discusses, the usefulness of the architecture implementation and results

achieved by the evaluation to conceive the final version of the architecture. The remainder of

the chapter is organised as follows. Section 7.1 provides an overview of this research and

what has been achieved in each chapter. Section 7.2 describes the most important

contributions of this research. Section 7.3 describes what objectives have been achieved and

as well as the limitations of the current work and plans for future work.

7.1. Research Overview

The research presented in this thesis addresses new challenges and opportunities for the

decentralisation in social networking platforms, given by the lack of architectural guidelines,

infrastructure, protocols, standards and service provider restrictions. The available research

on social web decentralisation is mainly conducted on user privacy, profile data portability,

activity and identity related issues. There are three main approaches widely proposed by

existing research to decentralise the social web. These include distributed web server hosting,

federated layer and P2P approaches. The majority view align itself with the federation of social

networking platforms, which is still underdeveloped and is opposed by social network service

providers.

The solution envisioned in this research attempts to solve the problem of data portability

among social networks at the functional level by using a decentralisation approach. The

methodology used to develop decentralised architecture, uses similar standards and protocols

to existing architectures, however, it differs on the principles related to, whether

decentralisation should be done at the central level such as in the Federated Social Web,

which is widely explored or at the functional level, which is under investigated. By using the

proposed architecture users will be able to decide which functionality they would like to use

across their social network platforms in other words if a user decided to use message related

functions then they would able to post to another platform they are registered with.

A Decentralised Semantic Architecture for Social Networking Platforms

212

7.2. Research Achievements

The application of CAM to build web applications is now new (Pinto et al. 2005, Pessemier et

al. 2008, Pinto et al 2011, Fuentes et al. 2003), but the use of CAM, AOSD and CBSD for the

decentralisation of social web has not been explored by the research community. In the

researcher’s view the problem with existing social network decentralisation is much broader

than normally explained in the literature, and that architectural styles principles and patterns

from software engineering play a fundamental role. Adding and mixing some opensource

technologies for decentralisation is not sufficient to resolve the problem. Therefore, this

research presents a decentralised architecture based on software engineering principles with

the goal to propose a way to design and develop decentralised social networking platforms.

More specifically;

1. Use of CAM for SN

The integration of CAM with very specific component-based architecture PACE, gives the

required architectural elements needed for decentralisation. The integration of CAM and

PACE provides the model, DSNA style which sets the foundations for DSNA.

2. DNSA Style

The DSNA style provides rule and properties on which every component of the DSNA are

built. The most important aspect of the style is that its foundation is based on aspect and

component composition.

3. Component Composition

DNSA supports role-based task division of composition and specification into separate

components. The AO composition and role-based division is key to the decentralisation of

SNP at the functional levels.

4. SNSL as middleware

DNSA is made of four layers of which the social network support layer is the most important.

Since it not only acts as bridge between the other SNPs and DNSP but also because this is

where the actual runtime composition happens. Adapter, DSNA factory and component

configuration services, also represent key architectural elements.

The DNSA based prototype shows promising results but with some setbacks as well. The

separation of concerns, AO composition and component customisation based on the

proposed feature of the SNSL, successfully decentralised the SN functionalities.

A Decentralised Semantic Architecture for Social Networking Platforms

213

In the analysis of all the iterations, it has been concluded that the addition of AO features to

the composed new functionalities is useful. Specifically, the AO functions such as aspect

binding and weaving are crucial to change the code.

It has also been concluded that existing AO compositions lacks in methods availability for

robust composition, expressive distributed composition and appropriate task division and

adaptability of composition logic. These are some of the reasons that have made the current

research an immense challenge. SNSL was proposed as middleware to handle some of these

challenges. Within this context DSNP communication, interaction, composition and allocation

of component further expanded the number of challenges.

To fill these gaps and to achieve all the set objectives a SWAT design scenario and W3C

federated social web protocols were used and they played a crucial role in establishing the

communication between the DSNP and other SNPs. W3C provides social data syntax also

known as JSON, social APIs and other federation protocol. For the sake of implementation

these protocols are the part of implementation framework but how they are used is for the user

to select. That is one main feature of the DNSA based application. Also, this is the main

difference between W3C propositions on their protocols and current research. As compared

to their implementation on other peer to peer and distributed applications the DSNA based

application runs them dynamically based on the user requirements as prescribed in the

component.

7.3. Research Contributions

Novel Contributions to Knowledge

The main contribution of this thesis is an architectural framework, which provides cross-

domain social networking functionality to the end users by enabling data portability between

different social networking platforms. The proposed architecture addresses new requirements

that arise from the recent demands of change in the architecture of the social networking

platforms. (1) the shift from a centralised to more open and decentralised architecture and (2)

the need of infrastructure that can enable sharing of personal data between different social

networking platforms.

List of Main Contributions

Based on DSR, the individual iterations of the research make the following contributions.

A Decentralised Semantic Architecture for Social Networking Platforms

214

DSNA Architectural Style

The most important aspect of the proposed research is the composition of DSNA architectural

style. In simple words, the purpose of the DSNA architectural style is to provide rules for

relationships between the components of the DSNA. The proposed style is novel and is based

on strong and well-established principles that are adopted from the component-based style

such as PACE and Aspect Oriented Software development (AOSD) and unified way to obtain

them to obtain an architectural style that can solve the complex portability issues related to

decentralisation of the social networking platforms.

Contribution

The notion behind the implementation of the DSNA style is to provide guiding principles for

the composition of the components during the implementation of the DSNA architecture. It is

imperative for the successful implementation of DNSA that the components of the architecture

are composed dynamically following the DSNA style.

The proposed research contributes to the software engineering knowledge domain by

comparing the CAM and PACE. This comparison brought up components and ideas for the

production of decentralised social networking application.

Conceptual Architecture of Decentralised Social Networking Platforms

The conceptual architecture proposed in this research provides guidelines to perspective

developers when designing and implementing a decentralised social networking platform. The

architecture follows rules set in the DSNA architectural style and specific requirements of

decentralisation. The proposed architecture is novel as it provides decentralisation at the

functional level of the social networking platforms; moreover, the architecture provides

guidelines for the dynamic composition of the components.

Contribution:

 The proposed architecture provides a list of activities and guidelines for leveraging

data portability at the functional level of the social networking platforms

 The architecture provides a list of high-level components required to implement

decentralisation, to enable data sharing and aggregation between different social

networking platforms.

Prototype of DSNA

The outcome of the architecture is shown in the form of a prototype. To verify the practicality

of the architecture, the prototype is designed and implemented using different content sharing

A Decentralised Semantic Architecture for Social Networking Platforms

215

functional scenarios. The scenarios are designed to verify the social interactions and

communication between the different social networking platforms. The prototype

implementation shows the protocols, standards used, and the different architectural

components used to realise the scenario. The prototype of the proposed architecture shows

that the architecture presented in this research is practical and can be implemented as an

application in the suitable setting.

Contribution:

 The prototype implementation shows how the proposed architectural components can

be used to enable data portability.

 The prototype shows how to enable profile independent content sharing between

different social networking platforms.

 The prototype shows how to instantiate the DSNA architectural style and proposed

conceptual architecture to enable decentralisation.

SNSL as Middleware

Social network support layer is a DSNA component where dynamic composition of component

happens. To achieve the composition a modified Adapter pattern is proposed for DSNP

prototype. The novel contribution of which will be the adapter algorithm that allocate the role

based on the behavioural description of the SNP functionality and plays an important role for

importing the functionality to the DNSP prototype.

 The first stage of SNSL shows the profile reusability by means of a DSNP prototype

 The second stage of SNSL shows successful portability of data

7.4. Conclusion and Future Challenges

The scope of future software development is changing from small network computing to large

distributed networks. The decentralised nature of the development and deployment and

execution of the systems caused the change in the nature of how the systems are developed.

Customisation of large distributed systems such as social networks by means of

decentralisation and the proposed platform should be attempted at a large scale with better

composition technologies and algorithms.

There is a need to further investigate the adaptation and customisation capabilities of the

SNSL middleware. The reliance on the existing open source code for aspectual weaving,

A Decentralised Semantic Architecture for Social Networking Platforms

216

binding and advice is not reliable. The outcomes of the adapter algorithm are very close to the

expected results, however there are issues with the information and data interpretation at the

role allocation levels. The final evaluation shows some of the deficiencies in adaptation and

allocation as well as in the effects on composition, which result in issues related to data

access.

Privacy and security policies induction into the DSNP is another future challenge that requires

attention. A recurring and unsolved problem is SNP’s privacy and security policies data import

to DSNP. Such policies are not standardised. All SNPs have their own privacy and security

management framework user are allowed only to change at their end, but they are not allowed

to import their own setting. DNSA provides some initial features related to trust, security and

privacy policy of the users. For example, user can select and customise a functionality and

share it with another SNP.

Lastly, restricted interfaces and restriction on the queries that are deployed using external

APIs is another challenge. External SNPs put restriction on the number of queries a user can

make to access their data. This limitation also effects the DNSP features when importing data

from the SNPs. There is a need of a mechanism or agreement between a person using DSNP

and SNSP to resolve this issue and to have an interface, whereby user can describe their

current needs, when connecting to use social networking services.

A Decentralised Semantic Architecture for Social Networking Platforms

217

References

Anderson, G.E., Graham, T.N. and Wright, T.N. (2000). ‘Dragonfly: linking conceptual and

implementation architectures of multiuser interactive systems’, Proceedings of the 22nd

International Conference on Software Engineering (ICSE'00), New York, NY: ACM Press,

pp.252–261

Alhir, S. (2002), ‘Guide to applying the UML’, Springer. ISBN 0-387-95209-8.

Auer, S. (2010), ‘A Methodology for Enabling Social Semantic Collaboration’, Social

Computing: Concepts, Methodologies, Tools, and Applications. IGI Global, 2010, 669-692

Ankolekar, A., Krotzsch, M., Tran, T., and Vrande, D. (2008).’The Two Cultures: Mashing up

Web 2.0 and the Semantic Web’, The Journal of Web Semantics, 6(1), 70–75.

Aiello, L.M. and Ruffo, G., 2010, March. Secure and flexible framework for decentralized social

network services. In Pervasive Computing and Communications Workshops (PERCOM

Workshops), 2010 8th IEEE International Conference on (pp. 594-599). IEEE.

Arenas, M. & P_erez, J. (2011). ‘Querying semantic web data with sparql. In Proceedings of

the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems’,

PODS '11 (pp. 305{316). New York, NY, USA:

ACM.

Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M. and Steggles, P., (1999), ‘Towards

a better understanding of context and context-awareness’. In Handheld and ubiquitous

computing (pp. 304-307). Springer Berlin Heidelberg.

Ameller, D. and Franch, X., (2011), ‘Ontology-based Architectural Knowledge representation:

structural elements module’, In Advanced Information Systems Engineering Workshops (pp.

296-301). Springer Berlin Heidelberg.

Abrahamsson, P., Warsta, J., Siponen, M.T. and Ronkainen, J., (2003), ‘New directions on

agile methods: a comparative analysis’, In Software Engineering, 2003. Proceedings. 25th

International Conference on (pp. 244-254). IEEE.

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-387-95209-8

A Decentralised Semantic Architecture for Social Networking Platforms

218

Adipat, B., Zhang, D., and Zhou, L. (2011), ‘The effects of tree-view based presentation

adaptation on mobile web browsing’, MIS Quarterly, Vol 35 (1), pp. 99-122.

Bass, L., Clements, P. Kezman, R. (2011). ‘Software Architectures in Practice’ Carnegie

Mellon Software Engineering Institute, 2nd Edition, Pearson Education, Boston, MA. US

Ballester, A., Jordan, F., & Pujol, H (2010). ‘A semantic approach to security in social

networks’, Safelayer Secure Communication and Centre of Development and Industrial

Technology, Spain. Serial Number E-08039

Berners-Lee, T., Cailliau, R., Groff, J. (1992). ‘The World-Wide Web’, Computer Networks

25(4-5): 454-459 (1992)

Berners-Lee, T., Hendler, J., And Lassila, O. (2001). ‘The Semantic Web’, Scientific American,

17 May 2001

Berners-Lee, T., Hall, W., Hendler, J. a., O’Hara, K., Shadbolt, N., & Weitzner, D. J. (2006).

‘A Framework for Web Science’, 1(1), 1–130. doi:10.1561/1800000001

Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., & Hendler, J. (2007). ‘N3Logic: A Logical

Framework for the World Wide Web’, Theory and Practice of Logic Programming, 8(03), 249–

269. Retrieved from http://arxiv.org/abs/0711.1533

Berners-Lee, T., Hollenbach, J., Lu, K., Presbrey, J., Schraefel, M (2008). ‘Tabulator Redux:

Browsing and writing linked data’, In Proceedings of the 1st Workshop on Linked Data on the

Web (2008)

Berners-Lee, T. (2009). ‘Socially Aware Cloud Storage’, W3C Design Note, Available at:

http://www.w3.org/DesignIssues/CloudStorage.html, Accessed: 20-12-2015

Béjar, R., Latre, M. A., Nogueras‐Iso, J. Muro‐Medrano, P. R. and Zarazaga‐Soria, F. J.

(2009). ‘An Architectural Style for Spatial Data Infrastructures’, International Journal of

Geographical Information Science, 23(3), pp.271-294. doi:10.1080/13658810801905282

Bianco, P. (2007), ‘Evaluating A Service Oriented Architecture’, SEI Technical Report

http://arxiv.org/abs/0711.1533
http://www.w3.org/DesignIssues/CloudStorage.html

A Decentralised Semantic Architecture for Social Networking Platforms

219

Bojars,U., Passant, A., Breslin, J., Decker,S. (2008). ‘Social Network and Data Portability

using Semantic Web Technologies’, DERI, NU Ireland, Galway (1), 5–19.

Bortoli, S., Palpanas, T., Bouquet, P. (2011). ’Decentralised Social Network Management’,

International journal of Web based communities, 7(3), pp.276-297.

Bizer, C. & Schultz, A. (2009). The Berlin SPARQL Benchmark. International Journal On

Semantic Web And Information Systems (IJSWIS), 5(2),

Boyd, D., M. and Ellison, N., B. (2007), ‘Social network sites: definition, history, and

scholarship’, Journal of Computer-Mediated Communication 13: 210–230.

Booch, G. (2001).’ The Architecture of the web application’,

http://www.ibm.com/developerworks/ibm/library/it-booch_web Access Date, 20/11/2012

Boehm, B. Turner, R. (2005), ‘Management Challenges to Implement Agile Processes in

Traditional Development Organizations’, IEEE Software (22)5, 2005, pp. 30-39.

Bonifati, A., Chrysanthis, P.K., Ouksel, A.M. and Sattler, K.U., (2008). ‘Distributed databases

and peer-to-peer databases: past and present’. ACM SIGMOD Record, 37(1), pp.5-11.

Buchegger S, Schi¨oberg D, Vu L-H, Datta A, (2009), ‘Peerson: P2P Social Networking: Early

Experiences and Insights’. In: Proceedings of the second ACM Euro Sys workshop on social

network systems, SNS ’09, pp 46–52

Breslin, J., Harth, A., Bojars, U., & Decker, S. (2005). ‘Towards Semantically-Interlinked Online

Communities’. In Proceedings of the 2nd European Semantic Web Conference (ESWC05),

Heraklion, Greece, LNCS, 3532, 500-514

Brown, A. W., and Mcdermid, J. A. (2007). ‘The Art and Science of Software Architecture’,

International Journal of Cooperative Information Systems, 16(03n04), 439–466

doi:10.1142/S0218843007001718

Burstein, F. and Gregor, S., (1999), ‘The Systems Development or Engineering Approach To

Research In Information Systems’, An Action Research Perspective. In Proceedings of the

10th Australasian Conference on Information Systems (pp. 122-134). Victoria University of

Wellington, New Zealand.

A Decentralised Semantic Architecture for Social Networking Platforms

220

Bahri, L., Carminati, B. and Ferrari, E., (2018), Decentralized privacy preserving services for

Online Social Networks, Online Social Networks and Media, 6, pp.18-25.

Brickley, D., Miller. L. (2007), ‘FOAF Vocabulary Specification’, Available at:

http://xmlns.com/foaf/spec/. Access Date, 14-2-2014

Breslin, J. and Decker, S. (2007). ‘The Future of Social Networks On The Internet’: The Need

For Semantics, IEEE Internet Computing, pp: 86 – 90

Brambilla, M., Ceri, S., Fraternali, P., and Manolescu, I. (2006). ‘Process modelling in Web

applications’, ACM Transactions on Software Engineering and Methodology, 15(4), 360–409.

doi:10.1145/1178625.1178627

Brown, S. A., Dennis, A. R., & Venkatesh, V. (2010). Predicting Collaboration Technology

Use: Integrating Technology Adoption and Collaboration Research. Journal of Management

Information Systems, 27(2), 9–54.

Bojars, U., Breslin, J. G., Finn, a, & Decker, S. (2008).’Using the Semantic Web For Linking

And Reusing Data Across Web 2.0 Communities’, The Journal of Web Semantics,

Retrieved from http://www.sciencedirect.com/science/article/B758F-4R8MDS6-

1/2/339e88a4ebcde208f23e0332bbdbc725

Bosch, J., (2000), ‘Design & Use of Software Architectures – Adopting and Evolving A Product-

Line Approach’, ISBN 0-201- 67494-7, Pearson Education, 2000.

Breslin, J., Passant, A. and Decker, S., (2009), ‘The Social Semantic Web’, 20 Springer

Science & Business Media.

Brichau, J., Chitchyan, R., Rashid, A. and D'Hondt, T., (2008), ‘Aspect‐Oriented Software

Development: An Introduction. Wiley Encyclopedia of Computer Science and Engineering.

Bai, X., White, D. and Sundaram, D., (2013), ‘Multi-Methodological Approaches in Design

Science’, A Review, Proposal and Application. PACIS, 159.

Creswell, J. W. (2005), ‘Educational research’, Planning, conducting, and evaluating

quantitative and qualitative research, 2nd edition.

http://xmlns.com/foaf/spec/
http://www.sciencedirect.com/science/article/B758F-4R8MDS6-1/2/339e88a4ebcde208f23e0332bbdbc725
http://www.sciencedirect.com/science/article/B758F-4R8MDS6-1/2/339e88a4ebcde208f23e0332bbdbc725

A Decentralised Semantic Architecture for Social Networking Platforms

221

Cao, L., Mohan, K., Xu, P. and Ramesh, B., 2009. A Framework For Adapting Agile

Development Methodologies. European Journal of Information Systems, 18(4), pp.332-343.

Cutillo, L.A., Molva, R. and Önen, M., (2011), June. Safebook: A Distributed Privacy

Preserving Online Social Network. In World of Wireless, Mobile and Multimedia Networks

(WoWMoM), 2011 IEEE International Symposium on a (pp. 1-3). IEEE.

Conboy, K., Gleasure, R. and Cullina, E., (2015), ‘Agile Design Science Research’, In

International Conference on Design Science Research in Information Systems (pp. 168-180).

Springer International Publishing.

Chen, L., Wei, S. and Qingpu, Z., (2010), ‘Semantic Description of Social Network Based on

Ontology’, E-Business and E-Government (ICEE), 2010 International Conference on, 1936–

1939. doi:10.1109/ICEE.2010.489

Conti, M., Hasani, A., & Crispo, B. (2013), ‘Virtual private social networks and a facebook

implementation’, ACM Transactions on the Web, 7(3), 1–31, doi:10.1145/2516633.2516636

Calegari, S. Pasi, G. (2013), ‘Personal ontologies: Generation of user profiles based on the

YAGO ontology’, Journal of Information Processing and Management, Volume 49 Issue 3,

May, 640 – 658

Catanese, S.A., De Meo, P., Ferrara, E., Fiumara, G. and Provetti, A., (2011), ‘Crawling

Facebook For Social Network Analysis Purposes’. In Proceedings of The International

Conference On Web Intelligence, Mining And Semantics (p. 52). ACM.

Constantindes, E., and Fountain, J.S. (2008), ‘Web 2.0. Conceptual Foundations and

Marketing Issues’, Journal of Direct Data and Digital Marketing Practice, pp. 231 – 244

Catanese, S., De Meo, P., Ferrara, E., Fiumara, G. and Provetti, A., (2012). ‘Extraction and

analysis of facebook friendship relations.’ In Computational Social Networks (pp. 291-324).

Springer London.

Chen, D., Doumeingts, G. and Vernadat, F., (2008). ‘Architectures for enterprise integration

and interoperability’: Past, present and future. Computers in industry, 59(7), pp.647-659.

http://www.sciencedirect.com/science/article/pii/S0306457312001070
http://www.sciencedirect.com/science/article/pii/S0306457312001070

A Decentralised Semantic Architecture for Social Networking Platforms

222

Chen, W., Wang, Y. and Yang, S (2009).’Efficient Influence Maximization in Social Networks’,

In Proceedings of The ACM Conference On Knowledge Discovery And Data Mining

Conallen, J. (1999), ‘Building Web application with UML’, Rational Software Corp, pp 133-160,

Addison Wesley, Boston, MA, USA

Clements, P. (2003), ‘Documenting Software Architectures’, Views and Beyond, SEI Series in

Software Engineering Addison-Wesley

Challenger, M. (2012), ‘The Ontology and Architecture for an Academic Social Network’,

International Journal of Computer Science, 9(2), 22–27.

Cena, F., Dattolo, A., Lops, P., & Vassileva, J. (2013), ‘Perspectives in Semantic Adaptive

Social Web’, ACM Transactions on Intelligent Systems and Technology, 4(4), 1–8,

doi:10.1145/2501603

Crocker, D. (2009),’Internet mail architecture’, W3C Network Working Group

Cadima, R., Ferreira, C., Monguet, J., Ojeda, J. and Fernandez, J., (2010). ‘Promoting Social

Network Awareness: A Social Network Monitoring System’. Computers & Education, 54(4),

pp.1233-1240.

Chowdhury, S.R., Roy, A.R., Shaikh, M. and Daudjee, K., (2015), ‘A Taxonomy of

Decentralized Online Social Networks’, Peer-To-Peer Networking And Applications, 8(3),

pp.367-383.

Coulouris, G.F., Dollimore, J. and Kindberg, T., (2011), ‘Distributed systems: concepts and

design’. Pearson education.

Datta A, Buchegger S, Vu L-H, Rzadca K, Strufe T., (2010), ‘Handbook of Social Network

Technologies and Applications’. Decentralized Online Social Networks. Springer

Cadima, R., Ferreira, C., Monguet, J., Ojeda, J. and Fernandez, J., (2010). ‘Promoting social

network awareness: A social network monitoring system’. Computers & Education, 54(4),

pp.1233-1240.

A Decentralised Semantic Architecture for Social Networking Platforms

223

Cuppens, F., Cuppens-Boulahia, N. and Vina, E.P., (2012), ‘April. Adaptive Access Control

Enforcement In Social Network Using Aspect Weaving’, In International Conference on

Database Systems for Advanced Applications (pp. 154-167). Springer, Berlin, Heidelberg.

Cross, R., Parker, A., Prusak, L., & Borgatti, S. P. (2001). Knowing What We Know: Supporting

Knowledge Creation and Sharing In Social Networks. Organizational Dynamics, 30, 2, 100–

120.

Dooren, M.V., Lagaisse, B. and Joosen, W., (2013). ‘Modularity and Variability of Distributed

Software Architectures through Multi-view Refinement of AO-Connectors’. In Transactions on

Aspect-Oriented Software Development X (pp. 109-147). Springer Berlin Heidelberg.

Chicaiza, J., López, J., Piedra, N., Martínez, O., & Tovar, E. (2010), ‘Usage Of Social And

Semantic Web Technologies To Design A Searching Architecture For Software Requirement

Artefacts’, IET Software, pp.4(6), 407, doi:10.1049/iet-sen.2010.0046

Celino, I., Dell’Aglio, D., Valle, E.D., Balduini, M., Huang, Y., Lee, T., Kim, S.H. and Tresp, V.,

(2011). ‘Bottari: Location based social media analysis with semantic web’. ISWC.

García-Castro, R., Gómez-Pérez, A., Muñoz-García, Ó. and Nixon, L.J., (2008), ‘Towards A

Component-Based Framework For Developing Semantic Web Applications’. In the Semantic

Web (Pp. 197-211). Springer Berlin Heidelberg.

Cardoso, J. (2007). ‘The Semantic Web Vision’: Where Are We? IEEE Intelligent Systems,

22, 84{88.

Cunha, L. M. & de Lucena, C. J. P. (2006),’ Cluster The Semantic Web Challenges

Applications: Architecture and Metadata Overview’. Technical report, Ponti_cia Universidade

Catolica do Rio de Janeiro

Dijkstra, Edsger W., (1982). ‘On the role of scientific thought’. Selected writings on Computing:

A Personal Perspective. New York, NY, USA: Springer-Verlag. pp. 60–66. ISBN 0-387-90652-

5.

Duclos, F., Estublier, J. and Morat, P., (2002), ‘Describing and Using Non-Functional Aspects

In Component Based Applications’, In Proceedings Of The 1st International Conference On

Aspect-Oriented Software Development (Pp. 65-75). ACM.

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-387-90652-5
https://en.wikipedia.org/wiki/Special:BookSources/0-387-90652-5

A Decentralised Semantic Architecture for Social Networking Platforms

224

Datta, A., Buchegger, S., Vu, L.H., Strufe, T. and Rzadca, K., 2010. Decentralized online social

networks. In Handbook of Social Network Technologies and Applications (pp. 349-378).

Springer, Boston, MA.

Dadzie, A.-S. and Rowe, M. (2011), ‘Approaches to Visualising Linked Data’: A Survey.

Semantic Web, 2(2), 89{124.

Dasgupta, S. (2010), ’Social Computing: Concepts, Methodologies, Tools, and Applications’

IGI Global, USA.

Duong, T.H., Uddin, M.N. and Jo, G.S., (2009), ‘Collaborative Web For Personal Ontology

Generation And Visualization For A Social Network’, The 1st International Conference On

Knowledge And Systems Engineering, 237–242. doi:10.1109/KSE.2009.32

Decker, S., Bernardi, A., Van Elst, L., Grimnes, G., Groza, T., Handschuh, S., Jazayeri, M.,

Mesnage, C., Moeller, K., Reif, G. and Sintek, M (2010),‘The Social Semantic Desktop’ A

New Paradigm Towards Deploying The Semantic Web On The Desktop, IGI Global,

Doi:10.4018/978-1-60566-112-4.Ch012

Ellis, T. J., and Levy, Y. (2008), ‘Framework of problem-based research: A guide for novice

researchers on the development of a research-worthy problem’, Informing Science, The

International Journal of an Emerging Trans-discipline,

Ellis, T.J. and Levy, Y., (2010), A guide for novice researchers: Design and development

research methods. In Proceedings of Informing Science & IT Education Conference (InSITE)

(pp. 107-118). https://en.oxforddictionaries.com/definition/design

Fielding, R. T., & Taylor, R. N. (2002), Principled Design of the Modern Web Architecture

Ferreira, J. C., & Porflirio, F. P. (2009), Academic Ontology to Support the Bologna Mobility

Process, International Conference on Adaptive Science and Technology 2009

Ferrara, E. (2012), ‘Community structure discovery in Facebook’, International Journal of

Social Network Mining, 1(1), 67, doi:10.1504/IJSNM.2012.045106

Foaf-Project.org, (2013),’Friend of a Friend Project’ Available at:http://www.foaf-project.org/

(Accessed: 20-10-2013)

http://www.foaf-project.org/

A Decentralised Semantic Architecture for Social Networking Platforms

225

Fielding, R. T (2000), ‘Principled Design of the Modern Web Architecture’, ACM Transactions

on Internet Technology (TOIT), Volume 2 Issue 2, May 2002

Fazio, M., Celesti, A., Villari, M. and Puliafito, A., (2014), ‘August. Resource Management in

Cloud Federation Using XMPP’, In Network Computing and Applications (NCA), 2014 IEEE

13th International Symposium on (pp. 67-70). IEEE.

Famulari A, Hecker A., (2013), ‘Mantle: A Novel DOSN Leveraging Free Storage and Local

Software. In: Advanced Infocomm Technology, pp 213–224. Springer

Fuentes, L., Pinto, M. and Vallecillo, A., (2003). ‘How MDA Can Help Designing Component

and Aspect-Based Applications’. In Enterprise Distributed Object Computing Conference,

2003. Proceedings. Seventh IEEE International (pp. 124-135). IEEE.

Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003). ‘The many faces of

publish/subscribe’. ACM Computer Survey., 35, 114{131.

Gerber, A., Van der Merwe, A. and Barnard, A., (2008), ‘A Functional Semantic Web

Architecture’, European Semantic Web Conference 2008, LNCS, Springer 5021, pp. 273–28

Gruber, T. (2007), ‘Collective Knowledge Systems: Where the social Web meets the Semantic

Web’, Journal of Web Semantics, 2007

Goodhue, D., & Thompson, R. (1995). Task-Technology Fit and Individual Performance. MIS

Quarterly, 19(2), 213–236.

Griffin, K. & Flanagan, C. (2010). ‘Evaluation of asynchronous event mechanisms for browser-

based real-time communication integration’. In Technological Developments in Networking,

Education and Automation (pp. 461{466). Springer Netherlands.

Gregg, D.G., Kulkarni, U.R. and Vinzé, A.S., (2001). ‘Understanding The Philosophical

Underpinnings Of Software Engineering Research In Information Systems’, Information

Systems Frontiers, 3(2), pp.169-183.

A Decentralised Semantic Architecture for Social Networking Platforms

226

Gjoka et al., (2010), ‘Walking In Facebook: A Case Study Of Unbiased Sampling Of Osns’, In

Proceedings Of The 29th Conference On Information Communications, pages 2498{2506.

IEEE Press

Grarland, J., and Anthony, R. (2003), ‘Large Scale Software Architecture’, New York Wiley,

2003

Grace, P. (2009), ‘Dynamic Adaptation’. In Middleware for Network Eccentric and Mobile

Applications, B. Garbinato, H. Miranda and L. Rodrigues (Eds.), pp. 285-304, Springer.

Group Report, Available at: http://www.w3.org/2005/Incubator/socialweb/XGR-socialweb-

20101206/#ref-eduserv (Accessed: 6/8/2013)

Gacenga, F., Cater-Steel, A., Toleman, M. and Tan, W.G., (2012), ‘A Proposal And Evaluation

Of A Design Method In Design Science Research’, Electronic Journal of Business Research

Methods, 10(2), pp.89-100.

Gleasurea, R., (2015), ‘When Is A Problem A Design Science Problem? ’, Systems, Signs &

Actions, 9(1), pp.9-25.

Gleasurea, R., (2015), ‘When is a Problem a Design Science Problem?’, International Journal

on IT, Action, Communication and Work practices 9(1), pp.9-25.

Hanington, B. and Martin, B., (2012), ‘Universal methods of design: 100 Ways to Research

Complex Problems, Develop Innovative Ideas and Design Effective Solutions’, Rockport

Publishers.

Hill, D. (2009), ‘Microsoft Application Architecture Patterns and Practices’ (2nd Ed) Microsoft

Holm, M. (2011), Available at: http://timelessrepo.com/json-isnt-a-javascript-subset

(Accessed: 10-11-2013)

Hendler, J., & Berners-Lee, T. (2010), ‘From the Semantic Web to social machines: A research

challenge for AI on the World Wide Web’, Journal of Artificial Intelligence, 174(2), pp 156–161.

doi:10.1016/j.artint.2009.11.010

Han, L., Nath, B., Iftode, L. and Muthukrishnan, S., (2011), ‘Social butterfly: Social Caches For

Distributed Social Networks’. In Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE

Third International Conference on Social Computing (SocialCom), 2011 IEEE Third

International Conference on (pp. 81-86). IEEE.

http://timelessrepo.com/json-isnt-a-javascript-subset

A Decentralised Semantic Architecture for Social Networking Platforms

227

Halpin, H. (2013), ‘Social Semantics: The Search for Meaning on the Web’, Semantic Web

and Beyond Vol. 13, DOI 10.1007/978-1-4614-1885-6 2

Hu, P., and Lau, W. C. (2013), ‘A Meta Social Networking Approach Towards

Decentralisation‘, W3C Workshop on Social Standards, 7-8 August 2013, San Francisco,

USA,

Halpin, H., and Tuffield, M., (2010), ‘A Standards-based, Open and Privacy-aware Social

Web’, W3C Social Web Incubator Group Report 6th December 2010 Report., W3C Incubator

Heitmann, B. (2010), ‘Architecture and Methodologies for Adaptive Personalisation on The

Web of Data’, DERI Technical Report 2010. DERI Galway

Heidemann, J., Klier, M., & Probst, F (2012), Online social networks, ‘A survey of a global

phenomenon’, Journal of Computer Networks, 56(18), 3866–3878, DOI:

10.1016/j.comnet.2012.08.009

Hirschheim R, and Klein HK (1989), ‘Four paradigms of information systems development’,

Communications of the ACM 1989; 32(10):pp 1199–1216.

Heitmann, B. (2014), ‘An Open Framework for Multi-source, Cross-domain Personalisation

with Semantic Interest Graphs’, DERI Technical Report 2014. DERI Galway

IETF.Org (2011), ‘The Web Socket Protocol’, Available at: http://tools.ietf.org/html/rfc6455

(Accessed 12-10.-2013)

IETF RFC6120, (2015). ‘XMPP Core’, Access on 02-06-2015, Available at:

https://tools.ietf.org/html/rfc6120

Ionita, M.T., Hammer, D.K. and Obbink, H., (2002),’Scenario-based Software Architecture

Evaluation Methods’: An overview. ICSE/SARA.

IEEE 1472, (2000), ‘IEEE Recommended Practice for Architectural Description of Software-

Intensive Systems’: IEEE Std 1472000. 2000.

IEEE P42010/D9, (2011), ‘Systems and Software Engineering- Architecture Description’,

ISO/IEC JTC 1/SC 7N

http://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6120

A Decentralised Semantic Architecture for Social Networking Platforms

228

ISO/IEC 24760-1, (2011), ‘A Framework for Identity Management - Part 1: Terminology and

Concepts’, ISO. 2011. Retrieved December 2015.

Irfan, R., Bickler, G., Khan, S.U., Kolodziej, J., Li, H., Chen, D., Wang, L., Hayat, K., Madani,

S.A., Nazir, B. and Khan, I.A., (2013), ‘Survey on Social Networking Services’, IET Networks,

2(4), 224–234. doi:10.1049/iet-net.2013.0009

Internet World Stat, (2012), Available at: http://www.internetworldstats.com/facebook.html

(Accessed: July 2013)

Jorge, A. L. & Porflirio, F. P. (2010), Building an Academic Social Network for Bologna

Mobility, 3rd International Conference on Social Network Systems, 2010, ACM

Jalali, S. and Wohlin, C., 2012. Global Software Engineering and Agile Practices: A Systematic

Review. Journal of Software: Evolution and Process, 24(6), pp.643-659.

Juste, P.S., Wolinsky, D., Boykin, P.O., Covington, M.J. and Figueiredo, R.J., (2010),

SocialVPN: Enabling Wide-Area Collaboration with Integrated Social and Overlay Networks’.

Computer Networks, 54(12), pp.1926-1938.

Jiang et al., (2013) ‘Understanding Latent Interactions in Online Social Networks’, ACM

Transaction on the web, Vol. 7(4), Article 18

Jones, W. (2007), ‘Personal Information Management’, Annual Review of Information Science

and Technology, 41(1), 453–504. doi:10.1002/aris.2007.1440410117

Natarajan, R. and Rosenblum, D.S., (1998), ‘Merging Component Models and Architectural

Styles’. In Proceedings of the Third International Workshop on Software Architecture (pp. 109-

111). ACM.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W. (2001). ‘Getting

started with AspectJ’, Communications of the ACM, Vol. 44, No. 10, pp.59–65.

Kiczales, G. and Mezini, M. (2005), ‘Aspect-oriented programming and modular reasoning’,

ICSE ‘05: Proceedings of the 27th International Conference on Software Engineering, ACM

Press, New York NY, USA, pp.49–58.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57914
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57914
http://www.internetworldstats.com/facebook.html

A Decentralised Semantic Architecture for Social Networking Platforms

229

Kazman, R., Bass, L., Klein, M., Lattanze, T., and Northrop, L., (2005). ‘A Basis for Analysing

Software Architecture Analysis Methods’, Software Quality Journal, 13(4):329-355

Khare, R. and Taylor, R.N., (2004). ‘Extending the Representational State Transfer (rest)

Architectural Style for Decentralized Systems’. In Proceedings of the 26th International

Conference on Software Engineering (pp. 428-437). IEEE Computer Society.

Kazman, R., Bass, L., Abowd, G., and Webb, M., (1994), ‘SAAM: A Method for Analysing the

Properties of Software Architectures,’ Proc. 16th International Conference of Software

Engineering, pp. 81-90, 1994.

Kosanke, K., (2006), ‘ISO Standards for Interoperability a comparison’, In Interoperability of

Enterprise Software and Applications (pp. 55-64). Springer London.

https://www.iso.org/obp/ui/#iso:std:24020:en

Kwong, C.K., Mu, L.F., Tang, J.F. and Luo, X.G., (2010). Optimization of software components

selection for component-based software system development. Computers & Industrial

Engineering, 58(4), pp.618-624.

Kiczales, G. and Mezini, M., (2005), ‘Aspect-Oriented Programming and Modular Reasoning’,

In Proceedings of the 27th international conference on Software engineering (pp. 49-58).

ACM.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W.G., (2001), An

overview of AspectJ. In European Conference on Object-Oriented Programming (pp. 327-

354). Springer Berlin Heidelberg.

Kolp, M., and Wautelet, Y. (2010), ‘A Social Framework for Software Architectural Design’,

490–511. doi:10.4018/978-1-60566-264-0.ch025

Kruchten, P. (1995), ‘Architectural Blueprints’, The “4 + 1 ” View Model of Software

Architecture, 12(November), pp 42–50

Kietzmann, J.H., Hermkens, K., McCarthy, I.P. and Silvestre, B.S., (2011), ‘Social media? Get

Serious! Understanding the Functional Building Blocks of Social Media’, Business Horizons,

54(3), 241–251. doi:10.1016/j.bushor.2011.01.005

Ko, M. N., Cheek, G. P., Shehab, M., and Sandhu, R. (2010), ‘Social Networks Connect

Services’, IEEE Computer Society, 10(August), pp 37–43.

A Decentralised Semantic Architecture for Social Networking Platforms

230

Kagal, L., Berners-lee, T., Connolly, D., and Weitzner, D. (2006),’Using Semantic Web

Technologies for Policy Management on the Web ‘, Journal of Artificial Intelligence

Kayes, I. and Iamnitchi, A (2017), ‘Privacy and Security in Online Social Networks’, A survey,

Online Social Networks and Media, 3, pp.1-21.

Lundar, J., Grønli, T.M., and Ghinea, G. (2013) ‘Performance Evaluation of a Modern Web

Architecture’, International Journal of Information Technology and Web Engineering, 8(1), 36–

50. doi:10.4018/jitwe.2013010103

Lin, J.W. and Lai, Y.C., (2013). ‘Online Formative Assessments with Social Network

Awareness’, Journal of Computers & Education, 66, pp.40-53.

Laplante, P., (2007).’ What Every Engineer Should Know About Software Engineering’, CRC

Press. ISBN 0849372283.

Larman, C., (2012), ‘Applying UML and Patterns: An Introduction to Object Oriented Analysis

and Design and Iterative Development’, Pearson Education India.

Lundar, J.A., Grønli, T.M. and Ghinea, G., (2013). ‘Performance evaluation of a modern web

architecture’. International Journal of Information Technology and Web Engineering (IJITWE),

8(1), pp.36-50.

Laine, M. and Säilä, K., (2012). ‘Performance Evaluation of XMPP on the Web’, Aalto

University Technical Report.

Langegger et al., (2005), ‘Simplifying a Web Application´s Architecture ‘ , The DaVinci

Framework in: The Seventh International Conference on Information Integration and Web-

based Applications and Services (IIWAS 2005), Vol. 2, G

Sommerville, I., (2007). ‘Introduction to software Engineering’, Addison-Wesley.

Morandi, B., West, S., Nanz, S. and Gomaa, H., (2013). ‘Concurrent Object-Oriented

Development with Behavioural Design Patterns’, In Software Architecture (pp. 25-32).

Springer Berlin Heidelberg.

http://books.google.com/books?id=pFHYk0KWAEgC&pg=PA85&dq=%22separation+of+concerns%22&hl=en&sa=X&ei=WQ_aUNn5DYjNiwLS54GADQ&ved=0CEwQ6AEwAw#v=onepage&q=%22separation%20of%20concerns%22&f=false
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0849372283

A Decentralised Semantic Architecture for Social Networking Platforms

231

Mattsson, M., Grahn, H. and Mårtensson, F., (2006), ‘Software Architecture Evaluation

Methods for Performance, Maintainability, Testability, And Portability’. In Second International

Conference on the Quality of Software Architectures.

Maier, M.W., Emery, D. and Hilliard, R., (2001), ‘Software architecture: introducing IEEE

Standard 1471’, Computer, 34(4), pp.107-109.

Masuhara, H. and Kiczales, G., (2003), Modelling Crosscutting in Aspect-Oriented

Mechanisms. In European Conference on Object-Oriented Programming (pp. 2-28). Springer

Berlin Heidelberg.

Martin, A., Mazalu, R. and Cechich, A., (2010), ‘Supporting an aspect-oriented approach to

web accessibility design’. In Software Engineering Advances (ICSEA), 2010 Fifth International

Conference on (pp. 20-25). IEEE.

Morrison, J. and George, J.F., (1995), ‘Exploring the Software Engineering Component in MIS

Research’, Communications of the ACM, 38(7), pp.80-91.

Mouheb, D., Debbabi, M., Pourzandi, M., Wang, L., Nouh, M., Ziarati, R., Alhadidi, D., Talhi,

C. and Lima, V., (2015), ‘Aspect-Oriented Security Hardening of UML Design Models’,

Springer.

Murugesan, S. (2007),’ Understanding Web 2.0’, IT Pro, IEEE, 1520-9202/07/2007 IEEE

Meier et al., (2008), ‘Microsoft Patterns and Practics’, Architecture Guide 2.0 Microsoft

Miller, J. & Smith, S. M. (2010), ‘The Locker Project’, Lockerproject.org, 2010

McLeod, D. and Heimbigner, D., (1980), ’ A Federated Architecture for Database Systems’. In

Proceedings of the May 19-22, 1980, national computer conference (pp. 283-289). ACM.

Maurer, F. and Labitzke, S., (2014). ‘FOSP: Towards A Federated Object Sharing Protocol

That Unifies Operations on Social Content’. In DFN-Forum Kommunikationstechnologien (pp.

57-66).

Narayanan, A., Toubiana, V., Barocas, S., Nissenbaum, H. and Boneh, D. (2012), ‘A Critical

Look at Decentralized Personal Data Architectures’, arXiv preprint arXiv:1202.4503.

A Decentralised Semantic Architecture for Social Networking Platforms

232

Oinas-Kukkonen, H., Lyytinen, K. and Yoo, Y., (2010).’ Social Networks and Information

Systems: Ongoing and Future Research Streams’. Journal of the Association for Information

Systems, 11(2), p.3.

Noran, O. (2003), ‘An Analysis of the Zachman Framework for Enterprise Architecture from

the GERAM Perspective’, Annual Review in Control, vol, 27(2003), pp 163- 183, Elsevier

Netter, M., Hassan, S. and Pernul, G., (2012),’ An Autonomous Social Web Privacy

Infrastructure with Context-Aware Access Control’, (pp. 65-78). Springer Berlin Heidelberg.

Ng, J. W., & Lau, D. H. (2013), Social Ontology and Semantic Actions, Enabling Social

Networking Services for Distributed Web Tasking, 2013 IEEE Ninth World Congress on

Services, (c), 131–135. doi:10.1109/SERVICES.2013.23

Nilizadeh, S., Jahid, S., & Borisov, N. (2012), ‘Cachet: A Decentralized Architecture for Privacy

Preserving Social Networking with Caching’, ACM CoNext 12, Nice France, 337–348.

Netter, M., Hassan, S., and Pernul, G. (2012), ‘An autonomous social web privacy

infrastructure with context-aware access control’ (pp. 65-78), Springer Berlin Heidelberg.

NEPOMUK, (2014), ‘The Social Semantic Desktop’, Available at:

http://nepomuk.semanticdesktop.org/ (Accessed: 06-05-2014)

Nathan, B. Graham,M. , Talapatra, S. Dale,S. (2015), ‘Social Network Application

Programming Interface’, U.S. Appl. No. 13/244,942, filed Sep. 26, 2011,

OpenID.net, (2013), Available at http://openid.net/developers/specs/

Oren, E., Heitmann, B., & Decker, S. (2008),’ ActiveRDF: embedding Semantic Web data into

object-oriented languages’. Journal of Web Semantics

Ozturk, O. (2010). ‘Introduction to XMPP protocol and developing online collaboration

applications using open source software and libraries’, In Collaborative Technologies and

Systems (CTS), 2010 International Symposium on (pp. 21-25). IEEE.

OpenSocial, (2013), Available at https://code.google.com/apis/opensocial/

http://nepomuk.semanticdesktop.org/
https://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22M.+Ian+Graham%22
https://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Shantanu+Talapatra%22
https://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Scott+Dale%22
http://scholar.google.com/scholar?q=%22Social+Network+Application+Programming+Interface%22
http://scholar.google.com/scholar?q=%22Social+Network+Application+Programming+Interface%22

A Decentralised Semantic Architecture for Social Networking Platforms

233

O’Reilly,T. (2005), ‘What is web 2.0’, Available at: http://oreilly.com/web2/archive/what-is-web-

20.html (Accessed 29/10/2013)

Otte, E. Rousseau, R. (2002),’ Social Network Analysis: A Powerful Strategy’, Also for The

Information Sciences’, Journal of Information Science 28: 441–453.

doi:10.1177/016555150202800601, Retrieved on 22-11-2015

Perry, D. E., & Wolf, A. L. (1992). Foundations for the Study of Software Architecture, ACM

SIGSOFT, 17(4)

Piirainen, K.A. and Gonzalez, R.A., (2014), ‘Constructive Synergy in Design Science

Research: A Comparative Analysis of Design Science Research and The Constructive

Research Approach’, Liiketaloudellinen Aikakauskirja, pp.3-4.

Paul, T., Famulari, A. and Strufe, T., (2014). ‘A Survey on Decentralised Online Social

Networks’, Journal of Computer Networks, 75, pp.437-452.

Davis, F. Perceived Usefulness, Perceived Ease of Use, And User Acceptance of Information

Technology. Mis Quarterly 13, 3 (1989), 319-340.

Pessemier, N., Seinturier, L., Duchien, L. and Coupaye, T., (2008). ‘A Component-Based and

Aspect-Oriented Model for Software Evolution’. International Journal of Computer Applications

in Technology, 31(1-2), pp.94-105.

Pettenati, M.C., Chini, D., Parlanti, D. and Pirri, F., (2007), ‘InterDataNet: A Web of Data

foundation for the Semantic Web vision’. extended version) IADIS Int. Journal on

WWW/Internet, 6(2), pp.16-30..

Peña, P., Del Hoyo, R., Vea-Murguía, J., González, C. and Mayo, S., (2013), ‘Automatic

Ontology User Profiling for Social Networks from URLs Shared’, LNCS, 'Conference of

Spanish Association for Artificial Intelligence, CAEPIA', Springer, pp. 168-177

Pettenati, M.C., Cio_, L., Parlanti, D., Pirri, F., Giuli, D (2011), ‘An Overlay Infrastructural

Approach for a Web-Wide Trustworthy Identity and Profile Management’, In: Salgarelli, L.,

Bianchi, G., Blefari-Melazzi, N. (eds.) Trustworthy Internet, pp. 43- 58. Springer (2011)

https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1177%2F016555150202800601

A Decentralised Semantic Architecture for Social Networking Platforms

234

Pinto, M., Fuentes, L. and Troya, J.M., (2003), ‘DAOP-ADL: An Architecture Description

Language for Dynamic Component and Aspect-Based Development’, In International

Conference on Generative Programming and Component Engineering (pp. 118-137).

Springer Berlin Heidelberg.

Pinto, M., Fuentes, L. and Troya, J.M., (2011), ‘Specifying Aspect-Oriented Architectures In

AO-ADL’. Information and Software Technology, 53(11), pp.1165-1182.

Peffers, K., Tuunanen, T., Rothenberger, M.A. and Chatterjee, S., (2007), ‘A design science

research methodology for information systems research’, Journal of management information

systems, 24(3), pp.45-77.

Pai, P. and Arnott, D.C., (2013), User adoption of social networking sites: Eliciting uses and

gratifications through a means–end approach. Computers in Human Behavior, 29(3),

pp.1039-1053.

Python-aspectlib, (2016), ‘AspectLib – 1.4’, Available at: http://python-

aspectlib.readthedocs.io/en/latest/index.html, Access date, 6/11/2016

Piessens, F. (2009). ‘A Comprehensive Integration of AOSD and CBSD concepts in

Middleware’, Ph.D. Thesis, Department of Computer Science, K.U.Leuven, Belgium, Dec

2009

Pinto, M., Fuentes, L. and Troya, J.M., (2001),’Towards an Aspect-Oriented Framework In

The Design Of Collaborative Virtual Environments’, In Distributed Computing Systems, 2001.

FTDCS 2001. Proceedings. The Eighth IEEE Workshop on Future Trends of (pp. 9-15). IEEE.

Pinto, L. Fuentes, J. M. Troya (2001), Specifying aspect-oriented architectures in AO-ADL,

Information and Software Technology, Volume 53, Issue 11, Pages 1165-1182 (2011)

Reenskaug,T. and Coplien,J. (2009), The DCI Architecture: A New Vision of Object-Oriented

Programming, http://www.artima.com/articles/dci_vision.html access date 24-11-2013

Richter, A. and Riemer, K., (2009), ‘December. Corporate Social Networking Sites–Modes of

Use And Appropriation Through Co-Evolution’. In 20th Australasian Conference on

Information Systems (pp. 2-4).

http://python-aspectlib.readthedocs.io/en/latest/index.html
http://python-aspectlib.readthedocs.io/en/latest/index.html

A Decentralised Semantic Architecture for Social Networking Platforms

235

Rathfelder, C., Klatt, B., Sachs, K. and Kounev, S., (2014). ‘Modeling Event-Based

Communication In Component-Based Software Architectures For Performance Predictions’.

Software & Systems Modeling, 13(4), pp.1291-1317.

Rad, M.S., Dahlan, H.M., Iahad, N.A., Nilashi, M. And Zakaria, R., (2014), Assessing The

Factors That Affect Adoption Of Social Research Network Site For Collaboration By

Researchers Using Multi-Criteria Approach. Journal of Theoretical & Applied Information

Technology, 65(1).

Rohani, V., and Hock, O. (2010), ’On Social Network Web Sites: Definition, Features,

Architectures and Analysis Tools, Journal of Advances in Computer Research, 1, 3–1

Sioc-project.org, (2013), ‘Semantically-Interlinked Online Communities’, Available at:

http://rdfs.org/sioc/spec/ (Accessed: 10/12/2013)

Sutcliffe et al., (2011),’ Social Mediating Technologies: Social Affordances and

Functionalities’, International Journal of Human Computer Interaction, 27(11), 1037–1065.

doi:10.1080/10447318.2011.555318

Shaw, M. (1990), ‘Toward higher-level abstractions for software systems’, Data & Knowledge

Engineering, 5, pp. 119–128

Sjoberg, D. I. K., Dyba, T., & Jorgensen, M. (2007), ‘The Future of Empirical Methods in

Software Engineering Research’, Future of Software Engineering, (pp. 358{378).

Sommerville, I. (2007), ‘Software Engineering’, 8th edn. International Computer Science

Series. Addison-Wesley, Reading (2007)

Suryanarayan, G., Erenkrantz, J.R. and Taylor, R.N., (2005). ‘An architectural approach for

decentralized trust management’. Internet Computing, IEEE, 9(6), pp.16-23.

Suryanarayana, G., Diallo, M.H., Erenkrantz, J.R. and Taylor, R.N., (2006), ‘Architectural

Support for Trust Models In Decentralized Applications’. In Proceedings of the 28th

international conference on Software engineering (pp. 52-61). ACM.

Suryanarayana, G., Diallo, M.H., Erenkrantz, J.R. and Taylor, R.N., (2006). ‘Architecting Trust-

Enabled Peer-To-Peer File-Sharing Applications’. Crossroads, 12(4), pp.5-5.

http://rdfs.org/sioc/spec/

A Decentralised Semantic Architecture for Social Networking Platforms

236

Szyperski, C. (2002). ‘Component Software. Beyond Object-Oriented Programming ‘(2nd

edn). Addison-Wesley

Skaf, H., Rahhal, C., & Molli, P. (2008). Peer-to-Peer Semantic wikis. Research Report RR-

6714, INRIA.

Suryanarayana, G., Erenkrantz, J.R., Hendrickson, S.A. and Taylor, R.N., (2004). ‘PACE: An

Architectural Style for Trust Management In Decentralized Applications’, In Software

Architecture, 2004. WICSA 2004. Proceedings. Fourth Working IEEE/IFIP Conference on (pp.

221-230). IEEE.

Schauerhuber, A., Schwinger, W., Kapsammer, E., Retschitzegger, W., Wimmer, M. And

Kappel, G., 2007. A Survey on Aspect-Oriented Modeling Approaches. Relatorio Tecnico,

Vienna University of Technology, 36, Pp.41-42.

Suryanarayana, G. and Taylor, R.N., (2004). ‘A Survey of Trust Management And Resource

Discovery Technologies In Peer-To-Peer Applications’.

Smith, D.A., Van Kleek, M., Seneviratne, O., Schraefel, M., Bertails, R., Berners-lee, T., Hall,

W. and Shadbolt, N.,(2012),’ WebBox: Supporting Decentralised and Privacy-respecting

Micro-sharing with Existing Web Standards’.

Shaw,M. and Garlan, D. (1996), ‘Software Architecture’, Perspectives on an Emerging

Discipline, Prentice Hall

Sauermann, L. (2006), ‘The Gnowsis Semantic Desktop for Information Integration’, German

Research Centre for Artificial Intelligence DFKI GmbH. Germany

Sfakianakis, S, (2010) ‘Social Semantic Web and Semantic Web Services’, ICS Fourth

Greece, pp.350-368. IGI Global, USA

Slater, J. A. Venkatraman, R. Topi, H. (2015), ‘Modern Database Management’, Prentice Hall

Sharman R., Kishore R., and Ramesh R. (2007), ‘Ontologies, A Handbook of principles,

concepts and applications in information systems’, Springer’s Integrated Series in IS,

Published by Springer 2007, NY, USA.

http://www.cs.cmu.edu/~able/publications/SoftArch
http://www.cs.cmu.edu/~able/publications/SoftArch

A Decentralised Semantic Architecture for Social Networking Platforms

237

Sun Systems, Logical Architectures http://docs.oracle.com/cd/E19263-01/817-

6096/architecture.html Access Date, 20-10-2013,

Seong, S., Jiwon, S., Matthew, N., Debangsu, N., Sengupta, D., Hangal, S., Teh, K.S., Chu,

R., Dodson, B., and Lam, M. S. (2010), ‘PrPl : A Decentralized Social Networking

Infrastructure’, ACM Workshop on Mobile Cloud Computing & Services: Social Networks and

Beyond (MCS).

Sintek, M., Handschuh, S., Scerri, S., & Elst, L. V. (2009), ‘Technologies for the Social

Semantic Desktop’, Springer LNCS 5689, pp. 222-254.

Sloni, D.K. and Sharma, V.K., (2011), ‘Safe Semantic Web and Security Aspect Implication

for Social Networking’, International Journal of Computer Applications in Engineering

Sciences, 1(2), pp.141-149

Surajbali, B., Grace, P. and Coulson, G., (2014), ‘An AO-Middleware Architecture Supporting

Flexible Dynamic Reconfiguration’, In Proceedings of the 17th international ACM Sigsoft

Symposium on Component-Based Software Engineering (pp. 75-84). ACM.

Turnquist, G.L., (2010), ‘Spring Python 1.1’, Packt Publishing Ltd.

Tandukar, U. and Vassileva, J. (2012), ‘Selective Propagation of Social Data in Decentralized

Online Social Network’ UMAP 2011 Workshops, LNCS 7138, pp. 213–224, Springer-Verlag

Berlin Heidelberg 2012

Traz, W (1994), ‘DSSA frequently asked questions’, ACM Software Engineering Notes 19, 52–

56 (1994)

Tiwana, A., & Bush, A. (2001), ‘A social exchange architecture for distributed Web

communities’, Journal of Knowledge Management, 5(3), 242–249.

doi:10.1108/13673270110401220

Taylor, R.N., Medvidovic, N., Anderson, K.M., Whitehead Jr, E.J., Robbins, J.E., Nies, K.A.,

Oreizy, P. and Dubrow, D.L., (1996). ‘A component-and message-based architectural style for

GUI software’. Software Engineering, IEEE Transactions on, 22(6), pp.390-406.

Trams, S., Frischmuth, P., Arndt, N., Ermilov, T., & Auer, S. (2011). Waeving a distributed,

semantic social network for mobile users. In Extended Semantic Web Conference.

http://docs.oracle.com/cd/E19263-01/817-6096/architecture.html
http://docs.oracle.com/cd/E19263-01/817-6096/architecture.html

A Decentralised Semantic Architecture for Social Networking Platforms

238

Valencia-Garcı́a, R., Garcı́a-Sánchez, F., Castellanos-Nieves, D., Fernández-Breis, J. T., and

Toval, A. (2010),’Exploitation of social semantic technology for software development team

configuration’. IET Software, 4(6), 373. doi:10.1049/iet-sen.2010.0043

Van Landuyt, D., Truyen, E. and Verbaeten, P., (2010), ‘Building a digital publishing platform

using aosd’, LNCS Transactions on Aspect-Oriented Software Development, 9, pp.1-34.

Vannoy, S.A. and Palvia, P., (2010), ‘The social influence model of technology adoption’,

Communications of the ACM, 53(6), pp.149-153.

Venkatesh, V, Morris, M., Davis, G., & Davis, F. (2003). User Acceptance Of Information

Technology: Toward A Unified View. Mis Quarterly, 27(3), 425–478.

Van Landuyt, D., Truyen, E. And Verbaeten, P., 2011. Building A Digital Publishing Platform

Using Aosd. In Transactions on Aspect-Oriented Software Development Viii (Pp. 163-195).

Springer, Berlin, Heidelberg.

Van Landuyt, D., Truyen, E. and Verbaeten, P., (2011). ‘Building a digital publishing platform

using AOSD’. In Transactions on Aspect-Oriented Software Development VIII (pp. 163-195).

Springer Berlin Heidelberg.

Venable, J., Pries-Heje, J. and Baskerville, R., (2012). ‘A comprehensive framework for

evaluation in design science research’, In Design Science Research in Information Systems,

Advances in Theory and Practice (pp. 423-438). Springer Berlin Heidelberg.

Vidgen, R., Donnellan, B., Matook, S. and Conboy, K., (2011), ‘Design Science Approach to

Measure Productivity in Agile Software Development’, In European Design Science

Symposium (pp. 171-177). Springer Berlin Heidelberg.

Fowler, M. and Highsmith, J., (2001), ‘The agile manifesto’. Software Development, 9(8),

pp.28-35.

W3. Org, (2013), ‘DOM document object model’, http://www.w3.org/DOM/ Access date 20-10-

2013

http://www.w3.org/DOM/

A Decentralised Semantic Architecture for Social Networking Platforms

239

W3.org, (2015), ‘Social Web Acid Test’, Available at:

https://www.w3.org/2005/Incubator/federatedsocialweb/wiki/SWAT1_use_cases, Access

date, 5/11/2015

Webber, J., Parastatidis, S. and Robinson, I., (2010), ‘REST in Practice’, Hypermedia and

System Architectures, O`Reilly Media Inc. 2010

Wasserman, S., and Faust, K. (1994), ‘Social Network Analysis in the Social and Behavioral

Sciences’, Social Network Analysis: Methods and Applications, Cambridge University Press.

pp. 1–27. ISBN 9780521387071.

Wilson, C., Sala, A., Puttaswamy, K.P. and Zhao, B.Y., (2012), ‘Beyond Social Graphs User

interactions in Online Social Networks and their Implications’, ACM Transactions on the Web,

6(4), 1–31, doi:10.1145/2382616.2382620

Wu, P., & Li, S. (2009), ‘Social Network Visualization via Domain Ontology’, International

Conference on Information Engineering and Computer Science, 1–4.

doi:10.1109/ICIECS.2009.5362898

Wieringa, R., (2009),’ Design science as nested problem solving’, In Proceedings of the 4th

international conference on design science research in information systems and technology

(p. 8). ACM.

Yeung, C., M., A., Liccardi, I., Lu, K., Seneviratne, O., and Berners-Lee, T. (2008),

‘Decentralization: The Future of Online Social Networking’, In W3C Workshop on the Future

of Social Networking

Zhong, C. and Sastry, N., (2017), Systems applications of social networks. ACM Computing

Surveys (CSUR), 50(5), p.63.

Zhang, C., Cheng, C., & Ji, Y. (2012), ‘Architecture design for social web of things’,

Proceedings of the 1st International Workshop on Context Discovery and Data Mining -

ContextDD ’12, 1. doi:10.1145/2346604.2346608

A Decentralised Semantic Architecture for Social Networking Platforms

240

Appendix 1. Iteration 1

Aspect.py, is a CAM based version of Aspect, which is adapted from aspectlib module of

python. This library is modified based on the need of the DSNA.

n

Import re

Class Aspecter (type):

 "" "

 Meta class used by classes that will have methods oriented

 The aspect (with join-points and cross-cut points and etc.

 The aspect_roles object contains all the aspect roles

 "" "

 Aspect_roles = []

 Wrapped_methods = []

 Def __new__ (cls , name , bases , dict):

 "" " Class initialization that contains aspect-oriented methods.

 It basically annotates all methods of the class so that every

 Call can be checked if there is a corresponding role

 To them:

 "" "

 For key , value in dict . Items ():

 If hasattr (value , "__call__") and key ! = "__metaclass__" :

 Dict [key] = Aspecter . Wrap_method (value)

 Return type . __new__ (cls , name , bases , dict)

 @classmethod

A Decentralised Semantic Architecture for Social Networking Platforms

241

 Def register (cls , name_pattern = "" , in_objects = (), out_objects = (),

 Pre_function = None ,

 Post_function = None):

 "" "Method used to register a new aspect role.

 Logging can be done dynamically at run time

 Name_pattern: is a regular expression that matches the names of the

 Methods. Blank, home with all methods.

 In particular, note that this simplified scheme does not account for

 To call a pre_function based on out_objects

 "" "

 # So simple method that could be used a direct append in

 # "Aspect roles"

 role = { "name_pattern" : name_pattern , "in_objects" : in_objects ,

 "Out_objects" : out_objects ,

 "Pre" : pre_function , "post" : post_function }

 Cls . Aspect_roles . Append (role)

 @classmethod

 Def wrap_method (cls , method):

 Def call (* args , ** kw):

 Pre_functions = cls . Matching_pre_functions (method , args , kw)

 For function in pre_functions :

 Function (* args , ** kw)

 Results = method (* args , ** kw)

 Post_functions = cls . Matching_post_functions (method , results)

 For function in post_functions :

 Function (results , * args , ** kw)

 Return results

 Return call

 @classmethod

 Def matching_names (cls , method):

A Decentralised Semantic Architecture for Social Networking Platforms

242

 Return results

 Return call

 @classmethod

 Def matching_names (cls , method):

 Return [role for role in cls . Aspect_roles

 if re . Match (role ["name_pattern"], method . Func_name)

 Or role ["name_pattern"] == ""

]

 @classmethod

 Def matching_pre_functions (cls , method , args , kw):

 All_args = args + tuple (kw . Values ())

 Return [role ["pre"] for role in cls . Matching_names (method)

 If role ["pre"] and

 (Role ["in_objects"] == () or

 Any ((type (arg) in role ["in_objects"] for arg in all_args)))

]

 @classmethod

 Def matching_post_functions (cls , method , results):

 If type (results) ! = Tuple :

 Results = (results ,)

 Return [role ["post"] for role in cls . Matching_names (method)

 If role ["post"] and

 (Role ["out_objects"] == () or

 Any ((type (result) in role ["out_objects"] for result in results)))

]

A Decentralised Semantic Architecture for Social Networking Platforms

243

Appendix 2. Iteration 2

Design and Deployment of the DSNA prototype, based on AOADL tools. Section 5.2 and 5.3

A Decentralised Semantic Architecture for Social Networking Platforms

244

A Decentralised Semantic Architecture for Social Networking Platforms

245

Deployment of Messaging App

Message Sharing Interface

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<interface xmlns="http://caosd.lcc.uma.es/AO-ADL/AO-ADLSchema"

name="SharingComponent">

 <operation name="Initiate">

 <parameter name="UserID" type="String" direction="IN"/>

 <parameter name="ContentType" type="Array" direction="IN"/>

 <parameter name="DestinationID" type="String"

direction="IN"/>

 <parameter name="Token" type="String" direction="IN"/>

 <returnType>String</returnType>

 </operation>

 <operation name="Exit">

 <parameter name="UserID" type="String" direction="OUT"/>

 <parameter name="DestinicationID" type="String"

direction="OUT"/>

 <parameter name="ContentType" type="Array" direction="OUT"/>

 <parameter name="Token" type="String" direction="OUT"/>

 <returnType>String</returnType>

 </operation>

 <description>Description of sharing component</description>

</interface>

A Decentralised Semantic Architecture for Social Networking Platforms

246

Messaging Connector

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<connector xmlns="http://caosd.lcc.uma.es/AO-ADL/AO-ADLSchema"

name="MessagingConnector" type="Connector">

 <provided_role roleName="MessagingSharing"

role_specification="//interface[@name='SharingComponent']" type="MSG"

minOccurs="1" maxOccurs="1"/>

 <required_role roleName="ChatRole"

role_specification="//interface[@name='SharingComponent']" type="MSG"

minOccurs="1" maxOccurs="1"/>

 <componentBindings>

 <binding name="MessageBinding">

 <source>//provided_role[@name='MessagingSharing']</source>

 <target>//required_role[@name='ChatRole']</target>

 </binding>

 </componentBindings>

 <description>Triggers messaging functionality</description>

 <aspectual_role roleName="Authenticate"

role_specification="//interface[@name='SharingComponent']" type="MSG"

minOccurs="1" maxOccurs="1"/>

 <aspectualBindings>

 <aspectual_binding name="StartMessageSharing">

 <pointcut_specification>

 <pointcut>(//provided_role[@name='MessagingSharing']) and

(//operation[@name='Initiate'])</pointcut>

 </pointcut_specification>

 <binding operator="after" order="first">

 <aspectual_component

aspectual_role_name="Authenticate">

 <advice label="Initiate">

 <attachment>

 <argument_binding

target="UserID [String]"/>

 <argument_binding

target="ContentType [Array]"/>

 <argument_binding

target="DestinationID [String]"/>

 <argument_binding

target="Token [String]"/>

 <argument_binding

target="String [returnType]"/>

 </attachment>

 </advice>

 </aspectual_component>

 </binding>

 </aspectual_binding>

 <aspectual_binding name="EndMessageSharing">

 <pointcut_specification>

 <pointcut>(//provided_role[@name='MessagingSharing']) and

(//operation[@name='Exit'])</pointcut>

 </pointcut_specification>

 <binding operator="after" order="last">

 <aspectual_component

aspectual_role_name="Authenticate">

 <advice label="Exit">

 <attachment>

 <argument_binding

target="UserID [String]"/>

 <argument_binding

target="DestinicationID [String]"/>

 <argument_binding

target="ContentType [Array]"/>

 <argument_binding

target="Token [String]"/>

 <argument_binding

A Decentralised Semantic Architecture for Social Networking Platforms

247

Messaging Component

Messaging Prototype Component

 <argument_binding

target="UserID [String]"/>

 <argument_binding

target="DestinicationID [String]"/>

 <argument_binding

target="ContentType [Array]"/>

 <argument_binding

target="Token [String]"/>

 <argument_binding

target="String [returnType]"/>

 </attachment>

 </advice>

 </aspectual_component>

 </binding>

 </aspectual_binding>

 </aspectualBindings>

</connector>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<component xmlns="http://caosd.lcc.uma.es/AO-ADL/AO-ADLSchema"

name="Message" type="String">

 <provided_interface portName="SharingService" type="MSG"

uri="//interface[@name='SharingComponent']"/>

 <required_interface portName="MesaagePosting" type="MSG"

uri="//interface[@name='SharingComponent']"/>

 <description>description about the message, displayed and

stored</description>

</component>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<configuration xmlns="http://caosd.lcc.uma.es/AO-ADL/AO-ADLSchema"

name="MessagingPrototype" uri="" description="Archtiecture of the

message sharing">

 <component instance_name="Message" multiplicity="1"

uri="//component[@name='Message']"/>

 <connector instance_name="MessageSharing" multiplicity="1"

uri="//connector[@name='MessagingConnector']"/>

 <attachments>

 <attachment component="Message" component_number="1"

connector="MessageSharing" connector_number="1">

 <provided_interface>SharingService</provided_interface>

 <required_role>ChatRole</required_role>

 </attachment>

 </attachments>

</configuration>

A Decentralised Semantic Architecture for Social Networking Platforms

248

Component Composition

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<compositeComponent xmlns="http://caosd.lcc.uma.es/AO-ADL/AO-ADLSchema"

name="Composite_Component_MessageSharing">

 <provided_interface portName="SharingService" type="MSG"

uri="//interface[@name='SharingComponent']">

 <attachment component="CompCompositionRule"

role="SharingService"/>

 </provided_interface>

 <required_interface portName="CompAspectRole" type="MSG"

uri="//interface[@name='SharingComponent']">

 <attachment component="CompCompositionRule"

role="MesaagePosting"/>

 </required_interface>

 <configuration>

 <component instance_name="CompCompositionRule"

multiplicity="1" uri="//component[@name='Message']"/>

 <connector instance_name="CompositionRule" multiplicity="1"

uri="//connector[@name='MessagingConnector']"/>

 <attachments>

 <attachment component="CompCompositionRule"

component_number="1" connector="CompositionRule" connector_number="1">

 <provided_interface>SharingService</provided_interface>

 <aspectual_role>Authenticate</aspectual_role>

 </attachment>

 </attachments>

 </configuration>

</compositeComponent>

A Decentralised Semantic Architecture for Social Networking Platforms

249

Appendix 3. Iteration 3

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Adapter" type="Adapter"/>
 <xs:complexType name="Adapter">
 <xs:sequence>
 <xs:element name="RoleInstance" type="xs:int" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="Role" type="Role" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="SNSL as MIddlewarre" type="SNSL as
MIddlewarre" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Role" type="Role"/>
 <xs:complexType name="Role">
 <xs:sequence>
 <xs:element name="Co" type="xs:int" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="Ds" type="xs:int" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="Fn" type="xs:int" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="RoleInstance" type="xs:int" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="RoleName" type="xs:int" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="SNSL as MIddlewarre" type="SNSL as
MIddlewarre" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ConfigurationService" type="ConfigurationService"/>
 <xs:complexType name="ConfigurationService">
 <xs:sequence>
 <xs:element name="SNSL as MIddlewarre" type="SNSL as
MIddlewarre" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="SNSL as MIddlewarre" type="SNSL as MIddlewarre"/>
 <xs:complexType name="SNSL as MIddlewarre">
 <xs:sequence>
 <xs:element name="PersistanceService" type="PersistanceService"
minOccurs="1" maxOccurs="1"/>
 <xs:element name="Aspect" type="Aspect" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="DSNAFactory" type="DSNAFactory"
minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="PersistanceService" type="PersistanceService"/>
 <xs:complexType name="PersistanceService">
 <xs:sequence/>
 </xs:complexType>
 <xs:element name="Aspect" type="Aspect"/>
 <xs:complexType name="Aspect">
 <xs:sequence/>
 </xs:complexType>
 <xs:element name="DSNAFactory" type="DSNAFactory"/>
 <xs:complexType name="DSNAFactory">
 <xs:sequence>
 <xs:element name="RoleInstance" type="xs:int" minOccurs="1"
maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>

