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Abstract  
 

Legionella pneumophila, the causative agent of Legionnaires’ disease, is a water born 

pathogenic bacteria commonly found in natural and manmade water systems   such as 

rivers, lakes, wet soil, hot and cold water storage systems (being able to survive at 

temperatures between 6-63 Cͦ, and proliferating between 20-45 ͦC), showerheads, 

cooling towers and spa pools.  The main pathway of exposure to Legionella is by 

inhaling the aerosols containing the microorganism. Legionnaires’ disease can be fatal 

if not diagnosed and treated at the right time. Practical Legionella control starts with a 

risk assessment of the water system and followed by the regular monitoring and water 

sampling. UK Health and Safety Executive (HSE) have implemented strict legislations to 

protect the public from Legionnaires’ disease. This research highlights and addresses 

three major data gaps identified in Legionella control and management strategy 

employed in the UK and worldwide; namely, (i) the underestimation of microbiological 

threat in current cold water storage sampling strategy, (ii) the inability of current qPCR 

diagnostic methods to detect live Legionella in water samples, and (iii) the lack of 

predictive ‘risk management system’ for Legionella control in domestic water systems.  

 

During my PhD, 15 relevant cold water storage tanks (selected from more than 6000 

tanks surveyed at different sites located in different London Boroughs) were used to 

investigate the risk factors that contribute towards Legionella proliferation, and 

revealed serious shortcomings in the appropriateness of the water sample taken for 

regulatory testing. Secondly, molecular biology research was carried out to develop an 

accurate, reliable and rapid testing method for the detection and quantification of live 

Legionella using qPCR techniques. This was successfully achieved by extracting RNA 

from a Legionella lenticule, converting the RNA into cDNA and amplifying the cDNA 

using qPCR techniques.  Finally, regular monitoring data from 120 London buildings 

(60 known to be Legionella positive and 60 known to be Legionella negative) was used 

to identify the possible risk factors contributing towards Legionella outbreaks. Data for 

these factors was then used to develop a predictive risk model for Legionella 

contamination using Principal Component Analysis (PCA). The model was validated 

with 66 new London buildings and 9 out of London buildings. The model showed 100% 

accuracy in predicting the risk of Legionella by distinguishing infected and non-infected 

sites in London as well as for the sites in out of London. 
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Figure 1.25 Reservoir type water heaters: A – internal structure and B – external view 

Figure 1.26 A-Local water heater, B. Instantaneous water heater, C. Point of use 
water heater.  

Figure 1.27 Scaled showerhead  

Figure 1.28 TMV  

Figure 1.29 HSE’s ACOP L8 legislation (latest) to protect the public from Legionnaires’ 
disease.  

Figure 1.30a, Water sample collection for Legionella analysis in sterile bottles 
(supplied by UKAS accredited laboratory) in accordance with BS 7592:2008.    

Figure 1.30b, BCYE culture of Legionella bacteria from environmental water samples 
in UKAS accredited laboratory.   

Figure 1.30c, a sectional GRP tank after the cleaning and disinfection.  

Figure 3.1 Schematic of a typical water system  

Figure 3.2 Sample temperature comparison.   

Figure 3.3 TVC analysis result comparison.   

Figure 3.4 shows the results of analysis of the water samples for both Pseudomonas 
and Legionella species.   

Figure 3.4 Comparison of Legionella and Pseudomonas analysis results.   
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Figure 3.5 shows a comparison of TVC and Pseudomonas species quantified in samples 
collected from both UBV and FE locations in potable water tanks at different times of 
the year.   

Figure 3.5 Comparison of TVC and Pseudomonas analysis results.   

Figure 3.6 Long cold water storage tank.   

Figure 3.7 Comparison of long metal tank and small plastic tank.  

Figure 3.8 Position of inspection hatch and inlet on cold water storage tank.   

Figure 3.9  Comparison of LD cases in the USA and UK.  

Figure. 4.1 In a typical PCR reaction, number of copies of DNA obtained after each 
cycle.  

Figure 4.2 Typical qPCR amplification plot showing number of cycles, exponential 
phase and non-exponential phase.  

Figure. 4.3 1. An oligonucleotide probe is constructed containing a fluorescent 
reporter dye on the 5' end and a quencher dye on the 3' end.   

Figure. 4.4 Representation of the overall amplification reaction employed in this assay.  

Figure. 4.5 Amplification of 23S rRNA gene from five samples of standard 10 fold 
dilutions of Legionella pneumophila DNA   

Figure 4.6 Amplification curves from 4 samples of 10 fold dilutions of cDNA from one 
Legionella lenticule.  

Figure 4.7 Inhibition plot generated from cDNA dilution series  

Figure 4.8 Amplification curves of 4 x 10-fold dilutions of cDNA   

Figure 4.9 Scatter plot showing efficient amplification of cDNA and the DNA positive 
control diluted in 10-fold steps.   



 

24 
 

Figure  4.10  qPCR standard curve plot of CT values of 10 fold dilution series of five 
standard Legionella pneumophila DNA samples against log of input nucleic acid.  

Figure 4.11a qPCR amplification plots for 23S rRNA gene from RNA extracted from a 
full Legionella lenticule.  

Figure 4.11b CT values of triplicate qPCR samples used for 23S gene amplification from 
RNA extracted from live lenticule.  

Figure 4.12a Amplification of cDNA made from RNA extracted from full (live 
Legionella) and fully heat killed Legionella lenticules.  

Figure 4.12b Scatter plot representation of CT values corresponding to live sample and 
heat killed sample. 

Figure 4.13a Amplification plots showing successful extraction and amplification of 
genomic DNA from full live Legionella lenticule and completely heat killed Legionella 
lenticule along with amplification of cDNA synthesized from RNA extracted from 
completely heat killed Legionella lenticule.  

Figure 4.13b  Scatterplot representations of CT values obtained from the RT 
amplification of total genomic DNA from full Legionella lenticule (Live), completely heat 
killed Legionella lenticule and cDNA produced from completely heat killed Legionella 
lenticule.  

Figure 4.14 A Linear relationship between the number of Legionella analysed by  
standard culture analysis (cfu/L) in dilution series 100%, 50%, 25% and 12.5% and 
amplification of cDNA extracted from RNA of the similar dilution series.    

Figure 4.15 Amplification of cDNA synthesised from RNA extracted from dilution 
series 50%, 25%, 12.5%, 5% and 0.5% from full live Legionella lenticule showing the 
proportionate reduction in amplification.  

Figure 4.16 Scatter plot representation of amplification of cDNA (mean CT) 
synthesised from RNA extracted from full lenticule (Live Legionella (100%) and 
dilution series 50%, 25%, 12.5%, and 5% from full lenticule (live Legionella) showing 
the proportionate reduction in amplification.  

Figure 4.17    Comparison of culture analysis results with qPCR amplification plots            
from RNA extracted from full lenticule (100% live Legionella) ‘A’, and dilution series 
50%, 25%, 12.5% and 5% ‘B’.  



 

25 
 

Figure 4.18a  Amplification of cDNA from RNA extracted from a bacteria culture of 10 
fold dilution series 1, 0.1, 0.01 and 0.001 as 1,2,3 and 4 respectively in triplicate.   

Figure 4.18b Scatter plot generated from the cDNA dilution amplification data 
demonstrating a linear relationship with CT values and increase in dilution.  

Figure 4.19 Linear correlations between CT values and sample RNA concentration.   

Figure 5.0 Principal component analysis (PCA) plots derived from a study of urinary 
nuclear magnetic resonance (NMR) spectra of mice. 

Figure 5.1 Graph prepared from the table comparing the average building occupancy 
rate (%) >50 and <100 (blue bar) and the total number of Legionella positive detection 
per building (red bar) in the past six years.  

Figure 5.2  Comparison of the annual occupancy rate of Legionella detected (n=60) and 
non-detected (n=60) sites using categorical data (see Table 5.1a).  

Figure 5.3 Comparison of the age of the buildings from Legionella detected (n=60) and 
non-detected (n=60) sites using categorical data (see Table 1a).   

Figure 5.4a Shows the percentage of infected and non-infected sites where regular 
temperature monitoring was in place. 

Figure 5.4b Shows the percentage of infected and non-infected sites where regular 
temperature monitoring was not in place. 

Figure 5.5 PCA for 60 infected and 60 non-infected sites.  

Figure 5.6 PCA for 66 new client buildings.  

Figure 5.7 PCA for 9 new out of London buildings.  
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CHAPTER ONE 

GENERAL INTRODUCTION 
 

 

1.1 This research project  

 

This research project entitled ‘Novel Approaches for Risk Management of Legionella 

bacteria in Domestic Water Systems’ presents novel applied research taken from the 

perspective of a Legionella control practitioner. 

 

1.2 Discovery of Legionnaires’ disease (LD) 
 

On 21st July 1976, about four thousand World War II legionnaires with their families 

and friends gathered together in Philadelphia, United States of America (USA) to 

participate in the 58th American Legion’s Convention. About six hundred participants 

were staying in Bellevue Stratford Hotel, Philadelphia (Honigsbaum, 2016). The very 

next day of the opening day, some of the participants fell ill with flu like symptoms, 

fever, cough and breathing difficulties. On 27th July 1976, one of the participants had 

died with the above symptoms. Within a week, more than 234 participants were 

showed the same symptoms and 34 had died.  Five months later, in January 1977, Dr. 

Joseph McDade and his team succeeded to identify the causative agent of illness, which 

was isolated from the lung tissues of the infected participants. This, previously 

unrecognised bacterium named as ‘Legionella pneumophila’ and the illness named as 

Legionnaires’ disease (LD) a potentially fatal form of pneumonia (Oliva et al., 2018); 

Dingman, 2017; Ferguson, 2016).    

 

1.3 Legionella species 
 

The genus Legionella is comprised of different Legionella species, including Legionella 

pneumophila.  New species of Legionella, and serogroups, have been discovered since 

the original discovery in 1977. More than 60 Legionella species (Table 1.1) (ECDC, 

2017b; Cunha et al., 2016), encompassing at least 70 serogroups (approximately half of 
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which have been isolated from, or detected in, clinical specimens), have been identified 

so far; many of which are found to be pathogenic (Benitez and Winchell, 2016; Gomez-

Valero et al., 2014). The most commonly detected species in the United Kingdom (UK), 

European Union (EU) and United States of America (USA) associated with LD is L. 

pneumophila serogroup-1 (Eisenreich and Heuner, 2016; Essig et al., 2016; Gomez-

Valero et al., 2014, Mercante and Winchell, 2015).    

 

Table 1. 1 Currently known Legionella species 
1. L. anisa,  2. L. birminghamensis,  
3. L. bozemanii,  4. L. cardiaca,  
5. L. cincinnatiensis,  6. L. clemsonensis,  
7. L. dumoffii, 8. L. erythra,  
9. L. feeleii,  10. L. gormanii,  
11. L. hackeliae,  12. L. jamestowniensis,  
13. L. jordansis,  14. L. lansingensis,  
15. L. londiniensis,  16. L. longbeachae,  
17. L. lytica,  18. L. maceachernii,  
19. L. micdadei,  20. L. nagasakiensis,  
21. L. oakridgensis,  22. L. parisiensis,  
23. L. pneumophila,  24. L. sainthelensi,  
25. L. steelei,  26. L. tucsonensis,  
27. L. wadsworthii,  28. L. waltersii  
29. L. adelaidensis,  30. L. beliardensis,  
31. L. brunensis,  32. L. busanensis,  
33. L. cherrii,  34. L. drancourtii,  
35. L. dresdenensis,  36. L. drozanskii,  
37. L. fairfieldensis,  38. L. fallonii,  
39. L. geestiana,  40. L. gratiana,  
41. L. gresilensis,  42. L. impletisoli,  
43. L. israelensis,  44. L. massiliensis,  
45. L. moravica,  46. L. nautarum,  
47. L. norrlandica,  48. L. quateirensis,  
49. L. quinlivanii,  50. L. rowbothamii,  
51. L. rubrilucens,  52. L. santicrucis,  
53. L. saoudiensis,  54. L. shakespearei,  
55. L. spiritensis,  56. L. steigerwaltii,  
57. L. taurinensis,  58. L. thermalis,  
59. L. tunisiensis,  60. L. worsleiensis,  
61. L. yabuuchiae  

Source:https://ecdc.europa.eu/sites/portal/files/documents/ELDSNET_2017- 

revised_guidelines_2017-web.pdf. 

 

https://ecdc.europa.eu/sites/portal/files/documents/ELDSNET_2017-%20revised_guidelines_2017-web.pdf
https://ecdc.europa.eu/sites/portal/files/documents/ELDSNET_2017-%20revised_guidelines_2017-web.pdf


 

28 
 

1.4 Legionella ecology 

Legionella pneumophila (LP) are gram-negative, motile, rod-shaped bacteria 

(Figure. 1.1) found naturally in fresh water habitats (Hellinga et al., 2015; Dietrich et al., 

2001) and can occur in compost samples, natural soil and potting soil (van 

Heijnsbergen et al., 2016; Travis et al., 2012), and manmade water storage systems 

(Vaccaro et al., 2016; HSE, 2015).  The Legionella cell envelope is composed of 

branched-chain fatty acids and distinctive ubiquinone (protein electron carriers used in 

cellular respiration), whose structural differences are used to classify different 

Legionella species (Morens et al., 2004) –see Section 1.3 (Legionella species).  In 

nutrient rich environments Legionella pneumophila is approximately 2-20µm in length 

and 0.3-0.9µm in width.  In contrast, in nutrient-deficient environments, the bacteria 

become long and filamentous (Mekkour et al., 2013).  

Despite their association with water, Legionella are not considered to be a free-

living waterborne bacterium. Instead, they parasitize and reside within free-living 

protozoans (amoeba) found in freshwater and wet soil (Boamah et al., 2017). The fact 

that Legionella bacteria can multiply intracellularly in a number of different protozoan 

species is an integral aspect of their ecology. Amoebae also protect Legionella from 

adverse environmental conditions, resulting in increased resistance to acids, 

antibiotics, biocides and osmotic and thermal stresses (Berjeaud et al., 2016; Greub and 

Raoult, 2004). Some amoebae species expel biocide-resistant vesicles containing large 

numbers of Legionella bacteria, which subsequently act as airborne agents for the 

transmission of Legionella bacteria (Newton et al., 2010) – see Section 1.6. 

 

The specificity of conditions and nutrients needed for Legionella to proliferate and 

culture in the lab has resulted in them being described as ‘fastidious bacteria’. L-

cysteine is required as the primary growth factor and ferric iron (often associated with 

metal rust in domestic water systems) is also essential for optimal growth of this 

organism. Unlike other organisms, energy is derived from amino acids in Legionella 

species, rather than carbohydrates (Percival and Williams, 2014). Legionella can 

remain dormant in cool water, but will multiply when the water temperature rises to a 

suitable level (typically between 20 and 45°C). Unlike other bacteria, Legionella can 

survive and multiply in hot water (up to 50°C) (HSE, 2016; Temmerman et al., 2006). 

Like any other living organisms, Legionella also requires nutrients to multiply (Refer 

Chapter 3, 3.4.5 to 3.4.7). There are a number of nutrient sources including the 
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organisms which commonly encountered within the water systems itself, for example, 

amoebae, algae and other bacteria. Amoebae are one of the predominant members of 

protozoan family which is also found in many biofilm communities, play an important 

role in the lifecycle of Legionella pneumophila by providing habitat, protection and 

nutrients (Oliva and Buchrieser, 2018; Declerck, 2010). Some studies have reported 

that the presence and concentration of Legionella pneumophila in biofilms is directly 

proportional to the biomass of protozoa (Abu Khweek and Amer, 2018). Amoebae can 

provide not only habitat for Legionella pneumophila but also the debris from dead 

amoebae can act as nutrient to encourage the proliferation as well as replication 

(Temmerman et al., 2006).  

Importantly, Legionella is increasingly detected at high levels in the manmade 

environment, with contamination of domestic hot and cold water storage systems, 

showerheads, cooling towers, spa pools, humidifiers, water closet (WC) cisterns, water 

fountains, water features, air conditioning systems, spas  and irrigation systems being 

reported (Cunha et al., 2016; Garrison et al., 2016; Khodr et al., 2016). Within the built 

environment, Legionella proliferation is also encouraged by water stagnation, and the 

presence of sludge, slime, scale, corrosion products, biofilms and a pH range of 6-8 

(CDC, 2018a; Garrison et al., 2016; ECDC, 2011). Legionella is capable of surviving at 

temperatures ranging from <0 to 60°C (there is some evidence for survival at even 

higher temperatures – see Rhoads et al., 2016), and can reproduce at temperatures 

between 20-45°C, with maximum virulence at ~ 37°C (Sharaby et al., 2017). Factors 

positively associated with Legionella proliferation in manmade systems include water 

stagnation, water pH (between 6.0 to 8.0), the existence of sludge, scale and corrosion 

products (possibly acting as nutrients), and the presence of biofilms including protozoa 

(within which it can persist during extreme conditions) (Eisenreich and Heuner, 2016; 

Oliva et al., 2018). 

 

1.5 Pathogenicity of Legionella bacteria 
 

The ability of Legionella to replicate within environmental protozoa also provides it 

with the capability to replicate in alveolar macrophages in humans, resulting in a form 

of lobar pneumonia (Newton et al., 2010).  Indeed, the term ‘pneumophila’ means lung-

loving (Tsai et al., 1979), and due to the abundance of nutrients and favorable 
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temperatures, lungs are an ideal environment for Legionella to grow and breed. Once 

Legionella enters the lungs, it penetrates deeply into the gas exchange (alveolar) region 

(Tsai et al., 1979).  Within the human respiratory tract, airborne particles deposition is 

mainly governed by the size of the particles. Normally, the upper region of the 

respiratory tract expels most of the particles >2 microns in size; however, this 

expulsion is muted in smokers and alcoholics, and is the reason why smokers and 

alcoholics are more susceptible to Legionella infection (Sopena et al., 1998). 

  

Figure 1.1 Infection cycle of Legionella pneumophila within the alveolar 

macrophage: The Legionella Dot/Icm T4SS system produces multiple effector proteins 

(pink circles and triangles) that initially form a vacuole around the bacteria enabling it 

to hide from the macrophage lysosome fusion.  The vacuole interacts with membranes 

of the endoplasmic reticulum of the macrophage and becomes similar to the rough ER 

in appearance and studded with ribosomes.  Within the Legionella containing vesicle 

(LCV) the bacteria multiply, and eventually lyse the cell to release more bacteria into 

the lung.   

(Source: 

http://www.nature.com/nrmicro/journal/v7/n1/fig_tab/nrmicro1967_F1.html) 

 

Pathogenic bacteria have developed a number of strategies to infect host cells to 

cause various diseases.  Most of the gram negative bacteria make use of type IV 
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secretion system (T4SS) to distribute their toxins into human host cells where they 

create a favourable environment for their survival and replication.   The first cellular 

level of the human lungs defence system is the alveolar macrophages and phagocytes 

which try to ingest and destroy any invader.  In most cases, this attempt is successful, 

but macrophages (or phagocytes) fail to digest the Legionella bacteria.  Instead, 

Legionella consumes the phagocyte as a nutrient and begins to replicate within the host 

cell (Figure 1.1) (Bouyer et al., 2007). Intracellular replication of Legionella within 

macrophages requires a special type IV secretion system (T4SS), known as the ‘defect 

in organelle trafficking/intracellular multiplication (Dot/Icm)’ system. This Dot/Icm 

system acts as a carrier for multiple effector proteins, orchestrating a variety of 

protein-protein interactions within the host cell to form a unique vacuole that escapes 

lysosome fusion and interacts with membranes and vesicles of the secretory pathway. 

The formation of this special Legionella containing vacuole (LCV) is necessary for the 

replication of the pathogen and its spread to new cells (Shin and Roy, 2008).  

 

The pathogenicity of Legionella pneumophila is therefore a consequence of its ability 

to penetrate and grow within alveolar macrophages (Shin and Roy, 2008). In most 

cases Legionella bacteria resist the hosts’ immune system by cleavage of 

immunoglobulin and by using its polar flagellum to avoid ciliary clearance (Kabus, 

2017; Molofsky and Swanson, 2004). Legionella bacteria replication happens 

exponentially every two hours and the lungs become overloaded with Legionella in just 

a few days, making breathing difficult and leading to death in untreated.   

Human health hazards associated with exposure to Legionella pneumophila are 

severe, and appropriate precautions are necessary to minimise the risk of Legionella 

exposure within society. Despite these precautions, hundreds of cases of Legionella 

outbreaks occur every year in the UK (HSE, 2013), and thousands of cases occur 

worldwide (Borges et al., 2016; Chamberlain et al., 2017). Domestic hot and cold water 

systems are one of the main sources of Legionella pneumophila exposure in the built 

environment, and is responsible the majority of the reported cases of Community 

Acquired Pneumonia (CAP) in the UK and worldwide (Murdoch et al., 2018; Cunha et 

al., 2016). 
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1.6 Exposure to Legionella bacteria 
 

Primary mode of transmission of Legionella is by inhaling or aspirating aerosols or 

soil (Figure 1.2) containing the bacteria (Craun, 2018; Soda et al., 2017; Travis et al., 

2012). There are some instances where LD may have been contracted by inhaling 

bacteria during the ingestion of contaminated water (Tateda et al., 2003). Recent 

studies have also identified exposure to potting compost, soil, and gardening activities 

to be risk factors (Kenagy et al., 2017; Van Heijnsbergen et al., 2016), as 12% of garden 

soil samples and up to 69.3% of composts samples have been found to be contaminated 

with Legionella species including Legionella pneumophila and Legionella longbeachae 

(Van Heijnsbergen et al., 2016; Conza et al., 2013a). Once the bacteria enters the lungs, 

the normal incubation period is 2-16 days (occasionally this may take even longer) 

before the subject starts to show symptoms of the disease (CDC, 2018b; NHS, 2018).   

     

                         

Figure 1.2 Root of infection from water supply, water storage, aerosols generation and 

contraction with human host. (Source: 

http://blogs.bournemouth.ac.uk/research/2012/05/17/bu-student-identifies-

Legionella-pneumophila-in-windscreen-washer-fluid/). 

 

Until recently, it was also believed that LD could not be transmitted from one person 

to another (Correia et al., 2016). In this example, a forty eight year old cooling tower 

engineer in Portugal passed the disease on to his 74 year old healthy mother who was 

caring for him.  Both patients died within 1 week of each other.   Analysis of urine 

specimens from both patients were positive for Legionella antigens, and culture 
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analysis of respiratory secretions obtained from both the patients confirmed a severe 

infection with Legionella pneumophila serogroup 1.   Separate Legionella whole 

genome sequencing carried out using on isolates at the National Institute of Health in 

Lisbon revealed that both genomes matched one another. Further investigation 

revealed that the second patient was in close contact with the first patient during the 

time of taking care of the first patient in a poorly ventilated room and the timeline of 

second infection was highly coherent; 6-7 days for the typical incubation of Legionella 

pneumophila. This study concluded by reporting this to be an example of person to 

person transmission of LD (Correia et al., 2016; Borges et al., 2016).    

1.7 Seasonal patterns 
 

Generally, most of the cases of LD especially LD outbreaks are closely related to 

seasonal patterns, with the highest number of reported outbreaks occurring in the late 

summer to autumn (EPA, 2015a). Globally there is an increasing trend of Legionnaires 

disease in summer season (Simmering et al., 2017; Cunha et al., 2016) and latest 

studies have suggested that the recent increases in cases of CAP could be due to 

increases in precipitation, warm and humid weather associated with climate change 

(Raeven et al., 2016; Beauté et al., 2016; Sakamoto, 2015). Fisman and team have 

reported that wet humid weather often occurs six to 10 days prior to the occurrence of 

LD (Fisman et al., 2005).  In addition, a study by the US Nationwide Inpatient Sample 

and US weather data found that LD risk significantly increased when weather was 

warm and humid, with a dose-response relationship between relative humidity and the 

likelihood for Legionellosis. When the mean temperature was 15–26°C with humidity 

>80.0%, the diagnosed cases of LD among CAP were 3.1 times higher than that with 

humidity level of <50.0%. In other words, the likelihood of LD within CAP cases 

increases when weather is warm and humid (Simmering et al., 2017). Increased 

survival of Legionella pneumophila at high relative humidity is reported, although 

aerosol viability data from laboratory studies might not represent the true 

environmental situation (Phin et al., 2014) 

 

A study in the Netherlands to investigate the short-term effects of the weather on 

Legionellosis reported peak weekly incidences of LD to occur when mean weekly 

temperatures reached 17.5⁰C, with high relative humidity.  A slight increase in average 

weekly sunshine (1 hour) resulted in an additional increase of 1. 8% (95% CI 1. 2–2. 4). 

A mean weekly cloud cover of 7-8 oktas was found to cause the relative humidity to rise 
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to very high levels.  Indeed, a 1% increase in relative humidity was associated with a 4 - 

6% (95% CI 4. 7–8. 2) increase in the cases of LD. When the average weekly 

precipitation intensity was 3 mm/h (P=0. 004), the reported cases of LD was maximal, 

therefore, the report stated that the LD cases are highest when average weekly 

precipitation falls in the range of  40 - 60 mm in summer season.  Thus, this study also 

established a correlation between LD with humidity, temperature and precipitation as 

during humid and showery summer season, there was significant increase in the 

number of reported cases of LD. This investigative study concluded that the result 

obtained from this study can be used for the future prediction of LD cases in The 

Netherlands during showery summer season (Karagiannis et al., 2009).  

 

Another study conducted in Taiwan using long term daily data from 1995-2011 

reported changing weather to be a significant risk factor in LD cases. In this study, Chen 

and team investigated the impacts of temperature, precipitation and relative humidity 

on LD. Daily  precipitation levels of 61–80 mm (95% CIs 1.106–5.978)  in warm season 

significantly increased the number of cases of LD compared to 21–40 mm (95% 

CIs = 1.074–2.513) precipitation levels of the same season in previous years. In contrast, 

this study did not identify any linear correlation between relative humidity alone and 

increased number of cases of LD and concluded that the increased daily precipitation in 

humid warm region is a critical risk factor for maximising the occurrence of 

Legionnaires’ disease (Chen et al., 2014). 

 

Investigation reports from the UK also confirm that warm and wet weather 

conditions can significantly increase the number of cases of community acquired 

Legionnaires’ disease due to the increased rate of Legionella proliferation (Halsby et al., 

2014). Predicted global warming could become one of the most risky contributing 

factors of increased community acquired LD in EU and in the UK. Possible temperature 

increases within domestic cold water systems could encourage Legionella proliferation 

and replication.  Moreover, increased humidity may prolong Legionella pneumophila 

survival in aerosols thereby increasing the likelihood of exposure to Legionella via 

inhalation of contaminated aerosols (Simmering et al., 2017; Prussin II et al., 2017). 

 

 

Another source of evidence for extensive Legionella proliferation during wet warm 

weather conditions is the PHE data of reported cases of LD from 2007 to 2016. The 
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MET office reported August 2007to be the wettest summer month since records began 

in 1914 (MET, 2008; ncdc, 2008 ). Later the MET office reported 2007 to be the year of 

heaviest rainfall ever recorded (MET, 2008). In light of these weather reports, it is 

interesting to note that the maximum number of LD cases reported in the UK also 

occurred in 2007 since Legionella monitoring began in the UK in 1988 (Figure 1.3) 

(PHE, 2016a). 

 

 

Figure 1.3 Graphical representation of the number of reported cases of LD in England 

and Wales on annual basis from 2007 to 2016; maximum number of reported cases of 

LD was in 2007.  Source: (PHE, 2016a). 

1.7.1 Future perspectives - Climate change  

 

A study carried out by the European Legionnaires’ Disease Surveillance Network 

(ELDSNet) found that 10582 out of 11836 suspected cases of LD were confirmed 

between 2009 and 2010 in the European Union. Out of the 10582 confirmed cases, 71% 

(n=7397) were community acquired. Healthcare related cases were only 8% (n=893) 

and the remaining 20% (n=2187) were travel-related. The UK Health Technical 

Memorandum for Safe water in healthcare premises – Part B also confirms that “the 

incidence of healthcare associated waterborne illness, including Legionnaires’ disease, 

is relatively low” (HTM, 2016).  43% of total reported cases (n=5100) were found in 

individuals aged 65 and above (Beaute et al., 2013). This study also confirmed a 

significant increase of reported cases in 2010 (n=775) possibly as a result of the 

exceptionally warm summer that year (Barriopedro et al., 2011). Long-term climate 
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predictions indicate that EU and UK temperatures and precipitation are likely to 

increase in the near future as a part of global warming (Vautard et al., 2014; Hajat et al., 

2014; Chou et al., 2012) and environmental conditions are likely to become 

increasingly favourable to the proliferation of Legionella bacteria in water systems 

(Sakamoto, 2015; Hicks et al., 2007).   

 

1.8 Legionellosis 
 

Legionella bacteria are known to cause three types of clinical infections that differ in 

their severity, termed Legionnaires’ disease (LD) Pontiac fever and Lochgoilhead fever  

(CDC, 2018c; Goldberg et al., 1989). Legionellosis is the general term used to describe 

all the diseases caused by Legionella bacteria (HSE, 2013). Out of these three illnesses, 

Legionnaires’ disease is the most serious one (being a potentially fatal pneumonic form 

of the disease) and other two are considered as less serious and non-fatal. 

 In 2015, 96.1% of culture-confirmed cases of LD in Europe were attributed to 

Legionella pneumophila (HPS, 2017). However, recent reports from different parts of 

the world, including Australasia, indicate that LD can also be caused by another species, 

known as Legionella longbeachae (Isenman et al., 2016; Cameron et al., 2016), 

especially in the immunosuppressed population as well as people with underlying 

diseases (Kenagy et al., 2017; Edelstein and Christian, 2015).  Legionella pneumophila 

is responsible for up to 17.5% of cases of diagnosed community acquired pneumonia 

(CAP)(Para et al., 2018). In Europe itself, the reported cases of CAP ranged from 1.6 to 9 

cases per 1000 in adult population every year (Chen et al., 2018). A review of 41 

studies of community acquired pneumonia (CAP) in Europe estimated Legionella 

species to be responsible for 1.9% of outpatients, 4.9% of hospitalised patients and 

7.9% of ICU patients (Simmering et al., 2017). Legionella pneumophila is responsible 

for 80–85% of Legionella infections worldwide, and together serogroups 1 and 6 are 

responsible for two-thirds of all Legionnaires Disease cases (Victor et al., 2002). 

Although Legionella pneumophila serogroup 1 is the most frequently identified cause of 

LD, recent studies suggest that about 20% of LD cases are caused by Legionella 

pneumophila serogroup 3, Legionella pneumophila serogroup 9, Legionella 

pneumophila serogroup 6 and Legionella longbeachae with non-specific symptoms, 

such as cough and fever (Ito et al., 2017).   
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LD has no particular clinical features to distinguish this disease from other 

types of pneumonia. Majority of the cases start with a headache, dry cough, fever and 

sometimes diarrhoea, but laboratory investigation is necessary to confirm the 

diagnosis. The normal incubation period of Legionella species is thought to be 2–10 

days; however, recent studies have reported longer incubation periods up to 19 days.   

Males are more at risk than females in terms of Legionnaires disease and is estimated 

that of all the reported cases of LD, 60–70% are male (WHO, 2018; ECDC, 2017; Beauté, 

2017).  Generally, fatality rate of LD is 8–12%, but there are evidences that in the cases 

of elderly people, patients with pre-existing medical conditions, smokers, and the cases 

of delayed diagnosis and treatment  shows higher mortality rate up to 34% (Phin et al., 

2014).  

 Lochgoilhead fever is caused by a species called Legionella micdadei and its 

incubation period is up to nine days and this illness is named after an outbreak in 

Lochgoilhead, Scotland (Gobin et al., 2009). Lochgoilhead fever is associated with only 

milder flu-like symptoms (Benin et al., 2002) and there have been no recorded deaths 

associated with this form of Legionellosis (www.cdc.gov/ncidod). Pontiac fever is 

caused by another species of Legionella; the normal incubation period is 2-3 days and is 

an acute self-limiting flu-like illness with symptoms that mimic influenza such as 

nausea, malaise, sore throat, a non-productive cough vomiting, and abdominal pain, 

without pneumonia (Diederen, 2008).The diagnosis of Pontiac fever is made on the 

basis of clinical, epidemiological and environmental microbiology findings. It is 

reported that the infection rate is more than 90% among exposed population and 

approximate recovery rate is one week (Tossa et al., 2006). 

 

1.9 Factors affecting the virulence of Legionella 

 
Whatever their specific cause of LDS, approximately 10-15% of the reported 

cases are fatal.  Although most of the population is susceptible to these infections, 

susceptibility to disease can be higher in certain groups (Percival and Williams, 2014; 

EPA, 2016; Borges et al., 2016; Edelstein and Christian, 2015). Major contributing 

factors affecting susceptibility to Legionella bacteria are a weakened immune system, 

being over 50 years of age, and suffering from existing illness such as respiratory 

problems, kidney disease, diabetes and cancer (HSE, 2000; Qin, 2012).  Currently, one 

in six people (18%) living in the UK are reported to be aged 65 and above, and is 
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estimated that this figure will be one in four (25%) by 2050 (ONS, 2017).  Data from 

Eurostat on population structure and aging clearly shows an increasing trend for an 

aging population within European Union (EU) countries (Table 1.2). By 2080, the total 

proportion of people over 65 years of age residing in the EU is expected to reach 28.7% 

compared to 18.9% in 2015 (Marois et al., 2018; PSA, 2016; Eurostat, 2017).  

 
Table 1.2 Aging population trend in Europe during the period 2005 – 2015 taken from 
Eurostat 

 

In 2009, 23% of the total population of Japan was over 65 years of age, and this 

is expected to rise above 33% by 2030 (Muramatsu and Akiyama, 2011).  Also, in the 

United State of America (USA),  people aged 65 and above is expected to reach 24% of 

the total population by 2060 compared to 15% in 2016, with further increases by 2075 

(PRB, 2016). In a recent report by the WHO it states that “as people get older, they 

become less active and the overall evidence for adults aged 65 years and above showed 

that they become more susceptible to disease compared to active individuals” (WHO, 

2017). However, once men reach 45 years they are known to be at higher risk of 

contracting LD (Farnham et al., 2014), and this risk increases with age up to 65 years of 

age and above. All these projections indicate the necessity of precautionary measures 
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to be implemented to protect the health of this potential vulnerable population in terms 

of CAP.   

Among the over 65 year olds, diabetes and Chronic Kidney Diseases (CKD) are 

the most common risk factors for LD (Russo et al., 2018; Cai and Chen, 2016), and 

about 40% of individuals aged 65 and above living in the UK suffer from long standing 

illnesses (LLUK, 2015). Currently, 12 million people in the United Kingdom were 

reported to be over 65 years old, and forecasts suggest this figure will rise to 

approximately 19 million by 2050 (Parliament, 2015).    As revealed by the 2011 

Census Analysis, only 3% of over 65 year olds reside in care homes across England & 

Wales, and 2.5% in London (ONS 2014). A recent estimate suggests that there are 5,153 

nursing homes and 12,525 residential homes in the UK and approximately 405,000 

people aged 65 and above live in these homes (LLUK, 2015). By inference, 

approximately 10.7 million over 65s in the UK therefore reside within their own flats 

and apartments of residential estates sharing communal hot and cold water facilities 

and these elderly population also fall in the same risk category i.e. ‘potential high risk’ 

as the population in healthcare premises in terms of LD. 

 

1.10   Clinical diagnosis of LD  
 

Initial symptoms of Legionnaires’ disease (LD) are a high fever, headache, chills and 

muscular pain. Generally, LD patients become lethargic and develop a non-productive 

cough at the beginning, but eventually it becomes productive and some patients (about 

a third) may develop watery diarrhea and vomiting, and half the cases report 

symptoms of confusion, and being delirious (Cunha et al., 2016).  Not everyone who is 

exposed will develop the symptoms of LD and in some cases human hosts may only 

have flu-like symptoms (Kuroda and Takeuchi, 2011).  In contrast, some of the infected 

patients develop blood-streaked or pus-forming sputum with severe pneumonia 

symptoms, and this can be fatal if not diagnosed and treated at the right time (EWGLI, 

2011).  

 

The clinical diagnosis of Legionnaires’ disease was done by culture (isolation of 

any Legionella species from lung tissue, respiratory secretions, pleural fluid etc.) and 

serological investigation. But these methods are time consuming with low sensitivity 

(Phin et al., 2014). Since early-1990s, clinical diagnosis was done by analysing 
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Legionella pneumophila serogroup 1 antigen in the urine of infected patients (Garrison 

et al., 2016; Musher et al., 2014). However, Legionella urinary antigen test was not 

recognised as a diagnostic method until 1996; but, later this method was identified as 

reasonably reliable diagnostic procedure and it was commercialised as routine test kits 

(Garrison et al., 2016; Helbig et al., 2003). Currently, urinary antigen detection method 

is used for clinical diagnosis of in 70-80% of LD cases in Europe and USA. However, 

there are remarkable limitations in this method as it detects only Legionella 

pneumophila species but very poor sensitivity with non-Legionella 

pneumophila strains (Reller et al., 2003). Currently PCR diagnostic method is 

considered far more sensitive than rapid antigen tests (Musher et al., 

2014). Unfortunately, commonly prescribed antibiotics such as ‘Erythromycin’ or 

‘clarithromycin’ are ineffective against Legionella, but can slow or stop the intracellular 

multiplication of Legionella thereby giving the immune system a chance to regain 

control (Haranaga et al., 2007). Once the immune system gains the upper hand, 

recovery can start and may eventually clear the infection, although permanent lung 

damage can occur (Figure 1.4) (Tateda et al., 2003). Legionnaires’ disease can be fatal if 

not diagnosed on time and treated appropriately (Cunha et al., 2016; LDOIT 2014).   

LD is usually diagnosed by the culture of samples of sputum, lung tissues, blood, 

urine or by chest radiograph (Valster et al., 2011; McDade et al., 1977). One of the most 

complicated issues with LD is the difficulty in distinguishing clinically between patients 

with LD and other types of pneumonias caused by Chlamydophila, Streptococcus and 

Mycoplasma; all of which have identical radiological and clinical findings (Sharma et al., 

2017; Sopena et al., 1998). Legionnaires’ disease has a wide spectrum of severity and 

frequency of extra pulmonary manifestations; and there are many reported cases of 

continued progression of pneumonia despite of appropriate treatment, with the 

possibility of respiratory system failure and breathing arrest. In cases of severely LD 

infections, clinical improvement can be very slow, and there may be no signs of 

improvement for more than a week even after appropriate antibiotic therapy has been 

administered (Kao et al., 2017; Roig and Rello, 2003).  

 



 

41 
 

            

Figure 1.4a.         Figure.1.4b       Figure.1.4c 
 

Figure 1.4a represents a normal and healthy chest X-Ray with full lung capacity (dark 
shaded area). Figure 1.4b. Chest X-Ray after Legionella infection; dark shaded area has 
been diminished due to the lung damage and reduced lung capacity. Figure 1.4c. Chest 
X-Ray years later of infection, dark shaded area is still remaining almost same as that of 
after the infection indicates that the permanent lung damage can occur during 
Legionella infection.                                                                                                                  
 
(Source: http://www.mevis-research.de/~hhj/Lunge/xSammlungInf2Fr.html)   

 

1.11   The epidemiology of Legionnaires disease  
 

Epidemiology is the scientific study of diseases; in terms of incidence, distribution, 

and possible control of diseases and other factors relating to various health problems 

(WHO, 2018). An epidemiologic investigation determines the nature and source of 

Legionella infection; therefore, epidemiological investigation is extremely important in 

any outbreak of Legionnaires’ disease. 

Until recent years, epidemiology data of Legionnaires’ disease was limited to 

countries such as USA, Europe, Canada, Australia, New Zealand Japan and Singapore 

where LD is considered as a notifiable and fatal infectious disease. In Europe, LD 

surveillance schemes are in place since 1995 and many epidemiological studies and 

researches are in progress in terms of Legionnaires’ disease. However, LD is likely to be 

underestimated or unrecognised in many countries; thus the global quantification of LD 

is difficult (Phin et al., 2014). According to the available global data, the age and sex 

distribution of LD cases are almost similar between countries and most cases occur in 

older people, with very rare in children (Greenberg et al., 2006). In 2011, the average 

rate of infection in EU countries was 9.2 per one million people, but the range was 0-

21.4 per million among EU countries. In Europe, the highest number of cases was 

http://www.mevis-research.de/~hhj/Lunge/xSammlungInf2Fr.html
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reported from Spain, France and Italy; however, globally highest numbers were 

reported from USA with an increase of 11.5 per million in 2009 compared to 3.9 per 

million in 2000 (Beauté et al., 2013; Jacquinet et al., 2015). 

LD is broadly classified into three categories; community acquired, nosocomial and 

travel related.  Community acquired pneumonia (CAP) is defined as the LD cases 

without any history of overnight stays in hospital or healthcare facilities or holiday or 

travel abroad or hotel accommodation prior to showing symptoms of the disease.   

Nosocomial can be defined as the infection received from hospital or nursing home or 

any other healthcare facility for at least 10 days prior to showing symptoms of 

Legionnaires’ disease. This can be a hospitalised patient, an outpatient, a hospital staff 

or a healthcare worker.  Travel related cases are when an individual is clinically and 

microbiologically diagnosed with Legionnaires’ disease, and who has spent at least one 

night in a holiday place, business accommodation or in a hotel anywhere in the world 

prior to showing symptoms of the disease. This overnight stay can be in camp sites, 

rented holiday apartments, tourist facilities, ships and any other accommodation other 

than that mentioned in CAP and nosocomial related cases (LDCD, 2016).  Many studies 

and investigations have identified that the long-time un-occupancy of hotel rooms with 

large number of outlets cause water stagnation within the pipeworks and outlets 

encourage the proliferation of Legionella bacteria, unless proper control measures and 

monitoring systems are in place (Phin et al., 2014; Ricketts et al., 2010; WHO, 2018a). 

Recent studies have reported that the same scenario is applicable in the case of cruise 

ship in terms of Legionnaires’ disease (Guyard and Low, 2011; Garrison et al., 2016). 

Travel related cases of LD varies from countries to countries as 1.68 cases per one 

million nights were reported from Greece in 2009, but in the same year only 0.55 cases 

per one million nights were reported from the UK (ECDC, 2017).  

1.12  Epidemiological investigations 
 

Two common ‘terms’ widely used in terms of Legionnaires’ disease are ‘outbreaks’ 

and ‘cluster’.  An ‘outbreak’ can be defined as two or more cases of LD closely linked in 

time in terms of weeks (less than a month) and where there is epidemiological 

evidence that the source of infection is common but no microbiological evidence is 

collected (LDCD, 2016). In the UK, Europe and USA, an incident control team should be 

appointed to investigate any confirmed outbreaks. A cluster is defined as more than 

two cases that appear to be linked by work place, residence, community settings, 
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hospital or other healthcare premises and which have close proximity in dates of 

infection (LDCD, 2016).   Knowledge of the potential source of LD is an essential step in 

preventing further spread of the disease (Greig et al., 2004). 

Once a diagnosis is confirmed, all infected patients and their close contacts need to be 

interviewed by using a standardised questionnaire to collect information on current 

disease, place of residence, potential risk factors and movements two weeks prior the 

illness occurred. In most of the cases, these interviews were conducted in the hospital 

where the patient is admitted and further interviews with close contacts are conducted 

with the use of their personal diaries to clarify the details of their movements prior to 

the outbreak. This investigation can be extended to the routes taken to and between 

home, shops, workplaces, leisure centres and any other locations including any trips 

out of the local area (PHE, 2018). The travel details are extremely important in 

epidemiological investigation as this is the key factor to establish the outbreak as travel 

related or local. If there is no evidence of travel related outbreak, the detailed history of 

local movements down to road and postcode level is conducted wherever possible. Any 

identification of new confirmed cases, the case histories need to be compared to find 

out the possible association of infection. In some cases, new information can emerge 

from investigating the confirmed cases of new diagnosis, and in such cases repeated 

interviews with infected patients and their close contacts can help to accelerate the 

progress of epidemiological investigation by linking information from various sources 

to reach a potential common source (HPS, 2014; White et al., 2013; Kirrage et al., 2006). 

A Legionnaires ‘disease outbreak followed by an epidemiological investigation in 

Genesee County, Michigan during 2014-2015 is a typical example of this kind.  

Complete investigation report  was obtained during 2016-2017 which includes review 

of completed medical records of infected patients, death certificate information, 

environmental testing results, laboratory testing summaries, reports of interview with 

patients, water system details, residents details etc. (Michigan, 2018).   

 

1.13     LD in the UK 
 

According to the reports from PHE published in December 2017, the number of 

potential cases of Legionellosis reported during the year 2016 was 510. Out of these, 

357 cases were confirmed of Legionellosis. The total number of cases of legionellosis in 

2016 was lower than in 2015 (389 confirmed cases). In contrast, the total number of 
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cases in 2016 remain higher than the annual confirmed case numbers between 2011 

and 2014 and is above the 349 mean annual number of cases observed since 2006 

(PHE, 2016).  In England and Wales, average fatality rate for confirmed cases of 

Legionnaires' disease  during  2014 – 2016 was 7.2% with community acquired 9.8%, 

nosocomial 22.2% and  travel related (abroad and UK) 3% (PHE,2016). Another report 

from NHS indicated that during the period of 2011 to 2013, there were 84 deaths 

confirmed from LD in England and Wales (NHS, 2015).  In addition, there are other 

reports indicating that the actual number of deaths and infected cases are much more 

than officially estimated. These findings are supported by another report from the 

British Lung Foundation, which showed that 0.5-1.1% of adults in the UK get 

pneumonia each year (BLF, 2018); however, in most of these cases are treated only on 

the basis on their primary symptoms without diagnosing the actual cause of infection. 

Therefore, it is likely that the number of infected cases of LD and the number of deaths 

caused by LD reported by NHS are not a reflection of the true extent of Legionnaires 

Disease in the UK.  

Many studies have reported that Legionella species are the predominant causative 

agent for community-acquired pneumonia (CAP) (Hashmi et al., 2017; Viasus et al., 

2013). WHO reported that Legionella species are responsible for 2–15% of hospital 

admissions for community-acquired pneumonia (Sakamoto, 2015). However, some of 

the studies have reported that Legionella is not the main causative agent for CAP (Ryu 

et al., 2017; Dissanayake et al., 2016). This contradictory report indicates the fact that   

analysing for Legionella species is not recommended for all patients contracted with 

pneumonia, but is recommended only for particular patient subgroups. This can result 

in the overall underestimation of the role of Legionella species in CAP (Decker et al., 

2016).  

  Another study conducted in 1992-1993 estimated the annual cost of managing 

261,000 reported cases of community-acquired pneumonia in the UK to be in the order 

of £440.7 million at 1993 prices,  and the 83,153 cases of CAP that were treated in 

hospital accounted for 96% of the annual cost (Guest and Morris, 1997). This study 

concluded with a warning that new strategies should be developed and implemented to 

prevent the rising number of CAP and related hospitalisation; otherwise, this cost could 

be significantly high in the future (Guest and Morris, 1997). 

An investigation in 2003 related to a community acquired Legionnaires’ disease 

outbreak in the UK, reported 28 cases of LD with a fatality rate of 7% (2 deaths), and all 

http://www.blf.org.uk/Page/Pneumonia%205-11
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infected cases were epidemiologically linked to one location (Kirrage et al., 2006). 

Another investigation on Nosocomial outbreaks of Legionnaires’ disease in England 

and Wales during the period of 1980 to 1992 reported that 62% of the total outbreaks 

of LD were associated with hospitals or other healthcare premises, with the remaining 

being individual or single isolated cases (Joseph et al., 1994). Recent evidence suggests 

that LD cases in the UK are steadily rising every year; a recent report from the 

Chartered Institute of Plumbing & Heating Engineering (CIPHE) also supporting this 

concern of increasing number of LD (CIPHE, 2017). However, the actual number of 

outbreaks and infected cases is likely to be much higher than reported figures as 

majority of the cases with pneumonia symptoms are treated without a clinical 

diagnosis of the actual cause of the infection (Decker et al., 2016).  

 According to the PHE (PHE, 2016), the majority of LD cases in the UK are related to 

travel abroad. However, the use of domestic water facilities, especially showers, upon 

return from holiday may pose a very high risk in terms of LD exposure and infection. 

Legionella bacteria may proliferate in domestic water systems due to the water 

stagnation that is typical of periods of non-usage, for example in the holiday period. In 

addition, the cold water storage tank located in the loft space or roof may warm to a 

favourable temperature for Legionella bacteria proliferation in the summer if not 

replenished often with fresh water.    Another report of PHE states that the maximum 

fatality rate is reported from nosocomial LD cases (Table 1.3), and the second largest 

death rate is from community acquired LD cases (PHE, 2016). 

 
  
 
Table 1.3  Case fatality rates for confirmed cases of Legionnaires' disease between 
2014 – 2016 in England and Wales.  

 Cases Deaths Case Fatality Rate (%) (95% 
CI) 

Community 580 57 9.8 (7.5 - 12.5) 
Nosocomial 27 6 22.2 (8.6 - 42.3) 
Travel  
Abroad 

463 14 3.0 (1.7 - 5.0) 

Total 1070 
 

77 7.2 (5.7 - 8.9) 

Source:https://www.gov.uk/government/statistics/legionnaires-disease-in-england-

and-wales-2016 

https://www.gov.uk/government/statistics/legionnaires-disease-in-england-and-
https://www.gov.uk/government/statistics/legionnaires-disease-in-england-and-
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1.14    LD in the EU 
 

Legionella species (especially Legionella pneumophila), is a leading cause of 

community-acquired pneumonia in many European countries. Many studies have 

reported that in recent years the number of cases of Legionnaires' disease detected in 

Europe has increased significantly and is mainly community acquired (Beauté, 2017).   

A report from Germany showed that the number of undiagnosed cases of LD is 

increasing in recent years because the urine antigen test does not recognise species of 

Legionella other than Legionella pneumophila following clinical presentation.  

Furthermore, the clinical presentation and outcome of community acquired Legionella 

pneumophila infection differs significantly from hospitalised patients and outpatients 

of nosocomial Legionella infections (Murdoch et al., 2018; von Baum et al., 2008).  

European Surveillance Scheme for Travel Associated Legionnaires' Disease 

(EWGLINET) have a formal reporting procedure to monitor and provide 

epidemiological and microbiological information on the total number of reported cases 

of LD, travel-related and non-travel related detected in each EU countries. Since April 

2010, EWGLINET is coordinated by ECDC and the name of the scheme changed to 

European Legionnaires’ Disease Surveillance Network (ELDSNet). According to the 

reports from 30 EU countries in 2015, total reported cases of LD was 7034; 6573 

(93.4%) of which were classified as confirmed and the remaining 461 (6.6%) cases 

were probable (ECDC, 2017). There are serious concerns about the current lack of 

coordinated testing procedures for LD which severely hampers outbreak investigations 

because fewer clinical isolates are available to match against environmental isolates 

(ECDC, 2015; Hartemann and Hautemaniere, 2011).  For example, a travel related 

outbreak of LD occurred in Spain during the summer of 1993; five cases of LD were 

reported with one death related to a tour group from the UK. This tour group stayed at 

four different hotels in Spain with other French tourists. Genotypic and phenotypic 

comparison of Legionella pneumophila isolates obtained from one of the UK cases and 

the French case showed that they were indistinguishable from each other, and from 

environmental isolates obtained from the water facility of the hotel at which all five 

cases had stayed. A cohort study of the UK tour group was carried out to determine the 

extent of this outbreak and the international participation in this investigation has 

proved the importance of a European surveillance scheme for Legionnaires’ disease 
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and the benefit of microbiological collaboration between Legionella testing laboratories 

in Europe (Joseph et al., 1996). 

The world’s largest outbreak of Legionnaires’ disease reported to date occurred in 

July 2001 in Murcia (Spain). 449 cases of LD were confirmed among more than 800 

suspected cases reported, although the mortality rate was only 1%. During 

epidemiological investigation, 600 completed questionnaires indicated that the point of 

exposure was an outdoor point in the Northern region of the city. An environmental 

isolate from the point of exposure and clinical isolates from the infected patients were 

identical and subsequently identified and supported the epidemiologic investigation 

and conclusion (García-Fulgueiras et al., 2003).  These examples illustrate the 

importance of collaborative efforts to link disease outbreaks to sources of exposure on 

an international scale, given increasing mobility within society.  

 In general, LD raises serious concern in all 30 European Union and European 

Economic Area (EU/EEA) countries as recent data showed the number of reported 

cases of LD is rising every year (Table 1.4).  Between 2005 and 2010, 5,500-6500 LD 

cases were reported in Europe annually making one case per 100,000 people (Beauté 

et al., 2013). But in 2015 alone, the reported cases of LD in EU were 7034 of which 

6573 were confirmed cases (ECDC, 2017). 

 

Between 2011–15, 29 countries had reported 30,532 LD cases to ECDC; 92.3% 

(28,188) were confirmed cases and 7.7% (2,344) were probable cases. There was a 

significant increase in confirmed cases of LD from 2011(90.6%) to 2015(93.3%). For 

example: Lativia, Poland and Romania had only a few confirmed cases in 2011(38%, 

44%, and 0%, respectively) compared to 2015 when more than 70% of cases were 

confirmed in each country. In 2011, the total number of reported cases in these 

countries was 4,915, but in 2015, this figure has gone up to 6,986 due to better 

monitoring. Furthermore, the age-standardised rate ASR) also increased (Figure 1.5 A) 

from 0.97 LD cases per 100,000 population in 2011 to 1.30 LD cases per 100,000 

population in 2015 which is equal to an annual average increase of 0.09 LD cases per 

100,000 population (95% CI, 0.02–0.14; p = 0.02)(Beauté, 2017). 

Table 1.4 Number of reported cases of LD and age-standardised rates (ASR) per 

100,000 populations, by reporting country and year, European Union/European 

Economic Area, 2011–2015. 

http://www.eurosurveillance.org/search?value1=Julien+Beaut%C3%A9&option1=author&noRedirect=true
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Country 
2011 2012 2013 2014 2015 

Number ASR Number ASR Number ASR Number ASR Number ASR 

Austria 96 1.12 104 1.22 100 1.13 133 1.48 160 1.79 

Belgium 79 0.71 84 0.45 155 1.37 200 1.72 196 1.44 

Bulgaria 0 0.00 0 0.00 1 0.01 1 0.01 1 0.01 

Cyprus 1 0.13 7 1.01 6 0.76 6 0.80 2 0.25 

Czech Republic 57 0.52 56 0.53 67 0.63 110 1.03 120 1.10 

Denmark 123 2.20 127 2.29 113 2.02 158 2.76 185 3.24 

Estonia 7 0.51 3 0.24 10 0.76 8 0.59 6 0.43 

Finland 9 0.16 10 0.18 15 0.24 10 0.17 17 0.27 

France 1,170 1.84 1,298 2.01 1,262 1.92 1,348 2.04 1,389 2.07 

Germany 635 0.73 628 0.72 810 0.90 832 0.92 865 0.95 

Greece 18 0.16 29 0.25 38 0.33 27 0.24 29 0.25 

Hungary 37 0.36 33 0.32 29 0.29 32 0.32 58 0.56 

Iceland 3 1.35 2 0.71 0 0.00 4 1.30 1 0.36 

Ireland 6 0.18 15 0.44 14 0.39 8 0.20 11 0.30 

Italy 1,021 1.56 1,346 2.04 1,363 2.04 1,510 2.21 1,556 2.23 

Latvia 49 2.32 48 2.33 34 1.63 38 1.86 22 1.09 

Lithuania 2 0.07 9 0.31 1 0.04 8 0.28 7 0.25 

Luxembourg 6 1.20 5 1.04 7 1.27 5 0.91 5 0.91 

Malta 9 2.07 4 1.04 2 0.35 9 1.79 6 1.38 

The Netherlands 311 1.88 304 1.83 308 1.83 348 2.04 419 2.39 

Norway 33 0.72 25 0.52 40 0.83 51 1.06 60 1.22 

Poland 18 0.05 8 0.02 11 0.03 12 0.03 23 0.06 

Portugal 89 0.82 140 1.28 94 0.85 588 5.33 145 1.30 

Romania 1 0.00 3 0.02 1 0.00 1 0.00 5 0.03 

Slovakia 7 0.13 4 0.08 6 0.12 14 0.26 14 0.27 

Slovenia 44 2.14 81 3.84 77 3.62 59 2.76 106 4.98 

Spain 706 1.52 972 2.07 815 1.72 925 1.78 1,024 2.12 

Sweden 127 1.32 102 1.04 122 1.25 136 1.38 142 1.42 

United Kingdom 251 0.41 401 0.66 331 0.54 370 0.59 412 0.65 

EU/EEA 4,915 0.97 5,848 1.13 5,832 1.12 6,951 1.31 6,986 1.30 

Source: Beauté J(2017). On behalf of the European Legionnaires’ Disease Surveillance 

Network. Legionnaires’ disease in Europe, 2011 to 2015.  Euro 

Surveill. 2017;22:pii=30566. 

http://www.eurosurveillance.org/search?value1=Julien+Beaut%C3%A9&option1=author&noRedirect=true
http://www.eurosurveillance.org/search?value1=on+behalf+of+the+European+Legionnaires%E2%80%99+Disease+Surveillance+Network&option1=author&noRedirect=true
http://www.eurosurveillance.org/search?value1=on+behalf+of+the+European+Legionnaires%E2%80%99+Disease+Surveillance+Network&option1=author&noRedirect=true
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Figure 1.5 A - Age-standardised rate of Legionnaires’ disease per 100,000 populations, 
European Union/European Economic Area, 2011–2015; B-Notification rates of 
Legionnaires’ disease per 100,000 populations by sex and age group and male-to-
female rate ratio by age group, European Union/European Economic Area, 2011–2015 
Source:http://www.eurosurveillance.org/content/10.2807/1560-

7917.ES.2017.22.27.30566 

Like the global ratio, LD across the EU is more common in males with an overall 

male-to-female rate ratio of 2.6:1. This ratio was almost unchanged during the period of 

2011–15, but was 1.5:1 in people below 20 years, and 3.3:1 in the age group 40-49 

(Figure 1.5B). In older age group (such as people over 65), this ratio varied significantly 

in each country (i.e. 1.1:1 in Slovakia cf.  5:1in Cyprus). During this study period, 

sources of infection were identified for  26,900 cases, of which 70.7% (19,019)  were 

community acquired, 19.9% (5,357)were travel related, 7.3% (1,973)  were nosocomial 

and 2.0% (551)  were associated with other settings (Table 1.5)(ECDC, 2017).   

Table 1.5 Main characteristics of reported Legionnaires’ disease cases, European 

Union/European Economic Area, 2011−2015 

http://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2017.22.27.30566#t2
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Characteristics Cases Notification rate/100,000 population 

   Number    Percentage  
 

(%) 

All cases 30,532 100 1.21 

Age group (years) 

          < 20 159 0.5 0.03 

          20–29 473 1.6 0.15 

          30–39 1,440 4.7 0.41 

          40–49 4,037 13.3 1.08 

          50–59 6,917 22.7 2.00 

          60–69 7,120 23.4 2.52 

          70–79 5,882 19.3 2.88 

          ≥ 80 4,434 14.6 3.47 

          Unknown 70 NA NA 

Sex 

          Male 21,618 71.1 1.75 

          Female 8,789 28.9 0.68 

          Unknown 125 NA NA 

Probable setting of infection 

          Community 19,019 70.7 0.75 

          Travel abroad 3,098 11.5 NA 

          Domestic travel 2,259 8.4 NA 

          Nosocomial 1,322 4.9 NA 

          Other healthcare 651 2.4 NA 

          Other 551 2.0 NA 

          Unknown 3,632 NA NA 

Cluster status 

          Sporadic cases 19,559 90.1 NA 

          Clustered cases 2,158 9.9 NA 

          Unknown 8,815 NA NA 

Outcome 

          Alive 21,003 90.7 NA 

          Dead 2,161 9.3 0.09 

          Unknown 7,368 NA NA 

This study excluded Croatia from the analysis, because it only started reporting LD 

cases in 2013. Source: https://ecdc.europa.eu/en/publications-data/legionnaires-

disease-europe-2015 

https://ecdc.europa.eu/en/publications-data/legionnaires-disease-europe-2015
https://ecdc.europa.eu/en/publications-data/legionnaires-disease-europe-2015
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Of all EU countries, 16 countries had identified the source of infections for more 

than 80% of their reported cases of LD.  The proportion of sources varied from country 

to country.  For example, Norway reported only 38.8% of LD cases to be community 

acquired whereas Slovenia had 96.1%. In contrast, Norway had 61.2% travel associated 

cases but in Spain, Latvia, Bulgaria and Italy had only less than 2% (Beauté, 2017).  

 

1.15   LD worldwide 
 

Legionnaires' disease is a global issue as it can affect anybody who inhales an 

infectious dose of Legionella bacteria (Skerrett, 2018). The number of cases of LD that 

occur globally is unknown as most of the countries (with the exceptions of the USA, 

EU/EEA and UK) do not have accurate data and reporting systems for LD. However, on 

the basis of individual studies and available limited data, it is estimated that two to nine 

percent of CAP globally is actually LD (Cunha et al., 2016). Recent reports from USA 

showed that the numbers of LD outbreaks have increased 450% over the past fifteen 

years; more than 6100 cases of LD were reported in the United States during 2016, and 

this number is likely to be underestimated as most cases of CAP are treated without 

proper diagnosis (CDC, 2018d; Granseth et al., 2017). The number of cases of LD has 

increased significantly since 2000 (Figure 1.6) possibly due to the increased testing for 

Legionnaires’ disease, an ageing U.S. population, ageing plumbing systems and older 

infrastructure and predicted climate change (Reynolds, 2016).  Most reported cases of 

LD have occurred in the summer but, LD outbreaks can happen at any time of the 

year. In USA, Legionnaires disease is considered as a nationally notifiable disease and is 

monitored by two national level surveillance systems: (i). Nationally Notifiable 

Diseases Surveillance System (NNDSS), (ii) Supplemental Legionnaires’ Disease 

Surveillance System (SLDSS). All LD outbreaks are reported through the Waterborne 

Disease Outbreak Surveillance System (WBDOSS) and all the cases of LD should be 

reported to a local or state health department (McClung et al., 2018). 

 

http://www.eurosurveillance.org/search?value1=Julien+Beaut%C3%A9&option1=author&noRedirect=true
https://wwwn.cdc.gov/nndss/conditions/legionellosis/
https://wwwn.cdc.gov/nndss/conditions/legionellosis/
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Figure 1.6 Report of National Notifiable Disease Surveillance System shows that the LD 

cases are on the rise since 2000. Source: (CDC, 2018d) 

In Singapore, there are some reporting systems in place and during 2000-2009 

period, 238 cases of LD were reported. These cases were reported sporadically and 

individually during each year. According to these limited data, annual incidence of 

community acquired LD cases have decreased to 0.16 cases per 100,000 in 2009 from 

0.46 cases per 100,000 population in 2003 and travel related LD cases have increased 

to 27.3% during 2005–2009 from 6.2% during 2000–2004 (p<0.0005)(Lam et al., 

2011). 

There are some individual case studies also from Japan, where an outbreak of LD in 

2002 infected 272 people of which 6 died. Further investigation identified the source of 

outbreak to a traditional bath house in southern Japan (BBC, 2002). An outbreak of LD 

was also reported in 2015 from Hong Kong's brand-new government headquarters. 

The water system was contaminated with Legionella bacteria at levels that were 

fourteen times higher than the acceptable level. Hong Kong’s education secretary was 

diagnosed with Legionnaires’ disease in 2015, and another report from Hong Kong’s 

health officials report a 65 year male admitted in hospital with the symptoms of fever, 

cough with sputum and shortness of breath who was diagnosed with Legionnaires’ 
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disease and died a few days after hospitalisation. Total 66 cases of LD were reported in 

2015; however, the total number of Legionnaires’ disease cases reported in 2016 was 

51 (BBC, 2016; BBC, 2015; BBC, 2012). 

In Asia, it is estimated that almost one million adult deaths occur every year due to 

CAP. Many of these deaths occur among the elderly, although an estimate reported 

160,000 deaths occurred in the age group of 15–59.  In Asia, there was no proper data 

or study on CAP until recently, and there is still no systematic review or study on CAP 

similar to the US and Europe (Peto et al., 2014).  A number of observational studies of 

patients hospitalised with CAP have confirmed that 2 to 9% of CAP is contributed by 

Legionnaires’ disease (Phin et al., 2014).  Many studies have confirmed that the 

organism causing community acquired Legionnaires’ disease in USA and Europe is the 

same in Southeast Asia. Therefore, the guidelines for controlling the disease and 

treatment of patients infected with Legionella bacteria in Asia should be the same as 

those used in Europe and the USA (Wattanathum, et al., 2003).     

According to a study by Song and team, CAP caused by Legionella pneumophila in 

Asia appears to be relatively low and this study suggests that this could be due to 

difficulties in diagnosis of the causative pathogen. In contrast, Wattanathum and team 

identified that Legionnaires’ disease was associated with CAP in a minimum of 8.2% of 

outpatients and 5.4% in hospitalised patients in Thailand (Wattanathum, et al., 2003; 

(Song et al., 2016). Inter-country variations are expected in Asia due to its large size, 

difference in climate diversity in geography and life style. In a study on CAP across Asia, 

25% of CAP was attributed to LD in Manila, but in other Asian countries it was in the 

range of 0-5.3%. In addition, 32.4% of LD in Manila occurred in the month of January.  

Furthermore, an Asian surveillance study reported that Legionnaires’ disease is more 

frequently associated with CAP among the urban population living in the east and 

south-east region of Asia (Peto et al., 2014; Ngeow et al., 2005).  

Some studies on CAP from China reported that CAP remaining as a major public 

health issue in China and the reported cases were relatively higher than that reported 

in US and Europe. However, there are no specific studies reported from China on 

Legionnaires’ disease (Zhu et al., 2018; Guan et al., 2010).   

There are recent reports of Legionella outbreaks in the UAE, following recent 

government efforts to classify Legionella bacteria and LD as a reportable disease. 

Consequently any outbreaks of LD or positive detection of Legionella bacteria by 
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accredited laboratories must be reported to the government.  In addition, enforcement 

authorities conduct spot inspections at various sites in order to collect water samples 

to check for the presence of Legionella to safeguard public health. However, they 

haven’t established an emergency response system in case of an outbreak of 

Legionnaires disease (PHE-Dubai, 2017; UAE, 2017).   

1.15.1   Summary of global LD situation 

Legionnaires’ disease is on the rise globally and is one of the predominant 

contributing factors of CAP. In many countries, LD is a nationally notifiable disease and 

LD outbreaks can happen at any time of the year. In USA, reported cases of LD have 

increased significantly; however, the actual cause of this increase is unclear (CDC, 

2018a; Misch, 2016). Reported cases of LD in Europe also increased and this could be 

due to the climate change and changes in population structure (Beauté, 2017). In 

Singapore, LD reporting system and data are limited due to the limitations in diagnostic 

procedures; individual case studies were reported from Japan and Hong Kong (Phin et 

al., 2014; Lam et al., 2011; BBC, 2002; BBC, 2016; BBC, 2015; BBC, 2012). In Asia, there 

is no systematic study on CAP or LD; however, a recent study report from India 

demonstrated the presence of Legionella pneumophila serogroup 1 in the hospital 

water systems, and suggests LD could be the major cause of pneumonia among 

hospitalised patients (Chaudhry et al., 2017). Another study from China reported that 

5.1% CAP cases in main land China is contributed by Legionellosis and Legionella 

pneumophila is the main causative agent for Legionella infections (Jiang et al., 2016).  

ECDC reported that an increase in LD cases in EU travellers returning from Dubai 

indicating the increase of LD cases in Middle East; recently, LD is classified as a 

reportable disease in UAE (ECDC, 2016; UAE, 2017).  

1.16   Costs of LD to society  
 

Most identified cases of LD are isolated sporadic cases where a source is never 

found. On the basis of the available information and comparative assessment, the 

source of outbreaks can be from home, hospital, work or other environments where 

Legionella bacteria is able to proliferate and survive.  Some experts believe that this 

increase in LD is attributed to factors such as identification of new sources of infection, 

changes in diagnostic methods, and improved surveillance systems (Joseph, 

2004; Gamage et al., 2018). Nevertheless, one of the most important concerns during a 
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Legionella outbreak (aside from public health), and one of the main reasons for 

preventative measures and monitoring, is the significant health-care costs associated 

with LD outbreaks (Lock et al., 2008) In addition, because of the complexity in 

identifying the source of an outbreak, and a general lack of necessary information, 

every confirmed case of Legionella is carefully investigated by public health authorities. 

The main aim of investigation is to identify the source of outbreak and to manage the 

risk of further infection. The costs involved in handling an outbreak and investigation 

of the source has rarely been considered, and there are no national guidelines in the UK 

on what reporting threshold (in terms of cost) is needed to initiate detailed 

investigations of Legionella outbreaks (Lock et al., 2008). 

An economic evaluation of a single Legionella outbreak in South East London, 

(including epidemiological and environmental investigations, microbiological analysis 

and the staff time and resources provided by the 11 organizations responsible for 

managing the outbreak) revealed a total estimated cost of £455,856, although only 

£64,264 (14%) was spent on investigation and management of the outbreak compared 

with £391,592 (86%) spent on the hospital treatment of the infected patients (Lock et 

al., 2008).  

Reports indicate that 261000 cases of community-acquired pneumonia have been 

diagnosed annually during 1992-1993 in the UK, costing £440.7 million to the National 

Health Service based on 1992/1993 prices (Guest and Morris 1997).  Furthermore, two 

large-scale studies investigating the incidence of pneumonia in hospitals in England 

reported significant increases in admissions between 1998 to 2014 and 2002 to 2009, 

respectively (Quan et al., 2016). Moreover, 2012 NHS reports showed that the costs of 

pneumonia related admissions in hospitals account for £1,700 to £5,100 per each 

admitted patients (CRCAP, 2012). It is likely, therefore, that the current financial 

burden on the NHS, related to community-acquired pneumonia, is much higher than 

the 1992/1993 cost of £440.7 million (Feldman & Anderson, 2016).  Moreover, if cases 

of pneumonia are treated with normal antibiotics without proper diagnosis for LD, the 

health consequences can be extremely serious, leading to long term morbidity, and 

creating additional cost burdens to the NHS (Ott et al., 2011; Guest & Morris, 1997).  

Indeed, a long term study carried out of 122 survivors of LD in the Netherlands found 

persistent symptoms of fatigue (in 75% of patients), neurologic symptoms (in 66%), 

and neuromuscular symptoms (in 63%) after 17 months despite the original diagnosis 

of LD (Lettinga et al., 2002). 



 

56 
 

 

According to a research report presented at the International Conference on 

Emerging Infectious Diseases in 2010, three common waterborne diseases 

(Legionnaires' disease, cryptosporidiosis and giardiasis disease) together cost $539 

million annually in the USA (CDC, 2010). The cost analysis of these water-borne 

diseases poses physical burden as well as health care costs to thousands of infected 

people every year (CDC, 2010).  Unfortunately, there are no well-documented data on 

the health care costs associated with these waterborne diseases.  However, available 

information from insurance claims databases between 2004 and 2007, on the basis of 

the hospitalisation costs paid by insurers and direct costs to patients estimated total 

costs of confirmed diagnosis and hospitalisation for Legionnaires' disease to be 

approximately 101-321 million dollars (compared to 16-63 million dollars for 

giardiasis and 37-145 million dollars for cryptosporidiosis). Unidentified causes of 

illness (such as diarrhoea, cold and flu-like symptoms) were excluded from this annual 

estimate unless they were associated with prolonged hospitalisation periods (i.e. 

weeks). Consequently, the actual cost associated with these infections, especially 

Legionnaires’ disease or community acquired pneumonia is likely to be much higher 

than the estimated cost in this study (Collier et al., 2012) 

In addition to the costs of investigation, assessment, control and hospitalisation, 

there are additional costs to an organisation’s overheads during an outbreak of LD, 

including system shutdowns, the costs of alternative arrangements and financial losses 

due to lost working days. There could be other costs to patients, their families and their 

employers due to the hospitalisation or absence from the family as well as work place 

(Lock et al., 2008).  

1.17   Risk factors associated with Legionella bacteria in domestic 

water systems and control measures 

1.17.1 Domestic water systems 

 

Domestic water systems generally consist of a water supply source to the building 

(e.g. incoming city mains, bore well water), cold water storage, hot water storage, 

associated pipework, showers, water discharging taps and other outlets (HSE, 2016).  
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Figure  1.7  Typical domestic hot and cold water storage and pipework.   
(Source: http://www.hse.gov.uk/legionnaires/hot-and-cold-water-storage.htm) 
 

 

Domestic water systems have been identified as a major source of Legionella 

pneumophila (Cunha et al., 2016; Beer et al., 2015). Legionella can colonise and 

proliferate within domestic hot and cold water systems, particularly in showers and hot 

water systems (Figure 1.7), and be inhaled by humans during the water usage that 

produces aerosols (Hines et al., 2014; Lin et al., 2011). Many studies have confirmed 

that the mains water feeding our water systems derived from the water treatment 

plant is one of the major   sources of Legionella bacteria (Waak et al., 2018; Özen et al., 

2017; Parr et al., 2015). A study carried out in the United States during 2009–2010 

reported that out of 6,868 Legionellosis cases reported to the Centre for Disease 

Control and Prevention, 84% were caused by Legionella pneumophila serogroup-1.  LP 



 

58 
 

serogroup-1 has been isolated from a number of natural freshwater environments, and 

this can reach water treatment plants and subsequently escape disinfection (Donohue 

et al., 2014). Furthermore, biofilms found in water distribution systems (pipework and 

plumbing fixtures) contribute significantly towards Legionella proliferation within the 

water systems (Liu et al., 2006). A study carried out in Germany found that the 

household potable water systems as well as potable water systems in public buildings 

are contaminated most commonly with Legionella pneumophila (Kruse et al., 2016). 

The mains water feeding domestic water systems produced from the water 

treatment plant is disinfected prior to distribution. Recent studies demonstrated that 

the disinfection techniques are effective in reducing the pathogens present in mains 

water but fails to eliminate them from the potable water (King et al., 2016; Kruse et al., 

2016). Even though disinfection kills most of the pathogens in the mains water supply, 

the water can be re-contaminated during its transportation and distribution through 

the pipework as well as storage (Prest et al., 2016; Kilb et al., 2003). The quality of the 

water we obtain from the tap can differ markedly from that of the mains water supply 

(EWGLI, 2011). The long horizontal installation of pipework, the materials used for the 

pipework and fittings, dead-legs, thermal insulation of water storage system and their 

associated pipework, excessive water storage, internal condition of the storage tanks 

and their location can all affect the water quality (Brown et al., 2001).  If suitable 

nutrients are present, and water temperatures are within the range of 20-45°C, 

Legionella proliferation may occur (HSE, 2013). 

1.17.2  Effects of pipework and plumbing fixtures 

 

The role of pipework and plumbing fixtures are significant in Legionella control 

(Rhoads et al., 2016).A study carried out on a hospital hot-water system in England 

consistently isolated Legionella pneumophila from the calorifier drain point at levels of 

104cfu/L. The temperatures of water samples collected were 50°C or below.  When the 

temperature of the calorifier was raised to 60°C (by shutting off the cold water feed to 

the calorifier), the Legionella count was reduced to a non-detectable level.   However, 

10 minutes after reopening the cold water feed to the calorifier the Legionella count 

reached previously detected levels (104cfu/L).   Further Investigations confirmed that 

the cold-water supply to the calorifier was continually feeding Legionella to the hot 

water system despite disinfection of the cold water storage tank and hot water system 

(Farrell et al., 1990).  This case illustrates the importance of the external water 

https://www.sciencedirect.com/topics/medicine-and-dentistry/legionella
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distribution pipework system in distributing Legionella to domestic hot and cold water 

systems, where local conditions may promote proliferation (Casini et al., 2014).  

A recent study on drinking water plumbing systems (DWPS) to identify the risk 

factors of Legionella proliferation reported that 807 potable water samples were 

collected from 9 separate buildings have had the presence of Legionella species 

including Legionella pneumophila (>100 cfu/100ml). This study identified pipework 

length proportion as the main contributing factor for Legionella contamination rather 

than temperature difference or water stagnation (Völker et al., 2016).  Generally, in 

water distribution pipeworks, biofilm form on the interior of pipe walls which can 

harbour Legionella and other microorganisms such as E. coli, Campylobacter sp, 

Pseudomonas aeruginosa, Mycobacterium sp, Aeromonas sp, adenoviruses, rotaviruses, 

noroviruses, and parasitic protozoa. These micro-organisms can attach to pre-existing 

biofilms, and survive for longer periods depending on the ecology of the particular 

organism and the environmental conditions (Berjeaud et al., 2016).  

Another study by Rhoads and team demonstrated that plumbing loops and 

restricted water circulation through long running pipework can encourage Legionella 

proliferation (Rhoads et al., 2016). Water distribution pipework design is one of the 

major contributing factors promoting Legionella growth within plumbing fixtures. In 

the case of hot water pipes that slowly mixed with the recirculating line; for example, a 

pipework feeding a shower head from a recirculating line on the floor or a kitchen tap 

feeding from a recirculating line running through the ceiling, can encourage Legionella 

growth due to the poor water flow, slow mixing and reduced water temperature 

resulted from the restricted water flow (Rhoads, 2017). The slow mixing creates an 

ideal temperature for Legionella proliferation even if the water heater(s) or 

calorifiers(s) operate at 60⁰C and above. These types of plumbing or pipeworks with 

poor water flows are considered as dead legs or dead ends (HSE, 2014a). Dead legs and 

dead ends are a major concern in terms of Legionella control and is one of the major 

contributing factors of Legionella outbreaks identified in Chapter 5 of this thesis.   

  

1.17.3  Deadlegs and dead ends 

 

Deadlegs (Figure 1.8 A and B) and dead ends (Figure 1.8 C and D) always raise 

concerns within water distribution systems (Jjemba et al., 2015). Generally, ‘a deadleg 
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or dead end is the part of a water pipework system which cannot be drained through a 

normal sanitary flushing’ (ASHRAE Guideline, 2000).  Dead ends (also known as blind 

ends) are normally a redundant length of pipe, closed at one end, through which water 

cannot flow (Figure 1.8 C). A dead leg is referred to a section of pipe leading to an outlet 

through which water flows, but the outlet is unused or infrequently used (Figure 1.8 D) 

(HSE Terminology).     

 
 
Figure 1.8 - A and B are deadlegs and C and D are dead ends, the examples of water 
stagnation that can be sources of Legionella contamination. (Source: A and D - own 
collection; B and C http://www.hse.gov.uk/legionnaires/hot-and-cold-
terminology.htm. 
 
 
 

The mains water derived from water treatment plants maintain the cold water 

temperature normally below 20°C at the point of distribution. However, cold water 

temperatures vary seasonally, and during extreme summer conditions the incoming 

mains temperature can exceed 20°C due to the heat transmission from increased 

ambient temperature. Nowadays, modern building specifications require an 

appropriate level of thermal insulation to keep the internal building temperature 

warm, and this may result in warming of the cold water pipes to above 20°C. In the 

event that the ‘warm’ cold water enters into a dead end or dead leg, biofilm formation 
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can easily occur, and eventually Legionella can proliferate as a result of possible 

stagnation (ACR, 2016).  Similarly, hot water systems operating at 60°C are capable of 

delivering hot water at 50°C minimum to all related outlets in the building.  However, 

when this hot water enters into a dead end or dead leg, the temperature will fall as a 

result of reduced water flow rate or possible stagnation. If the water temperature is 

between 20-45°C, and nutrients are available, Legionella proliferation can occur 

(Schofield, 1985).    

 

Sometimes, domestic hot and cold water systems may not be in use for extended 

periods (e.g. holidays). During this time, cold water temperatures will rise to ambient 

temperature, and hot water in the system will radiate temperature to the surroundings. 

Either way, water temperatures can fall in the range of 20-45°C for a period of time 

which will favour Legionella proliferation (HSE, 2013a).  On the other hand, it is 

common practice in many buildings to change the use of some areas.  For example, the 

use of an existing toilet may be stopped, and the space is converted into a store room 

instead without isolating the hot and cold water pipeworks from the point of main 

distribution pipework (Figure1.6A). Consequently both the hot and cold water becomes 

stagnant within the associated pipework, and the variation in water temperature 

eventually results in optimal conditions for Legionella proliferation (Ciesielski et al., 

1984).  

 

A study reported that the presence of Legionella bacteria in flowing water as well as 

in stagnant water (sample from the dead end) of a drinking water distribution system 

found to be similar (Schwake et al., 2015). Contradictory to this report, many other 

studies reported that the poor water flow and water stagnation is an important 

contributing factor for the proliferation and multiplication of Legionella bacteria (Rakić, 

A 2018;  Bédard et al., 2015;  Boppe et al., 2016). From the view of a Legionella control 

practitioner with the first-hand experience, I agree with the reports that stagnant and 

poor flow situation can promote Legionella growth; the first report could be a 

standalone scenario and may be contributed by some other factors.   

 Traditionally, flushing of unused or infrequently used outlets and taps has been 

used as a remedial solution to avoid possible Legionella proliferation. However, normal 

sanitary flushing may not be sufficient to eradicate all the bacteria due to the restricted 

water flow within the dead legs. Furthermore, prolonged water stagnation contributes 

to biofilm formation where micro-organisms, including Legionella, can harbour. Usual 
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water stagnation in dead legs and dead ends can lead to biofilm formation within the 

pipework which can harbour micro-organisms (Green, 1993) as well as the protozoa in 

which Legionella can persist (Declerck et al., 2009).   

 

Legionella proliferation within deadlegs or dead ends can result in contamination of 

the whole distribution system, and may result in human exposure during water usage 

(Greig et al., 2004). Figure 1.6A shows a wash room, but currently, water in this 

pipework is not in use as this room is used as a store room and this unused wash room 

is acting as a deadleg. In figure 1.6D, the provision of a by-pass connection from the 

incoming mains is capped off and the isolation valve installed is after 30 cm from the 

mains pipework.  At present, this 30 cm pipework is acting as a dead end.  

 

1.17.4  Galvanized steel pipework and fittings 

  

Until around 1970, traditional domestic water systems were serviced with lead 

pipes and water tanks. However, once the health effects of lead poisoning in drinking 

water were realised, lead pipes were replaced with galvanised steel, copper and plastic 

(Quinn and Sherlock, 1990). Galvanised steel pipework has two major disadvantages 

when used in water distribution systems (Duruibe et al., 2007; Saby et al., 2005). 

Galvanized steel is corrosion resistant steel which has undergone a chemical processing 

to achieve its property.  Steel is coated with a number of layers of zinc oxide which will 

act as a protective surface layer to protect the metal from corrosion.  The most popular 

galvanisation method is hot-dipped galvanization and this process allows the zinc to 

bond permanently to the metal surface as well as within the steel itself which is 

incredibly beneficial to the steel fighting off rust. However, slow rusting can easily be 

caused by the reaction between iron in steel and oxygen as well as water which will 

lead to the deterioration of galvanised steel. In this slow deterioration process, the zinc 

layer will first become damaged, providing a longer life to the actual product (Dreulle, 

1980). The zinc from the galvanised steel pipes mixes with drinking water and can lead 

to serious negative health impacts in terms of zinc poisoning (Duruibe et al., 2007). 

Several studies showed that the zinc contamination in drinking water as a result from 

the corrosion of distribution pipework poses serious threat to human health (Alam and 

Sadiq, 1989).  Furthermore, corrosion products within the galvanised steel pipeworks 

can act as a better nutrient for microorganisms especially for Legionella pneumophila 
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(GROWTH-PROMOTING, 1998). A study into the effects of pipework materials on 

biofilm formation showed the highest rate of biofilm formation on steel pipes 

compared to copper and plastic (Yu et al., 2010). The presence of biofilm is a better 

indicator of microbial growth, as biofilms in many water supply systems form an 

environment in which different bacteria can become entrapped for long periods. 

Besides this, biofilms contribute to bio-corrosion, are a barrier to disinfection 

(organisms may survive deep within the biofilm) and possibly act as a reservoir for 

pathogenic and non-pathogenic microorganisms including Legionella pneumophila 

(Armon et al., 1997).  Therefore, copper and plastic pipeworks and fittings have 

become more common in recent years.           

1.17.5  Copper pipework and fittings 

 

Copper has antimicrobial properties against bacteria, viruses and fungi (Warnes and 

Keevil, 2013; Salgado et al., 2013). Also, in recent years, antimicrobial action of copper 

against Gram-positive and Gram-negative bacteria and norovirus has been described in 

a number of studies (Bleichert et al., 2014). As a result of these advantages and easy to 

work with properties, use of copper and copper alloys has become widespread in water 

industry especially in water distribution network (Warnes et al., 2012).  A study in USA 

hospitals demonstrated that the numbers of MRSA, Staphylococci, Gram-negative and 

vancomycin resistant enterococcus as well as the total number of bacteria were 

significantly lower when copper was introduced as the surface material (Schmidt et al., 

2012). A similar study conducted in UK hospital also found that the isolation of several 

pathogens, such as, Escherichia coli, methicillin-resistant Staphylococcus aureus 

(MRSA), Clostridium difficile from copper surfaces was significantly lower than the 

samples from aluminium, plastic and chrome-plated surfaces.  However, this study also 

demonstrated that copper was not effective in killing Legionella pneumophila (Giao et 

al., 2015). In contrast, many other studies (Warnes and Keevil, 2013; Salgado et al., 

2013) have reported that copper has antimicrobial properties.  These two reports are 

not contradictory to each other as other studies indicating that the microorganisms 

survive only a few minutes on copper surfaces depending on several other factors; 

copper corrosion produces toxic substances which inhibits microbial richness as well 

as copper pipes itself do not encourage bacterial community (Vincent et al., 2016; Fish 

et al., 2016). These reports indicate that the copper pipes are not effective in killing 

micro-organisms present in water but help to minimise the microbial proliferation and 

richness.   
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Copper is normally resistant to corrosion, but certain conditions can lead to surface 

corrosion within the water pipeworks; a process called ‘cuprosolvency’. Cuprosolvency 

is directly related to the water quality within the distribution systems, especially water 

chemistry and temperature (Critchley et al., 2001). Recent studies have also found that 

micro-organisms are also involved in cuprosolvency, associated with the formation of 

biofilms within the internal pipework surface (Critchley et al., 2003). These biofilms are 

complex structures of micro-organisms with extra cellular products, organic and 

inorganic debris attached to surfaces (Bremer et al., 1992).  Many studies have been 

conducted to investigate the causes of pitting corrosion in copper plumbing systems 

associated with biofilms.   In all cases, corrosion was attributed to the biofilm itself, and 

corrosion products were microbial in origin (Arens et al., 1995). However, pitting 

corrosion is less significant in normal hard water with high organic carbon 

concentrations, but general corrosion is still present and pitting corrosion is 

particularly significant in the case of soft water (Lytle and Nadagouda, 2010). In 

general, accumulation of corrosion products and the presence of biofilm within the 

pipework are associated with an increased risk of Legionella proliferation (Liu et al., 

2016; Walker et al., 1991). Despite the protective effects of copper on preventing 

biofilm formation, elevated copper concentrations in drinking water also have serious 

implications in terms of public health (Dietrich et al 2004). World Health Organisation 

(WHO) and European Union (EU) has adopted the guideline value of copper in the 

drinking water as 2mg/l and this threshold limit of copper is usually maintained in 

drinking water by water supply companies. However, corrosion of copper pipeworks 

and fittings together with copper leaching can increase the level of copper significantly 

high in drinking water (Water UK, 2006). 

1.17.6  Plastic pipework and fittings 

 

Plastic pipes and fittings are lightweight, non-corrosive, hard and resistant to 

chemical attack.  Due to their availability in large lengths, elastic properties, reduced 

cost of handling, transportation and installation, they have become popular in the 

water industry (Andrady and Neal, 2009). Mainly, there are two types of plastic pipes 

are in use in terms of water and wastewater industry; (i) Poly Vinyl Chloride (PVC) and 

(ii) Chlorinated Poly Vinyl Chloride (CPVC) or  High Density Poly Ethylene (HDPE) 

(Heim  and Dietrich, 2007).  PVC pipe and fittings are not suitable for pressured water 

and hot water as they are liable to crack, and reduces the strength in high 

temperatures. However, CPVC pipes can be used for hot water and potable water 
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distribution. CPVC pipes are in use to carry water for long distances without worrying 

about pressure loss, corrosion or scaling and are considered to be a better alternative 

to copper for potable water distribution (CPVC, 2017; Nesterchuk and Raisa., 2012).   

Although plastic pipework and fittings have a number of positive advantages in 

water distribution network, many recent studies have demonstrated that synthetic 

plumbing materials adversely affect the water sensory aspects (i.e. taste and odour) 

and chemical water quality, as well as the significant negative impact in drinking water 

quality in terms of human health (Heim and Dietrich, 2007). A study published in 

Journal of Environmental Engineering reported that plastic pipework and fittings leach 

polyvinyl chloride and phthalates into drinking water, which may cause human health 

issues including reproductive and hepatic toxicity (Heim and Dietrich, 2007). 

Furthermore, hazardous dioxins can release into water from PVC pipeworks due to its 

heavy chlorine content and most of the dioxins are classified as carcinogens (Walter et 

al., 2011; Tomboulian et al., 2004; Rossi and Schettler, 2000).  In the United States,  the 

Centre for Disease Control (CDC) warned the general public that short term exposure to 

phthalates may not be toxic in adults, but infants and children should be protected and 

further reported that the long term exposure to phthalate is toxic in adults also 

(Schettler, 2006; Swan, 2008).  

Moreover, Plastic pipes, cisterns and fittings can leach organic materials and 

chemicals (plasticisers) into the water and these can act as nutrients for micro-

organisms in the water systems including Legionella bacteria (Lehtola et al., 2004). 

Another study on changes in water quality and biofilm formation in a pilot-scale water 

distribution system with copper and plastic pipe work showed, the formation of biofilm 

was faster in plastic pipes compared to copper pipes (Lehtola et al., 2004). The 

fundamental characteristics of biofilms are that they attached to a substrate and 

consists of a number of different bacteria co-adhered by physical appendages and 

extra-cellular polymeric substances. In order to form a biofilm, the essential 

requirements are the micro-organism themselves and a substrate; thus, a biofilm 

cannot form in the absence of one of these ingredients (Garrett et al., 2008). This 

indicates that plastic pipeworks and fittings can encourage the growth of micro-

organisms in the water systems (Proctor and Hammes, 2015). Copper pipework and 

fittings are safer than any other plumbing materials that are used in installations, as 

many studies have shown copper has the effect in suppressing the micro-organisms 

such as Legionella pneumophila (Blanca et al., 2005).  
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1.17.7  Thermal insulation 

 

Thermal insulation of the water distribution system especially water storage and 

pipework plays an important role in terms of Legionella control. Water temperature 

maintenance (e.g. hot water at 50⁰C minimum and cold water below 20⁰C) throughout 

the water system is vital to protect the system from the proliferation of Legionella 

bacteria (Bédard et al., 2016). As a Legionella control practitioner, presence of thermal 

insulation on water system and its condition is an important parameter to check while 

carrying out Legionella risk assessment in accordance with BS8580.  In addition, 

thermal insulation has been identified as an important contributing factor in deciding a 

particular building as high risk or low risk category by using the risk predictive model 

based on statistical software PCA in Chapter 5 of this thesis.  

 

Heat energy has the tendency to attain thermal equilibrium. As a result of this 

characteristic, heat always flows from warmer to cooler surfaces until the 

temperatures of both surfaces become equal. A material resistant to conduction, 

convection and radiation of heat can reduce the flow of heat from one surface to 

another, and these materials are generally known as thermal insulators (Yamamoto et 

al., 1985). The primary function of a thermal insulation is to protect the system from 

heat loss or gain. A good insulator is made from an opaque non-metallic material with a 

non-crystalline structure. Thermal insulating properties can be enhanced further by 

creating small air pockets inside the structure (Korjenic, 2011).  There are different 

types of thermal insulation available commercially.  However, the most commonly used 

types in the water industry are fiberglass insulation (figure 1.9 C), mineral wool, 

cellulose insulation, polyurethane foam and polystyrene (Styrofoam) (Al-Homoud, 

2005). 
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Figure 1.9 A: uninsulated metal cold water storage tank, B: modern pre-insulated 
(factory insulated) glass reinforced plastic (GRP) cold water storage tanks, C: fibreglass 
insulated tank and D:  copper cold water pipes insulated with foil backed fibreglass 
insulation. (Source: own collection). 
 

It is important that both the pipework and water storage system (i.e. cold water 

tanks and calorifiers) should be thermally isolated from the surroundings using an 

appropriate insulation (Figure 1.9b, 1.9d) (Plouffe et al., 1983). In the case of cold 

water, the mains water temperature at the distribution point is always less than 20°C.  

However, during transportation through the pipework, water temperatures can exceed 

20°C if the ambient temperature is above 20°C (Hruba, 2009).  Furthermore, domestic 

cold water storage tanks are normally located in the roof or loft space. Even at the 

beginning of the summer season, ambient temperatures can reach 20°C or above.   In 

the event of a water storage tank without appropriate insulation (Figure 1.9a), thermal 

transmission can occur from the ambient warmer air into the stored cold water, and 

the increase in temperature of the stored water temperature may favour Legionella 

pneumophila proliferation (Goutziana et al., 2008).  

A study carried out by Stout and colleagues on patient’s drinking water facility 

within the hospital environment demonstrated that the incoming mains water 
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(municipal water) with all satisfactory parameters were supplied directly to the cold 

water storage tank feeding the drinking water facilities. Increased stored water 

temperature along with other adverse internal conditions of the storage tank 

encouraged the proliferation of Legionella bacteria, resulting in contamination of the 

entire system, including the drinking water facilities (Stout et al., 1985). Extreme 

winter weather can also freeze the cold water pipeworks in the loft space or roof, and 

may interrupt the entire building water distribution leading to temporary stagnation. 

Also, there are many incidents of pipes bursting when water freezes within the 

pipework due to the expansion below the freezing point 4°C (Westerberg, 1991).    

Appropriate thermal insulation is an essential requirement to keep the cold water 

storage and distribution system safe and free from Legionella pneumophila (Brundrett, 

1994).  

In the case of hot water storage, calorifiers or water heaters need to have proper 

thermal insulation to maintain appropriate operating temperatures. Otherwise, heat 

loss from hot water storage into the surrounding environment can adversely affect the 

operating temperature as well as the hot water distribution. If the hot water storage 

temperature falls below 60˚C, related hot water outlets could easily fall below 50˚C due 

to other heat losses throughout the distribution pipework (Lasheras et al., 2006). 

Moreover, even if the hot water storage operates at 60˚C, uninsulated distribution 

pipework can cause significant heat loss from the hot water distribution system, and 

water temperatures may fall below 50˚C. In both cases, water temperatures can fall in 

the favourable temperature range for the proliferation of Legionella bacteria (Darelid et 

al., 2002).  A number of comparative studies on insulated and uninsulated hot water 

systems have shown that uninsulated hot water storage and pipework causes loss of 

water temperatures resulting in the reduction of operating temperatures that are 

optimal for Legionella proliferation (Rhoads et al., 2016; Clarke and Grant, 2010).   

1.17.8 Cold water storage tanks   

  

Cold water storage tanks are another important source of Legionella 

contamination in buildings. Many studies have reported that potable water is the most 

frequent source of exposure to Legionella bacteria (Garrison et al., 2016; Ryu et al., 

2017; Seenivasan et al., 2005). It is vital to understand that in the practical world, 

potable water source in many modern or newly constructed buildings is mains break 

tank (Nowadays, it is common in the UK and other parts of the world that mains water 
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enters the building and stored in a tank located most commonly on the ground level or 

lower ground (basement) level of the building) (Figure 1.10 A). Water booster pumps 

connected to these mains break tanks pumps the potable water to the other parts of the 

building (Figure 1.10 B and C) (Practitioners practical experience). In addition, 

Drinking Water Inspectorate (DWI) suggests the use of outlets connected to the mains 

water supply for potable use; however if potable water comes from a storage tank  it 

will be safe to use provided the tank is properly designed, correctly installed and kept 

in good condition (dwi, 2013). Another study by Ryu and colleagues reported that the 

newly built apartment’s potable water, especially hot water was the  source of 

Legionella infection and further recommended that effective monitoring of hot water in 

buildings should be considered (Ryu et al., 2017). Another important information to 

consider in this regard is the commonly used unvented hot water system cannot be fed 

directly from the incoming mains rather it can be fed only from a cold water storage 

tank located higher level than the hot water storage (HSE, 2014; See Chapter 3). 

Furthermore, Chapter 3 of this thesis, ‘Specific Study on Cold Water Storage Tanks’; out 

of 15 cold water storage tanks surveyed, 7 was potable water tanks located in the lower 

ground or ground level.  However, this important aspect of potable water storage is 

rarely studied. 

A study on 134 roof-harvested rainwater tank samples using qPCR reported that 

Legionella was detected in all the tanks and warned opportunistic pathogens such as 

Legionella, canthamoeba spp,  Pseudomonas aeruginosa, Mycobacterium avium and  

Mycobacterium intracellulare in tank water may present health risks from both the 

potable and non-potable uses (Hamilton et al., 2016). Another study conducted after a 

Legionnaires disease outbreak in Flint demonstrated that a corrosive potable water 

source caused high level of Legionella contamination in potable water distribution 

system (Rhoads et al., 2017).  All these study reports indicates the importance of water 

storage tanks in buildings associated with microbiological contamination and 

Legionella outbreaks. In addition, one of the major contributing factors of Legionella 

contamination in building water system is identified as number of cold water storage 

tanks and their internal condition (see Chapter 5).      

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pseudomonas
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Figure 1.10. A – Schematic of a domestic hot and cold water system in W1T postcode 

(London) with mains break tank supplying the potable water; B and C are the typical 

examples of mains break tank located in the lower ground plant room connected to 

booster pump sets  supplying potable water to the entire building.                             

(Source: A-Own drawing; B and C own collection).  
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In some cases, water tanks are made with proper thermal insulation; however, other 

factors such as the construction method, materials used, tank’s internal conditions, 

plumbing arrangements, internal water flow and tank location can contribute towards 

Legionella proliferation (Ciesielski et al., 1984).  Water storage tanks with relatively 

lower storage capacity can be constructed as a single piece moulded tank which will be 

free from tiny internal joining gaps (Figure 1.11A), whereas, sectional tanks always 

have tiny gaps between the joinery and these can harbour micro-organisms if not 

properly maintained (Figure 1.11B) (Borella et al., 2005).  This issue was addressed by 

using single piece plastic tanks.  However, plastic tanks are not the best option for 

Legionella control due to chemical leaching, and less rigid properties (Abokifa et al., 

2016; Rogers et al., 1994). Water safety regulations for portable water   in England and 

Wales as well as Scottish Water Byelaws clearly states in the complete installation 

guidelines requirements of cold water services/storage tanks that the materials used 

for the manufacturing of cold water storage tanks should be rigid, as non-rigid 

materials can bend and become deformed during adverse weather conditions which 

may lead to cracks, breaks and even cause flooding in the entire building. On the other 

hand, the breaks and cracks on the non-rigid cisterns allow insects/vermin enter the 

tanks and contaminate the whole water system. (WRAS, 2015; Edwards et al., 2003) 

 

Figure 1.11 Single piece factory insulated moulded GRP cold water storage tank (A) 

and sectional factory insulated GRP cold water storage tank (B). (Source: own 

collection) 
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Cold water storage tanks constructed in galvanised iron or black steel get corroded 

during water storage; and corrosion products mainly iron oxide remains within the 

water tank for a long time. A study carried out by Conley and colleagues showed that 

the presence of certain metals such as potassium, iron and zinc can significantly 

encourage the growth of Legionella pneumophila even if their concentration is in lower 

level (2.29,  12.412 and 0.924 ppm respectively) (Conley et al., 1985).  A recent study in 

USA demonstrated that iron is a key nutrient for Legionella growth in water systems 

(Rhoads et al., 2017).   These findings indicate that metal corrosion products are 

important factors for the survival and growth of Legionella pneumophila (Carson and 

Mumford, 2010). 

Mains water already contains a variety of minerals, in some cases relatively high 

amount of calcium and magnesium. These minerals can contribute to the formation of 

scale which can firmly adhere on the underlying surface of the water storage tank 

(Figure 1.12) (Donaldson and Grimes, 1988).  The accumulation of scale presents a 

significant impact on biological contaminations within the water system such as 

providing habitat for bacteria colonies, including Legionella, and acting as essential 

nutrients for their metabolism (Bartram, 2007). Many studies on nutrients that 

encourage Legionella growth have reported scale nutrients to be one of the major 

contributing factors for Legionella proliferation (Schwake, 2013).  

 

Figure  1.12 Scale accumulation on the tank wall (Source: own collection).                                                                                          

The suspended matter that settles at the bottom of a fluid is known as sediment. 

During water storage, tiny suspended solids and dissolved solids in the mains water 

will settle to the bottom of the tank as sediments (Figure 1.13). In metal tanks, 

corrosion products and sediments together encourage Legionella proliferation as they 
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act as nutrient sources (Qin et al., 2017).  The relationship between sediments and 

Legionella growth in water systems was first established in 1982.  In this study cultures 

taken from water samples from storage tanks with no sediments were found to contain 

very low numbers of bacteria.   After a period of time to allow sediment accumulation, 

the same tanks produced a high count of bacteria, but once the sediments were 

removed by flushing the bottom of the tanks, no bacteria was found (Wadowsky et al., 

1982). Later, many studies on water systems including cooling towers have confirmed 

that the sediments are responsible for Legionella proliferation and growth (Llewellyn 

et al., 2017; Springston and Yocavitch, 2017; Erdoğan and Arslan, 2016) (See Chapters 

3 and 5). Sediments provide not only nutrients but also habitat for the survival of 

Legionella bacteria.  Sediment in the pipework also provides the same habitat for 

Legionella bacteria as it would in the bottom of a cold water storage tank (Bothner, 

2016). Stout and colleagues also reported the concentration of sediment to be directly 

related to the proliferation and multiplication of Legionella bacteria in the water 

system (Stout et al., 1985). Legionella risk associated with sediments can be minimised 

by more frequent monitoring and internal cleaning.     

 

Figure 1.13 Sediments and corrosion at the bottom of a cold water storage tank 

(Source: own collection)                                                                                          

According to Health and Safety Executive’s (HSE), approved code of practice 

legislation 8 (ACOP L8) 2013, water storage in any building should be limited to 24 

hours usage; i.e. the maximum retention time of cold water storage should be 

maximum one day (HSE, 2013). Large tanks with excess storage capacity create 

conditions for water stagnation, which eventually leads to biofilm formation (Figure 

1.14) which harbours many micro-organisms including Legionella pneumophila 
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(Armon et al., 1997). If multiple cold water storage tanks are present in a building, they 

are usually linked together, either in parallel or in series. Multiple tanks connected in 

parallel (Figure 1.15b) often draws water equally from all the connected tanks (Figure 

1.15d); in contrast, tanks connected in series (Figure 1.15a) discourage the internal 

water circulation thereby promoting water stagnation (Figure 1.15c). In this 

arrangement, incoming mains water is connected to the first tank only; all the other 

tanks acts as reservoir tanks, and the outlet is normally connected to the last tank in the 

series. This arrangement causes the water in the first and last tanks to replenish often, 

but the other tanks in between are affected by stagnation of the water on the upper 

layer.  The number of outlets connected to each tank also plays a major role, as in some 

arrangements, most of the outlets would be connected to a single tank which may leave 

other tanks in the arrangement with less internal water movement.  

 

Figure 1.14 Biofilm on water surface (Source: own collection) 

 

      
                    Figure 1.15a     Figure 1.15b  
                                               
Figure 1.15a Tanks connected in series and Figure 1.15b tanks connected in parallel 
(own collection). 
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Figure 1.15c                                                                                                                   Figure 1.15d 
                                                                                 

Water flow indication schematic of tanks connected in series Figure 1.15c and water 
flow indication schematic of tanks connected in parallel   Figure 1.15d.   
(Source: own drawing).  
 

The location of the cold water storage tank is also very important in terms of 

Legionella control. Normally, cold water storage tanks are located on the roof top, 

within the loft space of the building, on the ground floor or in the lower ground 

(basement) level.  Tanks located on the roof top are mostly exposed to adverse weather 

conditions such as hot temperatures in the summer, freezing cold in the winter and 

heavy rainfall which can affect the quality of water stored inside the tanks. Appropriate 

thermal insulation can act as a barrier to these changes to a certain extent, and the 

provision of a tank housing will further help to maintain the water quality unaffected. 

Cold water storage tanks located within the loft space are more protected from adverse 

weather conditions due to well insulated building roof. However, some of the tanks in 

the loft space are tightly surrounded and sometimes partially covered by stored items 

that have been accumulated in the loft space. These items can restrict ambient air 

circulation and increase the ambient temperature, thereby affecting the stored water 

temperature if the thermal insulation provided to the tank is not appropriate (Figure 

1.16a).  Cold water storage tanks located on ground floor and in basement (lower 

ground) tank rooms are more protected against adverse weather conditions. However, 

these tank rooms are also often used as store rooms (practitioners site survey 

experience), and the stored items can create negative impacts in terms of ambient air 

temperature. Latest HSE guidelines for Legionella control in domestic water systems 

ACOP L8 2013 HSG 274 part-2 specify the need to maintain a minimum one metre clear 

space around the cold water storage tanks (Figure 1.16b) in order to rectify this issue.                 
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Figure 1.16a. Single piece plastic tank             Figure 1.16b. Pre-insulated GRP sectional  
without clear space around   tank with clear space around 
(Source: own collection) 
 

   

                          1                                    2                                                                                          3       4 

Figure 1.17   1 –inlet and 3 – outlet connected opposite to each other to encourage the 
tank’s internal water flow, 2- is the screened breather vent to improve the internal air 
circulation of the water storage tank and 4 is the thermal insulation fitted to the 
pipework. (Source: own collection). 
 
 

In the early part of 1980’s, metal tanks were replaced by fibreglass tanks; but in 

early 1990’s pre-insulated Glass Reinforced Plastic (GRP) tanks replaced metal and 

fibreglass tanks (ASHRAE Guideline, 2000). Even if the tanks are thermally insulated, 

poor internal air circulation can create humid conditions within the tank, resulting, 

eventually, in raised internal stored water temperatures leading to proliferation of 

Legionella bacteria (HSE, 2016a). In order to get rid of this possibility, the tanks should 

be fitted with a screened breather vent to improve internal tank air circulation, and to 

protect the stored water from insects entering the water storage tank (Figure 1.17 -2).    
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The plumbing arrangement of the water tank is also a very important factor in 

maintaining water quality.  If the inlet (incoming mains) and outlets are on the same 

side, internal water circulation will be restricted and this could lead to the water 

stagnation within the storage tank. Current WRAS guidelines insist that the inlet and 

outlets of the storage tank should be fitted opposite to each other to enhance the 

internal water circulation (WRAS, 2015). Many water storage tanks were installed 

prior to the implementation of this guideline, with inlets and outlets fitted on the same 

side of the tank leading to internal water stagnation. However, this can be rectified by 

installing a sparge pipe to the tank outlet (Figure 1.18A). Size of the pipework is 

another factor as relatively larger inlet and smaller outlets could lead to the possible 

water stagnation (Stojek and Dutkiewicz, 2006).   

 

 

Figure 1.18A; Sparge pipe connected to internal of the tank outlet; B. water flow 
indication schematic when using a sparge pipe to the internal of tank outlet.   
(Source: A - own collection; B- own drawing) 

1.17.9  Hot water storage  

 

Unlike other bacteria species, Legionella is considered as a thermo-tolerant bacteria 

which can withstand temperatures in the range of 50-60˚C for several hours (Bartram 

et al., 2007). These specialised characteristics allow Legionella to proliferate and 
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survive in hot water systems (Whiley et al., 2017).  Allegra and colleagues (2011) 

proposed that Legionella strains can become heat resistant after being subjected to a 

cycle of heating treatments for a long time. One of the major findings of their study was 

that some strains of Legionella submitted to superheating in the environment for a long 

time were shown to develop resistance to high temperatures (Allegra et al., 2011). This 

phenomenon was demonstrated by the high proportion of culturable cells and ‘not 

culturable but viable’ (NCBV) cells still present after a 30-minute treatment at 70°C 

(Farhat et al., 2012). Further analysis showed that although Legionella diversity was 

reduced, pathogenic Legionella species (Legionella pneumophila and Legionella anisa) 

remained after the heat shock, and also after chemical treatments. The biofilm was not 

removed, and the bacterial community structure was transitorily affected by the 

treatments.  It was concluded that eradication of Legionella requires a better 

understanding of the ecology of bacterial and eukaryal species associated with 

Legionella-containing biofilms (Farhat et al., 2012). 

Main hot water storage in domestic properties is calorifiers, water heaters and 

instantaneous water heaters or point of use water heaters. Out of all these hot water 

storage systems, calorifiers are a major area of concern (HSE, 2014). A calorifier is a 

heat exchanger which heats water indirectly by circulating over a heating coil or 

multiple coils. Normally, the primary source of heat can be water or steam (heated by 

an external heat source such as a boiler), contained within a pipe immersed in the 

water. The hot water or steam within the coil do not mix or come in contact each other 

(DMME, 2015).  

                          

Figure 1.19 shows the internal coil structure and cold water feed and hot water 

generation within the calorifier.  

(Source: http://www.tnorrismarine.co.uk/product/calorifiers) 
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The incoming cold water (typically less than 20 °C) enters at the bottom of the 

calorifier,  (often gravity fed) from the cold water storage tanks and is mixed with hot 

water inside the calorifier and heated to the required temperature using the internal 

heated copper coils housed inside the calorifier (Figure 1.19). Mainly there are two 

types of calorifiers are in use; vertical calorifiers and horizontal calorifiers.  In vertical 

calorifiers, the hot water or steam from external source enters the coil through the top 

pipework connection and passes through the inlet valve which is thermostatically 

controlled to avoid over heating or boiling of the stored water within the calorifier. In 

contrast, lower temperatures at the bottom of the calorifier, where cold water enters 

(Figure 1.19) together with the nutrient rich bottom area of the calorifier can support 

the abundant growth of Legionella bacteria. In the case of infrequently used hot water 

system, the operating temperature can fall below 50˚C which can further accelerate the 

growth of Legionella that is present at the bottom of the calorifiers (HSE, 2016).   

Many studies have demonstrated that the domestic hot water system is a potential 

source of Legionella contamination (Ryu et al., 2017; Bédard et al., 2015; Rhoads et al., 

2015).  In Germany, 452 samples were collected from randomly selected single family 

residential flats to analyse for the presence of Legionella. All these flats were supplied 

with treated ground water from public water treatment works. Drinking water quality 

and parameters were within the satisfactory limits of German water regulations. 

Analysis results showed 12% of the flats with recirculating hot water system had 

maximum counts of Legionella which reached 100,000 cfu/100ml; out of the positive 

results 93.9% was Legionella pneumophila species and 71.8% was belonged to 

serogroup-1. This study also demonstrated that the volume of the hot water storage 

and intermittently raising hot water temperatures above 60ºC had no effect on 

Legionella count. Thus, this study reported that low temperature (below 46°C) in the 

hot water storage system to be a significant factor leading to the proliferation and 

intensified growth of Legionella bacteria (Mathys et al., 2008). The US Waterborne 

Disease and Outbreak Surveillance System (WBDOSS) has reported the increasing 

importance of LD contracted from individual residential hot water systems since its 

inclusion for monitoring which commenced in 2001 (Craun et al., 2010).  A domestic 

hot water system was also shown to be responsible for an outbreak of LD originating 

from a residential block of flats in Copenhagen (Denmark) (Krojgaard et al., 2011).    

In order to minimise the possibility of Legionella proliferation at the bottom of the 

calorifier, electric immersion heater is also introduced in recent years (Figure 1.19). In 

large calorifiers, an anti-stratification circuit is provided (Figure 1.20) to enhance the 
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internal water circulation, and to maintain the required hot water temperature 

throughout the hot water storage. A hot water return circuit is also necessary to 

maintain the hot water temperature throughout the system as this can encourage the 

water circulation when the water is not in use (Fields, 2002). These return hot water 

circuit (Figure 1.21) from the distribution pipework to the hot water storage 

(calorifier) also useful to eliminate the possible variation of hot water storage 

temperature and water distributing temperature (Rhoads et al., 2016). Provision of a 

circulating pump further encourages the hot water circulation to maintain the 

operating temperature throughout the hot water system (Laperriere  et al., 1992). It is 

recommended in the latest HSE’s ACOP L8 guidelines that the hot water return circuit 

should be fitted with circulating pumps (Figure 1.22), which can accelerate the 

recirculation and avoid possible water stagnation within the pipework (Boppe et al., 

2016).                         

                            

Figure 1.20 Schematic of large calorifier with anti-stratification circuit (Source: own 
drawing)                                                      
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Figure 1.21   Hot water return to the calorifier. 
(Source: http://www.tnorrismarine.co.uk/product/calorifiers) 
 
 

 

Figure 1.22  Calorifier fitted with circulating pump on the return pipework to maintain 

the temperature throughout the hot water system. (Source: own collection) 

Water heaters are another type of hot water storage system where Legionella can 

colonise and multiply. Water heater can be defined as an appliance usually powered by 

gas or electricity, that heats water and stored for domestic purposes. Both electric and 

gas fired water heaters are fed by direct mains water with the help of pressure 

regulating valves and non-return valves. Figure 1.23a is an electric water heater and 

http://www.tnorrismarine.co.uk/product/calorifiers
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figure 1.23b is a gas fired water heater. In both the cases, water gets heated directly 

within the water heaters and stores the hot water ready to use.    

                                                                       

Figure 1.23a Electric water heater                       Figure 1.23b gas fired water heater   

(Source: http://www.engineeringapps.net).    

Generally, electric water heaters operate by using one or two direct immersion 

heating elements controlled by thermostats, which heat the water within the water 

heater tank to the required temperature.  

Gas fired water heaters also operate almost on the same principle.   A thermostat 

located near the bottom of the tank is inserted into the side of the tank which senses 

the temperature drops below the desired set level, and this provides signal to the 

burner for ignition.  When the desired temperature is reached, the thermostat shuts off 

the burner. Gas fired water heaters attain the desired temperature level about twice as 

fast as electric water heaters. Due to the provision of internal direct heating, these 

water heaters are much safer as compared to calorifiers in terms of Legionella 

proliferation.     

Hot water storage such as calorifiers and water heaters should operate at 60ºC to 

attain a minimum of 50ºC at all related outlets.  It is extremely important for calorifiers 

and water heaters to provide appropriate thermal insulation (Figure 1.24) as heat loss 

from these systems can reduce the stored hot water  temperature which can lead to 

Legionella proliferation as well as more frequent or continues operation causes 

additional use of fuel, waste of energy and unnecessary contribution to emission 

(Johanssona et al., 2003).  
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Figure 1.24 Calorifier fitted with appropriate thermal insulation. (Source: own 

collection)    

Another type of domestic water heaters exists, called ‘reservoir type water heaters’, 

which comprise of a cold water storage tank fitted on top of a water heater.  This design 

poses a serious concern in terms of Legionella control. The heaters benefit owners in 

terms of energy savings, as the copper hot water tank below can heat the copper cold 

water tank above by convection. However, problems can occur if the cold water 

temperature falls within the range of 20-45ºC which is optimum for Legionella 

proliferation and multiplication. Furthermore, the possible presence of nutrients such 

as sediments and scale deposits within this cold water storage tank can further 

accelerate the Legionella growth and contaminate the entire hot water system in the 

event of heater operating at below 50ºC.  This type of water heaters (Figure 1.25) are 

considered as high risk hot water systems in terms of Legionella control and their usage 

is discouraged, although they were previously promoted as energy saving water 

heaters over the last few decades.      
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Figure 1.25 Reservoir type water heaters: A – internal structure and B – external view  
(Source: http://www.gasapplianceguide.co.uk/DirectandIndirectCylinders) 
 

 

1.17.9.1 Other hot water sources 

 

There are other hot water systems such as local water heaters, point of use water 

heaters (POU) and instantaneous water heaters.  

   

A    B                  C 
 
Figure 1.26 A-Local water heater, B. Instantaneous water heater, C. Point of use 

water heater. (Source: own collection) 

 
Small or local water heaters (Figure 1.26A) and the point of use water heaters 

(Figure 1.26B and C) are relatively low risk hot water systems as they operate with 

minimum water storage (EWGLI, 2011).   These water heaters are comparatively safer 

than calorifiers and large water heaters in terms of Legionella proliferation. These 

water heaters are installed in situations where hot water usage is minimal, as they are 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwji6eHRuZrTAhWClxoKHe8XCH0QjRwIBw&url=http://www.simplifydiy.com/plumbing-and-heating/hot-water-storage/combination-vented&bvm=bv.152174688,bs.1,d.ZGg&psig=AFQjCNHSGfXen93AmHniOjn9RuHN423c4w&ust=1491932896913262
http://www.gasapplianceguide.co.uk/DirectandIndirectCylinders
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not designed for the hot water storage. However, Legionella can grow in these system 

also if they are operated at low temperatures (<50ºC). In general, these hot water 

systems are considered as low risk systems in terms of Legionella if they operate in the 

range of 50-60ºC at all times. These findings can be    supported with a study carried 

out in Germany; analysis results of 452 hot water samples from domestic residences for 

the occurrence of Legionella bacteria showed 93.9% positive, in contrast, all the 

samples collected from local/instantaneous/POU water heaters were free from 

Legionella contamination (Mathys et al., 2008).  However, intermittent operation of 

these systems can cause water temperatures to fall in the range of 20-45ºC which is the 

favourable temperature region for Legionella proliferation. Once Legionella 

proliferation is occurred within these systems, these organisms can move back towards 

the main flow stream   and contaminate the whole system.   

 

1.17.9.2 Mixed water sources  

 

Showers and outlets fitted with thermostatic mixing valves are the main sources of 

mixed water in domestic properties. Favourable water temperatures, the presence of 

stagnant water, and scale deposits within the showerheads can create a nutrient rich 

environment for Legionella proliferation and growth (Spalekova and Bazovska, 2003). 

Showers (Figure 1.27) are considered as a major source of Legionella infection due to 

excessive aerosol generation during their use. Most showers are thermostatically 

controlled to provide with a comfortable showering temperature of 35-40ºC, which is 

the optimum temperature for Legionella proliferation. Legionella outbreaks in domestic 

properties have been traced back to contaminated showers; for example, during the 

summer of 1980, 58 people were infected with Legionnaires disease out of 5,000 guests 

stayed at the Rio Park Hotel. Epidemiological investigation reported that the outbreak 

was caused from infected showers as those who took shower in each morning had been 

contracted LD (Macfarlane and Worboys, 2012). Furthermore, many recent studies 

have identified that the showers are one of the major sources of Legionella 

contamination as well as potential LD outbreaks (Chinsembu, and Hakwenye, H (2010; 

Collins et al., 2017a; Prussin et al., 2017).  

Vulnerable premises that accommodate vulnerable people  such as hospitals, health 

care premises, schools and elderly homes are the main areas where thermostatic 

mixing valves (TMV’s) are installed (Figure 1.28) to eliminate the risk of scalding.  
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TMVs are normally installed prior to the water usage point where cold water and hot 

water are mixed together in a ratio offset by the thermostat; normally in the range of 

35-40ºC.  Thus, water temperatures within TMV’s are always in favour of Legionella 

proliferation, and scale deposits within the TMVs can provide nutrients for bacterial 

growth. Therefore, TMVs are categorised as high risk systems in terms of Legionella 

control and their usage has been discouraged in recent years. However, existing TMVs 

can be maintained with more frequent internal cleaning and disinfection with extensive 

monitoring (Murray, 1988).  

 

   

  Figure 1.27 Scaled showerhead         Figure 1.28 TMV  
(Source: own collection) 
 

 
 

1.18    Regulations for Legionella control 

 

1.18.1  General control measures for Legionella bacteria 

 

Legionella risk cannot be eliminated; but by taking appropriate control measures 

Legionella risk can be reduced. In the UK, HSE has implemented regulations and 

appropriate guidance to control Legionella in water systems (HSE, 2013).  These 

include (a) avoiding water temperatures between 20 °C and 45 °C in the water system;  

(b) avoiding water stagnation within the water system; (c) avoiding the use of 

materials in the water system that encourage the proliferation of Legionella bacteria or 

any other microorganisms; (d) ensuring water system is clean and free from rust, scale, 

sludge, organic matter and biofilms (e ) ensuring the water heaters or calorifiers are 
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operating at 60⁰C to attain a minimum of 50⁰C at all related hot outlets (f) ensuring the  

hot water is recirculated to avoid stagnation as well as maintain the temperature and 

(g)  considering water treatment to control the proliferation of Legionella bacteria or to 

reduce the possibility of bacterial growth (h) monitoring  any control measures in place 

(i)  reducing aerosol generation and (j) keeping  records of remedial actions taken 

including maintenance work (HSE, 2015). 

 

World Health Organisation (WHO), United States Environmental Protection Agency 

(USEPA), American Society of Heating, Refrigerating, and Air-Conditioning Engineers 

(ASHRAE), European Centre for Disease Prevention and Control (ECDC) and UK Health 

and safety Executive (HSE) has provided specific guidelines to protect the public from 

Legionella infection.  

 

1.18.2    WHO guidelines 

 

The World Health Organization (WHO) had three principal documents providing 

guidance on Legionella control; Guidelines for Drinking-water Quality (WHO, 2004), 

Guidelines for Safe Recreational Water Environments (WHO, 2006), Guide to Ship 

Sanitation (WHO, 2007). In 2007, a review was conducted resulting in a specific 

document on Legionella control: LEGIONELLA and the prevention of Legionellosis 

(WHO, 2007). This 252 page document has addressed a number of shortfalls in 

previous guidelines and provided specific guidelines for healthcare and non-health care 

premises.      

 

1.18.3  United States Environmental Protection Agency (USEPA) 

guidelines 

 

The United States Centre for Disease Control and Prevention estimates that 8,000 to 

18,000 people are hospitalised in the U.S every year with Legionnaires’ disease. There 

are Federal guidelines and state guidelines in place to protect the public health in terms 

of Legionnaires disease (EPA 2017). In addition, there are ASHRAE (American Society 

of Heating, Refrigerating, and Air-Conditioning Engineers) guidelines to manage the 

risk of Legionellosis from Building Water Systems (ASHARE, 2015). 

https://www.techstreet.com/ashrae/standards/ashrae-188-2015?product_id=1897561
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1.18.4        European guidelines  

 

European Centre for Disease Prevention and Control (ECDC) and European 

Legionnaires’ Disease Surveillance Network (ELDSNet) has provided specific guidelines 

on prevention and control of Legionella bacteria in water systems (ECDC, 2012; ECDC, 

2011). The main aim of ELDSNet   is to operate as a network to detect, control and 

prevent LD cases, clusters and LD outbreaks within EU/EEA countries and assist with 

detection and response even outside European countries. European Legionnaires’ 

Disease Surveillance Network helps within the EU countries to share information and 

collaborate on Member State actions to ensure the residents of European countries are 

better protected from contracting Legionnaires’ disease associated with travel within 

their own country or abroad (ELDSNet, 2017).  

 

1.18.5        UK health and safety law 

 

UK Health and Safety Executive (HSE) have implemented strict legislation under 

Control of substance hazardous to health (COSHH) regulations to control Legionella and 

protect the public from Legionnaires’ disease. Legionella control procedures in the UK 

should be in accordance with Approved Code of Practice, Legislation 8 (ACOP L8). HSG 

Part 2 Published in 2014 gives practical advice on the legal requirements for the 

‘control of Legionella in hot and cold water systems (HSG, 2014).  
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Figure 1.29 HSE’s ACOP L8 legislation (latest) to protect the public from Legionnaires’ 
disease. (Source: http://www.hse.gov.uk/pubns/books/l8.htm 
 
 

ACOP L8 (Figure 1.29) gives the legislative requirements and guidance about risk of 

Legionella bacteria in the water systems and effective control measures. ACOP L8 also 

gives the guidance on the management of compliance with the relevant parts of Health 

and Safety at Work Place Regulations 1999 (HSE, 2014). ACOP L8 was revised in 2013 

and a separate guideline was allocated for the control of Legionella bacteria in hot and 

cold water systems under the code HSG274 Part 2 published in 2014 (HSG, 2014).    

There are two important steps to follow in Legionella control; first is to carry out a 

specific and detailed risk assessment to identify the possible risk factors in terms of 

Legionella and second is to establish a routine monitoring program on the basis of the 

risks identified. This monitoring program includes regular temperature testing, hot and 

cold water storage system inspection, water sampling for Legionella analysis and 

periodic cleaning of water systems (Stout, 1998). Temperature monitoring is needed to 

ensure the system is operating within the threshold limits as hot water temperature 

must be above 500C and the cold water temperature must be below 200C. Water 

storage systems inspection (e.g. water tank(s) are needed to ensure that the system is 

free from sediments, corrosion products, scale, water stagnation, other debris, sludge, 

slime, algae and biofilm as these can harbour Legionella as well as act as nutrients for  

bacteria (Geary, 2000).  

 

http://www.hse.gov.uk/pubns/books/l8.htm
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Water sampling and analysis plays an important role in Legionella control as visual 

inspection cannot provide any estimate of microbiological contamination of the water 

system. There are specific guidelines outlined for water sampling in BS 7592:2008 (BS 

7592:2008); water samples are collected in sterile bottles (Figure 1.30a) which are 

then sent to accredited laboratories to analyse for Legionella bacteria by culturing on 

Buffered Charcoal- Yeast Extract (BCYE) agar medium (Figure 1.30b).This standard 

diagnostic procedure can take up to eleven days to get the results and report (Ta et al., 

1995). If Legionella is detected during the analysis, disinfection of the water system will 

be necessary (Figure 1.30c).  

     

Figure 1.30a, Water sample collection for Legionella analysis in sterile bottles 
(supplied by UKAS accredited laboratory) in accordance with BS 7592:2008.   Figure 
1.30b, BCYE culture of Legionella bacteria from environmental water samples in UKAS 
accredited laboratory.  Figure 1.30c, a sectional GRP tank after the cleaning and 
disinfection as water sample analysis of the stored water was identified with Legionella 
spp   serogroup 1.                             
Source: Figure1.30a and c: own collection,  Figure1.30b: https://www.alsglobal.com.

                                                                               

However, each year approximately 200-300 reported cases of Legionnaire’s disease 

are reported in the UK every year, and there are hundreds of cases which are not 

reported.  In 1981, WHO recommend all cases of pneumonia admitted to hospital be 

examined for Legionella infection, but in the current economic climate this is not 

practical and has not been followed. Thus the risk of Legionnaires’ disease is increasing 

and subsequently the number of outbreaks is on the rise (Diederen, 2008).   This 

increasing number of cases of LD could be resulted from public contracting Legionella 

infection from the domestic water systems which are not in-compliance with latest 

ACOP L8 guidelines (personal observation of Aji Peter as a Legionella control 

practitioner).   
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1.19      Remedial cctions in the event of positive Legionella detection 

 

Once the laboratory analysis result confirms the system is infected with Legionella 

bacteria, disinfection of the water system may be necessary depending on the level of 

Legionella bacteria identified (HSG274Part2, 2014). There are a number of disinfection 

techniques available depending on the nature of the infected system.  

 

1.19.1       Disinfection methods 

 

There are a number of disinfection methods available but many of them are not 

been generally used (for example, membrane filtration), therefore, those are not 

reviewed here. Commonly used disinfection methods are thermal disinfection 

(normally for hot water system), chemical disinfection, Ultra Violet (UV) light 

disinfection, ozone disinfection, copper-silver ionisation disinfection and point of use 

filtration (Walraven and Chapman, 2016).  Disinfectants used for portable water must 

be suitable for human consumption due to its chemical properties and concentrations.  

Additional disinfectants can be used for non-potable water systems as associated 

human health risks are no longer of concern (Werner et al., 2016; Blanc et al., 2005). In 

this research, I am mainly discussing about the domestic hot and cold water systems 

and therefore, other water systems disinfection methods are excluded from this review.   

   

1.19.2       Thermal disinfection 

 

Thermal disinfection (pasteurisation) has been widely used in hot water systems as 

Legionella cannot survive more than a minute at 70°C (Kruse et al., 2016; Callizoa et al., 

2005). In this procedure, the calorifier/water heater need to be operated at 70°C and 

all the related outlets also should attain a minimum of 60°C.  Any deadlegs or dead ends 

in the system need to be heated to 70°C by using trace heating techniques (Yang et al., 

2016; Al-Sharif, 2006; Kima et al., 2002).  All the outlets should be flushed for at least 

five minutes to ensure the water discharging temperature is 60°C or above.  

The water system should be well insulated to achieve the best result of thermal 

disinfection. Once the temperature of all outlets reaches a minimum of 60ºC, the whole 
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hot water system should be kept at the same temperature for a minimum of one hour.  

After one hour, the calorifier’s operating temperature is reduced to 60ºC and all the 

outlets are flushed until the temperature stabilises. At this stage, the system is 

considered to be free from Legionella and ready to use.  However re-sampling is 

necessary to confirm that the hot water system is free from Legionella infection. In 

normal operation, hot water temperature should be in the range of 50-60ºC as above 

62ºC presents a possible scalding risk (HSG274Part2, 2014).  In contrast, many studies 

demonstrated that thermal disinfection is not effective compared to other popular 

disinfection techniques (Marchesi et al., 2016).  A study conducted in a 1070 bedded 

hospital in Taiwan showed that pasteurisation performed over an eight-week period 

eliminated Legionella bacteria from the hospital ward taps and brought down the 

bacteria count from 80 percent to 25 percent in ICUs. However, Legionella growth rate 

increased significantly after two months, from zero to 15% in hospital patient wards, 

and from 25% to 93% in ICUs. A second round of thermal disinfection was carried out 

for a 2-day period, but no significant reduction was achieved during this treatment 

(Chen et al., 2005).  

 

The main advantage of thermal disinfection is that, it generally does not require any 

special equipment and is easy to carry out (Ji et al., 2018; EPA, 2015). However, there 

are a number of disadvantages for this disinfection procedure as follows (Pūle, 2016; 

EPA, 2015; Campos et al., 2003): 

 

(i) This is only applicable to hot water distribution system with heating efficiency.  

(ii) It is labour intensive and time-consuming.  

(iii) It requires significant amount of energy as well as manpower to perform the 

flushing. 

(iv) It may not be effective in dead legs and dead ends where water circulation is 

relatively poor. 

(v) Thermal disinfection is not effective within thermostatic mixing valves and 

mixed taps  

(vi) Possible scalding risk during thermal disinfection is a significant and this risk 

increases in vulnerable premises such as hospitals, schools and elderly care 

homes.  
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(vii) The high temperature applied on the hot water distribution system during 

this method can damage pipes, valves and pump seals, resulting in leakage, 

valve and pump damage.   

 

1.19.3        Chemical disinfection 

 

Many studies have demonstrated that the chemical disinfection techniques are 

more effective in managing the risk associated with Legionella infected systems 

(Marchesi et al., 2016; CDC, 2016;  Stalter et al., 2016). There are oxidising agents and 

non-oxidising agents as chemical disinfectants.   

 

1.19.4       Oxidising disinfectants 

 

Generally used oxidising agents are chlorine, bromine and iodine (Halogens), 

chlorine dioxide, potassium permanganate, hydrogen peroxide, ozone and chloramines.  

Out of all these oxidising agents, chlorine is the most widely used disinfectant; 

however, chlorine dioxide, ozone, hydrogen peroxide and chloramines are also popular 

in water treatment industry (Walraven  and Chapman, 2016).  

 

1.19.4.1      Chlorine   

 

Chlorine and chlorine based compounds are oxidising disinfectants that can 

efficiently inactivate microorganisms including Legionella species during disinfection 

treatment, as well as helps to maintain the water quality throughout the distribution 

system. (Montes et al., 2014; McGuire, 2013). Chlorine is added to water as chlorine 

gas; sodium hypochlorite solution or dry calcium hypochlorite is used for this purpose. 

Chlorine as sodium hypochlorite is the most common form of disinfectant used in 

domestic water systems (Gillilland, 2014).  Chlorine can be used in hot and cold water 

systems for in-line ongoing treatment (as a precautionary measure) as well as to the 

cold and hot water tanks or to the entire distribution system. Also, chlorine can use at 

high doses for emergency shock treatments (hyper chlorination) of domestic water 

systems (Borella et al., 2016). When chlorine is used as a disinfectant, the role of pH is 
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very important as chlorine exists as hypochlorous acid in the pH range of 6.4 to 7.6 and 

out of this pH range, it exist as hypochlorite ion (EPA, 2016a). Hypochlorous acid is 

comparatively a stronger disinfectant and oxidant than hypochlorite due to its fast 

reactive nature (Park et al., 2004). 

The efficiency of chlorine disinfection is mainly depends on factors such as 

chlorine concentration, pH,  temperature, contact time, buffering capacity of the water, 

types of microorganisms present in the water, concentration of organic matter in 

water, and presence of biofilm in the water system (McGuire, 2013); Le Dantec et al., 

2002).  Even though chlorine is widely used as a strong oxidising disinfectant against 

Legionella, there are significant negative impacts in chlorination.  There are enough 

evidences that chlorination of hot and cold water systems can shorten the life of the 

installations and damage the entire water distribution system (Lytle and Liggett, 2016; 

Abigail et al., 2007). Last of all is the lack of long lasting effect which means chlorination 

cannot eliminate Legionella, but only can suppress the growth and also chlorine cannot 

penetrate in to biofilms (Percival and Williams, 2014).   

 

 

1.19.4.2      Chlorine dioxide    

 

Chlorine dioxide is relatively more powerful than chlorine in hot and cold water 

disinfection (WHO, 2016). Chlorine dioxide is a green-yellow water-soluble gas that can 

diffuse through cell membranes of micro-organisms, and this gas can be manufactured 

by mixing sodium chlorite and a strong acid such as hydrochloric acid or nitric acid. 

This can be used as the same way of doing chlorination and is more successful in the 

hot water system as chlorine dioxide can penetrate in to the biofilms, active in higher 

temperatures and in higher pH (Walraven and Chapman, 2016). Chlorine dioxide is 

active and is an effective disinfectant in a wide range of pH as compared to chlorine and 

is also considered as less corrosive than chlorine (Shirasaki et al., 2016). Some studies 

reported that chlorine dioxide reacts with polyethylene water pipes which resulted in 

serious damage to the pipework system (Yu et al., 2011). The amount of chlorine 

dioxide required for effective disinfection is depend on factors such as the complexity 

of biofilm within the system,  pipework material and condition, population and type of 

micro-organism present, pipe size and length of the distribution system, water 

turnover rate and treatment goals such as  Legionella control (WHO, 2016; Lin et al., 
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2011). Maintaining total residual chlorine dioxide level of 0.1–0.5 PPM within the 

domestic water distribution system is usually sufficient to control Legionella bacteria, 

although higher levels may be necessary in a heavily contaminated system (HSE, 2014).  

 

1.19.4.3 Ozone 

 

Ozone is used as an effective disinfectant in domestic water systems (Xie, 

2016). It is generated at the location of use, using either air or liquid oxygen and is then 

transferred into the water phase. When dissolved in water, unstable molecular ozone 

(O3) decomposes to hydroxyl radical, which is a stronger and reactive oxidizing agent 

than molecular ozone (Glaze, 1987). The efficiency of ozone disinfection is totally 

depending on the concentration of the oxidants and the reactivity of the contaminants 

with each oxidant (Gehr et al., 2003). Water temperature has direct impact on ozone 

disinfection as efficiency increases as temperature increases (Cho et al., 2003). In 

contrast, due to the fast decomposition of ozone in hot water, it is difficult to maintain a 

higher concentration level throughout the water system to control Legionella bacteria. 

Therefore, balance between higher inactivation rates and lower CT with increased 

water temperature need to be maintained during ozone disinfection (Ruiz et al., 2007).   

1.19.4.4 Monochloramine 

 

Monochloramine (NH2Cl) is an oxidising disinfectant and is active in controlling 

bacterial re-growth and controlling biofilms (Baron et al., 2015). The primary 

advantage of Monochloramine is that can penetrate biofilm, although excess ammonia 

contributes towards certain biofilm growth (Gomez-Alvarez et al., 2016). The main 

application of monochloramine in domestic water systems is for residual disinfection 

and it has a more persistent nature and stability in water system than chlorine (Taylor 

et al., 2000). When interacting with biofilm bacteria, monochloramine can actively 

penetrate; whereas chlorine cannot penetrate biofilm as well as it may get consumed 

through various reactions.  Some studies have demonstrated that monochloramine was 

able to penetrate biofilms 170 times faster than equivalent amount of free chlorine in 

domestic water systems (Lee et al., 2011).  

There are reports from studies that monochloramine can easily react with rubber 

and plastic materials which can create severe damages in pipework systems and pumps 
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(EPA, 2016a; Rogers et al., 2004). Monochloramine in water can adversely affect kidney 

dialysis and should not be present in dialysate water (Fairey et al., 2007; Tipple et al., 

1990). Monochloramine can cause detrimental effects on fish species as water 

containing monochloramine cannot be used for aquariums (Tkachenko and 

Grudniewska, 2016; Altinok, 2004). Another risk factor is that monochloramine is 

capable to react with organic matters in the water to form a number of DBPs such as 

nitrosamines causing potential public health concerns (Yang et al., 2016a; Stalter et al., 

2016; Vikesland et al., 1998 ).  

 

1.19.4.5 Silver peroxide 

 

Silver-peroxide is considered as an environmentally friendly water disinfectant 

mainly based on hydrogen peroxide and silver-nitrate (Marchesi et al., 2016; Pedahzur 

et al., 2000). The capability of silver-peroxide in eliminating micro-organisms such as 

bacteria, viruses, amoeba, mould, fungi and algae are well identified with its efficacy in 

controlling the biofilms (Kotze, 2015; Armon et al., 2000). Silver peroxide has been 

developed in 1970 and it offers hydrogen peroxide stabilisation; a long lasting efficient 

disinfectant. Silver peroxide differs from ordinary hydrogen peroxide because of the 

presence of antibacterial chemical, ‘silver nitrate’ (Pedahzur et al., 1997). When used as 

a water disinfectant, hydrogen peroxide activation stops when all the organic materials 

are oxidised.  Once the oxidation process is stopped, the non-reacted hydrogen 

peroxide decomposes as water and oxygen. In contrast, silver-nitrate does not break 

down and become persistent in the domestic water system or remains in the 

environment (Ditommaso et al., 2016; Tofant et al., 2006; Pedahzur et al., 2000;Kim et 

al., 2004).  

 

1.19.4.6 Non-Oxidising disinfectants 

 

There are a number of non-oxidising organic disinfectants used against 

Legionella bacteria. They are amines, halogenated amides, halogenated glycols, 

aldehydes, heterocyclic ketones, thiocarbamates, organo-tin compounds and 

thiocyanates (Sanli-Yurudu et al., 2012).  Most of these disinfectants are used in 

Legionella control of cooling tower systems and only rarely use in potable water 
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Legionella control; therefore, this review will not consider non-oxidising disinfectants 

(Reynolds-Clausen et al., 2018).     

  

1.19.5  UV disinfection 

 

As a water disinfection technique, UV is known to be an effective disinfectant 

due to its strong germicidal ability (Song et al., 2016). UV is capable of inactivating 

micro-organisms such as bacteria, viruses, protozoa, Giardia lamblia cysts or 

Cryptosporidium oocysts (Hijnen et al., 2006; Water Research, 2015). UV radiation 

inactivates microorganisms by altering their DNA in the cells and it does not remove 

organisms from the water (Giannakis et al., 2016; Liu et al., 1995). The efficiency of this 

process is mainly depending on exposure time, lamp intensity and water quality 

parameters (Water Research, 2015).  

 

1.19.6  Copper silver ionisation method 

 

Copper silver ionisation (CSI) method is found to be one of the most successful 

disinfection techniques against Legionella pneumophila (Walraven et al., 2016; Shih 

and Lin, 2010; Sabria and Victor, 2002). In contrast, some studies have demonstrated 

that CSI was not effective in the eradication of Legionella from the hot water system 

(Bédard et al., 2016; Garrison et al., 2016). Bédard and colleagues also reported that the 

operating temperature of the hot water system at the time of outbreak was in the range 

of 50-55°C. It is vital to understand that the hot water systems operating in this 

temperature region also can encourage Legionella proliferation if water stagnation or 

reduced water circulation arises anywhere in the system and sometimes promote 

Legionella growth if there is enough nutrients present within the water system 

(Barbosa and  Thompson, 2016; Rhoads et al., 2016). In this method, water flows 

through a device with copper and silver electrodes connected to a low potential 

electricity supply.  Positively charged copper ions (Cu 2+) and silver ions (Ag2+) are 

released in to the water and these ions establish electrostatic bonds with micro-

organism’s cell wall which is negatively charged (Parr, 2016; Vidic et al., 2002). These 

bonds create tension forces leading to altered permeability of the cell wall which 
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causes protein denaturation.  This leads to cellular lysis and death (Kusnetsov et al., 

2001; Rohr et al., 1999).   

The main advantage of CSI system is easy to carry out installation and 

maintenance as well as very cost effective as compared to other disinfection techniques 

currently in use (Borella et al., 2016; Triantafyllidou  et al., 2016).  This procedure is 

efficient at any water temperature and this technique kills Legionella bacteria, rather 

than suppressing or preventing replication; thus eliminating the possibility of 

recolonization (Barbosa and Thompson, 2016; Lin et al., 1998a). Generally, it is 

recommended to maintain the copper ion level between 0.2 - 0.4 PPM and silver ions 

0.02 – 0.04 PPM in domestic water systems (WHO, 2017).  One of the main structural 

implications is that CSI can result in pipework corrosion (Loret et al., 2005). Copper 

and silver are heavy metals, and therefore it is desirable to reduce the quantity of these 

metals in domestic water especially in potable water to avoid various public health 

issues. (Lytle and Schock, 2008). Water distribution systems with copper pipework and 

CSI systems are considered as high risk water systems in terms of copper toxicity 

(Pettersson and Rasmussen, 1999; Zietz et al., 2003). 

  

1.19.7   Point of use filtration 

 

Advanced membrane filter technology have developed Point of Use (POU) 

water filtration systems capable of removing pathogenic microorganisms from 

domestic water (Alsbaiee et al., 2016). Microbiological contaminants including 

Legionella bacteria can be filtered using these technologies; and these filtration 

techniques include microfiltration (MF), ultrafiltration (UF), nano filtration (NF) and 

reverse osmosis (RO) processes. Point of Use (POU) filtration can be installed at specific 

taps and showerheads as a temporary measure providing physical barrier against 

water borne micro-organisms  including Legionella pneumophila (Walraven and 

Chapman, 2016; Cervia et al., 2010). Hospitals and health care premises are benefitted 

with these devices to provide safe domestic water facilities for vulnerable patients by 

reducing the risk of pathogenic infections (Baron et al., 2014). The main risk factor with 

POU filters is the potential concentration of bacteria and foster growth of water borne 

pathogens within the filter. Any potential failures of POU filters can release high levels 

of pathogens and harmful micro-organisms to the water user. Also, there are 
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possibilities for filter to clog with scale, membranes foul and degradation by micro-

organisms (EPA, 2015). 

 

1.20  Challenges and shortfalls in current Legionella control 

strategy  

 

Legionella can actively colonise and proliferate within domestic hot and cold 

water systems, and this presents one way for humans to come into contact with 

Legionella thereby increasing their risk of contracting the disease (Garrison et al, 

2016). Consequently, the World Health Organisation (WHO), European Centre for 

Disease Prevention and Control (ECDC), European Legionnaires’ Disease Surveillance 

Network (ELDSNet) and UK Health and Safety executive (HSE) have put in place  

guidelines to manage the Legionella risk and protect the public health (WHO, 2007; 

ECDC, 2012; ECDC, 2011; HSE, 2013).  The UK Health and Safety Executive (HSE) have 

implemented strict rules under the 'Control of Substances Hazardous to Health' 

(COSHH)  regulations to control Legionella and protect the public from LD by taking 

appropriate precautionary measures designed to reduce exposure to the bacteria. The 

latest guidance on the legal requirements to control Legionella bacteria in domestic hot 

and cold water systems HSG274 Part2 (published in 2014) has addressed many of the 

critical areas for practical Legionella control which was not addressed in WHO  

‘LEGIONELLA and the prevention of legionellosis’ (2007) and ECDC TECHNICAL 

DOCUMENT European Legionnaires’ Disease Surveillance Network (ELDSNet) 

Operating procedures (2011).  Despite the valuable role of the HSE ACOP L8 (2013) 

and HSG 274 Part2 (2014) in managing the risks of exposure to Legionella, there are 

concerns and short comings that must still be addressed and planned for.  

 

1.20.1      Defining those who are most at risk  

 

Legionella bacteria remain a continuous hazard to human health due to their 

specialised characteristics (Borges et al., 2012). In the latest HSE guideline HSG274 Part 

2 (published in 2014), special consideration has been given to health care premises and 

care homes. This includes remedial action, such as investigation, for any detection of 

Legionella between 1 and 100 colony forming units (cfu)/l in domestic water systems.  
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Notably, however, there is no recommended action for the same level of Legionella 

detection in other premises such as residential complexes with communal hot and cold 

water systems; considered to be ‘low risk’ areas.  Health care premises (such as 

hospitals and care homes) are deemed ‘high risk’ areas due to the high proportion of 

vulnerable groups with increased susceptibility to LD due to existing illness and/or 

impaired immune system (HSG274 Part2, 2014). Table 1.6 (an excerpt of HSG274 

Part2) compares the guidance on remedial action in the event of a positive Legionella 

result in both high risk areas (hospitals and care homes) and low risk areas (residential 

homes).  According to this guidance, a greater level of remedial action or investigation 

is necessary if Legionella is detected below 100 cfu/L in healthcare premises. However, 

in non-healthcare premises, the same result would require no remedial action or 

intervention of any kind, despite the possibility of occupancy by susceptible residents 

(see Chapter 2) (Quan et al., 2016).  

 

WHO advice (2007) states a target level of <1000 cfu/L Legionella spp for 

patients with classical individual risk factors and <50 cfu/L Legionella spp in some 

areas for high-risk patients in healthcare premises, which is arguably too high (Table 

1.7).  However, similar to the HSE guideline HSG274 Part 2, there are no guidelines 

given for Legionella detection in non-healthcare premises.  Furthermore, European 

guidelines recommend remedial action when Legionella are present between 1000 

cfu/L and 10,000 cfu/L (Table 1.8) regardless of whether these are detected in 

healthcare or non-healthcare premises (ECDC, 2011; ECDC, 2017d). This variability in 

the stringency of control measures may further accelerate the number of Community 

Acquired Pneumonia (CAP) cases. A study carried out on the available European data 

collated between 2005 and 2012 indicated CAP to cost society around €10 billion 

annually due to hospitalisation and lost working days (Torres et al., 2013). Campese et 

al., 2015 have reviewed the current knowledge of Legionnaires' disease (LD) in France 

illustrated by the epidemiological situation in 2013. In the United States, the 

Environmental Protection Agency (EPA) also provides guidance on the control of 

Legionella bacteria in water systems.  However, updated guidelines for the control of 

Legionella in Western Pennsylvania published in October 2014 state that ‘in the 

absence of more definitive evidence or explicit U.S. federal guidance, guidelines from 

UK and EU can be considered’ (UGCLWP, 2014).  
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Table 1.6  Comparison of actions to be taken following Legionella detection in water 
samples taken from hot and cold water systems in healthcare and non-health care 
premises.  
 
Legionella bacteria 
(cfu/l) 

                                 Recommended actions 
Healthcare premises Non-healthcare premises 

Not detected or up 
to 100 cfu/l  

 

In healthcare, the primary concern 
is protecting susceptible patients, 
so any detection of Legionella 
should be investigated and, if 
necessary, the system resampled 
to aid interpretation of the results 
in line with the monitoring 
strategy and risk assessment. 

    
 
 
                 No action 

>100 cfu/l and 
up to 1000 cfu/l 

Either: 
■ If the minority of samples are 
positive, the system should be 
resampled. If similar results are 
found again, a review the control 
measures and risk assessment 
should be carried out to identify 
any remedial actions necessary  
 
or 
 
■ if the majority of samples are 
positive, the system may be 
colonised, albeit at a low level. An 
immediate review of control 
measures and a risk assessment 
should be carried out to identify 
any other remedial action 
required. Disinfection of the 
system should be considered. 

Either:  
■ If the minority of samples are 
positive, the system should be 
resampled. If similar results are 
found again, a review of the 
control  measures and risk 
assessment should be carried out 
to identify any remedial actions 
necessary 

or  

■ if the majority of samples are 
positive, the system may be 
colonised, albeit at a low level. An 
immediate review of the control 
measures and risk assessment 
should be carried out to identify 
any other remedial action 
required. Disinfection of the 
system should be considered. 

>1000 cfu/l The system should be resampled 
and an immediate review of the 
control measures and risk 
assessment carried out to identify 
any remedial actions, including 
possible disinfection of the 
system. Retesting should take 
place a few days after disinfection 
and at frequent intervals 
thereafter until a satisfactory level 
of control is achieved. 

The system should be resampled 
and an immediate review of the 
control measures and risk 
assessment carried out to identify 
any remedial actions, including 
possible disinfection of the 
system. Retesting should take 
place a few days after disinfection 
and at frequent intervals 
afterwards until a satisfactory 
level of control is achieved. 

Source: http://www.hse.gov.uk/PuBns/priced/hsg274part2.pdf 
 

 

 

 

http://www.hse.gov.uk/PuBns/priced/hsg274part2.pdf
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Table 1.7  An example of  WHO’s recommendation for verification and corrective 

action for Legionella detected in samples taken from hot and cold water systems. 

Process 
step 

Indicator Monitoring Operational 
limit 

Corrective action 

 

 

Verification 

 

 
Legionella 
concentration 
in water 

What Legionella 
concentration 

In areas for 
patients 
with 
classical 
Individual 
risk factors, 
target level 
of 
<1000 
CFU/L 
Legionella 
spp. In some 
areas for 
high-risk 
patients, 
target level 
of <50 CFU/l 
Legionella 
spp. 

What Raising 
temperature, 
disinfection, 
restriction of 
water use, 
use of 
filtered 
water  

How Employ 
documented, 
validated and 
quality 
controlled 
methods 

How Systematic 
search for 
failure in the 
system 

When 2 
times/year(4 
times/year in 
high risk 
areas) 

When Immediately 

Where At the entry 
and at 
selected 
point of use 
sites 

Who Plumber (for 
pump) 
Building 
engineer 
(Calorifier) 

Who Infection 
control officer 
or hospital 
hygienist 

 

Table 1.8  EU guidelines for required action following Legionella detection in hot and 

cold water systems. 

Legionella bacteria (cfu/litre) Action required 

More than 1,000 but up to 10,000 Either: 
(i) If a small proportion of samples (10-20%) are positive, the 

system should be resampled. If a similar count is found 
again, then a review of the control measures and risk 
assessment should be carried out to identify any 
remedial actions; 
 

(ii) If the majority of the samples are positive, the system may 
be colonised, albeit at a low level, with Legionella. 
Disinfection of the system should be considered but an 
immediate review of control measures and a risk 
assessment should be carried out to identify any other 
remedial action required. 
  

More than 10,000 The system should be resampled and an immediate review of the 
control measures and risk assessment carried out to identify any 
remedial actions, including possible disinfection of the system.  
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1.20.2  Detecting and quantifying Legionella to inform remedial actions  

 

HGS274 recommends that water sample analysis for Legionella should only be 

performed in United Kingdom Accreditation Service (UKAS) accredited laboratories 

and most of these laboratories currently use culture methods as their standard analysis 

method (Gruas et al., 2013; Zhan et al., 2014).  Quantitative data presented in the form 

of colony forming units per litre water (cfu/L) then form the basis for remedial action, 

if any, according to Table 1.6. Culture methods using Buffered Charcoal-Yeast Extract 

(BCYE) agar is still the ‘gold standard’ diagnostic procedure used (Collins  et al., 2015). 

It can take up to 15 days for the full diagnosis and report to become available using the 

culture method, thereby increasing the likelihood of further exposure to Legionella in 

contaminated buildings following delays in taking preventative actions (Zhan et al., 

2014;  Pierre et al., 2017).  In addition, many studies have demonstrated that 

quantification of Legionella using the culture method is not reliable as this always 

underestimates the population of Legionella in a given sample (Gruas et al., 2013;  

Whiley and Taylor, 2016; Dusserre et al., 2008; Delgado-Viscogliosi et al., 2009).  An 

alternative rapid and sensitive testing method for quantifying Legionella bacteria in 

water is quantitative Polymerase Chain Reaction qPCR (Joly et al., 2006). qPCR is an 

efficient way to  “amplify” (copy) specific small segments of DNA or RNA. PCR can 

therefore be used to detect and amplify genetic material recovered from environmental 

samples and present in small amounts over a million-fold within a few hours which is 

then sufficient for analysis (Higuchi et al., 1993).  

Recent studies comparing culture methods to molecular biology approaches (qPCR), 

report large differences in Legionella count, with the BYCE Agar culture method often 

underestimating the presence of Legionella in around 50% of cases (Whiley and Taylor, 

2016). Indeed, a sample recently analysed by ALcontrol Laboratories for Aqua 

Technologies produced a culture result < 100 cfu/l whilst the molecular determination 

by PCR reported 2448 genomic unit per litre (GU/L) (personal observation of the 

author; unreferenced, data not shown).  Thus, significant challenges exist even today in 

reliably quantifying Legionella bacteria using culture methods due to the growth of 

other microorganisms and the presence of ‘Viable But Non-Culturable’ (VBNC) forms 

(Epalle et al., 2015; Gruas et al., 2013).  
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A comparative study of 3967 environmental samples analysed for Legionella 

using both culture methods and qPCR found large differences, with only 34% (n=1331) 

of samples testing positive with culture methods compared to 72% (n=2856) using 

qPCR (Whiley and Taylor, 2016). Culture methods may therefore (i) underestimate the 

presence of Legionella in samples (Dusserre et al., 2008), (ii) struggle to detect low 

concentrations of bacteria in environmental samples that fall within the regulatory 

framework, and (iii) introduce delays between monitoring and remedial action 

(Delgado-Viscogliosi et al., 2009).  Inaccurate quantification of Legionella (especially at 

concentrations below 1000 cfu/L) and underestimation of viable bacteria in water 

samples (used for informing remedial action) raises important questions about the 

appropriateness of measures used in certain settings to protect human health, as well 

as the appropriateness of ‘’no action’’ in non-healthcare premises where Legionella 

counts below 100 cfu/l are detected (Delgado-Viscogliosi et al., 2005; Dusserre et al., 

2008).  

The qPCR is however considered as an efficient diagnostic procedure for micro-

organisms on the basis of DNA synthesis, there are many disadvantages in this method. 

Many studies reported that, qPCR often overestimates the concentration of Legionella 

bacteria as this method detects both viable and non-viable Legionella cells (Delgado-

Viscogliosi et al., 2009). A recent study by Slimani et al., entitled ‘Evaluation of 

propidium monoazide (PMA) treatment directly on membrane filter for the 

enumeration of viable but non cultivable Legionella by qPCR’ has clearly reported that 

the limitation of qPCR technique because the PMA-qPCR quantification yielded was 

significantly overestimating the number Legionella bacteria by diagnosing non-viable 

cells (Slimani et al., 2012).  

 

Another remarkable disadvantage of qPCR is that the amplification reactions can be 

affected by certain substances called inhibitors found in the environmental samples 

which can result in producing inaccurate results (Brooks et al., 2010). Calcium ions, 

rust, bile salts, urea, phenol, ethanol, polysaccharides, sodium dodecyl sulphate (SDS), 

humic acids, tannic acid, melanin, different proteins such as collagen, myoglobin, 

haemoglobin, lactoferrin, immunoglobin G (IgG) and proteinases are some of the 

inhibitors possibly present in environmental samples (Schrader et al., 2012; Maiwald et 

al., 1994). However, this disadvantage can be addressed by measuring these inhibitors 

prior to analysis as well as diluting the DNA extract a further 10-fold (Miyamoto et al., 

1997; Ballard et al., 2000). A study on environmental samples using qPCR techniques 
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demonstrated that naturally occurring inhibitors are a major threat for qPCR analysis 

of environmental samples, especially large volume water samples as the proportion of 

samples that could have been incorrectly reported as negatives was in the range of 

0.3% to 71%, depending on water source. These reports indicates that the importance 

of measuring and addressing inhibition when reporting qPCR results as this raises 

serious concerns in the case of pathogenic micro-organisms present in environmental 

water samples (Gibson et al., 2012). Another study conducted on 133 fresh and marine 

water samples, serial dilutions were employed in addressing the identified inhibition 

along with four other internal controls (IC). The frequency and magnitude of inhibition 

was varied considerably among qPCR methods, but the performance was better when 

using an environmental master mix; however, fivefold dilution using DNA/RNA free 

molecular grade water was also effective in reducing inhibition in about 78% of 

samples (Cao et al., 2012).  

 

Another reported disadvantage of qPCR is the difficulty in determining the cut-offs 

values.  A study carried out on 223 hot water samples and 37 cooling tower samples 

using qPCR targeting the 16S rRNA, specific for the genus Legionella reported that PCR 

results were non-quantifiable for 2.8% of cooling tower samples and 39.1% of hot 

water samples; however, this was highly predictive in conventional culture methods  

for Legionella counts below 250 cfu/Litre. Furthermore, PCR cut-off values for 

identifying Legionella in hot water samples containing >103 cfu/Litre were determined 

separately in different laboratories. The cut-offs values were significantly different 

between the laboratories and had sensitivities from 87.7 to 92.9% and specificities 

from 77.3 to 96.5%. In addition, PCR cut-offs could not be determined for cooling tower 

samples and the results obtained were highly variable and often high for culture-

negative samples. This study concluded by reporting ‘quantitative Legionella PCR 

appears to be applicable to samples from hot water systems, but the positivity cut-off 

has to be determined in each laboratory’ (Joly et al., 2006). 

 

All these studies indicate that regardless of the current diagnostic procedures in 

place for Legionella detection, none of them provide accurate measurements to 

quantification of Legionella in environmental samples which is a barrier to effective 

monitoring and the protection of public health. Therefore, it is necessary to develop a 

more accurate, reliable and rapid diagnostic method for the determination and 



 

106 
 

quantification of live Legionella bacteria in water systems (Delgado-Viscogliosi et al., 

2005). 

 

Another issue that I have faced in my professional role as a practitioner in Legionella 

management and control are a lack of consistency in sampling protocols, sample 

preservation and sample transport conditions prior to analysis of a water sample at an 

accredited laboratory.  If a sample is taken in a way that makes it unfit for purpose, (e.g. 

without immediate neutralisation of any biocides present), then the analysis result 

used for regulatory action will be unfit for purpose.  This also applies to ensuring fit for 

purpose sample preservation and transport.  Typically, sample bottles of 500 mL to 

1000 mL should be suitable.  Sampling guidance is available (ISO 19458:2006; BS 

7592:2008).  Ultimately, imprecision in the quantification of Legionella will negatively 

impact the effectiveness of enforcing authorities to recommend sensible practical 

guidelines for interpreting monitoring results.  

 

1.20.3  Understanding the real extent of LD in society 

 

The significant number of people classed as vulnerable/more susceptible/high risk 

residing in non-healthcare premises are not presently adequately protected by HSE 

ACOP L8 2013 and HSG 274 Part 2, combined with the possible role of changing 

external factors (e.g. climate change) in the UK, clearly indicates that a greater number 

of people are likely to be exposed to Legionella than presently thought.   The latest 

report from the British Lung Foundation showed that 0.5-1.1% of adults in the UK get 

pneumonia each year (BLF 2014), and 0.1% of UK adults receive treatment for 

pneumonia every year by the National Health Service (NHS) (NHS, 2014). However, in 

most instances these cases are treated primarily based on their symptoms, and a 

specific diagnosis of the cause of the illness is not routinely made.  Therefore, it is likely 

that the 306 cases of Legionella reported annually (PHE, 2014) are not a reflection of 

the true extent of Legionnaires Disease in the England and Wales. This findings can 

further be supported by a study in Germany led by The Competence Network for 

Community Acquired Pneumonia (CAPNETZ); thus reported that Legionella species 

was the causative pathogens in 3.8% of community-acquired pneumonia cases but only 

3.7% in hospitalised patients related cases. Legionella pneumophila was the 

predominant species in both community acquired and hospitalised cases. According to 

http://www.blf.org.uk/Page/Pneumonia%205-11
http://www.nhs.uk/conditions/pneumonia/Pages/Introduction.aspx
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a recent clinical review of the diagnosis and management of pneumonia in the UK, 2-

8% of all community acquired pneumonia cases are caused by Legionella pneumophila 

(CRCAP, 2012). It is vital to understand that the reported 2-8% underestimates the true 

incidence because it excludes pneumonia in immunocompromised groups or 

pneumonia as a pre-terminal event.   

1.20.4  Shortcomings in the Legionella risk assessment 

 

The first two important steps in Legionella control are (i) to carry out a detailed 

Legionella risk assessment to identify the possible risk factors, and (ii) establish a 

regular monitoring program on the basis of the highlighted risks (HSE, 2015). WHO 

guidelines, EU guidelines and HSE regulations all require a suitable and sufficient risk 

assessment and a regular review of the assessment to make necessary changes to keep 

the risk assessment up to date. There are proper guidelines given in HSG274 Part 2 to 

consider all aspects of Legionella control while carrying out a risk assessment. 

However, consideration of the type of population residing in buildings with communal 

domestic hot and cold water systems is presently missing.  HSE ACOP L8 (fourth 

edition) published in 2013 has provided the guidelines to consider when to carry out a 

risk assessment review.  This includes changes to the water system or its use, changes 

to the use of the building in which the water system is installed (e.g. a toilet and/or a 

wash basin is no longer ‘in use’ and rooms containing these items being used as 

storerooms instead), the availability of new information about risks or control 

measures, the results of checks indicating that control measures are no longer effective, 

changes to key site responsible personnel and a case of Legionnaires’ disease or 

Legionellosis associated with the system (HSE, 2013). Within this guideline, I propose 

that the proportion of individuals in residential buildings with a weakened immune 

system, and/over 45 years of age, and/or suffering from existing illnesses are also 

important factors to consider (see Chapter 2). New legislation enabling the collection of 

health and demographic data on individuals in residential buildings by the Duty Holder 

for the purposes of risk management of LD may therefore be needed. 

 

1.20.5   Summary of research gaps  

 

Legionella bacteria are ubiquitous in the man-made environment and remain a 

serious threat to public health.  Discrepancies in quantification of Legionella, shortfalls 
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in remedial action recommendations, omission of the ageing population residing in 

normal residential complexes when undertaking a risk assessment, and potential long 

term issues (such as climate change) means that practitioners must be ever more 

vigilant in protecting the public against the threat of Legionnaires’ disease. The 

requirement of a more accurate, reliable and rapid standard sampling and testing 

method to quantify viable Legionella, and a review of remedial action recommendations 

is needed for the effective control of Legionella bacteria in domestic water systems.  

 

1.21  Research aims 
 

Following a critical review of the literature on the control of Legionella, this PhD 

research project, entitled ‘Novel Approaches for Risk Management of Legionella 

bacteria in Domestic Water Systems’ has identified a number of research gaps (from a 

practitioners perspective) in Legionella control, and has highlighted major risk factors 

that could lead to the proliferation and harbouring of Legionella bacteria in the 

domestic water systems.  The following research aims have been identified: 

1.   Appropriateness of current guidelines to protect the ageing population: The 

present lack of consideration of the ageing population in the Legionella risk assessment 

guideline in residential settings highlights the possible need for a more focussed risk 

assessment strategy to manage the risk of Legionella infection in vulnerable individuals 

throughout society at large.  In Chapter 2 the proportion of vulnerable occupants 

occupying typical London residential buildings is researched in order to establish the 

appropriateness of present measures detailed in HSE ACOPL8 to protect vulnerable 

people in society.  New legislation enabling the collection of health and demographic 

data on individuals in residential buildings by the Duty Holder for the purposes of risk 

management of LD may be needed. 

2. Appropriateness of current sampling methods: In Chapter 3 research is undertaken 

to investigate a possible shortfall in the Legionella risk assessment related to water 

sampling methods used for cold water storage tanks that inform regulatory actions.  A 

thorough inspection of a number of cold water storage tanks from London properties 

was undertaken to see if changes in physical conditions within tanks can significantly 

affect the microbiological status of water samples collected at different locations from 
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within the same tanks.  Water samples will be analysed by the same UKAS accredited 

laboratory using the ‘gold-standard’ culture method. 

3.  Rapid detection of live Legionella:  Given the long time needed to obtain results using 

current culture methods, and the inability of current rapid methods to distinguish 

between live and dead Legionella, Chapter 4 attempts to develop a qPCR method to 

enable the rapid detection of live Legionella pneumophila in water samples.  In order to 

develop the method, and avoid the need for culture, I will obtain RNA from live 

Legionella lenticules.  

4.  Finally, in my professional role as Technical Manager (Aqua Technologies Europe 

Ltd) I have access to risk monitoring data from hundreds of London buildings. The data 

contains information about known risk factors for Legionella proliferation.  I will use 

these data to develop a predictive risk model to evaluate the likelihood of Legionella 

pneumophila occurring in residential buildings. The predictive power of the model will 

be validated using information from new client buildings (unknown status) that will be 

surveyed as part of routine monitoring.  
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CHAPTER TWO 

SURVEY OF RESIDENTIAL BUILDINGS 
 

2.1   Introduction 

 
The first two important steps in Legionella control are (i) to carry out a detailed 

Legionella risk assessment to identify the possible risk factors, and (ii) establish a 

regular monitoring program on the basis of the highlighted risks (HSE, 2015). WHO 

guidelines, EU guidelines and HSE regulations all require a suitable and sufficient risk 

assessment and a regular review of the assessment to make necessary changes to keep 

the risk assessment up to date. There are proper guidelines given in HSG274 Part 2 to 

consider all aspects of Legionella control while carrying out a risk assessment. 

However, consideration of the type of population residing in buildings with communal 

domestic hot and cold water systems is presently missing.  HSE ACOP L8 (fourth 

edition) published in 2013 has provided the guidelines to consider when to carry out a 

risk assessment review. 

 

These include: 

 changes to the water system or its use 

 changes to the use of the building in which the water system is installed (e.g. 

a toilet and/or a wash basin is no longer ‘in use’ and rooms containing these 

items being used as storerooms instead) 

 the availability of new information about risks or control measures 

 the results of checks indicating that control measures are no longer effective 

 changes to key site responsible personnel 

 a case of Legionnaires’ disease or Legionellosis associated with the system 

(HSE, 2013).  

 

However, exposure of people over 65 years of age to Legionella in their 

residential homes, even at relatively low concentrations (and at levels that are deemed 

to be acceptable according to HSG274 Part 2), raises serious concerns about possible 

health implications of an increasing ageing residential population (Beauté, 2017). 

There are already clear warnings in the literature about the increasing burden of age-
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related disease in UK society, with more than 6 million people aged 65 and above with 

long standing serious illness expected by 2030 based on current trends (LLUK, 2015). 

 

 

  In order to verify this concern, I conducted a survey of twenty residential 

building complexes in different London boroughs to gauge the extent of the ‘high risk’ 

occupants in residential buildings (Table 2.2).  

 

2.2 Methods 
 

This survey was administered through the specialised Legionella control company 

Aqua Technologies Europe Ltd.  In order to gain access to these buildings and onsite 

documents, 50 building managers were contacted about the content and purpose of the 

survey so that they could make an informed judgment about whether they wished to 

participate. Any assurances, including confidentiality or anonymity, were also made 

explicit at this time.   Twenty building managers agreed to participate in the study and 

signed the disclosure agreement with Aqua Technologies Europe Ltd.  The necessary 

information required for the survey was provided by the building managers using 

onsite documents, and was independently verified with  face to face communication 

with a small number of residents from each site.   A structured questionnaire was used 

to carry out this survey as shown in Table 2.1.    
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Table 2.1 Structured questionnaire used for conducting the survey in 20 residential 

buildings in different London boroughs.  

 

 

2.3 Results 
 

The survey was carried out successfully for 20 residential complexes from different 

boroughs in London. The total number of residents included in this survey was 5924, 

and the survey data which included the total number of flats in each development, the 

total number of residents, the total number of residents aged 65 and above, the number 

of people with long lasting illness such as diabetes, asthma, cancer and CKD and the 

number of people aged 65 and above with other non-communicable diseases is given in 

Table 2.2.     

 

Site details: 
 

Date of survey: 

Client details: 

Property Manager: 
 
 
Contact details: 

Survey carried out by: 

Property type: Is there any 
communal cold 
water storage 
tank(s) on site  

Yes 
 

Is there any 
communal hot water 
system (eg; 
calorifiers/water 
heaters) on site 

Yes 

No No 

Total number of 
flats/apartments 

 
 

Total number of 
residents/occupants 

 
 

Total number of 
unoccupied 
flats/apartments 

 

 
Total number of residents aged 65 and above 

 

Number of 
people(65+)with 
long lasting 
illness  

Diabetes  Cancer  Asthma  Chronic 
Kidney 
Disease 
(CKD) 

Number of 
people(65+)with 
other non-
communicable 
disease (NCD) 
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Table 2.2. Survey report of 5924 residents in 20 residential complexes from different boroughs in London for Legionella risk factors, including 

age and pre-existing long term illness.  

 

           
No. 

Post 
Code 

Total number of 
flats/apartments 

Total 
number of 
residents 

Number  and %  (round 
figure) of residents 
aged 65 and above 

Number of people(65+)with long 
lasting illness (diabetes, cancer, 
asthma & CKD*)  

Number of people(65+)with 
other non-communicable 
disease (NCD) 

1 TW3 48 142 18 (13%) 13 3 
2 TW10 24 77 15 (20%) 14 0 
3 KT1 30 102 21(21%) 18 3 
4 W1 44 99 8 (8%) 5 0 
5 NW1 96 256 57 (22%) 41 7 
6 W5 25 79 17 (22%) 8 6 
7 SE19 186 468 93 (20%) 62 10 
8 SW17 645 1674 492 (29%) 320 45 
9 E16 78 161 29 (18%) 14 4 

10 NW8 28 77 20 (26%) 16 2 
11 SW11 54 132 16 (12%) 9 4 
12 SW9 28 67 8 (12%) 3 3 
13 N2 64 157 29 (19%) 14 8 
14 N3 58 139 14 (10%) 8 2 
15 SW1P 54 128 23 (18%) 19 4 
16 W1C 42 103 11 (11%) 5 2 
17 E14 390 978 219 (22%) 145 27 
18 W1J 32 68 13 (19%) 4 3 
19 NW7 109 259 67 (26%) 43 9 
20 SE20 244 710 129 (18%) 71 30 

 

* Chronic Kidney Disease (CKD) 
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2.4 Discussion and conclusion 
  

These buildings consisted of flats or apartments of varying size from 64 to 645 units.  

On average 18% of the residents were found to be 65 years of age or over (confirming 

Government statistics), and most reported suffering from impaired immune systems or 

underlying diseases such as diabetes, cancer, respiratory problems and kidney diseases 

making them susceptible to Legionella infection. Importantly, the ageing population 

tend to prefer these shared dwellings over detached or semidetached houses due to the 

increased security, variety of communal facilities (such as leisure centres, water 

features and gardens) which they can enjoy without responsibility for the day-to-day 

maintenance (Michael et al., 2009). However, the ageing residents within these 

complexes are as vulnerable to Legionella infection as care home residents due to 

continuous use of domestic hot and cold water systems (Lin and Yu, 2014). 

 

Therefore, it is my opinion that residential complexes should also be categorised as 

“high risk” settings for Legionnaires’ disease based on the percentage of the elderly and 

vulnerable population inhabiting each building.  The proportion of individuals in 

residential buildings with a weakened immune system, and/over 45 years of age, 

and/or suffering from existing illnesses should be important factors to consider within 

the HSG274 Part 2 guideline (Reference to Chapter 1). New legislation enabling the 

routine collection of health and demographic data of individuals in residential buildings 

by the Duty Holder for the purposes of risk management of LD is therefore needed. In 

otherward, the people who are susceptible to Legionella (immunosuppressed and 

elderly) do not all reside in care homes, and therefore guidelines need to be more 

explicit about how to protect these vulnerable groups in residential settings.    
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   CHAPTER THREE 

SPECIFIC STUDY ON COLD WATER STORAGE TANKS 

 

3.1 Introduction 
 

Potable water is typically produced at water treatment facilities where 

incoming water is treated to remove pathogens and is disinfected before it leaves the 

treatment works (Betancourt and Rose, 2004).   A small residual amount of chlorine is 

left in the water to maintain its quality as it travels through the network of mains and 

pipes that deliver this water to various residences.  Despite this, treated water can 

become contaminated with microorganisms during transportation throughout the 

pipework network, and also during storage (Kilb et al., 2003; Volker et al., 2016). Long 

horizontal installations of pipework, the types of materials used for the pipework and 

fittings, deadlegs (isolated sections of piping) and excessive water storage or 

stagnation can all affect water quality and encourage the proliferation of many species 

of bacteria (Brown et al., 2001).   The inner walls of the water distribution pipework 

may also become corroded, thereby enabling calcium and magnesium (already present 

in the water) to accelerate the process of scale formation within the water storage 

tanks (Li et al., 2016; Cramer, 2003). Ultimately, suspended solids and dissolved solids 

in the mains water, together with the rust (corrosion products attributed during 

transportation), form sediments at the bottom of the storage tanks which can act as 

nutrients for Legionella bacteria (Volker et al., 2016; Best et al., 1985; ASHRAE 

Guideline, 2000)  
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Figure 3.1 Schematic of a typical water system A) Schematic of typical gravity-fed 

water system found in may commercial and older residential buildings.  B) Schematic 

diagram of a typical cold water storage tank as per WRAS Guidelines   1. Incoming 

mains with isolation valve connected to ball valve; 2. Inspection access hatch situated 

above the ball valve to assist with maintenance; 3. Outlet of the tank with isolation 

valve (own drawing). 

The plumbing arrangement also affects the internal environment of the tank 

(Rogers et al., 1994). When inlet (incoming mains) and outlets are on the same side, 

internal water circulation may be limited leading to greater water stagnation within the 

tank. The combination of an oversized mains inlet pipe and a relatively small outlet can 

also lead to water stagnation (DWI, 2010; 2000), thereby increasing the stored water 

temperature as well as contributing to biofilm formation; a perfect breeding ground for 

Legionella bacteria (van der Kooij  et al., 2017; Stojek and Dutkiewicz, 2006; Fisman et 

al., 2005).  

In order to protect society against the harmful effects of exposure to pathogenic 

bacteria, many countries throughout the world have developed and adopted standards 

used for the evaluation of microbiological status of point-of-use and point-of-entry 
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potable water in buildings.  The United States Environmental Protection Agency 

(USEPA) and the European Environment Agency (under the EU Water Framework 

Directive) have implemented monitoring and sampling strategies  to ensure that the 

health of building occupants is protected from unabated proliferation of pathogenic 

bacteria (Storey et al., 2011; Figueras and Borrego, 2010).  In order to ensure the water 

quality and maintain a healthy water system, routine water tank inspection and stored 

water sample analysis is necessary (DWI, 2014). Analysis of ‘representative water 

samples’ collected from any water system are an important tool in the armoury used to 

evaluate the human health risk posed by a particular water system (WHO, 1997). Cold 

water storage tanks are one of the most important elements of concern , being both the 

point-of-entry of potable water into buildings, and the reservoir of water used to 

supply the entire building (Anaissie et al., 2003).  According to Water Regulations 

Advisory Scheme (WRAS), the water storage tank should have an access hatch above 

the mains inlet valve of the storage tank (Figure 3.1B) to enable routine internal 

inspection and water sampling (WRAS,  2015).  In the UK, all water samples taken for 

microbiological assessment are taken, transported and analysed under UKAS 

accredited conditions as stipulated by Drinking Water Inspectorate (DWI) for 

compliance (DWI, 2016). 

 

The majority of the properties in the UK have cold water storage tanks located 

in the loft space or on the roof (HSE, 2014a). These tanks usually feed cold water taps 

by gravity (with the exception of the kitchen cold water tap) and the hot water 

calorifiers (DWI,  2013)(Figure 3.1A).  In modern buildings, cold water storage tanks 

are located in either the basement or on the ground floor of the building. These tanks 

are connected to booster pump sets to provide stored water to the entire building. 

Wherever their location, the internal condition of these storage tanks has a direct 

impact on the quality of stored water, even if the tanks are properly designed, correctly 

installed and kept in good external order (DWI, 2013). Factors such as the tank 

construction method, the materials used, plumbing arrangements, internal water flow 

and tank location (the ambient temperature around the tank) have a direct impact on 

the internal environment of the tank, and conditions may arise that encourage the 

proliferation of pathogenic bacteria, including Legionella (Ciesielski et al., 1984; 

Turetgen and Cotuk, 2007). 
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The key assumption used in current practice is that a small volume (500ml) of 

water taken from under the ball valve is representative of the entire tank 

(Practitioner’s experience). Importantly, the inspection hatch above the ball valve is 

usually the only access point to the stored water in any cold water storage tank, even 

though, BS 7592:2008 suggests that the water sample should be taken from the 

furthest point from the ball valve.  A representative sample is a small quantity of 

something whose characteristics represent (as accurately as possible) the entire batch 

(Lee et al., 2010). Obtaining a representative sample is the most important factor for a 

relevant description of the environment, especially when the result will be used for 

regulatory purposes (Ramsey and Hewitt, 2005). According to The DWI, ‘samples must 

be taken from locations that are representative of the water source, storage facilities, 

distribution network and points at which water is delivered to the consumer (DWI, 

2014).   These points should include those that yield samples representative of the 

conditions at the most unfavourable sources or places in the supply system, 

particularly points of possible contamination such as unprotected sources, loops, 

reservoirs, low-pressure zones, ends of the system etc.’(WHO, 1997).  Here we explore 

the possible limitations of assessing the actual risk factors within the water tank during 

present-day routine visual inspection and collection of a ‘representative sample’ used 

for microbiological analysis according to DWI.   

 

3.2 Methods 
 

3.2.1 Tank selection 

 

Service engineers contracted for routine inspection and maintenance by a 

specialised water hygiene management company (Aqua Technologies Europe Ltd) were 

used to identify suitable tanks to include in the study.    According to the Drinking 

Water Inspectorate (DWI) standards, cold water storage tanks must be completely 

sealed with the exception of one access point for inspection, monitoring and 

maintenance situated above the ball valve (DWI, 2013). Therefore, selection criteria for 

suitable tanks for inclusion in the study was based on (i) the ability to take a water 

sample from the normal sampling hatch (located above the ball valve) and from the far 

end of the tank (usually requiring disassembly of the tank lid with risk of structural 

damage), and (ii) permission being granted by the site manager to undertake the 
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additional investigation and sampling.  Out of approximately 6000 cold water tanks 

surveyed over a 12 month period (July 2015-July 2016), only 15 suitable cold water 

storage tanks meeting the sample access criteria were identified by service engineers at 

various sites located in different London Boroughs.  Permission was granted by site 

managers to gain access the far end of the tank and carry out the additional inspection 

work in every case. 

3.2.2 Tank inspection 

 

Surveyed tanks were constructed from various materials, including metal tanks 

(galvanised iron), metal tanks with internal butyl lining, fibreglass tanks, plastic tanks 

and modern GRP (glass reinforced plastic) tanks. The external dimensions of each tank 

were measured in metres using a standard tape measure in order to calculate the 

capacity of each tank. The location of each tank in the building was recorded together 

with the inspection and sampling date (Table 3.1). Temperature of (i) the mains water 

through inlet discharge (ball valve), (ii) the stored water just below the ball valve and 

(iii) of stored water at the far end of the tanks were also recorded using a Testo 925 

Aktionsset Sensor type K digital thermometer (temperature range -50 up to +300°C).  

All the tanks surveyed had been cleaned and disinfected between 12-18 months prior 

to my inspection date, with visual inspections and water samples taken every six-

months (with the exception of potable water tanks where inspections are carried out 

quarterly) as a part of the routine monitoring program.     Internal visual inspection was 

carried out for all fifteen tanks; sedimentation level, presence of biofilm, presence of 

scale and corrosion level was recorded qualitatively as ‘negligible’, ‘slight’, ‘moderate’ 

and ‘heavy’, and these findings were converted into numerical data (Table 3.2). Based 

on current industry practice, the visual assessment must be carried out by qualified, 

experienced and adequately trained personnel in accordance to industry standards as 

no specific measure is provided for these assessments in any of the relevant guidelines.     

Tanks could only be accessed and inspected on one occasion as part of the routine 

service contract in place. 
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Table 3.1 Tank details of the fifteen tanks assessed, including tank dimensions, 
capacity, construction material, position and sampling date. 

Tank 
Reference 

Dimensions 
(Metres)  

Volume    
(M3) 

Material position Sample 
Date 

T1 3.0 x 1.5 x 

1.2 

5.4 Metal Roof Nov 15 

T2 2.5 x 1.4 x 

1.35 
4.7 Metal Roof Dec 15 

T3 4.0 x 2.0 x 

2.0 

16.0 GRP Ground 
floor 

Dec 15 

T4 2.5 x 1.3 x 

1.2 

3.9 Fibreglass Roof Jan 16 

T5 2.7 x 1.6 x 

1.5 

 

6.5 Metal Roof Jan 16 

T6 6.0 x 2.0 x 

3.0 

36.0 GRP Basement Feb 16 

T7 6.0 x 2.0 x 

3.0 

36.0 GRP Basement Feb 16 

T8 1.9 x 0.8 x 

0.8 

1.2 Plastic Roof Mar 16 

T9 3.2 x 2.0 x 

1.5 

9.6 Metal Roof Mar 16 

T10 5.0 x 1.0 x 

1.0 

5.0 GRP Ground 
floor 

Apr 16 

T11 4.0 x 4.0 x 

2.0 

32.0 GRP Ground 
floor 

Jun 16 

T12 4.0 x 4.0 x 

2.0 

32.0 GRP Ground 
floor 

Jun 16 

T13 4.0 x 1.7 x 

1.5 

10.2 Metal 
with butyl 

lining 

Roof July 16 

T14 3.0 x 1.5 x 

1.5 

6.8 GRP Basement July 16 

T15 1.0 x 0.7 x 

0.8 

0.6 Plastic Roof July 16 

 

   

3.2.3 Water sample collection 

Three water samples were collected from each of the tanks; one from the 

incoming mains (tank inlet), one from the tank just below the inlet ball valve (where 

routine sampling for pathogenic bacteria happens in practice), and one from the far end 

of the same tank (requiring dismantling on the tank). The samples for Legionella 

analysis were collected in 500ml sterile plastic bottles containing 0.69ml of 3.5% 

sodium thiosulphate and the samples for TVC, E. coli, coliforms and Pseudomonas 

analysis were collected in 500ml sterile plastic bottles containing 1ml of 18mg/L 

sodium thiosulphate (supplied by the UKAS accredited laboratory ALS Global) in 

accordance with BS 8554:2015 guidelines for the collection of water samples from hot 

and cold water services in buildings.  All the samples were collected using a dipper, and 

the lid was closed tightly immediately after each sample collection. All the samples for 

Legionella analysis were kept in temperature controlled bags (6-18ºC depending on the 

ambient temperature) and all other samples for TVC, E. coli, coliforms and 

Pseudomonas were transported in polystyrene cooler boxes (6-8ºC) on their way to the 

laboratory. Water samples in temperature controlled bags were protected from heat 
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sources and sunlight during transportation to the laboratory.  In all cases, the 

maximum time taken to deliver the samples to the laboratory was 4 hours from the 

point of collection of water samples.  

3.2.4 Microbiological analysis 

All water samples were analysed using standard UKAS protocols for TVC (3 

days @ 220C), TVC (2 days @ 370C), Pseudomonas, Escherichia coli (E. coli), coliforms 

and Legionella pneumophila in a UKAS accredited laboratory (ALS Global, UK) under the 

same laboratory conditions within 12 hours of collection. In brief, the water sample for 

Legionella analysis (filtered with black nitrocellulose filters (Milipore), porosity of 0.45 

μm, dimension of 47 mm), a 10-ml and 100-ml volume of the original water sample was 

filtered, and the filter membrane was then placed directly on the agar for culture.  A 

separate 100µl of the water sample was also plated directly onto the agar.  Reduction of 

other interfering bacteria present in the sample was undertaken by dividing the 

original water sample into further portions; one was heated at 50° ± 2°C for a period of 

30 ± 2 minutes and another underwent acid treatment. All three portions were then 

plated separately onto BCYE agar with antibiotic supplements, Glycine Vancomycin 

Polymyxin Cycloheximide (GVPC), and incubated at 36°C for 10 days. Following 

incubation, an enumeration of morphologically characteristic colonies was made. The 

Legionella Spp. including Legionella pneumophila Serogroup1 and Serogroup 2-15 

were then confirmed by MALDI-TOF MS protein profiling and the results were reported 

as cfu/L (Method statement for Legionella analysis in water samples, ALS Global).   

 

TVC analysis was carried out using the pour plate method.  Pour plates are 

prepared by pipetting 1ml of sample water into a sterile Petri dish and then adding 

molten agar and mixing gently by swirling the plate. Replicate sample plates are then 

incubated for 2 days at 37 °C and 3 days at 22 ºC. The results were reported as cfu/ml. 

In the event that samples could not be analysed immediately upon receipt by the 

laboratory, they were kept at a temperature between 2 - 8°C, in dark conditions until 

analysis was commenced (Method statement for TVC analysis in water samples, ALS 

Global).   
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Pseudomonas analysis was carried out by spread plate method. Spread plates were 

prepared by pipetting 100ml of sample filtered through a membrane filter (pore size 

0.22–0.45 µm) onto the surface of the Pseudomonas agar base, supplemented with 

cetrimide, fusidic acid and cephaloridine (PCFC), and incubated at 30°C for 48 hours. 

The numbers of colony forming units were counted and then confirmed by a positive 

oxidase reaction.  The results were reported as cfu/100ml. E. coli and coliforms analysis 

was also carried out by spread plate method using Membrane Lactose Glucuronide 

Agar (MLGA) plates, incubated at 35°C for 24 hours and any detection was reported as 

cfu/100ml (Method statement for E. coli and coliforms analysis in water samples, ALS 

Global).   

All the samples were collected identically and analysed by the same UKAS 

accredited laboratory to ensure the consistency and accuracy of the results produced.  

Assay detection limits were 1 cfu/ml (TVC - 2 days at 37 °C, 3days at 22 ºC), 

1cfu/100ml (Pseudomonas) and 20 cfu/L(Legionella), based on UKAS accredited 

methods (UKAS, 2015). 

3.2.5 Data analysis and interpretation 

Absolute values (in cfu/volume of water collected) reported by accredited 

laboratories (Table 3.3) are used to determine if remedial action is necessary. All the 

samples collected were tested specifically in UKAS accredited laboratory because the 

values reported by these laboratories are rarely questioned for their precision or 

reliability. The entire regulatory system is based on ‘threshold’ levels, that once 

exceeded instigate regulatory action through non-compliance with the standards. 

Results of any repeated tests by accredited laboratories as part of their sample analysis 

processes are not reported, and any measures of variability (such as SD) are also not 

reported.  The crucial research question highlighted here is therefore not whether two 

samples taken at different ends of the tank are different (from a statistical standpoint), 

but whether samples taken at different locations in the same tank (e.g. the ball valve 

end where samples are routinely taken) might result in different regulatory actions 

compared to samples taken at a different location (e.g. the far end of the tank, where 

water is abstracted into the building). For this reason, absolute values from the 

accredited laboratory were used to determine if samples taken at different locations 

inside the tank were equivalent in terms of their compliance with regulatory 

thresholds. 
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3.3. Results 
 

With few exceptions, the level of sedimentation and biofilm increased in 

quantity/severity between UBV and FE.  Also, this occurred in both cold water and 

potable water storage tanks (Table 3.2).  In contrast, the formation of scale and 

presence of corrosion was more uniformly found. 

Table 3.2 Relative scoring: Relative scoring of sedimentation, biofilm, scale and 
corrosion levels in each tank, where negligible (not visible) = 0; Slight = 1; Moderate = 
2; Heavy = 3 (P) shows that the tank is designated for potable water use.  

Tank 
Referenc
e 

Sedimentatio
n 

Biofilm Scale Corrosion 

U
B
V 

F
E 

U
B
V 

F
E 

U
B
V 

F
E 

 
U
B
V 

F
E 

T1 0 1 0 1 1 1 1 1 
T2 0 2 0 2 1 1 1 1 

T3 (P) 0 1 0 1 0 0 0 0 
T4 0 1 0 1 0 0 0 0 
T5 1 2 0 2 0 0 1 1 

T6 (P) 1 2 0 1 0 0 0 0 
T7 (P) 1 2 0 1 0 0 0 0 

T8 2 3 1 2 1 1 0 0 
T9 2 3 1 3 1 1 1 2 

T10 (P) 2 3 1 3 1 1 0 0 
T11 (P) 1 3 0 1 0 0 0 0 
T12 (P) 1 3 0 2 0 0 0 0 

T13 1 3 1 3 1 1 0 0 
T14 (P) 1 2 0 1 1 1 0 0 

T15 0 0 0 0 0 0 0 0 

 

 

The results of the water sample temperature taken at the time of sampling, and 

microbiological analysis by ALS Global are shown in Table 3.3.  The data clearly shows 

that the microbiological status of the water decreases from incoming mains, to under 

the ball valve, and is worst at the far end of the tank. 
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Table 3.3 Water sample temperatures and analysis results (TVC, E. coli, coliforms, Pseudomonas and Legionella pneumophila) used to generate the figures 

2-5. IM – incoming mains; UB – under the ball valve; FE – far end. 

Sample Ref. Sample 
temperature 

TVC(3 days @ 22˚C 
) cfu/ ml 

TVC (2 days @ 37˚C) cfu/ml Pseudomonas spp 
(cfu/100ml) 

E. coliE. coli Coliforms Legionella Spp cfu/L 

T1 - IM 12.5 0 0 0 0 0 0 
T1 - UB 12.5 0 0 0 0 0 0 
T1 - FE 12.6 38 0 1000 0 0 0 
T2 - IM 12.5 0 0 0 0 0 0 
T2 - UB 12.5 0 0 0 0 0 0 
T2 - FE 12.5 3000 23 0 0 0 0 
T3 - IM 7 0 0 0 0 0 0 
T3 - UB 8 0 0 5 0 0 0 
T3 - FE 9 1100 0 500 0 0 0 
T4 - IM 7 0 0 0 0 0 0 
T4 - UB 7 9 0 3 0 0 0 
T4 - FE 10 1300 85 27 0 0 0 
T5 - IM 9.3 0 0 0 0 0 0 
T5 - UB 9.8 97 6 12 0 0 0 
T5 - FE 13.2 4200 165 1100 0 0 0 
T6 - IM 8.4 1 0 0 0 0 0 
T6 - UB 8.4 56 2 9 0 0 0 
T6 - FE 12 2300 130 760 0 0 0 
T7 - IM 8.5 0 0 0 0 0 0 
T7 - UB 8.7 67 1 0 0 0 0 
T7 - FE 13 1400 185 1390 0 0 0 
T8 - IM 12.7 0 0 0 0 0 0 
T8 - UB 12.9 50 0 7 0 0 0 
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T8 - FE 14.8 2900 170 500 0 0 0 
T9 - IM 13.1 2 0 0 0 0 0 
T9 - UB 13.3 64 13 17 0 0 0 
T9 - FE 15.2 2500 430 960 0 0 0 

T10 - IM 16.4 0 0 0 0 0 0 
T10 - UB 16.7 1974 1140 83 0 0 0 
T10 - FE 18.0 2362 1900 680 0 0 0 
T11 - IM 17.7 0 0 18 0 0 0 
T11 - UB 18.9 3700 2620 980 0 0 0 
T11 - FE 20.2 5930 3170 3110 0 0 100 
T12 - IM 18.4 12 0 0 0 0 0 
T12 - UB 18.5 560 120 9 0 0 0 
T12 - FE 19.1 2300 900 420 0 0 0 
T13 - IM 19.0 10 0 9 0 0 0 
T13 - UB 19.2 1670 840 290 0 0 200 
T13 - FE 20.7 5400 3850 2200 0 0 800 
T14 - IM 17.9 0 0 0 0 0 0 
T14 - UB 19.2 169 1 5 0 0 0 
T14 - FE 19.8 1400 285 490 0 0 0 
T15 - IM 17.0 0 0 0 0 0 0 
T15 - UB 17.0 10 1 0 0 0 0 
T15 - FE 17.0 10 2 0 0 0 0 
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3.3.1 Effect of seasonality on stored water temperature 

 

Figure 3.2 shows the temperature of the incoming mains (IM) water and 

storage water under the ball valve (UBV) and at the far end (FE) of fifteen tanks, 

recorded during routine inspection and sampling between November 2015 and July 

2016. Seven tanks were situated on the ground floor or basement, and were connected 

to booster pumps to distribute potable water to the entire building. Eight tanks were 

located on the roof, with the purpose of distributing stored water to the calorifier(s) 

and cold water taps (with the exception of the kitchen tap). Storage water temperature 

varied with seasonality as expected, with water UBV temperatures as low as 7°C in  

December (winter time) rising to 19.2°C in July (British summer time).  In all fifteen 

tanks, IM water temperature varied between 7-19°C (depending on the season), which 

was below the regulatory threshold of 20°C for both mains water and stored water 

(HSE, 2011). The stored water increased in temperature by 0.1°C to 3.6°C from UBV to 

FE in the majority of tanks.  In ten tanks, this temperature difference was >1°C, and in 4 

tanks the temperature difference was > 3°C. The smallest water temperature 

differences (0°C to 0.1°C) occurred in tanks below 6m3 in either the winter 

(November/December) or summer (July), whereas the greatest temperature gradient 

differences occurred in large tanks (36m3) sampled in February.  Although UBV water 

temperatures were always below the regulatory threshold, the FE of Tank 14 reached 

the regulatory threshold limit (20°C), and Tanks 11 and 13 exceeded the regulatory 

threshold (20.2 and 20.7°C, respectively).  
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Figure 3.2 Sample temperature comparison:  Sample temperature (°C) of the 
incoming mains water (IM), under the ball valve (UBV) and at the far end (FE) of fifteen 
operational cold water and potable water storage tanks in different London Boroughs 
recorded during routine inspection and sampling between November 2015 and July 
2016.  The red line shows the regulatory threshold of 20°C (acceptable limit) used for 
routine monitoring. 
 

3.3.2 Microbiological status of water samples 

 

Figure 3.3 shows the water sample analysis results for Total Viable Counts 

(TVC) incubated for 3 days at 22°C (Figure 3.3B) and for 2 days at 37°C (Figure 3.3A), 

respectively.  The TVC is an estimate of the total number of viable individual micro-

organisms (including bacteria, fungi and mould species) present in a set volume of 

sample, and provides a relatively rapid quantitative insight of the microbiological 

status of the sample.  Fourteen of the tanks sampled showed increases in TVC between 

samples taken UBV and FE and incubated for 3 days at 22°C, with the exception of Tank 

15 that had 10 cfu/ml at the both ends (Figure 3.3B).  The biggest differences were 

observed in T2 and T3, where TVCs were ‘not detected’ in the UBV sample, but 3000 

and 1100 cfu/ml were measured in the FE sample.  T4 yielded 9 cfu/100ml in the UBV 

sample and 1300 cfu/ml at the FE, producing in 144-fold difference (2 orders of 
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magnitude) in TVCs between the UBV sample and the FE sample.  The tanks sampled 

between November and March (with the exception of T4) showed a 40.2-fold (± 12.1 

sd) mean increase in TVCs at the FE compared to UBV, and the tanks sampled in the 

summer had relatively higher TVCs in the UBV samples resulting in a 3.7-fold (± 2.5 sd) 

mean overall increase in TVCs at the FE. Although, thirteen out of fifteen tanks showed 

increased TVCs in FE samples compared to UBV samples incubated for 2 days at 37°C, 

only eleven (T2,T4,T5,T6,T7,T8,T9,T12,T13,T14 and T15) were greater.  UBV samples 

of potable water incubated for 2 days at 37°C were found to greater only on two 

occasions (T10 and T11; figure 3A).  Figure 3A shows that the incubation temperature 

of 37°C favoured growth of microorganisms in water samples collected in April and 

into the summer.  In T10 (sampled April 2016) the potable water UBV sample yielding 

1141 cfu/ml, whereas the FE sample was yielding 1900 cfu/ml.  
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Figure 3.3 TVC analysis result comparison.  Comparison of Total Viable Counts 
(expressed as colony forming units/ml) from water samples taken under the ball valve 
(UBV) and at the far end (FE) of fifteen independent cold water and potable water 
storage tanks located in different London Boroughs, and incubated at A) 37 °C for 2 
days and B) 22 °C for 3 days.  Tanks were sampled between November 2015 and July 
2016.  ‘P’ denotes tanks designated for potable water storage.   
 

 

 
Figure 3.4 shows the results of analysis of the water samples for both 

Pseudomonas and Legionella species.  The regulatory threshold for Legionella in tank 

water is 100 cfu/L.  Figure 3.4A shows that most samples tested negative for Legionella 

in either UBV or FE samples.  However, Tank 10 reached the regulatory threshold for 

Legionella (100 cfu/L) at the FE whereas Legionella was undetected under the ball 

valve.  T12 also tested positive for Legionella in both UBV and FE samples, although the 

number of bacteria was 4-fold higher (800 cfu/L FE c.f. 200 cfu/L BVE) at the far end of 

the tank.  Pseudomonas was regularly detected in tank water both in UBV and FE 

samples, with the exception of T2 and T15.  In T7 (potable water) no Pseudomonas 

were detected in the UBV sample, whereas the FE sample yielded 1390 cfu/100ml. A 

similar finding occurred in T1, although this tank was not designated for potable water 

use.  The UBV samples followed a seasonal trend, increasing from 7 cfu/100ml in March 

to a maximum of 980 cfu/100ml in June.  In all tanks where Pseudomonas was detected 

in both UBV and FE samples, the number of bacteria in the FE sample was on average 

54-fold higher (±39) and varied between 9-fold and 98-fold depending on the 

individual tank and the season of sampling. 



 

130 
 

 

Figure 3.4 Comparison of Legionella and Pseudomonas analysis results.  

Comparison of (A) Legionella species  (expressed as colon forming units/litre) and (B) 

Pseudomonas species (expressed as colony forming units/100ml) in water samples 

taken under the ball valve (UBV) and at the far end (FE) of fifteen independent cold 

water and potable water storage tanks located in different London Boroughs.  Samples 

were taken between November 2015 and July 2016. ‘P’ denotes tanks that are 

designated for potable water use. The regulatory threshold for Legionella in tank water 

is 100 cfu/L.  
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Figure 3.5 shows a comparison of TVC and Pseudomonas species quantified in 

samples collected from both UBV and FE locations in potable water tanks at different 

times of the year.  In all cases the UBV and FE samples provided a consistent course of 

action for TVCs incubated for 2 days at 37°C (10 cfu/ml), although T10 showed slight 

difference in the UBV sample (11 cfu/ml) compared to the FE sample (19 cfu/ml) 

(Figure 3.5A).  In addition, in T12 the FE sample was 9 cfu/ml whereas the UBV sample 

was substantially lower (1 cfu/ml).  In contrast, the levels of Pseudomonas in UBV 

samples was typically low (between 5 and 9 cfu/100ml) with the exception of T10 and 

T11 (83 and 980 cfu/100ml, respectively).  All UBV samples, with the exception of T7, 

were detected with Pseudomonas.  However, T7 showed much higher count in the FE 

sample (1390 cfu/100ml).  There were consistently higher Pseudomonas counts in the 

FE sample relative to the UBV sample (Figure 3.5B). 
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Figure 3.5 Comparison of TVC and Pseudomonas analysis results:  Comparison of 

A) Total Viable Counts (TVC; 2 days incubation at 37°C) and B) Pseudomonas species 

(expressed as colony forming units/100ml) measured in water samples taken under 

the ball valve (UBV) and at the far end (FE) of potable water storage tanks located in 

different London Boroughs.  Samples were taken between December 2015 and July 

2016.   

 

Table 3.4  Comparison of TVCs, Pseudomonas and Legionella (cfu/volume) from UBV 

and FE samples. 

Tank TVCs (cfu/ml) Pseudomonas (cfu/100ml) Legionella (cfu/L) 
 UBV  FE  RT UBV FE RT UBV FE RT 
11(P) 2620 3170 N/A 980 3110 N/A 0 100  100 cfu/L 
13 840 3850  N/A 290 2200 N/A 200 800 100 cfu/L 

 
Boxes in dark red show instances where there is a disagreement in compliance from 
UBV and FE samples 
 
(P) Denotes that the water was used for potable use. 
 
RT denotes the regulatory threshold. 
 

3.3.3 Visual inspection report 

 

Visual inspection of the tanks showed a clear increase in the level of 

sedimentation with distance from the ball valve (Figure 3.6B and 3.7B), and presence of 

biofilm was also noted towards the far end of the tanks whereas under the ball valve, 

water appeared visibly clear (Figure 3.6A and 3.7A). The presence of a slight scale was 

noted in T1,T2,T8,T9,T10,T13 and T14, although it appeared to be similar at both ends 

of the tanks. There was evidence of slight corrosion throughout all the metal tanks, 

whereas in T9 the far end appeared as moderate (Table 3.2). In the case of one metre 

long plastic tank (T15), water was apparently clear without sedimentation, stagnation, 

scale and biofilm (Figure 3.7D), and a temperature of 170C was recorded for the 

incoming mains temperature and for the UBV and FE samples.  
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Figure 3.6 Long cold water storage tank: (A) Example of a 5 metre long GRP potable 
cold water storage tank showing the mains water inlet.  (B) Sedimentation levels 
increase towards the far end (FE) of the tank from the inlet ball valve end (IBVE).  The 
arrow shows the direction of mains water flow into the tank.  Tank reference T10. 
Source: own collection 
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Figure 3.7 Comparison of long metal tank and small plastic tank: (A) 4 metre long 
metal cold water storage tank with butyl lining (T13) showing visibly clear stored 
water under the ball valve (A), compared to sediments and biofilm at the far end (B). (C, 
D) shows a 1 metre long plastic tank with visibly clear stored water (T15).  

Source: own collection 

 

3.4        Discussion 

 

3.4.1     Factors affecting regulatory action decisions 

 
Microbiological analysis of water samples taken from different cold water 

storage tanks throughout a year has shown large differences in microbiological 

concentration between UB and FE of the tanks.  Furthermore, 2 out of the 15 tanks 

surveyed failed to trigger appropriate current regulatory action based on 

microbiological analysis (Legionella )  of the water sample taken under the ball valve 

(n=15 tanks) compared to the far end sample using present-day standards (Table 3.4).  

Tanks that failed to trigger appropriate regulatory action were sampled in late spring 

and summer, suggesting warming temperatures to be an important factor in this 

response.  Indeed, tanks 11 and 13 both exceeded the threshold for temperature at the 

far end of the tank, despite being complaint at the ball valve end. The variation in 

temperature of the incoming mains water was due to seasonal changes, whilst 

differences between UBV and FE samples were due principally to water stagnation 

towards the far end of the tanks (Lautenschlager et al., 2010).  

3.4.2  Comparison of TVC analysis under the ball valve and at the far end 

of tanks 

 

Most water contains microorganisms, and an estimation of their overall 

numbers provides important information used for system surveillance and water 

quality maintenance (Manuel et al., 2007). The Total Viable Count (TVC) is essentially a 

simple enumeration of all viable bacteria present in water (Allen et al. 2004). 

Microorganisms growing better in laboratory media at 22°C reflect environmental 

micro-organisms and can be used to plot seasonal variations. In contrast, 

microorganisms that grow at 37°C may represent those of faecal origin (Edberg et al., 

2000).   TVC analysis (3 days incubation at 22°C) of incoming mains samples taken from 

T6, T9, T12 and T13 (1, 2, 12 and 10cfu/ml, respectively) were below the HSE’s former 
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Potable Water Standard limit of 100cfu/ml (HSE,  2002). Also, TVC analysis (2 days 

incubation at 37°C) of mains water was non-detectable and below the former 

regulatory threshold of 10cfu/ml (HSE, 2002) (This RT mentioned here is only for 

comparison as this regulation is outdated). Although the mains water and UBV 

temperatures recorded were almost identical, the temperatures recorded at the far end 

of the tanks were comparatively higher (Figure 2) thereby encouraging bacterial 

growth at the far end of most tanks (van der Kooij et al., 2017; Whiley et al., 2017; 

Schwake et al., 2016). According to a study carried out in USA, it was reported that 

bacteria in drinking water pose a health risk to all individuals, and especially patients 

with underlying health issues (Ashbolt, 2015). TVC analysis results (2 days at 37°C) for 

UBV and FE samples from T11p were much higher (2620 and 3170, respectively) than 

expected. These results clearly indicate that the samples taken from UB cannot 

represent the actual quality of the water that draws to the building outlets.   

3.4.3 Comparison of E. coli, Coliforms and Legionella under the ball valve and at 

the far end of tanks 

 

E. coli and coliforms analysis results were negative in all the samples tested, 

indicating that the water was likely to be free of pathogens associated with faeces 

(Kapperud, 1982). However, in all the six potable water tanks Pseudomonas was 

detected at levels ranging from 5 to 980 cfu/100ml for UBV samples and 420 to 3110 

cfu/100ml for FE samples. The presence of both biofilm and sedimentation towards the 

far end of the tanks (see Table 3.2) may be responsible for this concentration of  (Liu et 

al., 2016; Klausen et al., 2003; Al-Harbi, 2003). Pseudomonas is bacteria commonly 

found in soil and water and it can cause a variety of infections in immunosuppressed 

population and people with long-term lung diseases such as cystic fibrosis (BLF, 2018). 

There are a number of strains of Pseudomonas and Pseudomonas aeruginosa strain is 

the most common strain causing infections in humans (CDC, 2018). Some studies 

report that Pseudomonas growth in drinking water is probably related to its ability to 

create and colonize biofilms in plumbing fixtures (Moritz et al., 2010 ; Kennedy,  2012).  

 

The presence of Pseudomonas and their associated biofilms is also a risk factor 

for other pathogenic bacteria, including Legionella (Falkinham III et al., 2015). This is 

illustrated here using the water sample analysis result from T13, where the TVC 

analysis and Pseudomonas counts were high in both cases, suggesting the higher risk of 
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Legionella proliferation.  Analysis confirmed the presence Legionella in both UBV and 

FE samples (200 cfu/L and 800cfu/L, respectively) in T13. Changes to the internal 

environment of the tank from the ball valve end to the far end of the tank are supported 

by visual inspection reports produced at the time of water sampling (Table. 3.2) and 

additional photographic evidence included in this study (Figures 3.6 and 3.7). On the 

basis of the routine inspection report and the results presented, the increasing trend of 

microbial activity towards the far end of the tanks is likely due to increasing 

temperature, water stagnation, presence of biofilm and sedimentation with distance 

from the ball valve (Barko and Smart, 1986; Konishi et al., 2006).    

 

3.4.4 Variation in water temperature UBV and FE of tanks  

 

In this study, variations in water temperature from the mains supply end to far 

end of some tanks increase by as much as 3-3.6°C.  Temperature is known to play an 

important role in the colonization of Legionella bacteria in water systems ( Buse et al., 

2017; Schwake et al., 2015; Borella, 2004). Legionella bacteria can survive and persist 

at temperatures between 6 and 63°C although proliferation is generally accepted to 

occur between 20-45°C and when suitable nutrients are available (HSE, 2013). 

Although the temperature of the mains water entering the tank was at, or below, 12°C 

in the winter months, the temperature at the far end of the tanks exceeded 12°C in 

almost all cases, with the exception of two tanks sampled in the winter (December and 

January).  Therefore, the temperature of the stored water at the far end of the tank may 

reach optimum levels for Legionella proliferation if the water is not frequently 

replenished     (Valero et al., 2017). Indeed, T11 and T13 both contained live Legionella 

pneumophila (100cfu/L and 800cfu/L, respectively), and had water temperatures at the 

far end that exceeded 20°C.   According to Health Technical Memorandum Part B 

produced by UK Health Department in 2016, incoming mains water temperature can 

reach up to 25°C in the summer season (HTM, 2016) and the water temperature at the 

far end can reach well above 30°C; close to the maximum virulence temperature (37°C) 

for Legionella bacteria where it achieves maximum ability to   infect and subsequently 

multiply (WHO, 2007).  

   In effect, there is a significant difference in the temperature of the stored 

water under the ball valve and at the far end of the tank which is influenced by seasonal 
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variables (Figure 3.2), resulting in clear differences in the microbiological quality of 

water samples taken from these two locations. 

 

3.4.5 Water stagnation and microbiological growth 

 

Water stagnation is recognised to be a major factor in water hygiene 

maintenance and management ( Lipphaus et al., 2014).  Stagnant water provides ideal 

conditions for microbiological growth to occur (ASHRAE, 2018). For example, 

overnight stagnation of drinking water in household taps was found to be associated 

with a 2-3 fold increase in microbial concentrations and changes to the bacterial 

community composition.  However, after flushing the taps for 5 minutes, bacteria 

concentrations and water temperatures decreased to levels generally found in the 

drinking water network (Soderberg et al.,  2004; Pepper et al., 2004).  Visual 

observations of the water contained within the tanks investigated here also found 

evidence of surface water stagnation, due to a combination of slow outgoing of water 

from the bottom of the tank and poor internal water circulation (Manuel et al., 2007). 

Surface water stagnation is an important causal factor for biofilm formation, thereby 

creating a perfect breeding ground for pathogenic bacteria, including Legionella 

pneumophila (Declerck,  2010).  

 

3.4.6 The role of biofilm as a source of bacterial contamination 

 

Biofilms are known to be a major source of bacterial contamination, and are 

often responsible for recurrent contamination of water systems by Legionella 

pneumophila (Declerck et al., 2009). In natural environments, biofilms are typically 

described as complex, natural assemblages of various types of microorganism involved 

in a multitude of trophic and symbiotic interactions (Berlanga and  Guerrero, 2016; 

Stoodley et al., 2002).  Although biofilms often typically start in nutrient rich 

environments (where bacteria change from free-living planktonic cells to sessile 

surface bound cells state), their presence represents a protected mode of growth 

allowing different types of cells to survive in hostile environments for extended periods 

of time, and also to disperse to colonize new niches when environmental conditions 

change (NRM, 2004; O'Toole et al., 2000; Kurniawan et al, 2015).  Once established, 



 

138 
 

biofilms can cause bio-corrosion of water storage and supply materials, and are a major 

cause of disinfection inefficiency, serving as reservoirs for various pathogenic and non-

pathogenic microorganisms, including Legionella (Fish et al., 2016; EPA, 2007). Biofilm 

growth was consistently greater at the far end of the tank (Table 3.2).  Indeed, only 

25% of tanks surveyed had biofilms at the ball valve end and these were characterised 

as ‘slight’ and occurred in the spring and summer periods.  In contrast, 90% of all tanks 

surveyed had biofilm at the far end of the tank (50% ‘slight’, 20% ‘Moderate’ and 21% 

‘severe’) and these occurred throughout the year despite seasonal changes in incoming 

mains temperatures (Table 3.2).  11 out of the 15 tanks surveyed here were also noted 

to have surface water biofilms at the far end of the tank.  Importantly, FE water samples 

had consistently higher levels of microbiological activity (TVCs and Pseudomonas 

counts).  Therefore, analysis of water samples taken under the inlet ball valve (where 

samples are routinely taken for monitoring and regulatory compliance) is not 

representative of the actual overall condition of the stored water due to biofilm growth 

associated with water stagnation.     

 

3.4.7  Microbiological impact of sediments at the FE of tanks 

 

Tiny suspended and dissolved solids are carried in the mains water and settle 

in the bottom of water storage tanks to form sedimentary deposits (Liu et al., 2017; 

Gray et al., 2000). Corrosion products scale and sediments then act together as 

nutrients, encouraging Legionella proliferation (Qin et al., 2017; Douterelo et al., 2016). 

According to a study carried out by Veterans Administration Medical Centre and 

University of Pittsburgh, the presence of sediment in stored water enhances the 

survival of Legionella pneumophila directly by acting as a nutrient, but also indirectly by 

encouraging the growth of other environmental bacteria that interact with Legionella 

via nutritional symbiosis.  The bacteria and sediments act synergistically, in 

combination, to improve the survival of bacteria, including Legionella pneumophila ( 

Fabian et al., 2017; Stout et al., 1985).   Here we found that eleven of the tanks with 

microbiological activity also had sedimentation at the far end of the tanks, whereas the 

bottom of the tank under the inlet valve was comparatively free from sediments (Table 

3.2). As with the biofilms, sedimentation became more severe with distance from the 

inlet valve, suggesting that a greater risk of bacterial contamination would occur from 

the mains inlet to the far end of the tank.  The sample collected from the far end of the 
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tank therefore more accurately represents the actual quality of the stored water 

entering the building system, and it is therefore vital to collect water samples from this 

location. Unfortunately, the far ends of most water storage tanks are sealed and 

completely inaccessible.  Current WRAS guidelines, state that the inspection and 

sampling access hatch location should be above the inlet ball valve (Figure 3.1B and 

Figure 3.8) in order to facilitate maintenance of the inlet/ball valve (DWI,  2014). 

 

Figure 3.8 Position of inspection hatch and inlet on cold water storage tank:  A 
typical 4 metre long metal cold water storage tank with internal butyl lining showing 
the position of the inspection hatch and mains inlet to the ball valve.  

Source: own collection  

 

3.4.8 Public health perspectives 

 

Even in modern society, waterborne pathogenic bacteria continue pose a 

serious threat to human health. Legionnaires’ disease (LD), caused by Legionella 

pneumophila, is just one of a number of potentially fatal diseases associated with water 

related infections (PHO, 2014). Importantly, the internal conditions of the tanks used to 

store water, and associated water quality parameters, will influence the rate of 

proliferation of Legionella bacteria within the water system, the risk of exposure to 

contaminated aerosols containing Legionella bacteria during normal water usage, and 

the likelihood of contracting in LD (HSE, 2014). Water temperatures between 20-45ºC 
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are known to encourage Legionella growth within water systems (FHG, 2014; 

Temmerman et al., 2006; Konishi et al., 2006) and studies in United States and Europe 

have confirmed that stored cold water temperature is likely to rise above 20ºC in 

summer, consistent with greater numbers of community acquired Legionnaires disease 

(Worrall 2015; Brandsema et al., 2014). We found that incoming mains water of ~ 20ºC 

could reach 22-23ºC at the FE of tanks greater than 1 metre in length in the summer. 

Legionella proliferation (if present) is likely to occur quickly in the warmer and 

nutrient rich water at the far end of the tank, where it is then abstracted for use in the 

building. The number of reported cases of Legionnaires’ disease in the USA follows a 

seasonal trend, being much higher during the summer season (Prussin II et al., 2017), 

and the seasonal prevalence of LD appears to be worsening, possibly as a result of 

climate change (Worrall,  2015). Indeed, the number of reported LD cases in The 

Netherlands was unusually high in the summer of 2010, associated with warmer and 

wetter climatic conditions (Brandsema et al., 2014). Furthermore, the outcome of these 

studies agrees with official statistics on LD published by both US and UK government 

agencies (Figure 3.9).  Given the disparity between measurements taken at different 

end of the tanks, we propose that monitoring at the far end of cold water storage tanks 

would provide a more accurate and relevant indication of microbiological 

contamination, enabling appropriate precautions to be taken to protect the public from 

water pathogenic diseases, including Legionnaires’ disease.  

 

Figure 3.9 Comparison of LD cases in the USA and UK: Average percentage of LD 

cases occurring in the United States and UK annually by month. U.S census data 2000-
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2009 and UK census data from 2015 and 2016 relative to seasonal high temperatures 

(District of Colombia and average UK temperature). Census data reported to Centres 

for Disease Prevention and Control (CDC) through the National Notifiable Disease 

Surveillance System (NNDSS) and a Supplemental Legionnaires Disease Surveillance 

System (SLDSS). UK data on Legionnaires disease was acquired from Public Health 

England reports. Solid line represents USA and dashed line is the UK. 

Source: Created using the data from CDC and PHE. 

                   

3.5 Recommendations and conclusions 
 

Public health risks from exposure to pathogenic bacteria in buildings, and 

strategies used to control pathogenic bacteria must be constantly reviewed and revised 

(Whiley, 2016).  It is generally assumed that water sample analysis will provide a 

representative view of the microbiological status of the entire tank in order to inform 

risk management strategies.  Here we report significant differences in the 

microbiological status of water samples collected under the ball valve (where there is 

easy access, and where samples are routinely taken for regulatory compliance) 

compared to the far end of the tank where water typically enters the building but 

where sampling access is constrained.  In order to control Legionella and maintain 

water hygiene standards, it is vital that a representative sample is collected as part of 

routine monitoring.  

According to our results we recommend that there should be an additional 

access hatch at the far end of water storage tanks for internal inspection and water 

sampling.  Large disparities in water quality parameters were noted in water samples 

taken from opposite ends of tanks greater than one metre in length. In order to comply 

with current WRAS guidelines, any cold water storage tank over 1000 litres capacity 

should have a screened warning pipe and a screened overflow (DWI, 2014). In the same 

way, we propose that new water storage tanks of similar capacity should contain an 

additional inspection and sampling access hatch at the far end of the tank, and this 

requirement could be imposed through appropriate national and international 

guidelines.    
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3.6 Further work 

 The number of tanks surveyed in this study was limited due to difficulties in 

accessing the far end of the storage tanks. Further study with increased number of 

water storage tanks would be beneficial to understand the findings of this study in 

depth.  Thus, the regulating authorities can be convinced and the proposals made in the 

recommendation (3.5 of this thesis) can be implemented for better monitoring and 

maintenance of cold water storage systems.      
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CHAPTER FOUR 

DEVELOPING A qPCR METHOD FOR THE DETECTION OF LIVE 
LEGIONELLA  

 

4.1 Introduction 
 

Legionella bacteria remain as a serious threat to public health especially among 

immunosuppressed and elderly population (Alsehlawi et al., 2016). Legionella bacteria 

are the main causative agent of community acquired and hospital-acquired pneumonia, 

with sporadic cases and outbreaks of LD reported worldwide (Cameron et al., 2016). 

Sporadic cases of LD can be treated effectively and outbreaks of LD can be controlled 

more efficiently if there is a rapid reliable diagnosis method to identify all the species 

and strains of Legionella bacteria.  The diagnostic methods currently in use are neither 

fully reliable nor standardised (Whiley and Taylor, 2016; Mercante and Winchell, 

2015).      

4.1.1  Unreliability of diagnostic methods 

There are different diagnostic methods available to detect the presence of Legionella 

in environmental samples as well as clinical samples. Culture based diagnosis methods 

using Buffered Charcoal-Yeast Extract (BCYE) agar is still the ‘gold standard’ diagnostic 

procedure used to detect Legionella bacteria (Andreozzi et al., 2016; Cunha et al., 

2016). However, culture is time consuming due to the slow growth rate of Legionella 

species, and this delay in getting the analysis results increases the likelihood of 

exposure to Legionella in contaminated systems (Zhan et al., 2014; Delgado-Viscogliosi 

et al., 2009). This method is further complicated by difficulties in isolating Legionella 

species in samples due to the abundant background growth of other micro-organisms, 

which also can inhibit Legionella growth (Diaz-Flores et al., 2015; Toplitsch et al., 

2018). Furthermore, Legionella species may be protected within amoebae and remain 

undetected (Berjeaud et al., 2016;; Greub and Raoult, 2003). In addition, the standard 

culture methods employed for the isolation of Legionella species were primarily 

developed for the detection of Legionella pneumophila; therefore, this method is much 

less sensitive in detecting other Legionella species causing similar diseases. For these 

reasons, it is widely recognised that standard culture methods significantly 

underestimate the presence of Legionella in samples (Dietersdorfer et al., 2016). 
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Moreover, culture based diagnosis methods have very poor sensitivity and struggle to 

detect low concentrations of bacteria in environmental samples that fall within the 

regulatory framework (Delgado-Viscogliosi et al., 2009). A comparative study on 

different diagnostic procedures reported that only 20% of all the known Legionella 

positive samples were reported as positive by culture methods, and the major factor for 

this failure was reported to be the overgrowth by competing micro-organisms on the 

culture medium (Díaz-Flores et al., 2015). These drawbacks of conventional culture 

methods for Legionella detection can have a significant negative impact on the results 

and interpretation in terms of underestimating the actual health risk.  Inaccurate 

quantification and underestimation of Legionella in samples (especially at 

concentrations below 100cfu/L),  due to poor sensitivity, and delays in diagnostic 

procedures associated with conventional culture methods raises serious concerns 

about the reliability of current methods used to protect public health against  

Legionnaires’ disease (Conza et al., 2013; Mercante and Winchell, 2015; Díaz-Flores et 

al., 2015).   

There are various clinical methods to diagnose Legionella bacteria such as direct 

fluorescence antibody staining, serological diagnosis and Legionella 

pneumophila urinary antigen tests (UATs). However, these procedures (with the 

exception of UATs) are considered unreliable with poor sensitivity and specificity.  

(Maurin et al., 2010). As an alternative solution, PCR based diagnostic techniques have 

been developed in recent years as rapid, efficient and sensitive alternatives to culture 

methods in the diagnosis of all Legionella species in clinical and environmental samples 

( Avni et al., 2016; Cunha et al., 2016).  

4.1.2  qPCR diagnostic method     

 

A real-time polymerase chain reaction, also known as quantitative polymerase chain 

reaction (qPCR) is a laboratory technique that monitors the amplification of a targeted 

DNA molecule during PCR.  DNA replication occurs when a DNA sample and a DNA 

polymerase, primers, nucleotides and other reagents are added in laboratory condition 

and the reagents facilitate the required reaction to copy the DNA code. qPCR can be 

used not only to detect the presence of specific bacteria in a given sample, but also to 

monitor the amount of bacteria in terms of Genomic Unit (GU)( Kralik and Ricchi, 2017; 

Thermofisher, 2016). GU is a measure of the number of genomes present, with the 
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genome being the genetic blueprint of an organism consisting of both genes and all 

non-coding DNA packaged in chromosomes (Joly et al., 2006).  

 

4.1.2.1      DNA (Deoxyribonucleic acid)  

 

Deoxyribonucleic acid (DNA) is the genetic material present in every cell of 

organisms and mostly it is located within the cell nucleus (Alberts et al., 2002;  

Bowater, 2001). In 1869, a German scientist named Frederich Miescher was the first 

person to observe DNA. Later in 1953, James Watson, Francis Crick, Rosalind Franklin 

and Maurice Wilkins figured out the structure of DNA, and established that DNA can 

carry biological information in living organisms.  In1962, they were awarded the Nobel 

Prize in medicine for the same discovery (Dahm, 2005).  

 

4.1.2.2      RNA (Ribonucleic Acid) 

 

RNA is a biological macromolecule with a number of different functions. Messenger 

RNA (mRNA) is transcribed from DNA to act as a template for protein synthesis - 

carried out by ribosomes, which includes ribosomal RNA (rRNA) and associated 

proteins. Amino acids required for protein synthesis are delivered to the ribosome on 

transfer RNA (tRNA) molecules to be assembled into proteins using the mRNA as a 

template.  There are non-coding RNAs such as tRNA and rRNA, small nucleolar RNAs 

(snoRNA), short interfering RNAs (siRNA), microRNAs (miRNA) and piwi-interacting 

RNAs (piRNA) which are functional RNA molecules that do not translate into proteins 

(( Tan and Yiap, 2009).   

 

4.1.2.3       Importance of extraction and analysis of RNA  

 

Although DNA is double stranded and RNA is a single stranded, both contain a 

sequence of nucleotides that carry genetic information. RNA analysis by hybridization 

technologies, such as RT–PCR, northern blotting, RNA-sequencing and microarray 

analysis can provide almost accurate indication of an organism’s gene expression 

profile. However, RNA is relatively unstable compared to DNA due to the presence of 

ribonucleases (RNases; enzymes that rapidly degrade RNA molecules). RNases are, 
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however, stable, effective in very small quantities, difficult to inactivate and do not 

require cofactors. Therefore, RNA isolation and analysis requires specialised 

techniques (Tan and Yiap, 2009). One of the most valuable techniques used in recent 

micro-biological research is the nucleic acid amplification and detection using qPCR 

(Bustin, 2010).   

4.1.2.4        qPCR diagnostic method for Legionella bacteria 

  

An alternative diagnostic method for quantifying all Legionella species and 

serogroups present in water samples is quantitative Polymerase Chain Reaction (qPCR) 

(Whiley and Taylor, 2016). This method is an efficient way to “amplify” (copy) a 

specific small segment of DNA in order to make it detectable (Kralik and Ricchi, 2017).  

This process can be considered quantitative, if the product is detected in the 

exponential phase of amplification when the amount of product detected is still 

proportional to the amount of starting material. By using a fluorescent marker within 

the reaction and following the increase in fluorescence in “real-time,” the exponential 

phase of the reaction can be identified and samples compared, either to a control 

reference gene or to a quantitative standard (Valones et al., 2009). 

 

4.1.2.5      The working procedure of qPCR method 

The qPCR technology generates multiple copies of a gene, or section of DNA, from a 

sample of genomic DNA (Garibyan and  Avashia, 2013). Using this technique, rapid DNA 

amplification resulting in millions of copies of target DNA enables detection and 

identification of specific gene sequences. Under controlled laboratory conditions, small 

segments of DNA are produced by enzymes called DNA polymerases which add 

complimentary deoxy-nucleotides (dNTPs) to a piece of single-stranded DNA (ssDNA) 

called the ‘template’. Smaller pieces of DNA, known as primers are used as a starting 

point for the polymerase reaction. Primers are small synthetically-produced pieces of 

DNA (oligomers), between 15 and 30 nucleotides long and are designed from short 

DNA sequences at the very ends of the gene being amplified. During the PCR process, 

the DNA being amplified is denatured by heat in order to separate the double stranded 

DNA. Upon cooling, the primers then bind to the ssDNA template and create a place for 

the polymerase reaction to begin. The polymerase then extends the primer using the 

DNA as a template, until the temperature is increased again to denature the newly 

formed double stranded DNA. Performing multiple cycles leads to a doubling of the 
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amount of template after each cycle and an exponential amplification of the desired 

product. PCR was developed from the discovery of thermophiles and thermophilic 

polymerase enzymes so that the polymerases maintained structural integrity and 

functionality even after heating at high temperatures (Robertson and Phillips, 2008). 

The reaction process involved in the PCR technique is as follows (Garibyan and  

Avashia, 2013; Butler, 2012): 

 Denaturation: A sample containing DNA template, primers, polymerase enzyme 

and dNTPs is heated to 94-98˚C to denature the DNA template.  

 Annealing: Following denaturation, the sample is cooled to a moderate 

temperature in the range of 48-72˚C, which facilitates the binding of the primers 

to the single-stranded DNA templates. 

 Elongation: In this step the sample is heated to 68-72˚C for elongation of the 

desired template from the primers. The DNA polymerase uses the original single 

strand of DNA as a template to attach complementary dNTPs to the 3’ ends of 

each primer and form a section of double-stranded DNA in the region of the gene 

of interest. 

During the PCR reaction, this process of denaturing, annealing and elongation are 

repeated 30-40 times; increasing exponentially the number of copies of the desired 

gene in the sample (Figure 4.1) and the entire PCR assay can be completed in 1-2  

hours’ time. The number cycles required is based on the amount of DNA target material 

at the beginning, and the number of copies of the PCR product required (Biorad, 2015).  

The denaturing step in each cycle stops the elongation process of the previous cycle. 

The elongation step duration can be made longer or shorter depending on the size of 

the desired product (determined by the distance of the binding sites of the primers on 

the target DNA) and as the PCR progresses, the majority of new DNA copies will be the 

size of the section of gene between the primers as they would have been generated 

from products of both primers. 
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Figure. 4.1 In a typical PCR reaction, number of copies of DNA obtained after each 
cycle.  
Source: http://vlab.amrita.edu/?sub=3&brch=186&sim=321&cnt=1 
 

The probe is a fluorescently dye-labelled oligonucleotide (25–40 nt) that forms a 

hairpin structure; the 5' and 3' ends have complementary sequences of 5–6 nucleotides 

enabling the probe to form a hairpin-like structure that specifically hybridizes to a 15–

30 nucleotide section of the target DNA. The fluorescent reporter molecule is attached 

to the 5' end, and a quencher molecule is attached to the 3' end of the probe. Thus, in 

the absence of suitable template, the formation of the hairpin structure brings the 

fluorescent reporter and quencher together, and no fluorescence is emitted. qPCR relies 

on the specific and efficient amplification of target DNA, and the binding of the 

fluorescent probe enables the visualisation and quantification of PCR products. SYBR 

Green is the most commonly used DNA-binding dye for qPCR as this binds non-

specifically to double-stranded DNA (dsDNA). SYBR Green exhibits relatively less 

fluorescence when it freely exists in solution; however, fluorescence increases up to 

1,000-fold once it binds to dsDNA. Thus, the fluorescence signal becomes proportional 

to the amount of dsDNA in a reaction and also increases as more PCR product 

accumulates during amplification. As DNA amplification progresses exponentially, so 

does the fluorescence signal, thereby making it possible to calculate the original 

amount of target DNA (Biorad, 2015; NEB, 2018).   

Generally, Taqman primers are designed to have an annealing temperature in the 

range of 55 - 60°C and the TaqMan probe should have a melting temperature (Tm) 5-

10°C higher than that of the primers. The probe is typically <30 nucleotides and should 

http://vlab.amrita.edu/?sub=3&brch=186&sim=321&cnt=1
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not contain a G at its 5’ end as this could quench the fluorescent signal even after the 

hydrolysis. Also, a sequence within the target that has a GC content of 30-80% is 

preferable, meaning that the probe also contains a high GC content for complimentary 

binding. The reporter and quencher selection is an important aspect of designing a 

TaqMan probe. When designing singleplex reactions, use of FAM-labelled probes are 

recommended because they perform well and are readily available and inexpensive. 

Furthermore, they can be detected by most of the instruments currently in use (Sigma, 

2017; Smith and Osborn, 2009; Nadkarni et al., 2002). 

 
4.1.2.6     General interpretation of qPCR results 

 

In order to understand the qPCR results, examination of a typical sample 

amplification plot is useful (Figure 4.2). In this plot, the PCR cycle number is shown on 

the x-axis, and the fluorescence from the amplification reaction, which is proportional 

to the amount of amplified product in each sample, is shown on the y-axis. 

 

Figure 4.2   Typical qPCR amplification plot showing number of cycles, exponential 
phase and non-exponential phase.  
Source:http://www.bio-rad.com/en-ch/applications-technologies/what-real-time-pcr-
qpcr 
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The qPCR amplification is characterised by two separate phases; an exponential 

phase (first phase), followed by a non-exponential phase (second phase). In first phase, 

the amount of PCR products almost doubles in each cycle. As the reaction progresses, 

the reaction components are consumed and become limited, and the reaction slows 

down and enters the plateau phase. At the beginning, fluorescence remains at 

background levels, until the amplified products accumulate enough to produce a 

detectable fluorescent signal. The cycle number at which this fluorescent signal is seen 

produces is called the ‘threshold cycle’ (CT or Cq). When the reagents are not limited 

and CT values are measured in the exponential phase, this can be used to calculate an 

accurate amount of template present in the reaction. The amount of template present at 

the beginning of the amplification reaction determines the CT, and if the amount of 

template present at the beginning of the reaction is large, only few amplification cycles 

are required to accumulate enough amplified product to produce a detectable 

fluorescent signal above the background levels. In other words, more amplification 

cycles are required to produce fluorescent signal above back ground levels if the 

amount of template product is small at the beginning of the reaction; such a reaction 

would have late CT values.  This relationship of amplification cycle and the amount of 

template present forms the basic principle of the quantitative aspect of real time PCR 

(Biorad, 2017; Biorad, 2006). I will now describe a PCR technique that was used to 

amplify complimentary DNA (cDNA) synthesised from RNA extracted from live 

Legionella cells.  

 

4.1.2.7 Advantages and disadvantages of current qPCR diagnostic method  

  

One of the most valuable techniques used in recent micro-biological research is 

nucleic acid amplification and detection (Brahmadathan, 2016). Scientists in many 

areas of research (such as micro-biology, biotechnology, basic science, medicine, 

diagnostics, forensic science etc.) rely on these techniques for a wide range of 

applications (Bustin, 2010). Qualitative nucleic acid detection is sufficient for some 

applications; however, many other applications demand a quantitative approach 

(Schoch et al., 2002). Current PCR methods used to identify Legionella species in water 

samples are specifically designed to detect DNA. However, a serious disadvantage of 

DNA based amplification methods is that they cannot differentiate between the viable 

and non-viable Legionella cells, which results in an overestimation of the presence of 
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viable Legionella bacteria in any sample under investigation (Cancino-Faure et al., 

2016). This is because amplification of DNA occurs in both live and dead Legionella 

cells in the sample (Polo-López  et al., 2017).  Therefore, rapid detection of Legionella 

by qPCR is suitable for monitoring changes in Legionella concentration in a water 

system, but cannot be used for the determination of live Legionella bacteria in water 

samples (Díaz-Flores et al., 2015). Furthermore, risk assessment by qPCR diagnosis of 

Legionella in water systems without any background information (such as water 

treatment program and duration of treatment) may be inappropriate as false positives 

may occur due to the presence and detection of persisting dead cells left over from 

previous disinfection treatments. On the other hand, a low number of bacteria detected 

by qPCR is considered to be a strong indication for the absence of risk in terms 

Legionella bacteria (Díaz-Flores et al., 2015). 

 

In the current qPCR diagnosis method for Legionella detection, there is no consensus 

on its application (e.g. how and when it should be applied) and there is no standardised 

interpretation used for reporting the results (Collins et al., 2017; Shih and Lin, 2006). 

Therefore, although the PCR diagnostic method is considered to be a useful technique 

for identifying the likely presence of Legionella species in water samples, it cannot be 

used for positive prediction. Despite this, it can effectively be used for negative 

prediction in routine water system monitoring, and to check the effectiveness of water 

treatment programs in place (Krojgaard et al., 2011; Tronel and Hartemann, 2009; 

Díaz-Flores et al., 2015).  qPCR data is reported to practitioners in genomic units per 

litre (GU/L). However, a specific explanation of how these data relate to the 

conventional gold standard has still not been established (Whiley and Taylor, 2016). 

Indeed, the sensitivity of qPCR methods (a measure of the true positive detection rate)  

varied widely between laboratories (being in the range of 87.7-92.9%) and specificity 

(a measure of the true negative rate) was found to differ in the range of 77.3-96.5%. 

Furthermore, qPCR cut-off value for cooling tower samples was unable to determine 

due to the large variability in results. In contrast, qPCR cut-off value for hot water 

samples was determined, but the results obtained from each laboratory were 

significantly different (Joly et al., 2006).     

 

In order to overcome the problem of overestimation of Legionella bacteria caused by 

detecting non-viable cells in clinical and environmental samples, a new qPCR diagnostic 

method was developed in recent years to detect viable cells by including 
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photoactivatable DNA intercalators; either propidium monoazide (PMA) or ethidium 

monoazide (EMA) (Ditommaso et al., 2015). EMA and PMA are capable of penetrating 

the membrane of damaged (unviable) cells and then bind to DNA molecules, thus 

inhibiting the amplification of DNA from dead cells. This results in the amplification of 

unbound DNA from viable cells (Zhong et al., 2016). This rapid detection method 

showed comparable specificity and sensitivity in detecting viable Legionella in water 

samples compared to current gold standard ‘conventional culture analysis’ (Li et al., 

2015; Ditommaso et al., 2014).  Compared to EMA, PMA has increased specificity for 

dead cells. Many studies have reported that this diagnostic method (qPCR combined 

with PMA) is highly successful in detecting viable Legionella in water samples 

compared to conventional culture analysis (Scaturro et al., 2016; Ditommaso et al., 

2015). In contrast, a study reported that PMA concentrations in the samples should be 

high enough to compensate for other compounds present in environmental samples. 

This raises concerns due to the increased toxicity of PMA at higher concentrations. 

Thus, this study concluded that PMA cannot be regarded as an appropriate method for 

detecting viable Legionella cells in environmental water samples (Taylor et al., 2014). 

There are other remarkable disadvantages in the use of this method, as comparison of 

the results from different laboratories is complicated by the use of different sample 

concentrations, light exposure times and PMA exposure protocols. In addition, the 

efficiency of PMA varies depending on each experimental condition, which raises 

concerns about the reliability of the results (Bonetta et al., 2017).   

 

Inhibitors found in the environmental samples can interfere with qPCR 

amplification reactions resulting in inaccurate results (Brooks et al., 2010). A study on 

environmental samples using qPCR techniques demonstrated that naturally occurring 

inhibitors are a major threat for qPCR analysis of environmental samples as between 

0.3% to 71% of samples being incorrectly recorded as being negative depending on the 

water source. These reports illustrate the importance of measuring and addressing 

inhibition when reporting qPCR results used to monitor pathogenic micro-organisms 

present in environmental water samples (Gibson et al., 2012). This disadvantage can be 

addressed by measuring these inhibitors prior to analysis, as well as diluting the DNA 

extract a further 10-fold (McKee et al., 2015;  Cao et al., 2012). A study conducted on 

133 fresh water and marine water samples, used serial dilutions and 4 internal controls 

to address the identified inhibition. The frequency and magnitude of inhibition varied 

considerably depending on the qPCR method used, but assay performance was better 
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when using an Environmental Master Mix.   However, a five-fold dilution using 

DNA/RNA free molecular grade water was also effective in reducing inhibition in about 

78% of samples (Cao et al., 2012).  

 

 

In summary, none of the current diagnostic procedures used for Legionella detection  

can reliably quantify Legionella in environmental samples, and this poses a serious 

problem in the effective monitoring and protection of public health. Therefore, more 

accurate, reliable and rapid diagnostic methods for the determination and 

quantification of Legionella bacteria in water systems are needed (Cristovam et al., 

2017; Delgado-Viscogliosi et al., 2005). 
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4.2  Aim and objectives of this research 

 

4.2.1   Aim 

 

The aim of this research is to develop a method for the detection of viable Legionella 

and quantification using qPCR techniques.  Distinguishing between viable and non-

viable bacterial cells poses a significant challenge in microbiological diagnostics using 

qPCR (Alvarez et al., 2013). qPCR is a highly sensitive and quantitative method of 

detecting bacteria; but it does not distinguish between viable and non-viable bacteria, 

because, this method detects the organism’s DNA (Chen and Chang, 2010). But, since 

DNA is persistent in the environment for a long period of time (and potentially even 

after cells have lost viability), DNA-based detection and quantification methods often 

over estimate the number of viable cells or provide false positive results in the absence 

of viable cells (Ditommaso et al., 2014). For example, in terms of Legionella control in 

domestic hot water systems, a qPCR test is more likely to show positive results even 

after the Legionella contaminated hot water system has been adequately disinfected 

due to the persistence of genomic material (DNA) from dead cells in the system 

(Nocker and Camper, 2006; Delgado-Viscogliosi et al., 2009).  

However, RNA is only found in viable cells and, unlike DNA, quickly disappears from 

non-viable cells due to its short half-life period Cangelosi and Meschke, 2014). . RNA 

can be detected and quantified by PCR if it is first converted to complementary DNA 

(cDNA) using the enzyme reverse transcriptase (RT) (Xu et al., 2017; Wang et al., 

2016). With this knowledge, this research aimed to extract total RNA from Legionella 

pneumophila species and convert it into cDNA, in order to detect and quantify the 

concentration of live Legionella pneumophila based on the amplification of the 23S 

gene. The longer-term aim of this research is to develop a laboratory-based assay that 

could be applied by UKAS-accredited laboratories to detect and quantify live Legionella 

in real environmental samples.   

4.2.2   Objectives of this research 

 

In order to establish a qPCR method to detect live Legionella, it was necessary to: 

i) Validate a method to obtain live Legionella, and heat-killed Legionella samples. 
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ii) Validate RNA extraction and cDNA synthesis protocols on Legionella. 

iii) Validate PCR primers/probes (used in DNA assay) on Legionella cDNA and a 
separate DNA positive control. 

iv) Test whether viable/nonviable Legionella cells can be distinguished with RT-
qPCR assay. 

v) Establish a relationship between qPCR results and Legionella culture analysis 
results (cfu/L). 

 

4.2.3   Exclusions of the research 

 

In this PCR assay the 23S gene primers were developed to detect the Legionella 

genus, and were used to amplify cDNA from Legionella pneumophila alone.    No other 

Legionella species were tested  for validation of the primers/probes for cross reactivity. 

Testing and validation of this assay with environmental samples was not carried out.          
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4.3  General Methodology 

 

4.3.1  MIQE guidelines 

 

The PCR Assay developed in this chapter was conducted following the the Minimum 

Information required for the publication of qPCR Experiments (MIQE) guidelines 

formulated by Bustin and colleagues in 2009.  MIQE guidelines describe the minimum 

information necessary for conducting and evaluating qPCR experiments with increased 

consistency and transparency. There are nine major components to consider, including:  

experimental design, sample preparation, nucleic acid extraction, reverse transcription, 

qPCR target information, qPCR oligonucleotides, qPCR protocol, qPCR validation and 

data analysis (Bustin et al., 2009). 

 

4.3.2   Design of primers and probes  

Taqman based primers and probes were used in this qPCR assay. The primers (short 

nucleic acid sequences) provide the starting point for DNA synthesis DNA primers are 

designed in the laboratory to bind to known sequences of the 5’ and 3’ strands of the 

target single stranded DNA, enabling DNA replication (and amplification) to occur 

(Smith and Osborn, 2009).        

  The design of primers and probes is one of the most important requirements for 

qPCR experiments.  The probe design and chemistry are largely personal choices as 

there are a number of options to consider prior to their selection and design (Navarro 

et al., 2015). The probes and primers used in this assay were taken from the peer 

reviewed research article entitled ‘Design and implementation of a protocol for the 

detection of Legionella in clinical and environmental samples’ (Nazarian et al., 2008) 

and are listed in Table 4.1. Primer and probe sequences for the Legionella pneumophila 

specific 23S rRNA gene and the Legionella pneumophila specific TaqMan probe were 

designed and optimised using 6-carboxy-fluorescein (FAM) as the fluorescent reporter 

on the 5′ end, and the Legionella genus specific TaqMan probe was designed with VIC as 

the fluorescent reporter on its 5′ end. All probes were designed with 6-

carboxytetramethylrhodamine (TAMRA) as the quencher dye on the 3′ end of the probe 

(Nazarian et al., 2008). 
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Table 4.1 Primers and probes used in this qPCR assay 

Primer or probe             Nucleotide sequence (5′-3′)                              Gene detected        

 

Leg23SF forward           CCCATGAAGCCCGTTGAA 23S rRNA (92 bp)   

Leg23SR reverse ACAATCAGCCAATTAGTACGAGTTAGC 

Lsp23SP VIC-TAMRA TCCACACCTCGCCTATCAACGTCGTAGT 

 

Leg23SF forward, product code: SY150613449-096, Leg23SR reverse, product code: 

SY150613448-091 and Lsp23SP VIC-TAMRA, product code: HA10101976-002 was 

purchased from SIGMA ALDRICH UK and Taqman Environmental Master Mix 2.0 was 

purchased from Fisher Scientific UK Ltd.  

 

4.3.2.1      Assay targeting 23S rRNA gene 

 Legionnaires’ disease (LD) are predominantly caused by the Legionella species 

Legionella pneumophila, although an increasing number of other Legionella species 

have been reported to cause human diseases (Refer Chapter 1 section 1.3). There are 

no specific clinical presentations to LD; therefore accurate diagnosis of the causative 

species is necessary. The 23S rRNA gene is common to all prokaryote species.   

Although the primers of this qPCR assay are designed specifically to target  23S rRNA 

gene of the Legionella genus, they were only tested here on Legionella pneumophila 

(Llewellyn et al., 2017). 

 

4.3.2.2      TaqMan assays 

 

TaqMan assays (also known as the 5’-nuclease assay) employ sequence-specific 

primers as well as a sequence-specific fluorescently labelled oligonucleotide probe 

known as the TaqMan probe.  This probe consists of a fluorescent reporter 

(fluorophore) at the 5’ end and a quencher at the 3’ end (Taqman, 2017). Taq 

polymerase was originally extracted from bacteria that tolerate (i.e. replicate) in high 

temperatures of 75–80°C. In PCR, the ability of the Taq polymerase enzyme to 

withstand high temperatures without denaturing is critical due to the requirement of 

high temperatures for denaturing (or separating) the dsDNA prior to copying. Same as 
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in any other PCR, TaqMan also requires a DNA template, a polymerase, two primers (5’ 

and 3’) that are specific to the region being amplified, and a unique, sequence-specific 

probe.  

Fluorophores are small fluorescent molecules attached to oligonucleotides in order 

to function as probes in qPCR technology. There are two types of fluorophores known 

as reporter (donor) and quencher (acceptor). When a reporter fluorophore absorbs 

energy from light sources, it attains an excited state and the emission of energy from 

fluorophore as fluorescence causes the returning of the same to the ground state.  This 

emitted light from the reporter has a lower energy, lower frequency and a longer 

wavelength than the absorbed light.  This light can be transferred to an acceptor 

fluorophore. If both fluorophores are within a specific distance (10 to 100Å), the 

transfer of excited-state energy from a reporter to a quencher is described as 

Fluorescence Resonance Energy Transfer (FRET). There are two different FRET 

mechanisms, (i) FRET-quenching; in this mechanism the electronic energy of the 

quencher is dissipated as heat because the acceptor molecule is non-fluorescent, and 

(ii) FRET mechanism; the transferred energy is emitted as fluorescence because the 

acceptor molecule is fluorescent (Navarro et al., 2015). 

 

During the PCR reaction, Taq polymerase moves towards the template strand and 

adds nucleotides to the 3’ end from the primers to produce a complementary strand of 

DNA. The probe cannot be extended by Taq polymerase as Taq polymerase does not 

contain a free hydroxyl. In this instance, the reporter dye on the 5’ end of the probe 

generates fluorescent light proportional to the amount of DNA produced and the 3' end 

of the probe is a quencher. While the probe is intact, the reporter dye is in very close 

proximity to the quencher.  If both fluorophores are within a specific distance (10 to 

100Å), the transfer of excited-state energy from the reporter to the quencher occurs, 

and is known as Fluorescence Resonance Energy Transfer (FRET).  In this way the 

fluorescence emitted by the reporter on the probe in quenched due to the energy 

transfer by fluorescence resonance. However, when Taq reaches the fluorescent probe, 

Taq partially displaces and cleaves the probe by removing it from the DNA template in 

addition to its polymerase activity. This causes separation of the reporter from the 

quencher, thereby generating a permanent increase in fluorescence correlating with 

DNA doubling (Figure 4.3). Separation of the reporter from the quencher and cleavage 

of the probe from the target allows primer extension to continue to the end of the 

template strand. Therefore, the probe does not inhibit the overall PCR process. As the 
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reporter dye molecules are cleaved from their respective probes with each PCR cycle, 

an increase in fluorescence intensity proportional to the amount of amplicon produced 

is observed (Taqman, 2017). 

 

The major advantages of TaqMan chemistry are the requirement for specific 

hybridization between probe and target in order to generate a fluorescent signal.  The 

probes can be labelled with different reporter dyes allowing amplification and 

detection of two distinct sequences in one reaction tube and elimination of post-PCR 

processing reduces assay labour and material costs. However, synthesis of different 

probes is required when amplifying  distinct sequences in the same reaction (Taqman, 

2017). 

 

 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwifiue0spXdAhXJJ1AKHZVnC7YQjRx6BAgBEAU&url=https://www.biosyn.com/tew/taqman-vs-sybr-green-chemistries.aspx&psig=AOvVaw1mp2Xv_rRrQTCRZxbl1KQw&ust=1535739714754178
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Figure. 4.3 1. An oligonucleotide probe is constructed containing a fluorescent 

reporter dye on the 5' end and a quencher dye on the 3' end. While the probe is intact, 

the proximity of the quencher dye greatly reduces the fluorescence emitted by the 

reporter dye by fluorescence resonance energy transfer (FRET). 2. If the target 

sequence is present, the probe anneals downstream from one of the primer sites and is 

cleaved by the 5' nuclease activity of Taq DNA polymerase as this primer is extended.   

3. This cleavage of the probe separates the reporter dye from the quencher dye, 

increasing the reporter dye signal, and removes the probe from the target strand, 

allowing primer extension to continue to the end of the template strand. Thus, inclusion 

of the probe does not inhibit the overall PCR process. 4. Additional reporter dye 

molecules are cleaved from their respective probes with each cycle, resulting in an 

increase in fluorescence intensity proportional to the amount of amplicon produced.  

(Source: https://www.biosyn.com/tew/taqman-vs-sybr-green-chemistries.aspx). 

 

4.3.2.3      Primers/probes validation 

A known amount of Legionella DNA standard supplied by Pall GeneDisc 

Technologies (France), was used to prepare five serial dilutions that were amplified 

(targeting 23S rRNA gene) to generate the standard curve for the validation of primers 

and probes used in the assay (see 4.3.3).   

 

4.3.3      Positive control 

The inclusion of a positive control in the qPCR is necessary to ensure that the assay 

is performing optimally, thereby eliminating the chance of false negatives. Commonly 

used positive controls are external DNA or RNA carrying a target sequence of interest. 

If these positive controls are assayed in separate PCR wells from the experimental 

samples, these external controls determine whether the RT or PCR reaction conditions 

are optimal or not. Furthermore, positive controls can be used to assess whether the 

experimental samples contain inhibitors that affect reverse transcription or PCR 

reactions (Qiagen, 2017; Nolan et al., 2013). 

4.3.3.1       Preparation of standard solutions for positive control  

The positive control in this qPCR assay contained a known amount of Legionella 

pneumophila DNA (equivalent to 250,000 GU in 6 µl– which is the volume used in the 

Gene Disc assay) supplied by Pall GeneDisc Technologies, France.  The initial standard 

was serially diluted a further four times in 10-fold steps and were amplified alongside 

https://www.biosyn.com/tew/taqman-vs-sybr-green-chemistries.aspx
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four 10-fold dilutions of cDNA synthesised from RNA extracted from a Legionella 

lenticule (See 4.3.16). 

In brief, the 2ml micro-tube containing diluent was thawed at room temperature 

and mixed by vortexing for five seconds. The micro-tube containing frozen dehydrated 

standard Legionella pneumophila DNA was centrifuged for five seconds followed by the 

addition of 200 μl of diluent.   Without shaking or vortexing, the standard Legionella 

pneumophila DNA in micro-tube with diluent was allowed to stand for a minimum of 

60 minutes at 5°C ± 3°C. This micro-tube containing 250,000 GU/6 µl was labelled as 5. 

Another four 1.5 ml micro-tubes were prepared and labelled as 1, 2, 3 and 4. 180 μl of 

diluent was then dispensed into each empty micro-tubes.  Micro-tube 5 (containing 

250,000 GU/6 µl) was vortexed for 5 seconds, then briefly centrifuged after which 20 μl 

of  Legionella pneumophila DNA was pipetted from ‘5’ into micro-tube ‘4’. The micro-

tube ‘4’ was vortexed for 5 seconds and centrifuged shortly. 20 μl of Legionella 

pneumophila DNA from ‘4’  was pipetted into micro-tube ‘3’ followed by five seconds 

vortexing and short centrifugation. Again 20 μl of Legionella pneumophila DNA from ‘3’ 

was pipetted into micro-tube ‘2’; vortexed for 5 seconds and centrifuged shortly. 

Finally, 20 μl of Legionella pneumophila DNA from ‘2’ was pipetted into micro-tube ‘1’ 

followed by five seconds’ vortexing and short centrifugation. Thus, the 10-fold dilution 

series of five standard Legionella pneumophila DNA samples was prepared. The GU 

present in each 6µl  volume are as follows: 

1- 25 GU (Log value -0.00001) 

2- 250 GU (Log value -0.0001) 

3- 2500 GU (Log value -0.001) 

4- 25000 GU (Log value – 0.01) 

5- 250000 GU (Log value – 0) 

 

The Genomic Units (GU) correspond to the final amount of DNA in each PCR well based 

on a volume of 6µl used in the PALL GENE DISC system.  These standard DNA solutions 

can be stored up to 72 hours at 5 ˚C ± 3 ˚C.  The standard dilution series were amplified 

in triplicate to generate the PCR data to calculate the slope and qPCR assay efficiency. 
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4.3.4    Legionella lenticules  

  

Legionella pneumophila bacteria used in all experiments were extracted from 

Legionella lenticules.  Each lenticule contains bacteria from a pure culture preserved in 

a tablet format (LENTICULE disc) with a self-indicating silica gel desiccant. 

Manufacturing and testing of the bulk reference material was done by Public Health 

England (PHE). Preparation and retesting of the final product ready to use for 

customers (which includes filling, packaging and distribution) was done by Sigma-

Aldrich (12821 Legionella pneumophila Lenticule discs, 500-50,000cfu, product code: 

101768252). On receipt, the mylar bag containing the plastic vials with the lenticule 

discs was stored unopened at –200C. 

 

4.3.4.1     Handling Legionella lenticules. 

 

The plastic vials containing the lenticule discs were removed from the freezer, and 

left for 10 minutes to reach ambient temperatures (15-20°C).Lenticule discs must not 

be refrozen and must be used within one hour after reaching ambient temperature. 

Ringers solution was prepared by dissolving Sodium Chloride (NaCl - 7.2 

gram)Potassium Chloride (KCl – 0.37 gram) and Calcium Chloride (CaCl2 - 0.17 gram) 

into 1 litre reagent grade water and adjusting the pH between 7.3 – 7.4 using Sodium 

Hydroxide (NaOH) solution.  This solution was filtered through a 0.22µm filter and 

autoclaved for sterilisation. The bacterial culture medium was prepared by adding 10µl 

of Ringers solution to 390 μl of deionised water in a 2ml sterile plastic tube and one 

lenticule was added directly to the solution by capping and   inverting the tube, after 

which it was allowed to stand for 10 minutes at room temperature (15-200C) to ensure 

the lenticule had dissolved completely. After 10 minutes, the bacterial culture was 

vortexed three times for 30 seconds and left at room temperature for five minutes to 

allow any air bubbles to disperse. A short spin was carried out in centrifuge to get rid of 

any remaining air bubbles that had formed during vortexing.  

 

 

 



 

163 
 

4.3.5   Legionella  culture 

A total 6 Legionella lenticules were used to prepare 6 solutions (1 lenticule dissolved 

in 400 μL Ringers solution) of Legionella pneumophila.  Three of the solutions 

(Triplicate) were heated to 80 ͦC on a Dri-block (hot plate) for one hour and then kept 

for 2 hours at room temperature (22 ͦC). These heat killed Legionella solutions, along 

with the three untreated samples, then were made up to 500 ml with deionised water 

for culture analysis. All the samples were analysed at a UKAS accredited laboratory by 

culture on BCYE agar (Ref. Chapter 3, section 3.2.4).  

4.3.6 General precautionary measures 

 

RNases are very active and generally stable enzymes that do not require cofactors to 

function, and small amounts are sufficient to destroy RNA (Moelling and Broecker, 

2015)). Therefore, it was extremely important to eliminate any possible RNase 

contamination from plasticware. Care is also needed to avoid introducing RNases into 

the RNA sample during purification procedures. The following precautionary measures 

were employed to create and maintain an RNase-free environment whilst working with 

RNA. Dust particles, bacteria and moulds (being the most common sources of RNase 

contamination) was minimised by ensuring that the laboratory space was thoroughly 

cleaned before and after use; vinyl gloves were used while handling reagents and RNA 

samples to prevent RNase contamination from hands as well as from dusty laboratory 

equipment. Gloves were changed frequently and all the sample and reagent tubes were 

closed whenever possible in order to avoid contamination. The purified RNA was kept 

on ice for downstream applications.  

In order to remove RNase contamination from laboratory equipment, such as Gilson 

pipets, a commercially available RNase removal solution was used.  These were 

thoroughly rinsed with 0.1 M NaOH, 1 mM Ethylenediaminetetraacetic acid (EDTA) 

followed by RNase-free water to ensure that they were free from RNase contamination 

(Lever et al., 2015; Farrell, 2012).  Pre-treated sterile, disposable polypropylene tubes 

were used because no pre-treatment was required for these tubes to inactivate RNase.  

Virkon solution(Dupond) was prepared by dissolving 1 tablet in 500ml of tap water to 

be used as the disinfectant during the entire procedure in all experiments. All the steps 

up to RNA extraction were carried out in the Biological Safety Cabinet (BSC) as 

Legionella bacteria was considered inactive only after the lysis step. A FFP3-face fit 

tested mask was used for work with Legionella.   
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Six different experiments were carried out during this research. The protocol employed 

during RNA extraction and DNA extractions are same in all eight experiments. 

However, two different kits were used for cDNA synthesis and three different protocols 

were followed in genomic DNA elimination.  

 

4.3.7  RNA stabilisation 

  

Additional materials required to carry out this protocol, included RNAprotect 

Bacteria Reagent and RNeasy Protect Bacteria Kits, Ringers solution, dry hot plate and 

face fit masks. Two volumes of RNAprotect Bacteria Reagent was added to one volume 

of bacteria culture (i.e. 800µl of RNAprotect Bacteria Reagent was pipetted into 2ml 

tube containing 400μl of the bacterial culture). The volume of the tube must be 4-times 

that of the bacterial culture. After addition of RNAprotect Bacteria Reagent to the 

bacterial culture, the tube was capped and mixed immediately by vortexing for 5 

seconds, and then allowed to stand for 5 minutes at room temperature (15–25°C) to 

achieve immediate stabilization of RNA. After five minutes, the bacterial culture was 

centrifuged for 10 minutes at 5000 x g. After centrifugation, the pellet may not be easily 

visible due to an interaction between the cells and the stabilization reagent that causes 

a change in the optical density of the cells. The supernatant was decanted, and the 

remaining liquid was removed by gently dabbing the inverted tube onto a paper towel. 

Any remaining supernatant was not removed by pipetting, as this may lead to loss of 

the bacterial pellet. Pellets can be stored at –15 to –30°C for up to 2 weeks or at –70°C 

for up to 4 weeks if needed. The pellets were thawed at room temperature (15–25°C), 

in readiness for RNA extraction and purification. 

 

4.3.7.1 RNA extraction 

 

This protocol involves enzymatic lysis followed by mechanical disruption 

recommended for Gram-negative bacteria and easy-to-disrupt Gram-positive bacteria 

grown in minimal media. 

Equipment and reagents required for this protocol included Lysozyme, Tris and EDTA 

for preparing TE buffer, TissueLyser system (TissueLyser II, QIAGEN), acid washed 

glass beads, 2 ml Safe-Lock tubes, RNeasy Kits, β-mercaptoethanol (β -ME) (stock 
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solutions are usually 14.3 M), RNeasy Mini Kit, RNeasy Midi Kit and RNeasy Protect 

Bacteria Midi Kit (QIAGEN), Ethanol (96–100%) and ethanol (80%). 

 
1.  10μl β-mercaptoethanol was added per 1ml Buffer RLT from RNeasy Protect 

Bacteria Midi Kit, and mixed gently. Buffer RLT is stable for 1 month after the 

addition of β-mercaptoethanol. However, the protocol recommends that you 

only make up what is required for immediate use. 350μl was required per 

sample in this experiment.  

2.  100μl of TE buffer prepared by mixing 10mM TrisCl, 1mM EDTA and adjusted 

the pH to 8.0 using NaOH solution) containing 15 mg/ml lysozyme was 

required per sample.   

3.  25–50mg acid-washed glass beads (150–600μm diameter) were required per 

sample. These were weighed out in a 2 ml Safe-Lock tube for use in step 7. 

 
  
Freshly prepared of previously thawed bacterial pellets (see ‘4.3.7 RNA stabilisation’) 
were prepared for use in step 4.  
 
 
4.  100µl of TE buffer containing lysozyme was added to the sample and mixed by 

vortexing for 10 seconds.   

5.  The sample was incubated at room temperature (15–25°C) for 10 minutes. 

During incubation, the sample was vortexed for 10 seconds every 2 minutes. 

(Vortexing can be avoided if the incubation can be carried out on a shaker–

incubator). 

Note: Since the RNA is stabilized, the incubation time can be extended without 

affecting the procedure, and may increase the RNA yield. 

6.  After the incubation at room temperature for 10 minutes, 350µl of Buffer RLT 

was added to the sample and vortexed vigorously for 5–10 seconds.  

Note: It is important to ensure that β-meracaptoethanol is added to Buffer RLT before 

use and the pellet is thoroughly re-suspended in Buffer RLT. 

7.  The suspension was transferred into a 2 ml Safe-Lock tube containing the acid 

washed glass beads prepared in step 2 and the cells were disrupted in the 

TissueLyser for 5 minutes at maximum speed. 

 
8.  After the completion of step 7, the samples were centrifuged for 10 seconds at 

maximum speed and the supernatants were transferred into new 2 ml tubes.  
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9.  220µl of RNA free, 96–100% ethanol was added to the supernatant in each 2 ml 

tube, and mixed gently by pipetting. (Centrifugation is not recommended at this 

stage).  

Note: After the addition of ethanol, a precipitate may form but this will not 

affect the RNeasy procedure. 

 
The following steps were completed before starting with the main protocol of RNA 
Purification Procedure:  
 
a. Buffer RPE was supplied as a concentrate (RNeasy Protect Bacteria Midi Kit) 

and 4 volumes of ethanol (96–100%) was added before using it for the first 

time, as indicated on the bottle, to obtain a working solution. 

 

b. DNase I stock solution was prepared before using the RNase-Free DNase Set for 

the first time. The solid DNase I (1500 Kunitz units) was dissolved in 550μl of 

RNase-free water provided. In order to avoid loss of DNase I RNase-free water 

was injected directly into the stock vial using an RNase-free needle and syringe. 

The solution was mixed gently by inverting the vial as vortexing is not 

recommended at this stage.  

 

c. In order to achieve long-term storage of DNase I (for up to 9 months), the stock 

solution was removed from the glass vial, and divided into single-use aliquots 

(10µl), and stored at –15 to –30°C. Thawed aliquots can be stored at 2–8°C for 

up to 6 weeks, however, refreezing of the aliquots after thawing is not 

recommended. 

 

4.3.7.2  RNA purification  

 

 
1.  The lysate from step 9, including any precipitate that may have formed, was 

transferred into an RNeasy Mini spin column placed in a 2 ml collection tube 

supplied with the kit. The lid was closed gently, and centrifuged for 15 seconds 

at 8000 x g. After the centrifugation, the flow-through was discarded and the 

collection tube was reused in step 2. In the event of lysate exceeding 700 μl, 

centrifugation of successive aliquots through the spin column is recommended. 

The flow-through should be discarded after each centrifugation. 
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2.  10µl of DNase was added to 70μl Buffer RDD (supplied in the kit) for each 

sample, i.e., 10µl DNase from DNase I stock and 70μl Buffer RDD makes 80μl 

solution.  Aliquots of frozen DNase from the DNase I stock (see above) were 

thawed until became clear. A short centrifuge was carried out before mixing 

with Buffer RDD. The solution was mixed gently by inverting the tube, and 

centrifuged briefly to collect residual liquid from the sides of the tube. 

 

3. 80µl of DNase I was added to the sample directly to the RNeasy spin column 

membrane, and incubated at room temperature (20–30°C) for 15 minutes. 

 

It is important to ensure to add the DNase I incubation mix directly to the 

RNeasy spin column membrane as DNase digestion will be incomplete if part of 

the mix sticks to the walls or the O-ring of the spin column. 

 
4. After incubation, 350μl of Buffer RW1(from the kit) was added to the RNeasy 

spin column, and then centrifuged for 15 seconds at 8000 x g. The flow-through 

was discarded along with the collection tube.  

 
6.  RNeasy Mini spin column was placed in a new 2 ml collection tube (supplied) 

and 500μl Buffer RPE was then added to the RNeasy Mini spin column.  The lid 

was gently closed before centrifuging for 15 seconds at 8000 x g to wash the 

spin column membrane. The flow-through was discarded, and the collection 

tube reused.  

 
7.  A second 500μl aliquot of Buffer RPE was added to the RNeasy Mini spin 

column. The lid was gently closed before centrifuging for 2 minutes at 8000 x g 

to wash the spin column membrane. 

This long centrifugation ensures that no residual ethanol is carried over during 

elution as this may interfere with downstream reactions. After centrifugation, 

the RNeasy Mini spin column was carefully removed from the collection tube 

which was discarded avoiding touching the elute, otherwise, carryover of 

ethanol may occur. 

 
8.  The spin column was placed in a new 2 ml collection tube, and centrifuged at 

full speed for 1 minute. 

 
9.  The RNeasy Mini spin column was then placed in a new 1.5 ml collection tube 
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(supplied) and 30μl RNase-free water was added directly to the spin column 

membrane. The lid was closed gently, and centrifuged for 1 minute at 8000 x g 

to elute the RNA (Eluted RNA can be kept at -80°C). 

 

4.3.8    DNA extraction  

 

DNA extraction in this research was carried out as follows using QIAamp DNA 

extraction MiniKit (50), Ref. No. 5130. 

 
1. The live bacterial culture (Sample A) and heat killed Legionella (Sample B) were 

centrifuged for 10 minutes at 5000 x g and the supernatant was decanted.  Any 

remaining supernatant was removed by gently dabbing the inverted tube once 

onto a paper towel. The bacterial pellets were proceeded with DNA extraction 

and purification. 

 

2. The bacterial pellet was re-suspended in 180μl ATL buffer, supplied with the 

QIAamp  DNA Mini Kit (50). 

 

3.  20μl of proteinase K was added to the sample, mixed by vortexing, and 

incubated at 56°C (water bath) for 3 hours until the tissue is completely lysed. 

The samples were occasionally vortexed during incubation to disperse the 

sample.  

 

Note: Proteinase K must be used. QIAGEN Protease has reduced activity in the 

presence of ATL Buffer. Lysis time varies depending on the type of tissue 

processed. Lysis is usually complete in 1–3 hrs. Lysis overnight is possible and 

does not influence the preparation. To ensure efficient lysis, a shaking water 

bath or a rocking platform should be used. If not available, vortexing 2–3 times 

per hour during incubation is recommended. 

 

4. After lysis, the samples were briefly centrifuged to remove any drops from the 

inside of the lid. 

 

5.  200μl Buffer AL was added to the sample, mixed by pulse-vortexing for 15 

seconds, and incubated at 70°C for 10 minutes. The 1.5 ml micro-centrifuge 
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tube was briefly centrifuged to remove drops from inside the lid.  

 

Note: It is essential that the sample and AL Buffer are mixed thoroughly to yield 

a homogeneous solution. A white precipitate may form on addition of AL Buffer, 

which in most cases will dissolve during incubation at 70°C. The precipitate 

does not interfere with the QIAamp procedure or with any subsequent 

application. 

 

6.   200μl ethanol (96–100%) was added to the sample and mixed by pulse-

vortexing for 15 seconds followed by brief centrifugation of the 1.5 ml micro-

centrifuge tube to remove the drops from inside the lid.  

 

Note: It is essential that the sample, Buffer AL, and the ethanol are mixed 

thoroughly to yield a homogeneous solution. A white precipitate may form on 

addition of ethanol. It is essential to apply all of the precipitate to the QIAamp 

Mini spin column. This precipitate does not interfere with the QIAamp 

procedure or with any subsequent application. Do not use alcohols other than 

ethanol since this may result in reduced yields. 

 

7.   The mixture from step 6 (including the precipitate) was carefully applied to the 

QIAamp Mini spin column (in a 2 ml collection tube) without wetting the rim. 

The cap was closed and the tubes were centrifuged at 6000 x g for 1 minute. 

The QIAamp Mini spin column was placed in a clean 2 ml collection tube 

(provided), and the tube containing the filtrate was discarded. Each spin 

column was closed to avoid aerosol formation during centrifugation.  

       

Note: It is essential to apply all of the precipitate to the QIAamp Mini spin 

column. Centrifugation is performed at 6000 x g to reduce noise, and 

centrifugation at full speed will not affect the yield or purity of the DNA. If the 

solution has not completely passed through the membrane, centrifuge again at 

a higher speed until all the solution has passed through. 

 

8.  The QIAamp Mini spin column was carefully opened and added 500μl Buffer 

AW1 without wetting the   rim, closed the cap and centrifuged at 6000 x g for 1 

minute. The QIAamp Mini spin column was placed again in a clean 2ml 
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collection tube (provided), and discarded the collection tube containing the 

filtrate. 

 

9.    The QIAamp Mini spin column was carefully opened and 500μl of AW2 Buffer  

was added without wetting the rim.  The cap was closed and the tube was 

centrifuged at full speed (16,000 x g) for 3 minutes. 

 

10.   The QIAamp Mini spin column was placed in a new 2 ml collection tube (not 

provided with the kit) and the old collection tube with the filtrate was 

discarded. The tube was centrifuged at full speed (16,000 x g) for 1 minute to 

eliminate the chance of possible AW2 Buffer carryover. 

 

11.   The QIAamp Mini spin column was placed in a clean 1.5 ml micro-centrifuge 

tube (not provided with the kit), and the collection tube containing the filtrate 

was discarded. The QIAamp Mini spin column was carefully opened and 200μl 

of AE buffer was added, after which the tube was incubated at room 

temperature for 1 minute, followed by centrifugation at 6000 x g for 1 minute. 

 

12.  The resulting DNA (pellet) was stored in the freezer at -20°C.   

 

The DNA pellets were not diluted for PCR amplification. All other procedures for PCR   

amplification were as described in Experiment 1, including master mix preparation. 

The cDNA synthesised from RNA extracted from completely heat killed Legionella 

lenticule (plus any residual genomic DNA in the sample; if dead, there should 

theoretically not be any cDNA) was also amplified with DNA extracted from full live 

lenticule and completely heat killed lenticule for comparative study purpose.    

 

In this experiment, a different protocol was tested for genomic DNA elimination in 

Sample C, but cDNA synthesis was undertaken as described in Experiment 4. 

 

4.3.9     RNA quantification 

4.3.9.1    Gel electrophoresis  
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The overall quality of extracted RNA including RNA yield may be assessed by 

electrophoresis on a denaturing agarose gel (Ream et al., 2016). In this qPCR assay, gel 

electrophoresis experiment was conducted as follows:  

0.5g of agarose powder was weighed in a paper plate and mixed with 50ml of Tris-

borate-EDTA (TBE) buffer and added RNase-free water to make up the solution to100 

ml in a 200ml conical flask. The mixture was heated in a microwave by swirling the 

flask occasionally until the agarose is completely dissolved in TBE. The clear agarose 

solution was cooled to 65–70°C in a water bath and 3µl of GelRed Nucleic Acid Stain 

was added and gently mixed by swirling. Once mixed, the whole mixture was poured 

into a gel tray to prepare a gel with dimensions 10 x 14 x 0.7 cm.  A comb was inserted 

into the gel immediately after pouring the gel into the tray by ensuring that there is 

enough space between the bottom of the comb and the gel tray (0.5–1.0 mm) to allow 

proper well formation and avoid sample leakage into the gel tray. The gel was allowed 

to set for 30 minutes whilst ensuring that there was no air bubbles trapped in the gel or 

between the wells.  

An electrophoresis tank was cleaned with detergent solution, thoroughly rinsed 

with RNase-free water followed by a gentle rinse with ethanol and allowed to dry. The 

gel and comb were placed in the electrophoresis tank which was filled with TBE gel 

running buffer, ensuring approximately 1 mm of liquid above the surface of the gel. The 

comb was then removed carefully from the gel which was left to equilibrate for 30 

minutes. 5µl of RNA loading buffer was added to 3µl of each RNA sample followed by a 

short centrifugation. The sample was then heated at 72°C for 2 minutes in a water bath 

and directly kept on ice.  The heat killed samples were applied to the wells of the gel in 

the electrophoresis tank by inserting the pipette tip deep into the well and slowly 

expelled the liquid. The electrodes were connected and the power supply turned on 

(100 V). The gel was run for 25 minutes, after which it was placed under a UV light 

source in a BioDoc-It Imaging System. The GelRed in the gel allows visualization of the 

RNA with UV light.  

4.3.9.2     Nanodrop concentration check 

  

RNA yield from each dilution (Refer section 4.4.11) was also checked using a Nanodrop 

One spectrophotometer (Thermofisher, 2017) to ensure that the RNA extraction 

procedure was successful and the concentration of RNA (in ng/µl) was recorded. The 

samples do not need to be diluted before measurement due to the wide range detection 



 

172 
 

with small sample volume, and reading can be taken in a single measurement in less 

than 30 seconds. No other reagents or accessories are required for this measurement 

(Wieczorek et al., 2012). Blanking of the machine was carried out using 1 μl of blanking 

solution (provided by the manufacturer) after which1 μl of each purified and undiluted 

RNA sample (prepared from 1, ½  , ¼  and lenticule) was dispensed directly on to 

the Nanodrop sensor .  

 

4.3.10      gDNA elimination and cDNA synthesis (various approaches) 

 
4.3.10.1    Using SuperScript III First-Strand Synthesis SuperMix for qRT-PCR.  

 
gDNA elimination and cDNA synthesis was carried out using ThermoFisher 

SuperScript III First-Strand Synthesis SuperMix for qRT-PCR, product number: 

11752050. The following protocol has been optimized for generating first-strand cDNA 

for use in two-step qRT-PCR. An incubation temperature of 50°C for 30 minutes is 

recommended as a general starting point; higher temperatures (up to 60°C) may be 

used for difficult templates. 

1. Two tubes of 0.2ml were prepared; One for the sample with Reverse 
Transcription (RT) and the other for the  same sample without RT.   
 

Table 4.2 Reagents used for RT and NRT samples. 
 Samples with RT (RT) Samples without RT(NRT) 

RT Reaction Mix 10 μl 10 μl 
RT Enzyme Mix 2 μl - 

RNA 8 μl 8 μl 
DEPC-treated water - 2 μl 

 
2. The tube contents were gently mixed by flicking followed by a short centrifuge. 

 
The following procedures were carried out in a PCR machine.   

3. The samples were incubated at 25°C for 10 minutes to allow the reverse 

transcriptase to convert RNA to cDNA in the sample and then the temperature 

was raised to 50°C for 30 minutes as the enzyme is more active at 50°C and can 

provide higher specificity with higher yield of full length cDNA (up to 12 kb in 

length). 

4. The reaction was terminated by heating at 85°C for 5 minutes to heat-inactivate 
the reverse transcriptase, and then chilled on ice. 

 
5. 1μl of E. coli RNase H was added to each sample and incubated at 37°C for 20 
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minutes. (E. coli RNase H is an endoribonuclease which degrades the RNA strand 

of RNA/DNA hybrid molecules and produces ribonucleotide molecules with 5-

phosphate and 3-hydroxyl termini. RNAse H is inactive against single or double-

stranded RNA molecules). 

 
The synthesised cDNA was then diluted in the ratio of 18µl deionised water (DW) and 

2µl cDNA followed by a short centrifuge. Diluted cDNA was stored at –20°C until use. 

 

4.3.10.2      Using QIAGEN DNA elimination kit  

The genomic DNA elimination reaction was carried out on ice as follows using 

QIAGEN RNeasy Plus Micro Kit (50), product No. 74034. gDNA Wipeout Buffer  (2µl) 

and Template RNA from viable or heat killed lenticules were (12µl) mixed in a 0.2ml 

tube, incubated for 2 minutes at 42°C, and then placed immediately on ice. Reverse 

transcription master mix was prepared on ice as follows:   

Table 4.3  QIAGEN genomic DNA elimination reaction mix followed by cDNA synthesis 
with RT to look at cDNA yield and without RT to look at effectiveness of genomic DNA 
removal.  Sample A is heat killed; whereas Sample B is live (untreated). 

Component Sample B,          

with RT(µl) 

Sample B, 

without RT (µl) 

Sample A, 

with RT(µl) 

Sample A, 

without RT (µl) 

RT Master mix 1 - 1 - 

RNase free water  

- 

1 - 1 

RT Buffer 4 4 4 4 

RT Primer Mix 1 1 1 1 

Template RNA 

(live or heat killed) 

14 14 14 14 

 

All the samples were incubated in a PCR machine, 15 minutes at 42°C followed by 3 

minutes at 95°C and chilled on ice. Synthesised cDNA was diluted in the ratio of 18µl 

DW and 2µl cDNA followed by a short centrifugation and kept at -20°C. 
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4.3.10.3     Using amplification grade DNaseI 

 Amplification Grade DNaseI, product code AMP-D1 supplied by Sigma Aldrich 

UK is used for gDNA contamination removal. Amplification Grade DNase I 

(Deoxyribonuclease I) is an endonuclease isolated from bovine pancreas that digests 

double- and single-stranded DNA into oligo- and mono-nucleotides and this kit is 

suitable for eliminating DNA from RNA preparations prior to RT-PCR (DNASE1, Sigma 

Aldrich). 

1µl of DNAseI and 3.5µl RNAse free buffer (Sigma-Aldrich) were added to 30µl RNA  

and incubated 10 minutes at 37°C in a water bath. After the incubation, 3.5µl of 3M 

(mol) Sodium Acetate, 100 µl ice cold 96-100% ethanol and 1µl GlycoBlue was added to 

the sample and kept at -20°C overnight for 14 hours. The sample was then centrifuged 

at 4°C for 30 minutes at 12000g and resultant pellets were washed with 100µl ice cold 

70% ethanol and centrifuged again for15 minutes at 4°C and 16000g.  The supernatant 

was removed and the pellets were air dried for approximately 10 minutes. The pellets 

were then dissolved in 25µl RNAse free water ready for cDNA synthesis as described in 

in Experiment 4. 

 

4.3.11       TaqMan mastermix preparation 

 

 
TaqMan Master Mix was prepared using the kits (TaqMan Environmental Master 

Mix 2.0, Ref. No. 4396838 supplied by Life Technologies, UK, Probes SF (Product code: 

SY150613449-096), SR (Product code: SY150613448-091) and SP (Product code: 

HA10101976-002) are supplied by Sigma Aldrich) in the following basic ratio:  

10µl TaqMan 

0.5µl Probe SF 

0.5µl Probe SR 

0.2µl Probe SP 

6.8µl Deionised Water (DW) 
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Samples were prepared in triplicate; therefore, the volume of master mix was 

prepared for 8 PCR wells (3 for RT, 3 for no RT, 1 for NTC and 1 extra as a 

precautionary measure to avoid shortage due to the possible loss during pipetting and 

well filling).   

Taqman   - 80µl  

Probe F - 4.0µl 

Probe R - 4.0µl 

Probe P - 1.6µl 

DW  - 54.4µl 

 

4.3.12        qPCR amplification methods 

 

PCR plate wells were filled with 2µl of diluted cDNA sample and 18µl of Taqman 

master mix. One well was filled with 2µl deionised water and 18µl TaqMan master mix 

as no template control (NTC) to look for general reagent contamination. One sample 

was with Reverse Transcription (RTcDNA) and the other was without RT (purified RNA 

prior to cDNA synthesis) to look for genomic DNA contamination. After filling the 

required number of PCR wells, the whole plate was sealed and spun downed to 

eliminate air bubbles and all the samples were amplified in triplicate.  

 

4.3.13       qPCR assay conditions 

This qPCR assay was performed with primers and probes targeting the Legionella 

pneumophila 23S gene, and both primers and probes were optimised to a Taqman 

assay. Bio-Rad CFX96™ real-time PCR detection system was used to amplify the cDNA, 

Hard-Shell 96-Well Semi-Skirted PCR Plates and seals used were manufactured and 

supplied by Biorad Systems. The PCR wells are filled with samples (Refer section 5.3.4) 

containing primers, probes, TaqMan environmental master mix and diluted cDNA (2μL) 

template with RT reaction mix for a total volume of 20 μL. 2μL of cDNA from the total 

cDNA yield (30 μL) was diluted with 18μL of RNA/ DNA free molecular grade water 
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supplied by Sigma Aldrich. For the positive control, a known amount of Legionella 

pneumophila DNA standard was added to tubes containing the same amount of primers, 

probes, and TaqMan environmental master mix.  In order to check for genomic DNA 

contamination, NRT samples containing the same amount of primers, probes, and 

TaqMan environmental master mix, but without RT reaction mix were also included.  

Differences in volumes in the various samples and controls were adjusted with RNA/ 

DNA free molecular grade water as necessary.  The thermal cycling process consisted of 

95 °C for 10 minutes as an initial incubation, followed by 40 cycles of 95 °C for 15 

seconds and 60 °C for 1 minute representing standard TaqMan conditions (Nazarian et 

al., 2008). 

             

 

Figure. 4.4 Representation of the overall amplification reaction employed in this assay. 

 

4.3.14     Inhibition monitoring 

Accurate qPCR results depend on a variety of factors including the quality of the 

reagents, experiment design, sample quality, and the presence of inhibitors. High 

protein levels and other chemical contaminants that persist after cDNA preparation can 

cause PCR inhibition. Inhibition in a qPCR assay can be monitored by performing a 

serial dilution of synthesised cDNA templates (Svec et al., 2015). In this assay, qPCR 

data from four dilutions of synthesised cDNA were used to generate inhibition plots. 

The cDNA samples were amplified in triplicate and were assayed for inhibition and the 

average of proportionate amplification (CT) values used to generate the inhibition plot.   
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4.3.14.1    qPCR assay optimisation  

 

The efficiency of a PCR assay can be defined as the fraction of target molecules that 

are copied in a single PCR cycle (Svec et al., 2015). A 100% efficient qPCR assay is 

expected to yield a 10-fold increase in PCR amplicon in every 3.32 cycles during the 

exponential phase of amplification (log2 10 = 3.3219). The slope of a standard curve of 

qPCR amplification is commonly used to calculate the efficiency of a qPCR reaction. A 

qPCR standard curve is graphically represented as a semi-log regression line plot of CT 

value against log of input nucleic acid. A slope of the standard curve –3.32 demonstrate 

that the PCR reaction efficiency is 100%. Slopes more negative than –3.32; e.g. –3.8 

indicate that the PCR reaction efficiency is less than 100% and slopes more positive 

than –3.32; e.g. –2.7 indicate possible pipetting errors (Nolan et al., 2013). 

 In this qPCR assay, a known amount of Legionella DNA standard (between 250,000 

GU and 25 GU in 6 ul) was used to calculate the efficiency (E) of the qPCR reaction using   

the formula E = (10 –1/slope –1) × 100.  

 

4.3.14.2      Assay limitations 

 

 Legionella pneumophila is classified as a Hazard Group 2 organism, which can 

cause human disease and may be a hazard to laboratory workers as well as other 

people entering the laboratory. I was therefore instructed to conduct my Legionella 

research in only one laboratory following approval of the risk assessment by the 

university. RNA extraction, purification and qPCR process were therefore conducted in 

the same laboratory, resulting in low levels of genomic DNA contamination. However, 

by taking maximum possible precautions, this contamination was minimised, and I was 

successful in eliminating this contamination in few of the experiments I conducted at 

the end of this research project. There are slight variations in amplification (CT values) 

of cDNA in some of the experiments with the same concentration of bacterial culture; 

this variation is likely to be caused by pipetting errors of small volumes. In addition, 

validation of this assay with environmental samples was not possible due to time 

constraints.          
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4.3.15       Result interpretation in this assay 

In order to make data interpretation and analysis more understandable, scatter plot 

is produced in each experiment using either number of cycles and fluorescence from 

the amplification reaction or CT values and percentage of dilution.   

 

4.3.16         Method development  

 

4.3.16.1      Experiment 1  

 

In this experiment, RNA was extracted from a Legionella lenticules using Qiagen 

RNeasy Mini Kit (50) (Refer 4.3.7 - 4.3.7.2), Ref. No. 74104, QIAGEN GmbH, Germany 

and cDNA was synthesised from purified RNA using Invitrogen superscript cDNA 

synthesis kit supplied by Thermofisher Scientific, UK (Refer 4.3.10.1). TaqMan master 

mix was prepared as shown in 4.3.11. The synthesised cDNA was amplified using the 

23S primers.  Five different protocols were needed in this experiment and each 

protocol required different kits and reagents (Refer 4.3.7 - 4.3.7.2).  The following 

materials were required to carry out all the protocols: Sterile RNase-free pipet tips, 

suitably sized tubes and micro-centrifuge or centrifuge with appropriate rotors, 

disposable gloves, vortexer and shaker–incubator. 

 

4.3.16.2      Experiment 2  

 

Aim of this experiment was to determine the effectiveness of heat killing step to kill 

Legionella. This experiment was conducted to compare amplification reactions from 

cDNA synthesised from RNA extracted from live (viable) and heat killed (confirmed by 

culture analysis) Legionella lenticules. RNA extraction and purification procedures 

were same as in Experiment-1 (Refer 4.3.7 - 4.3.7.2). However, a different DNA 

elimination kit (QIAGEN) was used for gDNA elimination and cDNA synthesis (Refer 

4.3.10.2). This protocol change was introduced due to presence of gDNA contamination 

identified with NRT samples in Experiment-1.  
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4.3.16.2.1     Heat killing and amplification of Legionella. 

 

Two Legionella lenticules were dissolved separately in 400µl culture medium for 

each (2 x 400) as explained in experiment -1, and labelled as ‘sample A’ and ‘sample B’. 

Sample A was heated on a hotplate at 80˚C for one hour and then left at room 

temperature (20°C) for two hours to allow the RNA to degrade. RNAprotect Bacteria 

Reagent was added to Sample B and RNA extraction was carried out as described in 

Experiment 1.  The RNA pellets were stored at -20°C until needed. After the completion 

of two hours of wait, RNAprotect Bacteria Reagent was also added to Sample A, 

followed by RNA extraction (Refer 4.3.7.1). RNA purification was undertaken 

simultaneously for both samples (Refer 4.3.7.2). Genomic DNA elimination and cDNA 

synthesis was carried out simultaneously using QIAGEN DNA elimination kit (Refer 

4.3.10.2).  

TaqMan master mix was freshly prepared for 13 wells as explained in 4.3.11; and all 

the PCR procedures were same as in Experiment 1 and the samples were amplified in 

triplicate.  

4.3.16.3      Experiment 3  

 

Aim of this experiment was to look at (i) the extent to which genomic DNA from a 

full lenticule (live and dead) could interfere with the qPCR if not removed and (ii) how 

well genomic DNA is removed. Three separate lenticules were used in this experiment. 

One for DNA extraction from live Legionella, one for DNA extraction from a completely 

heat killed Legionella and the third one for cDNA synthesis and extraction from 

completely heat killed Legionella. Heat killing, RNA extraction, purification, and cDNA 

synthesis was carried out as described in Experiment 2. However, a new protocol was 

trialled for genomic DNA elimination in the third lenticule due to the persisting nature 

of genomic DNA contamination following RNA extraction (Refer 4.3.10.3). This is the 

first experiment involving DNA extraction in this research and was carried out using 

QIAamp DNA extraction MiniKit (50), Ref. No. 5130 (Refer 4.3.8).          
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4.3.16.3.1 Sample preparation for DNA and RNA extraction  

 

 
Three Legionella lenticules were dissolved in 400µl culture medium in 1.5 ml tubes 

as described in Experiment 4, and labelled as Sample’ A, B and C. Sample A and B was 

used for DNA extraction and Sample C was used for RNA extraction. Sample A was used 

for DNA extraction from live Legionella, sample B was used for DNA extraction from 

completely heat killed Legionella and sample C was used for RNA extraction and cDNA 

synthesis from completely heat killed Legionella. Two water baths were heated: one to 

56°C and the other to 70°C. Buffer AE was equilibrated to room temperature for elution 

and buffers AW1 and AW2 have been prepared by adding ethanol as per shown on the 

bottle in the kit. DNA was extracted from sample A and B using the method outlined in 

4.3.8. The DNA pellets were not diluted for PCR amplification. All other procedures for 

PCR amplification were as described in Experiment 1, including master mix 

preparation. The cDNA synthesised from RNA extracted from completely heat killed 

Legionella lenticule (plus any residual genomic DNA in the sample; if dead, there should 

theoretically not be any cDNA) was also amplified with DNA extracted from full 

lenticule (live Legionella) and completely heat killed Legionella lenticule for 

comparative study purpose.    

In this experiment, a different protocol was tested for genomic DNA elimination in 

Sample C (Refer 4.3.10.3), but cDNA synthesis was undertaken as described in 

Experiment 2. 

 

4.3.16.4 Experiment 4  

 

This experiment was primarily aimed at establishing a relationship between cDNA 

amplification curves (CT values) and colony forming units per litre (cfu/L) reported in 

conventional culture methods used for diagnosing Legionella bacteria in water samples. 

The RNA extraction, purification, genomic DNA elimination and cDNA synthesis was 

performed as described in Experiment 3. Two full Legionella lenticules were used in 

this experiment for RNA extraction; one for total (100%) live detection and the other 

for preparing five different dilutions as 50%, 25%, 12.5% and 5%. The RNA extracted 
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from lenticule (full live) and the dilutions series were amplified separately due to the 

persisting nature of gDNA contamination. In addition, the amplification of dilution 

series was also aimed to identify the lower detection limit of cDNA amplification. 

Another set of samples were prepared in the same dilution (all in triplicate) for 

standard culture analysis in a UKAS accredited laboratory (Refer Chapter 3.2.4) for 

comparing the results of both qPCR and gold standard culture.   

 

4.3.16.4.1 Preparation of dilution series for qPCR  

 

Two Legionella lenticules were dissolved in 400µl Ringer’s solution as described in 

Experiment 1 and labelled as Sample A and B. Sample A was used for full live detection 

and Sample B was used to prepare 5 dilutions of bacterial culture as 50%, 25%, 12.5%, 

5% and 1%; i.e. 200 µl bacterial culture, 100µl bacterial culture plus 100µl deionised 

water (DW) made 200µl, 50µl bacterial culture plus 150µl DW, 20µl bacterial culture 

plus 180µl DW and 2µl bacterial culture plus 198µl DW respectively. Two volume of   

RNAprotect Bacteria Reagent was added to one volume of bacteria culture; i.e.  pipetted 

RNAprotect Bacteria Reagent into 2ml tubes as 400µl, 200µl, 100µl, 40µl and 4µl 

respectively for 50%, 25%, 12.5%, 5% and 0.5% bacterial culture. All other procedures 

followed were same as described in Experiment 2; allowing for differences in sample 

number. 

 Taqman Master Mix was prepared for 38 samples using the kit in the following basic 

ratio and all the samples were amplified in triplicate.  

4.3.16.4.2 Preparation of samples for standard culture analysis.  

 

Six separate samples of ‘full lenticule’ were prepared by using six Legionella 

lenticules from the same batch as follows: 

Three Legionella lenticules were dissolved separately in 400µl of Ringers solution as 

described in Experiment 1. Each bacterial culture was then transferred into a separate 

500 ml sterile plastic bottle (supplied by UKAS accredited laboratory for Legionella 

sampling) by pipetting and made up to 500ml by adding deionised water. Three 

samples were labelled as Sample A, B and C. In addition to these samples, the other 

three lenticules were used to prepare five dilutions (50%, 25%, 12.5%, 5% and 0.5%) 

in triplicate were made up in 500ml deionised water. All the samples were stored in 
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temperature-controlled bags, protected from heat sources and sunlight, during 

transportation to the laboratory. All eighteen Legionella samples in water were then 

analysed using standard UKAS protocols for Legionella pneumophila at a UKAS 

accredited laboratory (ALS Laboratories Limited) under identical laboratory 

conditions, within 12 hours of preparation (Ref. Chapter 3, section 3.2.4).  

4.3.16.5 Experiment 5  

 

This experiment was designed to investigate the source of persisting gDNA 

contamination identified in Experiments 1-4 and to study the efficiency of qPCR 

response to a dilution series of cDNA extracted from RNA. In order to avoid all possible 

sources of gDNA contamination, a separate lab space (isolated from the lab space 

where RNA extraction and purification had taken place) was used to prepare the 

master mix and PCR well filling. Furthermore, all the probes/primers, TaqMan 

Mastermix and RNA/DNA free molecular grade deionised water was newly purchased 

and unopened until using in this experiment.  All other procedures followed were 

exactly same as in Experiment – 2. The dilution series was of 10 fold 4 dilutions (1, 0.1, 

0.01 and 0.001) of bacterial culture.  

4.3.16.5.1 qPCR response to a dilution series  

 
One Legionella lenticule was dissolved in Ringers solution as described in 

Experiment 1 and used to prepare 10-fold dilution series 1, 0.1, 0.01 and 0.001 as 1, 2, 3 

and 4 respectively and these 4 dilutions of the bacterial culture is shown in Table 4.4.  

Table 4.4.  Four dilutions (1, 2, 3 and 4) of bacterial culture with proportionate 

RNAprotect Bacteria Reagent. 

 1 2 3 4 

Bacterial 

culture (µl) 

 

400 

 

40 

 

40 

 

40 

RNAprotect 

Bacteria 

Reagent 

 

800 

 

80 

 

80 

 

80 

Deionised 

water (µl) 

 

0 

 

280 

 

280 

 

280 
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Two volumes of   RNAprotect Bacteria Reagent were added to one volume of 

bacteria culture (see Table 4.4) and left for 2 minutes to allow RNAprotect Bacteria 

Reagent to work before adding deionised water. In order to eliminate the persisting 

gDNA contamination in previous experiments, newly purchased unopened molecular 

grade deionised water was added to the bacterial culture as shown in Table 4.4. Other 

reagents such as probes/primers and TaqMan Mastermix used was also newly 

purchased and the Mastermix was prepared in a separate lab space. All other 

procedures followed were exactly same as in Experiment 2; the only difference being 

the number of samples used. All the samples were amplified in triplicate. 

4.4   Results and discussion 

 

4.4.1   Primer/probe validation output 

 

Figure. 4.5   Amplification of 23S rRNA gene from five samples of standard 10 fold 

dilutions of Legionella pneumophila DNA showing efficient and proportionate 

amplification of targeted gene (23S rRNA) from DNA confirming the primers/probes 

are optimal.  

 

Standard 10-fold dilutions of 5 samples of known amount (250,000, 25,000, 2,500, 

250 and 25 GU’s in 6µl respectively) of Legionella pneumophila DNA were amplified by 

targeting 23S rRNA gene.  All the 5 concentrations were amplified successfully and 
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generated the standard curves as expected (Figure 4.5). This result indicates that the 

efficiency of primers/probes used in this assay is optimal, and confirmed the successful 

amplification of targeted 23S rRNA gene.   

 

4.4.2    Inhibition monitoring output 

 

Synthesised cDNA from a full Legionella lenticule dilution series (Refer 4.3.16.5.1) 

was used to perform this experiment. The cDNA samples were amplified in triplicate 

and the amplification was successful (Figure 4.6). The amplification data (Table 4.5) 

was used to generate the inhibition plot (Figure 4.7).   

 

Figure 4.6 Amplification curves from 4 samples of 10 fold dilutions of cDNA from 

one Legionella lenticule.  

Table 4.5  Diluted cDNA amplification data used to generate the inhibition plot. 

Sample CT -1 CT -2 CT -3 Average CT 

value 

Sample 

quantity 

Log (sample 

quantity) 

1 24.09 23.73 23.51 23.77 1.0000 0.00 

2 26.95 26.8 26.62 26.79 0.1000 -1.00 

3 30.51 30.68 30.25 30.48 0.0100 -2.00 

4 33.47 33.82 34.17 33.82 0.0010 -3.00 
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Figure 4.7 Inhibition plot generated from cDNA dilutions demonstrating that no 

inhibition in this qPCR assay. Dilution factor is 10, slope is -3.382, R2 is 0.9986 and 

efficiency is 97.55%. 

Efficiency of qPCR assay is calculated using the formula E = (10 –1/slope –1) × 100. 

The inhibition plot (Figure 4.7) showed 97.55% efficiency, slope - 3.382 and R2 0.9986. 

A slope –3.3 with 100% efficiency is the clear indication of no inhibition. In this assay, 

the slope -3.382 with 97.55% efficiency ruled out the possibility of any inhibition (Svec 

et al., 2015). 

4.4.3     Positive control output 

 

 

y= -3.382x +23.644 
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Figure 4.8  Amplification curves of 4 x 10-fold dilutions of cDNA synthesised from 

RNA extracted from a Legionella lenticule and 4 x 10-fold serial dilutions of a Legionella 

pneumophila DNA positive control 250,000, 25,000, 2,500, 250 GU’s per 6µl of sample.  

Table 4.6  Four 10-fold dilution series of cDNA and positive control amplification 

data used to generate the Figure 4.8. Dilution series of cDNA was amplified in triplicate. 

Sample 5 4 3 2 

Positive control 20.26 24.14 27.32 30.66 

Sample quantity 1.0000 0.1000 0.0100 0.0010 

Log (sample 

quantity) 

0.00 -1.00 -2.00 -3.00 

Sample 

cDNA dilution 

CT -1 CT -2 CT -3 Average CT 

value 

Sample 

quantity 

Log (sample 

quantity) 

1 24.09 23.73 23.51 23.77 1.0000 0.00 

2 26.95 26.8 26.62 26.79 0.1000 -1.00 

3 30.51 30.68 30.25 30.48 0.0100 -2.00 

4 33.47 33.82 34.17 33.82 0.0010 -3.00 

 

 

 

 

Figure 4.9 Scatter plot showing efficient amplification of cDNA and the DNA positive 

control diluted in 10-fold steps. For the positive control, the slope is -3.438, R2 is 0.9981 

and efficiency is 95.37% demonstrating that the PCR reactions are optimal and no 

inhibition has occurred.   cDNA (green line) is as shown in Figure 4.7. 
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4.4.4     qPCR assay optimisation  

 Amplification data of 23S gene from 10-fold dilutions of five dilution series 

(concentration 250,000, 25,000, 2,500, 250 and 25 GU’s in 6µl) of known amount of 

standard (Legionella pneumophila DNA) used for the assay optimisation (Refer 4.4.1). 

Corresponding amplification data is shown in Table 4.7. 

Table 4.7  qPCR data of standard curve generated from the amplification of 10-fold 

five dilution series of standard Legionella pneumophila DNA.   

Sample CT -1 CT -2 CT -3 Average 

CT value 

Sample 

quantity 

Log (sample 

quantity) 

1 18.90 18.87 19.04 18.93667 1.0000 0.00 

2 22.63 21.83 22.16 22.2066 0.1000 -1.00 

3 26.24 26.03 25.46 25.91 0.0100 -2.00 

4 29.06 29.38 28.68 29.04 0.0010 -3.00 

5 33.33 33.33 31.73 32.7866 0.0001 -4.00 

 

 

Figure  4.10  qPCR standard curve plot of CT values of 10 fold dilution series of five 

standard Legionella pneumophila DNA samples against log of input nucleic acid 

showing slope -3.4533, R2 0.9993 with qPCR assay efficiency 94.79%. 
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qPCR assay optimisation was conducted by amplifying 10 fold dilution series of five 

standard Legionella pneumophila DNA samples (Figure 4.5). 23Sr RNA gene 

amplification was proportional to the dilution series of standard DNA (Figure 4.10). 

Amplification data from this experiment (Table 4.7) was used to generate a qPCR 

standard curve plot of CT values against log of input nucleic acid is shown in figure 4.11. 

The slope calculated is -3.4533, R2 0.9993 and the qPCR assay efficiency calculated 

using the formula E = (10 –1/slope –1) × 100 is 94.79%.  

 

4.4.4.1       Assay optimisation including probes/primers  

 

 

Successful amplification of 23S rRNA gene from standard 10-fold dilutions of known 

amount of Legionella pneumophila DNA using 23S primers and probes clearly 

demonstrated that the primers and probes used in this assay are optimal. In addition, 

successful amplification of cDNA synthesised from RNA dilution series prepared from 

full Legionella lenticule was with qPCR efficiency of 97.55%.  The slope calculated     

was -3.382 and R2 was 0.9986.  This slope with 97.55% efficiency indicating that there 

was no inhibition in this qPCR assay (Svec et al., 2015). Furthermore, amplification of 

positive control (standard known amount of LP DNA) along with cDNA synthesised 

from dilution series of RNA demonstrated a slope -3.438, R2 0.9981 and 95.37% 

efficiency. This slope and efficiency from positive control amplification indicates that 

the RT reaction and qPCR reactions in this assay are optimal with no inhibition in the 

PCR process as the acceptable range of qPCR efficiency is between 90 and 110%.  

(Reyneke et al., 2016).  In addition,  graph generated from CT values of 10-fold dilution 

series of five standard Legionella pneumophila DNA samples (Figure 4.10) showed  

slope -3.4533, R2 0.9993 with qPCR assay efficiency 94.79%. This qPCR efficiency 

percentage further confirms that the qPCR reactions in this assay are optimal. Many 

studies have demonstrated that the use of positive controls in qPCR provides a number 

of advantages such as quality assurance, confirming the functionality of the reaction 

components, to assess the efficiency of the qPCR assay, to ensure that there is no 

inhibition taking place, for assessing reaction specificity for genotyping assays and 

furthermore, it is essential when measuring low copy numbers (Reyneke et al., 2016; 

Zhang et al., 2016  Svec et al., 2015).    
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4.4.5      RNA  quantification 

4.4.5.1      Agarose gel analysis output 

Agarose gel analysis for RNA from four concentrations was conducted; but no visible 

bands were available on the gel due to the insufficient amount of RNA that was 

extracted from Legionella bacteria.  

4.4.5.2       Nanodrop concentration check output 

 

Nanodrop concentration check output for four different concentrations of RNA was 

as follows: 

 

100% -  1.6 ng/ μl 

50%   -  1.3 ng/ μl 

25%  -  1.7 ng/ μl 

12.5%-  0.5 ng/ μl 

 

The RNA concentration reported by the Nanodrop was not consistent with the initial 

concentration of bacteria used. Therefore, this data was not used to quantify RNA 

concentrations in lenticules, but serves as evidence of RNA recovery from lenticule 

samples.  

 

The purified RNA concentration obtained from Nanodrop was not used to quantifyi 

RNA due to the apparent inconsistency in quantification (i.e. 100% -  1.6 ng/ μl, 50% 

  -  1.3 ng/ μl , 25% -  1.7 ng/ μl and 12.5%-  0.5 ng/ μl).  NanoDrop One 

(Thermofisher, 2017) spectrophotometers were designed to specifically measure 

absorbance using small sample volumes and can measure absorbance in the 

wavelength range of 190–840nm and requires only in the range of 0.5–2µl of sample 

for an accurate measurement. However, for RNA, the Nanodrop instrument’s lower 

detection limit is 2ng/µl (Wieczorek et al., 2012). In this assay, the purified RNA 

concentration from Legionella bacteria was below the lower detection limit of 

Nanodrop instrument. Therefore, the Nanodrop output/concentration check was not 

considered further in this assay, but serves as positive detection only. 
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4.4.6   Legionella culture enumeration  

 

Standard culture analysis of six Legionella pneumophila samples prepared from 6 

full lenticules (3 heat killed and 3 untreated) found positive culture of all three 

untreated (not heated) samples in the range of 8500-10,000 cfu/L, whereas heat killed 

Legionella samples were negative for culture. Thus, the same method was used to 

prepare the heat killed Legionella samples throughout this research.    

 

4.4.7   Results of Experiment 1 

 

The aim of this experiment was to extract RNA from two Legionella lenticules using 

Qiagen RNeasy Mini Kit. The amount of RNA extracted was checked using Nanodrop; 

however, the concentration level showed by Nanodrop was below the lower 

quantitative limit of the equipment and was therefore not considered to be reliable. 

Thus, a number of different experiments were needed to check and ensure that RNA 

extraction was successful. cDNA was synthesised from purified RNA using Invitrogen 

Superscript III and then amplified using 23S primers.  RNA extraction, purification, 

genomic DNA elimination procedure, cDNA synthesis and PCR amplification were done 

simultaneously for both the lenticules.    
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Figure 4.11a qPCR amplification plots for 23S rRNA gene from RNA extracted from a 

full Legionella lenticule; with and without RT. Green represents the amplification from 

live RTcDNA, blue represents the NRT amplification (genomic DNA contamination).  

 

 Figure 4.11b CT values of triplicate qPCR samples used for 23S gene amplification 

from RNA extracted from live lenticule; RT represents the qPCR response to samples in 

which RNA has converted to cDNA. NRT samples contain RNA without conversion to 

cDNA. All samples may contain small amounts of genomic DNA. 

 
Figure 4.11a show the amplification curves for 23S gene from RNA extracted from 

whole Legionella lenticule. One full lenticules were used in this experiment and its 

amplification is expressed in scatter plots as A and B (Figure 4.11b). The cDNA made 

from RNA extracted from a full lenticule was amplified in triplicate for RT samples. 

However, there are responses from NRT samples also and this can be resulted from the 

genomic DNA contamination with NRT samples. The corresponding number of cycles of 

amplification (CT) values is shown in Table 4.8. 
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Table 4.8 CT values corresponding to each amplification curve in experiment-1.  
   

                    RT cDNA                        NRT  
27.15 33.01 
27.53 33.98 
27.44 34.09 

 

 
Mean CT values of the RT amplification cycle for lenticule was 27.37 which was 

lower than the NRT mean CT value of 33.69 (a difference of 6.32). In these samples, the 

23S gene was amplified from cDNA indicating that 23S rRNA was present in the live 

sample. However, amplification responses from NRT samples occurred suggesting that a 

low level of genomic DNA contamination occurred in the samples.  

 

        The aim of Experiment-1 was to check the possibility of extracting RNA from 

Legionella lenticules using the Qiagen RNA extraction kit, synthesise cDNA and amplify 

it using the 23S primers. The results clearly indicate that the experiment was 

successful. Furthermore, the results of all remaining experiments 2-5 confirmed that 

the RNA extraction from live Legionella lenticule using Qiagen RNA extraction mini kit 

is possible and amplification using 23S primers of the resulting cDNA is achievable. The 

cDNA amplification from full Legionella lenticules in Experiments 1, 2, 4 and 5 shows 

slight variation as the corresponding mean CT values are 27.37, 27.38, 22.94 and 23.77 

respectively and this could be due to the difference in bacterial concentrations between 

the lenticules (different lenticules from the same batch), the loss of RNA during the 

purification and genomic DNA eliminations procedures and possible pipetting errors     

(Refer section 4.3.10 and 4.3.14.3). Mean of these CT values (mean CT values from 

experiments 1, 2, 4, and 5) is 25.36 (±2.01).   The lenticules used in these experiments 

were from the same batch (and should therefore be almost identical in number of 

bacteria) and quantification of Legionella pneumophila bacteria in each lenticule was 

also carried out using standard culture analysis. The mean concentration of Legionella 

from three lenticules from the same batch was 4950 cfu/500ml (±676sd). This 

variation in culture analysis result is also due to small differences in number of bacteria 

present in each individual lenticule; and cumulative errors introduced to individual 

samples during the culture process.  

       My results suggest that the success of experiments in this type will depend to a 

certain extend on the kits used and methods involved. Several studies have 

demonstrated that RNA loss can occur during different RNA extraction and purification 
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methods (Honsvall and  Robertson, 2017; Faucher et al., 2010). Another study on 

reverse transcription and PCR amplification of purified RNA demonstrated that RNA 

purification using Qiagen columns resulted in improved quality and purity of RNA 

yields, but resulted in an overall loss of RNA product (Chomczynski and Sacchi, 1987).   

PCR analysis result also showed that the RNA extracted by QIAGEN-kit was of the 

highest quality compared to all other extraction kits used (Belder e al., 2016; Nuyts et 

al., 2001). However, van der Zee and colleagues in Netherlands reported that the 

columns supplied with the Qiagen extraction kit itself failed to eliminate Legionella 

genomic DNA contamination. In that study, three different batches of columns were 

used as supplied in the Qiagen kit. Twenty columns of each batch were tested and with 

one batch, all 20 columns tested were negative; in contrast,   all the columns in the 

other two batches were contaminated with Legionella DNA (van der Zee et al., 2002). 

This possibility was also addressed by using columns and reagents from different 

batches in Experiments (QIAGEN RNeasy Protect Bacteria Midi Kit in Experiment 1, 

QIAGEN QuantiTect Reverse Transcription and DNA elimination kit in Experiments 2-4 

and Sigma-Aldrich Total RNA purification kit in Experiments 5 and 6), but the genomic 

DNA contamination remained unchanged.  

 

 

4.4.8   Results of Experiment 2 

 

In this experiment, two Legionella lenticules were used; one for live detection 

(Sample B) and the other is heat killed (Sample A). RNA extraction, RNA purification, 

cDNA synthesis and cDNA amplification were carried out simultaneously to compare the 

two samples.  RNA extraction and purification procedures were as described in 

Experiment-1, although a different gDNA elimination kit (QIAGEN) was used for genomic 

DNA elimination and cDNA synthesis due to the low-level amplification (Average CT 

value 33.69) from NRT samples.      
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Figure 4. 12a  Amplification of cDNA made from RNA extracted from full lenticule (live 

Legionella) and fully heat killed Legionella lenticules. Green represents the cDNA 

amplification, red represents the amplification from heat killed sample (genomic DNA 

contamination), blue represents the amplification from NRT samples (genomic DNA 

contamination) and low level responses from master mix and empty wells.     

 
Amplification of cDNA made from RNA extracted from the live Legionella lenticule 

showed early amplification at a mean CT value of 27.38 (Figure 4.12a). The same 

process from the fully heat killed Legionella lenticule yielded a mean CT value of 36.01; 

the difference in mean CT values between live and dead is 8.63. The corresponding 

number of amplification cycles is shown in Table 4.9. The difference in these CT values 

demonstrates detection of live Legionella compared to the amplifications from the heat 

killed Legionella cells. The amplification response from the heat killed cells is of a 

similar level to the no RT controls (Figure 4.12b), indicating the presence of genomic 

DNA contamination with the RNA product. These results confirm the detection of RNA 

from live Legionella bacteria.  The amplification product detected in the dead cells 

occurs around the same level as that found in the background control, that the product 

is most likely contaminating genomic DNA. These results further confirm that the 

denaturing process employed in this experiment was successful, as heat killed bacteria 

did not appear to produce measureable levels of RNA.  
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Table 4.9  CT values corresponding to each amplification curve in Experiment-2.  
 

Full Lenticule –  live  
Legionella (RT) -1 

Full Lenticule –  live  
Legionella (NRT) -2 

Heat killed Legionella 
lenticule (RT) -3 

Heat killed Legionella 
lenticule (NRT) -4 

27.21 34.61 35.00 37.58 
27.41 34.90 35.37 38.13 
27.52 35.36 37.67 38.56 

 
 

   
 
 

 
 
Figure 4.12b.  Scatter plot representation of CT values corresponding to live sample 

(1), heat killed sample (2) and comparison of genomic DNA contamination 

amplification with both live and heat killed samples (3) and NRT(4).  

 
In this experiment, a different cDNA synthesis kit (QIAGEN) was used which 

includes two genomic DNA elimination steps, both in the RNA specific gDNA wipeout 

step. However, no significant improvement was achieved in eliminating gDNA 

contamination. The source of this persisting gDNA contamination could be the 

laboratory conditions where RNA extraction, cDNA synthesis and qPCR amplification is 

carried out in the same laboratory space (Refer section 4.3.10).    

 

      In Experiment- 2, cDNA synthesised from RNA extracted from a full Legionella 

lenticule (live) and a full lenticule (heat killed) was amplified using the 23S primers. 

Amplification from live sample was similar as in Experiment -1 and the mean of CT 
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values from triplicates of live sample is 27.38 whereas with the dead sample it was 

36.01. No amplification was expected from the heat killed lenticule sample in 

Experiment -2. However, there was a low level amplification (mean CT 36.01) from the 

heat killed lenticule sample which was close to that seen in the NRT sample in 

experiment-1. Furthermore, amplification from live lenticules in Experiment -1 and 

Experiment -2 were almost identical which confirms the result achieved in Experiment 

-1. In contrast, the similar CT values observed in heat killed lenticule sample (NRT 

samples from experiment 1 and 2) confirmed the presence of genomic DNA 

contamination within RNA samples in both the experiments. This statement is 

supported by a study report which says negative Reverse Transcription control (NRT) 

is necessary to include in all RT-qPCR experiments to test for genomic DNA 

contamination as such control contains all the reaction components except for the 

reverse transcriptase. RT amplification should not occur in this control, and if any PCR 

amplification is seen from this control, it would be derived from contaminating 

genomic DNA (Laurell et al., 2012; Bustin and Nolan, 2004). 

         The different DNA elimination protocol used in Experiment-2 did not lower the 

genomic DNA contamination. The results from Experiment-2 indicated that there was 

no RNA present in the heat killed sample; and the culture analysis  results of three 

separate samples are also supporting this finding as no Legionella was detected from 

heat killed Legionella samples analysed in UKAS accredited laboratory using standard 

protocol (Refer Chapter 3, section 3.2.4) and there by confirming that (i) the heat killing 

method was successful in killing the Legionella that was present in the lenticule and (ii) 

RNA extraction and amplification method employed was also effective. However, the 

consistent lower level amplification from heat killed samples as well as in NRT samples 

suggests that genomic DNA contamination is persistent with RNA, and is present in 

almost similar level in all experiments.  

      Although sources of contamination are unclear, genomic DNA contamination in RNA 

samples is known to occur from external sources, including dust particles carrying 

bacteria and moulds. In addition, laboratory equipment, plasticware and other 

consumables such as reagents and deionised water can become the source of 

contamination when shared. In order to eliminate the possibility of contamination from 

the laboratory, all possible precautions were taken, such as more frequent changing of 

gloves, cleaning of work area using commercially available RNase removal solution, and 

the use of sterile disposable polypropylene tubes and pipette tips while carrying out all 
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these experiments.  A study carried out in United States to compare three different 

methods of  RNA extraction from Gram-positive bacteria: i) An acid–phenol extraction 

protocol ii) The “RNeasy mini kit” from QIAGEN iii) The “SV Total RNA Isolation 

System” from Promega reported that the QIAGEN-kit produced the greatest amount of 

RNA with the highest purity (Nuyts et al., 2001).  Another possibility of this genomic 

contamination can be the laboratory conditions as all the protocols in the entire assay 

(RNA extraction, purification, cDNA synthesis and qPCR process) was carried out in the 

same lab space, though it is not recommended (Refer section 4.3.14.3).   

 

4.4.9    Results of Experiment 3 

 

The aim of this experiment was to compare the PCR amplification of genomic DNA 

extracted from a live Legionella lenticule, genomic DNA extracted from a completely 

heat killed Legionella lenticule and cDNA synthesised from RNA extracted from a 

completely heat killed Legionella lenticule.  Three separate lenticules were used in this 

experiment as one for genomic DNA extraction from live Legionella lenticule, the other 

for genomic DNA extraction from completely heat killed Legionella lenticule and the 

third one for RNA extraction from completely heat killed Legionella lenticule.  In this 

experiment (only for the third lenticule; RNA extraction from completely heat killed 

sample) a different genomic DNA elimination protocol was employed by using a 

different kit; however, RNA extraction, purification, and cDNA synthesis was carried 

out exactly same as in Experiment 2. The QIAamp DNA extraction kit (see Section 4.3.8) 

was used for genomic DNA extraction from live and completely heat killed Legionella 

lenticule.      

 

In this experiment three samples were amplified for comparative study as genomic 

DNA extracted from a fully live Legionella lenticule, genomic DNA extracted from a 

completely heat killed Legionella lenticule as well as cDNA produced from RNA 

extracted from a completely heat killed Legionella lenticule. Amplification plots showed 

almost similar amplification for total genomic DNA concentration in fully live and fully 

heat killed Legionella lenticules as expected due to the presence of similar numbers of 

bacteria regardless of viability. In addition, amplification of cDNA synthesized from 

RNA extracted from completely heat killed Legionella lenticule showing only lower 

level of amplification as there should be no RNA or cDNA present in this sample (Figure 

5.14a). However, the lower level response is likely a consequence of incomplete 
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removal of gDNA by DNAse treatment. This experiment further confirms that RNA 

extraction and cDNA amplification achieved in previous experiments (Experiments 1 

and 2) is successful. In contrast, as described in previous results, low level amplification 

showing from the sample of completely heat killed Legionella lenticule is due to the 

persistent gDNA contamination even after RNA purification and gDNA digestion or 

elimination treatments. 

 

 

Figure 4.13a Amplification plots showing successful extraction and amplification of 

genomic DNA from full live Legionella lenticule and completely heat killed Legionella 

lenticule along with amplification of cDNA synthesized from RNA extracted from 

completely heat killed Legionella lenticule, further confirming that the RNA extraction 

is successful.   

      
The CT values corresponding to each of the amplification and their mean are given in 

(Table 4.10). In this experiment, triplicates (technical replicates) of each sample 

produced almost consistent curves (CT values) and the CT value for RT in the heat killed 

lenticule was similar to genomic DNA contamination is also similar as in previous 

experiments.  
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Table  4.10   The CT values corresponding to each of the amplification and their mean 

values with NRT amplification values for comparison. 

Sample 

description 

Full live Legionella  

lenticule 

DNA 

Full heat killed 

Legionella  lenticule 

DNA 

Full heat killed  

Legionella lenticule 

cDNA 

 RT 

 

NRT RT NRT RT NRT 

 

CT1 
25.96 

 
 

32.18 26.63 32.45 32.15 32.10 
CT2 

26.26 
 

32.43 26.53 32.10 32.45 32.47 
        CT3 

26.79 
 

32.24 26.73 32.45 32.93 32.95 
 

Mean 
26.33 

 
 

32.28 26.63 32.33 32.51 32.50 

 

 

Figure 4.13b  Scatterplot representations of CT values obtained from the RT 

amplification of total genomic DNA from full Legionella lenticule (Live), completely heat 

killed Legionella lenticule and cDNA produced from completely heat killed Legionella 

lenticule. 1 and 3 are DNA RT samples, 5 is cDNA RT sample and 2, 4 and 6 are 

corresponding NRT samples. This plot clearly demonstrating that the heat killed 

Legionella sample does not contain any RNA, but the amplification produced is from the 

similar level of gDNA contamination that is present in all NRT samples.     
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The mean CT values of genomic DNA amplification from full live Legionella lenticule 

and completely heat killed Legionella lenticule is 26.33 and 26.63 respectively. The 

difference of mean in these two values is 0.3 which is unlikely to be significantly 

different; although the same CT values were expecting for these amplifications (Figure 

4.13a). Experimental error during genomic DNA extraction and purification may have 

caused for this slight difference in CT values. Amplification of cDNA produced from 

completely heat killed Legionella lenticule (Mean CT values of RT cDNA 32.51 and NRT 

cDNA 32.50) shows almost similar level of amplification which is caused by the 

presence of genomic DNA contamination as described in previous experiments (Figure 

4.13b). Despite of this negligible variation in CT values and low level of genomic DNA 

contamination, the results from this experiment further confirms that the methods 

used for extracting RNA, cDNA synthesis and cDNA amplification in Experiments 1and 

2 is successful.   

 

4.4.9.1     Amplification differentiates the concentration of DNA and RNA   

 

    The results from Experiment-3 showed similar levels of DNA amplification from 

fully live and completely heat killed Legionella lenticules. This was expected as both live 

and dead samples would contain similar numbers of Legionella bacteria. Low level RT 

amplification in completely heat killed Legionella lenticules suggests gDNA may occur in 

RNA samples despite DNAse treatment. 

 The mean CT values of DNA recovered from a full lenticule (live Legionella) and a 

completely heat killed Legionella lenticule were 26.33 and 26.63, respectively (mean CT 

value of 26.48(±0.15sd). Several studies on nucleic acid have demonstrated that the 

concentration of DNA   in a bacterial cell is identical regardless of their viability 

(Cangelosi and Meschke, 2014; Barbau-Piednoir et al., 2014); therefore, the result 

obtained from Experiment -3(almost similar amplification of DNA extracted from full live 

and full heat killed Legionella lenticule) is to be expected. Furthermore, the mean CT 

value of total RNA concentration in a fully heat killed Legionella lenticule was 32.51 

although no amplification was expected from this sample due to the absence of RNA in 

the sample. However, the mean CT value of all NRT samples, two DNA samples and one 

cDNA sample was 32.44(±0.07sd) indicating the presence of a low and consistent 

amount of level of persisting genomic DNA contamination in all samples.       Therefore, 
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this study confirms that the apparent low level amplification of cDNA synthesized from 

RNA extracted from heat killed Legionella lenticules in all the experiments is most likely 

a consequence of persisting genomic DNA contamination. In addition,   these results 

further confirm that RNA extraction from live Legionella in lenticules is successful, and 

that the amplification of cDNA from live Legionella lenticules exceeds that which occurs 

due to contamination by gDNA.  

 

4.4.10       Results of Experiment 4 

 

Aim of this experiment was to establish a relationship between cDNA amplification 

curves (CT values) and standard culture analysis results, colony forming units per litre 

(cfu/L). The RNA extraction, purification, genomic DNA elimination and cDNA synthesis 

was exactly same as described in Experiment -3. Two full Legionella lenticules were 

used in this experiment for RNA extraction; one for total (100%) live detection and the 

other for preparing five different dilutions as 50%, 25%, 12.5%, 5% and 0.5%.  The 

RNA extracted from full lenticule (live Legionella) and the dilution series were 

amplified separately to minimise the overlapping of cDNA amplification curves of 

dilution series with gDNA amplification. This experiment also aimed to identify the 

lowest cut off value of cDNA amplification. In addition, 18 samples were prepared in 

the same dilution (all in triplicate) using six full Legionella lenticules for standard 

culture analysis and sent to a UKAS accredited laboratory for standard culture analysis 

(Refer Chapter 3.2.4). PCR amplification results were compared with gold standard 

culture analysis results.   

4.4.10.1       Comparison of CT values with culture analysis results (cfu/L) 

   

Experiment -4 was mainly aimed to find out two important factors in this assay; 

firstly what is the lower detection limit of cDNA amplification and the secondly to 

compare culture analysis results of the RNA dilution series with CT values corresponding 

to the same dilution series. The mean of standard culture analysis result of three full 

(100%) Legionella lenticules was 9900 cfu/L (±1353sd).  In addition, the culture analysis 

results of three different dilutions, (50%, 25%, and 12.5%) were 5000cfu/L (±360sd), 

2166cfu/L (±208sd) and 566cfu/L (±208sd). Culture analysis was unable to detect any 
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Legionella at 5% and 1% dilution suggesting that the culture method used here could not 

detect Legionella in 500ml samples at concentrations lower than 500cfu/L.  

The mean CT values of cDNA amplification for full lenticule (100%) and dilution series, 

50%, 25%, 12.5% and 5%  was 22.94, 30.26, 31.54, 33.12 and 35.89, respectively.  A 

comparison of standard culture analysis results and CT values of the similar dilution series 

were carried out as 9900 cfu/L ≃ 22.94, 5000cfu/L ≃ 30.26, 2166cfu/L ≃ 31.54 and 

566cfu/L ≃ 33.12 as shown in the figure 4.14. The CT value for 12.5% dilution was 35.89, 

but culture analysis for corresponding dilution was non-detected. A linear relationship is 

observed in standard culture analysis; proportionate reduction in Legionella count (cfu/L) 

as dilution increases from 100% to 25% (Figure 4.14) and a similar trend was also 

observed in cDNA amplification from the same dilution series (Figure 4.14).    

 

Figure 4.14 A Linear relationship between the number of Legionella analysed by  

standard culture analysis (cfu/L) in dilution series 100%, 50%, 25% and 12.5% and 

amplification of cDNA extracted from RNA of the similar dilution series.    

 

PCR amplification was successful for cDNA made from 10% dilution series; although it 

was at the same level of genomic DNA contamination, so that it is impossible to distinguish 

the signal due to the cDNA. On the basis of this results presented, it is estimated that in the 

event of successful elimination of genomic DNA contamination from RNA yield, 

amplification of cDNA from 1% dilution also could be identified; and thus the lower 

detection limit can be established. In contrast standard culture analysis was unable to 
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detect any Legionella even in 10% dilution. It is widely understood that this is one of the 

major unreliability factors in culture diagnostic procedure as it struggles to detect lower 

concentrations of bacteria in environmental samples (Cunha et al., 2016). In a comparative 

study on Legionella diagnostic procedures such as conventional culture analysis, real time 

PCR, viability labelling and immune-detection (solid-phase cytometry) demonstrated that 

culture analysis failed to detect lower concentration of Legionella bacteria (>100cfu/L)  as 

well as  VBNC Legionella. Furthermore, this study also examined the amplification of DNA 

from dead bacterial cells resulting in overestimation of the presence of bacteria by real 

time PCR techniques (Scaturro et al., 2016).   

Conventional culture diagnostic procedure for Legionella cannot detect lower 

concentration as well as VBNC Legionella and real time PCR based on DNA amplification 

detects viable and non-viable Legionella from environmental samples. A recent study from 

the UK also reported that there is a serious data gap in understanding how to use data 

from Legionella analysis using qPCR (Collins et al., 2017). But, this laboratory based assay 

on the amplification of synthesised cDNA from RNA extracted from live Legionella 

confirms that live detection of Legionella is possible and it can be applied in environmental 

water sample analysis without detecting non-viable cells. This method would be of great 

advantage in interpretation and understanding of qPCR techniques for Legionella control. 

Total six cDNA samples were synthesised from RNA extracted from full lenticule (live 

Legionella) and five different dilutions were prepared. All samples were amplified in 

triplicate and the PCR amplification result was proportionate to the bacteria culture 

dilution series up to 5%; however, amplification corresponding to 0.5% RNA dilution was 

not detected. The amplification curve from 5% shows a CT at approximately the same level 

of amplification from the genomic DNA contamination and it is therefore difficult to 

identify (Figure 4.15). Otherwards, the signal from the cDNA is swamped by the 

contamination at this level. In this experiment, all the dilution triplicates produced 

consistent amplification (Figure 4.15) but, later amplification from NRT and master mix as 

seen in figure 4.15 is caused by persisting genomic DNA contamination. This amplification 

did not significantly affect the quality of the experiment; although the 5% dilution 

amplification curve was overcrowded with these curves.  The CT values corresponding to 

each dilution with the mean values are given in Table 4.11.   
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Figure 4.15 Amplification of cDNA synthesised from RNA extracted from dilution 

series 50%, 25%, 12.5%, 5% and 0.5% from full live Legionella lenticule showing the 

proportionate reduction in amplification.  
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Table 4.11    The CT values corresponding to 100% (full live Legionella) and each RNA dilution along with mean CT values.  

The CT values produced from 100% cDNA concentration, 50% cDNA concentration, 25% cDNA concentration, 12.5% cDNA concentration and 5% 

cDNA concentration is differed but, one of the triplicates did not amplify from 25%. Therefore, the mean value is calculated from two of the CT values 

produced.  In the case of 12.5% and 5% dilution, all the triplicates were amplified as shown in the Table 4.11.  The CT value of NRT also differed 

proportionately up to 12.5% dilution; NRT amplification from 5% dilution was almost similar to that of 12.5% dilution and 0.5% dilution was not 

amplified at all.  

Concentration Full lenticule 

(100%) 

50% 25% 12.5% 5% 0.5% 

 RT NRT RT NRT RT NRT RT NRT RT NRT RT NRT 

  
23.19 32.90 30.20 

 
36.92 31.44 

 
38.66 33.31 

 
39.22 35.54 

 
39.81 

 
- 

 
- 

  
23.01 32.44 30.09 

 
36.78 31.64 

 
38.80 32.89 

 
38.99 36.24 

 
- 

 
- 

 
- 

  
22.64 32.78 30.49 

 
37.01 - 

 
38.79 33.16 

 
39.61 35.90 

 
39.92 

 
- 

 
- 

Mean  
 

22.94 32.70 30.26 

 
 

36.90 31.54 

 
 

38.75 33.12 

 
 

39.27 35.89 39.86 

 
- 

- 
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Figure 4.16 Scatter plot representation of amplification of cDNA (mean CT) 

synthesised from RNA extracted from full lenticule (Live Legionella (100%) and dilution 

series 50%, 25%, 12.5%, and 5% from full lenticule (live Legionella) showing the 

proportionate reduction in amplification.  

 One full Legionella lenticule and five dilutions (all in triplicate) were analysed in UKAS 

accredited laboratory ‘ALS Global’ by using standard culture methods to establish a 

quantitative relationship with CT curves. The results received from the laboratory are 

given in Table 4.12. 
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Table 4.12   Full Legionella lenticule and dilution series 100%, 50%, 25%, 12.5%, 5% and 

0.5% culture analysis results received from UKAS accredited laboratory with the mean of 

triplicates.   

Sample description Legionella 

pneumophila 

(cfu/500ml) 

  Mean   

(cfu/500ml) 

Mean 

(cfu/L) 

Calculated 

Full lenticule sample (100%)    -  A 4250  
4950 

 
9900 (100%)   -  B 5600 

(100%)   -  C 5000 
50%   -  1 2650  

2500 
 

5000 50%  -   2 2300 
50%  -   3 2550 

   25%   -  1 1050  
1083 

 
2166                                            25%    -2 1000 

                                              25%    -3 1200 
 12.5%  -  1 200  

283 
 

566                                          12.5%  -2 400 
                                         12.5%   -3 250 

  5%    -  1 Not detected  
- 

 
-                                               5%   -2 Not detected 

                                              5%   -3 Not detected 
                                              0.5% -  1    Not detected  

- 
 
-                                               0.5%  -2 Not detected 

                                              0.5%  -3 Not detected 
 

       Standard culture analysis showed a full Legionella lenticule dissolved in 500ml 

deionised water contains live Legionella pneumophila concentration of 9900cfu/L (mean 

of three Legionella lenticule results); in addition, 100%, 50%, 25% and 12.5% dilution 

showed 9900cfu/L, 5000cfu/L, 2166cfu/L and 566cfu/L, respectively and 12.5% and 

0.5% showed as non-detected.  This culture result was compared with corresponding 

qPCR amplification plots (Figure 4.16). Standard culture analysis could not detect the 

bacteria count in 5% and 0.5% dilutions; in contrast, 5% dilution was clearly detected 

and amplified in qPCR, although amplification of 0.5% dilution was not clearly visible as 

this is mixed with the amplification from persisting genomic DNA contamination or 

swamped by the contamination.                                         
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Figure 4.17    Comparison of culture analysis results with qPCR amplification plots            

from RNA extracted from full lenticule (100% live Legionella) ‘A’, and dilution series 

50%, 25%, 12.5% and 5% ‘B’. Black curves in ‘A’ and ‘B’ represents the gDNA 

amplification from NRT samples.    
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                                4.4.11       Results of Experiment 5 

 

 This experiment was designed to investigate the source of gDNA contamination 

as well as to confirm the qPCR response to a dilution series, i.e. to ensure that a 

proportionate increase in RNA dilution resulted in a proportionate reduction in 

amplification of cDNA.  

 

Figure 4.18a  Amplification of cDNA from RNA extracted from a bacteria culture of 10 fold 

dilution series 1, 0.1, 0.01 and 0.001 as 1,2,3 and 4 respectively in triplicate.  Plot shows no 

gDNA contamination from any of the wells as well as proportionate increase in CT values with 

increase in bacteria culture dilution.  
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Table 4.13  qPCR amplification data of four 10 fold dilution series of  cDNA with mean CT 

values used to generate the scatter plot. 

Sample CT -1 CT -2 CT -3 Average CT 

value 

Sample 

quantity 

Log (sample 

quantity) 

1 24.09 23.73 23.51 23.77 1.0000 0.00 

2 26.95 26.8 26.62 26.79 0.1000 -1.00 

3 30.51 30.68 30.25 30.48 0.0100 -2.00 

4 33.47 33.82 34.17 33.82 0.0010 -3.00 

 

 

This purpose of this experiment was to investigate the source of persisting gDNA 

contamination identified in Experiments 1-4, and to study the efficiency of the qPCR 

response to a dilution series of cDNA extracted from RNA. This experiment showed no 

gDNA contamination from any of the qPCR wells including master mix. This was the 

first experiment in this assay without any gDNA amplification occurring in the NRT 

samples. The gDNA contamination was persisting in all previous experiments even 

after implementing maximum precautionary measures including the use of different 

gDNA elimination treatments.  This experiment further confirms that the source of 

gDNA contamination in previous experiments was either from the lab space used for 

RNA extraction or from the old stock reagents such as primers/probes, TaqMan master 

mix and deionised water.  

 

The entire triplicate produced consistent amplification and CT values proportionate 

to dilution series (Figure 4.18A). This amplification further confirmed the successful 

extraction of RNA from live Legionella cells (Figure 4.18A). The amplification cycle of 

each dilution and their mean CT values was consistent with the proportionate reduction 

in concentration of synthesised cDNA (Table 4.13). Furthermore, a linear relationship 

was also observed in cDNA amplification depending on the concentration of each 

dilution series as the concentration decreases, the CT values increases proportionately 

(Figure 4.18B).  In this experiment, the dilution factor is 10, the slope calculated             

is -3.382, R2 is 0.9986.  The efficiency of the qPCR assay is calculated using the formula       

E = (10 –1/slope –1) × 100 and found to be 97.55%. Any qPCR assay with 97.55% 

efficiency is considered as robust and the data generated is reliable.  
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Figure 4.18b Scatter plot generated from the cDNA dilution amplification data 

demonstrating a linear relationship with CT values and increase in dilution. Samples 1, 

2, 3 and 4 are log sample quantity 0, -1, -2 and -3 respectively).  

   

The results from experiments 4 and 5 showed that cDNA amplification was 

proportionate to the dilution of RNA and viability of the bacteria.  In Experiment 4, the 

dilution series was in percentage; the mean of CT values corresponding to dilution 

series 100%, 50%, 25% and 12.5% was 22.94, 30.26, 31.54 and 33.12, respectively 

(Table 4.11). The mean of CT values corresponding to 10 fold dilution series (1, 0.1, 

0.01 and 0.001) in Experiment 5 was 23.77, 26.79, 30.48  and 33.82 (Table 4.13), 

respectively. These CT values clearly show a proportionate reduction in amplification 

of cDNA, indicating the amplification is proportional to the RNA concentration in each 

sample. Various studies on DNA amplification using PCR have demonstrated that CT 

values are proportionate to the concentration of genomic DNA templates (O'donnell    

et al., 2016; Zhong et al., 2016). Indeed a linear relationship between DNA amplification 

cycles (CT values) and concentration of DNA templates is observed (Lv et al., 2016; 

Gudnason et al., 2007).  
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Figure 4.19 Linear correlations between CT values and sample RNA concentration.  CT 

values increases as RNA concentration decreases in Experiment 5.  

          Experiment-5 showed a linear relationship with RNA concentration and PCR 

amplification (CT) values (Figure 4.19). The slope was calculated from the scatter plot 

generated from corresponding PCR data; with dilution factor 10, the slope is -3.382, R2 is 

0.9986 and efficiency is 97.55%. A slope and efficiency in this range indicates that the 

assay is reliable (Svec et al., 2015). 

A ‘SWOT’ analysis also has been carried out to assess the strength and weakness of this 

assay (Table 4.14).       
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Table 4.14.  SWOT analysis of the PCR assay based on the cDNA amplification from RNA 

extracted from live Legionella bacteria. 

Strength Weaknesses 

  
1. Live Legionella detection is possible. 
2.     Do not detect non-viable Legionella cells. 

3.      Detects VBNC Legionella bacteria 
 4.  Detects lower concentrations of Legionella 

bacteria compared to conventional 
culture analysis. 

 5.   No risk of underestimation of bacterial 
population as in culture analysis. 

 6.    No overestimation of bacterial 
population as in current real time PCR 
technique.   

7.   Accurate result can be available in 3-4 
hours’ time. 

8.    Delay in between water sampling    and 
remedial action implementation   can 
be avoided. 

 

  
1.    Genomic DNA contamination can affect the   
quantification.   
2.        Lower detection limit could not be   
identified due to the presence of genomic DNA 
contamination.  
3.       During RNA extraction and purification, 
there are possibilities for RNA loss from the 
samples, which can adversely affect the 
quantification.  
4.       Possibility of contamination during RNA 
extraction and purification. 
5.       Inhibitors present in the environmental 
water samples may affect the reaction. 
  

  

Opportunities Threats 

  
 1.      Accurate live detection of Legionella 
bacteria in domestic hot and cold water 
systems can significantly reduce the risk of 
Legionnaires’ disease.    

2.       2. Accurate detection will help the responsible 
people to take appropriate action to control 
Legionella; thus a significant reduction can 
expect in the number of community acquired 
pneumonia (CAP) cases.   

  
 4.   Early stage accurate detection of Legionella 

in water systems can help to take 
precautionary measures and can avoid 
frequent disinfection works which can 
make significant financial savings in terms 
of Legionella control and water hygiene 
maintenance.   

5.       Possibility of the approval   from the 
regulating government authorities such as 
HSE, DEFRA, EA and private experts. 

5.       6.  Potential commercial benefit from 
laboratories in the field of environmental 
water sample analysis for Legionella 
worldwide. 

6. 7.   This live detection assay can be 
implemented in other areas of micro-
biological analysis.  

 
  

  
1.       Commercial laboratories in the field of 
Legionella testing may not entertain the new 
method due to the legal implications in the 
event of possible failure. 
2.       Regulating authorities may not 
support/approve the new method. 
4.       Building managers may take a negative 
attitude towards the new method when 
comparing with the analysis cost of standard 
culture method. 

 



 

214 
 

 

4.5     Conclusion and recommendation 

 

4.5.1  Conclusion 

 
The results presented in this assay clearly indicate that the live detection of 

Legionella bacteria is possible with real time PCR techniques, although accurate 

quantification of live bacteria still presents some challenges. This assay confirms 

that RNA extraction from Legionella lenticules using the Qiagen RNA extraction kit, 

cDNA synthesis and amplification of cDNA using the 23S primers was successful.. 

Precautions and care must be taken to avoid possible genomic DNA contamination, 

especially when dealing with primers, probes and TaqMan Mastermix. Further 

research is needed in setting up the lower detection limit for quantification.  Further 

validation of this method with for detecting live  Legionella bacteria in real 

environmental water samples in still needed. However, this method looks promising 

in the field of Legionella control as well as in many other areas of water 

microbiology. 

 

4.5.2 Future work and Recommendations 

 

 Investigate the sensitivity of the method from 100 cfu/L and below (real world 

applicability). 

 Validate the primers/probes used in this assay with other Legionella species to 

confirm  the specificity of the assay to detect all the Legionella species.  

 Establish the relationship between cfu/L and CT value more accurately.   

 Lenticule standards with accurate levels of bacteria should be developed to 

support development of a rapid qPCR kit.  These could serve as positive 

control whilst providing quantitative information (cfu/L)  

 Investigation will need to identify the possible interfering substances 

(inhibiting substances) when dealing with real environmental samples and 

develop methods to get rid of the possible inhibitors.  

 Carry out further validation of the method after the above mentioned 

refinement.  
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 Carry out the test use of this novel approach to detect live Legionella in real-

world samples (environmental water samples) and compare it with Gold 

Standard (culture). 

 PCR assay that targets the 23S-5S rRNA intergenic spacer region allows 

detection of all Legionella species and discrimination of Legionella 

pneumophila from other Legionella species. The 23S rRNA gene was used as a 

target to detect all Legionella spp., and the mip gene was targeted for the 

specific detection of L. pneumophila in this multiplex Taqman real-time PCR 

assay. 
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CHAPTER FIVE 

DEVELOPMENT OF AN EVIDENCE BASED RISK MANAGEMENT 
MODEL 

 

5.1 Introduction 

One of the important steps in Legionella control is to carry out a suitable and 

detailed Legionella risk assessment in order to then establish a regular monitoring 

program on the basis of the identified and possible risk factors (HSE, 2013). Qualified 

and trained individuals carry out the risk assessments using the guidelines BS 

8580:2010, after which a decision is made about the nature and extent of the ongoing 

monitoring programme (HSE, 2013). However, human errors that affect decisions 

about monitoring  occur, and consequently, low and medium risk buildings can 

mistakenly fall into a high risk category, resulting in a significant increase in monitoring 

intensity and sampling frequencies. This could add additional financial burdens to 

building management companies in terms of Legionella control. Equally as serious are 

events where a ‘high risk’ building is placed into the ‘low risk’ category, so that water 

facility users in any particular building face the unabated and hidden threat of 

Legionnaires disease from their domestic water systems.  In order to help address such 

inconsistencies in decisions about Legionella control caused by human errors or 

subjectivity a standard uniform model (tool) is needed to categorise any building 

purely on the basis of identified risk factors in terms of Legionella control.  

 

Indeed, professional discussions with building managers responsible for water 

hygiene management and water treatment, and Legionella control experts in the 

industry, has confirmed this to be a major gap in Legionella control and management; a 

standard platform based on a statistical model would be of a great advantage in 

addressing this serious concern. Whilst discussing this data gap with my second 

supervisor (Professor Xiaohui Liu, Director of The Centre for Intelligent Data Analysis 

Department of Computer Science, Brunel University London) it became apparent that 

Principle Component Analysis was the best statistical approach to develop this risk 

predictive model.      

    



 

217 
 

5.2 Aim 

  

The main aim of this research was to integrate existing building monitoring data 

(including information on Legionella status) into a statistical approach known as 

Principal Component Analysis (PCA) in order to develop an evidence-based risk 

management system (model) for the better understanding of the risk category of any 

domestic building in terms of Legionella bacteria. If successful, human errors during 

Legionella risk assessments (practioners, responsible personals and industry experts 

are aware of this human errors, but rarely studied and documented) and can be 

minimised and decisions related to establishing monitoring programmes can be 

improved; better protection from Legionnaires disease as well as significant financial 

savings can be achieved by avoiding unnecessary monitoring and water sampling for 

domestic water systems.  In addition, the impact of changes to building water systems 

can be modelled for their likely impact on Legionella status prior to work being carried 

out.  

 

5.3 Methodology 
 

The primary approach was to use routine building monitoring data to identify and 

rank the common risk factors that could lead to the proliferation and harbouring of 

Legionella bacteria in the domestic water systems, and to integrate these into a risk 

predictive model.  The Risk Predictive Model was developed using a statistical 

approach known as Principal Component Analysis (PCA). Principal Component 

Analysis is one of the most frequently used multivariate data analysis methods. It is a 

projection method as it projects observations from a p-dimensional space with p 

variables to a k-dimensional space (where k < p) so as to conserve the maximum 

amount of information from the initial dimensions. PCA dimensions are also called axes 

or Factors. If the information associated with the first 2 or 3 axes represents a sufficient 

percentage of the total variability of the scatter plot, the observations could be 

represented on a 2 or 3-dimensional chart, thus making interpretation much easier. 

PCA can thus be considered as a Data Mining method as it enables easy extraction of 

information from large datasets. The study and visualization of the correlations 

between variables can be used to limit the number of variables to be measured and 
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these factors can be used in modelling methods such as linear regression, logistic 

regression or discriminant analysis. PCA enables the visualisation of observations in 2 

or 3 dimensional spaces and helps identifying uniform or typical groups of 

observations (xlstat.com/pca). 

PCA aims to present multivariate information in a correlation matrix to highlight the 

relationship among combinations of variables in a data set. The higher the percentage 

of variance that the model manages to explain, the more valid the model will be 

(xlstat.com/pca). The contribution of each composite variable (i.e. a new variable 

created by combining 2 or more individual variables together - known as a 

‘component’) to the explained variance of the model can be described as a percentage, 

enabling users to eliminate unwanted variables whilst maintaining the optimal number 

of components needed for maximum predictive power. However, once the principle 

components that explain the variance have been established, the percentage 

contribution of each component to variance becomes somewhat arbitrary (and 

therefore is not considered in this model), as PCA emphasises the strong patterns, or 

relationships, in the data (shown in figure 5.0). 

 
Figure 5.0 is an example of PCA plot generated in the study of Trypanosoma brucei 

infections in mice. The black dots represents the number of uninfected mice; blue dots 

shows the changes after the first day of  infection, green dots represents the 3rd day of 

infection and red dots represents the 4th day of infection. PCA was able to distinguish 

between the different categories of mice using a common set of variables, thereby 

enabling categorisation of the infected and non-infected mice on the basis of the input 

measurements. The same concept was applied in the development of Legionella risk 

predictive model, except instead of mice we are using buildings.  
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Figure 5.0 Principal component analysis (PCA) plots derived from a study of urinary 

nuclear magnetic resonance (NMR) spectra of mice; pre-infection (black), after 1 day of 

infection (blue), 3rd day of  infection (green) and 4th day of infection (red). Source: Li et 

al., 2011.  

Six main steps were used to develop this basic model as follows:-  

 

5.3.1 Compilation of risk monitoring data  

 

Any building with communal water storage tank(s) or a communal hot water system 

in the UK comes under HSE’s legislation ACOP L8 2013 HSG 274 Part 2(HSG, 2013). In 

order to comply with this legislation, such buildings must undertake a risk monitoring 

assessment by an independent qualified engineer. As a part of my profession, I have 

access to such risk monitoring data from hundreds of London buildings, and randomly 

selected 180 sites of known Legionella status to compile the raw risk monitoring data 

(data was available for the past 6 years).  From these data, I identified 60 infected sites, 

and therefore randomly selected the same number of non-infected sites for comparison 

and development of the model. 

These data (present as monitoring forms completed by hand) included the age of the 

building, size, usage, total number of cold water storage tanks, actual cold water 
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storage, actual cold water requirement, percentage of  excess water storage, total 

number of calorifiers, total  number of  communal showers, status of existing Legionella 

risk assessment (if any), total number of deadlegs in the systems, inspection frequency, 

temperature monitoring frequency, number of Legionella positive results in the past six 

years, tank’s internal condition at the time of positive Legionella detection,  condition of 

the thermal insulation of the tank(s) and pipework, water sample temperatures, season 

of positive results, remedial action used and the re-sampling result.  The compiled risk 

monitoring data is shown in Appendix-1 

 

5.3.2 Data entry  

 

Initially monitoring data from 180 sites was compiled and from these data, I 

identified 60 infected sites, and randomly selected another 60 non-infected sites for 

comparison and development of the initial PCA model.  Throughout the model 

development, a number of new sites (of unknown Legionella status) were also used to 

validate the predictiveness of the model, including sites from outside of London to 

investigate the applicability of the model nationally.  Data presented throughout this 

Chapter can therefore vary in sample size. 

The risk monitoring data compiled from the monitoring survey forms were 

systematically transferred to a spread sheet, and colour coded to identify different 

usage of the buildings (e.g. Residential, Commercial, and Care Home). Colour coding 

was also used to gain a more wholistic impression of the compiled monitoring data 

when split into Legionella positive and negative sites.  This helped develop impressions 

and hypotheses about the data, including the likely relative importance of different risk 

factors to the overall Legionella status of the sites.   
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Table 5. 1a Numerical codes for age of the building, usage and availability of the risk 
assessment. 
 

           

 

Age of the 
building 

Code Building 
category 
(usage) 

Code Risk 
Assessment 

available 

Code 

2000+ 1     
1900 – 1999 2 Residential 1 Yes 1 

 
1800 - 1899 

3 Mix use ( 
Residential 

and 
commercial) 

2 No 2 

Older than 1800 4 Commercial 4 N/A 0 
  Care Home 4   

 

         
Tank internal condition 

 

 

 
 

Table 5.1b Numerical codes for temperature monitoring frequency and sampling 
frequency. 
 

         
Visibly clean 1 

 

Temperature 
Monitoring frequency 

Code Sampling  frequency Code 

    

Monthly 1 Monthly 1 

Quarterly 2 Quarterly 2 

Half yearly 3 Half yearly 3 

Annually 4 Annually 4 

N/A 0 N/A 0 
 

         
Corroded and sedimentation 4 

 

 
 

Table 5.1c Numerical codes for internal tank(s) condition and thermal insulation of 
the tanks and pipework.  
 

   
Monthly 12 Monthly 1 

  
Scale and sedimentation 5 

 

Tank internal 
condition 

Code Thermal insulation of 
the tank(s) and 

pipework 

Code 

Visibly clean 1 Satisfactory 1 
Corrosion 2 Not satisfactory 2 

Sedimentation 3 Pipework not insulated 3 
Corrosion and 
sedimentation 

4 Uninsulated tank 4 

Scale and sedimentation 5 Uninsulated tank and 
pipework 

5 

Stagnant water with bio 
film 

6 N/A 0 

Scale, sedimentation, 
and corrosion with bio 

film 

7   

N/A 0   
 

   
Halfyearly 2 Halfyearly 3 

  
Corrosion with oily film 7 

   
 
 
 
 

   
N/A 0 N/A 0 
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Table 5.1d Numerical codes for annual occupancy rate and temperature recording 
during routine inspection visit.  
 

Occupancy rate 
(%) 

Code Temperature 

100 0 Hot Code Cold Code 
90-100 1 60  0 <12 0 
80-89 2 58-59 1 12-13 1 
70-79 3 55-58 2 14-16 2 
50-69 4 50-54 3 17-18 3 

<50 5 48-49 4 19-20 4 
  45-47 5 21-24 5 
  <45 6 25+ 6 

 
 
Table 5.1e Numerical codes for seasonality.  
 

Season Code 
December, January and February 1 
March and April 2 
May and November 3 
June and October 4 
July, August and September 5 

 
 
 
        All sites reported with Legionella positive results were then sorted so that they 

appeared as a group at the top of the spread sheet, followed by the non-infected sites. 

In order to maintain a consistent approach, risk factors (non-numerical data) were 

numerically coded according to severity (into categorical data), where a value ≤1 

represents a low risk and higher numbers denote increasing levels of risk with respect 

to Legionella proliferation.  These are shown in Appendix-2.  The numerical codes 

assigned are shown in the Tables 5.1a-e. Table 5.1a shows the numerical codes for age 

of the building, usage and current status of the risk assessment, Table 5.1b shows the 

numerical codes for temperature monitoring frequency and sampling frequency and 

Table 5.1c shows numerical codes for internal tank(s) condition and thermal 

insulation of tank(s) and pipework.  Increasing numbers represent a decrease in the 

health e.g. visibly clean – 1, presence of corrosion -2, presence of sedimentation– 3, 

presence of corrosion and sedimentation – 4, scale and sedimentation -5, stagnant 

water with bio film -6, scale, sedimentation, and corrosion with bio film -7. 
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5.3.3  Identification and ranking of the most common risk factors for   Legionella 

contamination/proliferation. 

 

In order to identify and rank the most important risk factors for Legionella 

occurrence within the monitoring data (see Appendix 2) I compared whether the 

various factors differed statistically between Legionella infected and non-infected sites. 

Out of 180 London sites in the spread sheet -1, 60 sites had Legionella positive results 

during the past six years and these 60 sites were compared against another 60 sites 

which had never had any reported Legionella positive results. A number of different 

tables (see Appendix- 3) and graphs (e.g. Figure 5.1) were prepared to summarise the 

data from the infected sites and to identify the contributing factors. The mean and 

standard deviation of each factor from both categories was calculated and the sum of 

mean and standard deviation was used to generate the box plots with error bars (e.g. 

Figure 5. 2 and Figure 5.3).  

 

Figure 5.1 Graph prepared from the table comparing the average building occupancy 
rate (%) >50 and <100 (blue bar) and the total number of Legionella positive detection 
per building (red bar) in the past six years. The minimum occupancy rate documented 
was 55%, hence the graph shows the occupancy rates between 50 and 100%.  
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Figure 5.2 Comparison of the annual occupancy rate of Legionella detected (n=60) and 
non-detected (n=60) sites using categorical data (see Table 5.1a) and this was 
significantly different (P=0.0091) with 95% confidence. 

 

 

Figure 5.3 Comparison of the age of the buildings from Legionella detected (n=60) and 
non-detected (n=60) sites using categorical data (see Table 1a).  Negative sites were on 
average slightly younger builds than positive sites, but this was not significantly 
different (P=0.056) with 95% confidence. 
 
 

Comparative statistics between the infected buildings and non-infected buildings 

were carried out by calculating the ‘p-value’ to determine which factors significantly 

contributed to differences between these two groups. A parametric ‘t-test’ was carried 

out on quantitative data for each factor to identify the most common risk factors using 

XLSTAT software. Calculated p-values for the most common risk factors are given 
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below (Table 5.2a). Computed p-values for all these factors are lower than the 

significance level alpha =0.05, indicating that these parameters differ significantly with 

95% confidence between infected and non-infected sites. Calculated p-values for the 

less common (rarely-contributing factors) are given in (Table 5.2b) 

 

Table 5.2a Calculated p-value for the most common contributing risk factors. 

Contributing factor p-value 

Occupancy rate 0.0091 

Number of water tanks 0.0005 

Number of calorifiers 0.0033 

Tank’s internal conditions 0.0001 

Thermal insulation of the tank(s) and pipework 0.0002 

Excess water storage (%) 0.0001 

Number of deadlegs 0.0055 

Hot water temperature 0.0003 

Cold water temperature 0.0001 

Seasonality (summer) 0.0001 

Number of showerheads 0.0014 

Number of  Legionella positive detection 0.0042 

       

         

          

        
 

Table 5.2b Calculated p-value for the less common (rarely-contributing factors) risk 

factors. 

Contributing factor p-value 

Age of the building 0.0860 

Usage of the building (Residential, commercial, 

care home etc.) 

0.1010 

Legionella risk assessment 0.0623 

Size of the building 0.2230 

Number of TMV’s in the building 0.0713 

TVC analysis 0.0581 
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5.3.4 An assessment of the effectiveness of temperature monitoring.  

 

A small comparative study was carried out between sites with effective temperature 

monitoring regimes in place and sites without effective temperature monitoring 

(frequency of less than monthly) to determine whether this approach is effective at 

managing Legionella. (It is a normal practice in the industry to carry out the 

temperature monitoring of hot and cold water systems; daily, weekly, fortnightly, 

monthly, quarterly or rarely six monthly depending on the risk highlighted in the water 

system risk assessment carried out in accordance with BS8580:2010. In this assay, 

monthly (or more frequent) temperature monitoring frequency is considered to be 

effective temperature monitoring). Ten sites were randomly selected in total; five with 

effective temperature monitoring (daily to monthly monitoring) and five without 

effective temperature monitoring (half yearly only). This information was 

systematically arranged in a table for convenience (Table 5.3). 

 

Table 5.3 Randomly selected sites with regular temperature monitoring in place and 
without regular temperature monitoring in place. 
 

Building 
No. 

Age Size Occupanc
y rate (%) 

Number 
of   tanks 

Number of 
calorifiers 

LP * 
positive 
results 

LP 
detected 
sample 

Temperature 
monitoring 
frequency 

1 68 1 85 2 1 2 Cold tap Half yearly 
2 213 4 80 2 3 2 Cold tap Half yearly 
3 76 4 78 2 1 1 Hot tap Half yearly 
4 68 5 72 2 1 2 CWST Half yearly 
5 83 1 90 1 1 0 NA Half yearly 
6 213 12 98 2 2 1 Hot tap Monthly 
7 193 3 95 1 1 0 NA Weekly 
8 73 9 100 4 2 0 NA Daily 
9 73 7 100 3 2 0 NA Daily 

10 7 8 100 2 1 0 NA Daily 

  *LP-Legionella pneumophila. 
 
 
 

5.3.5 Development of a predictive risk model to determine the likelihood of 

Legionella contamination in buildings.  

 

A predictive risk model for Legionella contamination in buildings was developed on 

the basis of the risk factors identified in the spread sheet, risk ranking and the 
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comparative study of the effectiveness of temperature monitoring.  The risk model was 

developed with the help of the statistical software XLSTAT. Principal Component 

Analysis (PCA) was carried out with twelve selected variables (identified as important 

risk factors by statistical comparisons of infected and non-infected sites – described 

above).  Using this approach I then combined various factors together within a range of 

PCA plots in order to identify the best combination of factors needed to discriminate 

contaminated sites from non-contaminated sites.  

5.3.6 Validation of the predictive risk model with new client buildings of 

unknown Legionella contamination status.  

 

In order to validate the predictiveness of the Legionella risk model, 66 site visits to 

new client buildings in London were undertaken in order to test the ability of the 

developed model to correctly determine the likely risk (high or low) of Legionella 

contamination. A separate spread sheet was prepared and the site survey data was 

converted into numerical data as before (Appendix-4). This numerical data was then 

used to carry out the PCA method in order to categorise the sites into ‘high risk’ 

buildings and ‘low risk’ buildings. Finally, the results of this PCA (i.e. Legionella positive 

or negative) were compared to historical monitoring data (available on site) to 

determine the accuracy (predictive power) of the developed model.  

 

5.3.7 Validation of the predictive risk model with sites outside of London 
 

In order to validate the risk predictive model with out of London buildings, 9 site 

visits were carried out in Manchester, Darlington and Nottingham to test the predictive 

power of the developed model in building water system with different water quality 

parameters (e.g. water in Darlington buildings was found to be softer compared to 

water in London buildings). A separate spread sheet was prepared for these properties 

and the site survey data was converted into numerical data in the same was as for the 

London buildings (Appendix-5). This numerical data was then used to generate the PCA 

plot in order to categorise the sites into ‘high risk’ buildings and ‘low risk’ buildings. As 

described in the London building validation, PCA results of these out of London 

buildings were compared to historical monitoring data (available on site) to determine 

the accuracy (predictive power) of the developed model which was developed using 

data from London buildings.  
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5.4 Results 

 

5.4.1 Risk factors 

 

Most common risk factors for Legionella contamination identified by statistical 

comparisons were annual occupancy rate, number of water tanks, number of 

calorifiers, tanks internal condition, thermal insulation of the tanks and pipework, 

excess water storage, number of deadlegs, hot water temperatures, cold water 

temperatures, seasonality (especially summer), number of showerheads and number of 

Legionella positive results. Separate statistical comparison was also carried out for 

Legionella positive results with hot water system alone and cold water system alone. 

Factors contributing to Legionella positive results in the hot water system were annual 

occupancy rate, number of calorifiers, number of deadlegs, number of showerheads, 

number of Legionella positive results and water temperatures. In contrast, the factors 

contributing to Legionella contamination within the cold water system were annual 

occupancy rate, number of water tanks, tanks internal condition, thermal insulation of 

the tanks and pipework, excess water storage, number of deadlegs, water 

temperatures,  number of Legionella positive results and seasonality (especially 

summer). 

                                                                                        

5.4.2  Effectiveness of temperature monitoring  

 

An assessment of the effectiveness of temperature monitoring was carried out for 10 

sites of which five had daily/weekly/monthly temperature monitoring and five without 

daily/weekly/monthly temperature monitoring. One of five sites with regular 

temperature monitoring, had a single report of a Legionella outbreak in last six years 

(Table   5.5). Of the other five sites without weekly or monthly temperature monitoring, 

4 sites had reported Legionella positive (total 7) in the last six years (Table 5.4). A 

summary of this assessment is shown in Figures 5.4a and 5.4b.   
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Table 5.4 Sites without regular temperature monitoring, 7 positive Legionella detections in the past 6 years. 

 

 

 

Table 5.5 Sites with regular temperature monitoring, only one positive Legionella detection in the past 6 years. 

Buildin
g No. 

Age Size Occupanc
y rate (%) 

Number 
of tanks 

Number of 
calorifiers 

LP 
positive 
results 

LP 
detected 
sample 

Temperature 
monitoring 
frequency 

1 213 12 98 2 2 1 Hot tap Monthly 
2 193 3 95 1 1 0 NA Weekly 
3 73 9 100 4 2 0 NA Daily 
4 73 7 100 3 2 0 NA Daily 
5 7 8 100 2 1 0 NA Daily 

Buildin
g No. 

Age Size Occupanc
y rate (%) 

Number 
of tanks 

Number of 
calorifiers 

LP 
positive 
results 

LP 
detected 
sample 

Temperature 
monitoring 
frequency 

1 68 1 85 2 1 2 Cold tap Half yearly 
2 213 4 80 2 3 2 Cold tap Half yearly 
3 76 4 78 2 1 1 Hot tap Half yearly 
4 68 5 72 2 1 2 CWST Half yearly 
5 83 1 90 1 1 0 NA Half yearly 
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    Figure 5.4a                                      Figure 5.4b 

Figure 5.4a shows the percentage of infected and non-infected sites where regular 
temperature monitoring was in place and figure 5.4b shows the percentage of infected 
and non-infected sites where regular temperature monitoring was not in place. 

5.4.3 Legionella risk predictive model     

 

 

Figure 5.5 PCA for 60 infected and 60 non-infected sites. Red box represent the 

infected sites and the green box represent the non-infected sites.  
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The PCA approach was able to accurately separate buildings into low risk and high 

risk categories, where all the high risk buildings (Legionella positive) are on the right 

hand side of the Y-axis and all the low risk (negative for Legionella) buildings are on the 

left hand side of the Y-axis. PCA has separated 60 infected sites on the RHS of the Y axis 

and 60 non-infected sites on the LHS of the Y-axis. Therefore, 100% of the infected sites 

fell on the RHS of Y-axis and 100% of the non-infected sites fell on the RHS, i.e. all the 

60 non-infected sites were correctly identified as being negative being on the LHS of 

the Y-axis and all of them made a cluster (Figure 5.5).    

 

5.4.4 Validation of the risk model with new client buildings.  

 

The PCA Legionella Risk Predictive Model was then applied to 66 new client 

buildings and the results are shown in (Figure 5.6). As per the PCA, 32 sites were found 

to be in the high risk category and 34 sites were in the low risk category. Real historical 

data available from each site confirmed that 32 buildings (building numbers 1-32) had 

Legionella positive detection in the past whereas the remaining 34 (building numbers 

33-66) had no previous record of Legionella positive detection.  Therefore, the 

Legionella Risk Predictive Model has correctly identified all previously contaminated 

sites as being ‘high risk’ (100% accurate for contaminated sites) and in the same way 

the model has correctly identified all non-contaminated sites as being ‘low risk’ (100% 

accurate for non-contaminated sites).    

 
 



 

232 
 

 
 
 

Figure 5.6 PCA for 66 new client buildings. Green box represents 34 sites that were 
previously found to be negative for Legionella, whereas the red box represents 32 sites 
where Legionella was reported previously. 
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Figure 5.7 PCA for 9 new out of London buildings. Green box represent 4 sites that 
were previously had no Legionella, whereas the red box represents 5 sites where 
Legionella positive detection was reported previously. 
 

5.4.5 Validate the application of the risk predictive model with out of   London 

buildings. 

 

The PCA based Legionella Risk Predictive Model was applied to 9 new buildings in 

Manchester, Darlington and Nottingham to test the predictive power of the model in 

building water system with different water quality parameters compared to water in 

London buildings and the results are shown in (Figure 5.7). As per the PCA, 5 sites were 

found to be in the high risk category and 4 sites were in the low risk category. Real 

historical monitoring data available from each site confirmed that 5 buildings (building 

numbers 1-5) had Legionella positive results in the past whereas the remaining 4 

(building numbers 6-9) had no previous record of Legionella outbreak.  Therefore, the 

Legionella Risk Predictive Model has correctly identified all previously contaminated 

sites as being ‘high risk’ (100% accurate for contaminated sites) and all non-

contaminated sites as being ‘low risk’ (100% accurate for non-contaminated sites) 

regardless of geographical location of water systems and water quality parameters.     

 



 

234 
 

5.5       Discussion  

  

5.5.1   Identification of risk factors 

 

Out of 18 selected possible risk factors that can contribute towards Legionella 

proliferation in domestic water systems, 12 were identified as the most common risk 

factors using t-test and comparative studies. Mainly buildings can be categorised as 

residential, commercial, mixed use (residential and commercial) and industrial. Block 

of flats, apartments, houses and care homes comes under the ‘Residential’ category. 

Office complexes, hospitals, schools, universities etc. are considering as ‘Commercial’ 

buildings. Industrial units and factories come under the ‘Industrial’ category (Health 

Protection Agency, 2009). Out of these three categories, residential buildings, especially 

residential accommodation, are more susceptible to Legionella infection. The main 

reason for this is water stagnation within the pipework, which occurs when some of the 

individual flats/houses within the blocks are unoccupied (Rakic et al., 2011). Water 

stagnation within this pipework can last up to several months if the owner or 

occupying tenant is a rare visitor to the UK. In the other categories, there will be 

somebody responsible for periodically flushing all the outlets and carrying out 

temperature tests to comply with HSE’s ACOP L8 legislation. Thus, the occupancy rate 

in residential buildings is a major contributing factor for Legionella proliferation. The 

building water storage facility is always designed for a 100% occupancy rate. As the 

occupancy rate goes down, water becomes stagnant within the storage facility (cold 

water storage tank and calorifier) as well as within the pipework to the unoccupied 

flats (Feazel et al., 2009). This was confirmed in a study that was carried out in a newly 

constructed building by Srivastava and team in 2009. The occupancy rate was only 

71% of the original design, and thus led to the water stagnation and heat gain to the 

cold water system. Legionella serogroup-1 was cultured from the cold water sample 

(Srivastava et al., 2009).  

The number of water tanks, the number of calorifiers and excessive water storage 

also cause the same effect, as all these lead to water stagnation which eventually 

encourages Legionella proliferation (HSE, 2015). Ciesielski and colleagues carried out a 

study in four infected hot water storage tanks in a hospital, where two of the tanks 

were in regular use but other two were not in use. Legionella counts were significantly 
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reduced in the active tanks within a short period of time during usage whereas in the 

stagnant tanks, the bacterial count had increased significantly (Ciesielski et al., 1984).    

A tank’s internal condition is another important contributing factor. Sedimentation, 

scale, corrosion in case of the metal tank, presence of mould and biofilm are the main 

components affecting the internal condition of the water tanks. Each of these can act as 

the nutrient for Legionella and thus encourage the proliferation (Ohno et al., 2003). 

During a study in 2009, Declerck found the presence of biofilm can encourage the 

growth and spreading of Legionella bacteria (Declerck, 2010).  The number of deadlegs 

is another contributing factor, as water will be stagnant within the deadlegs enabling 

sites for Legionella proliferation (Springston and Yocavitch, 2017; Yu et al., 2006). 

Thermal insulation and water temperature is related each other. Thermal insulation to 

the hot/cold water tanks and pipework prevents the heat exchange with the 

surroundings. In the case of hot water storage (calorifier), operating temperature could 

be 600C. If the calorifier and pipework is fitted with proper thermal insulation, hot 

water can be delivered to the furthest outlet with almost the same temperature. If the 

thermal insulation is not appropriate, the water temperature can fall below 500C due to 

ambient heat loss during transportation through the pipework (Bagh et al., 2004).  

In the case of water tanks, the ambient temperature is a major factor to determine 

the stored water temperature. If the water storage tank is thermally isolated, it is very 

unlikely that the stored water temperature will exceed 200C unless the incoming mains 

water temperature is above 200C. In any case, if the water temperature falls in the 

range of 20-450C, the water system is considered to be ‘high risk’. In the same manner, 

the season can influence the stored cold water temperature. In summer, mains water 

temperature is always close to 200C and the ambient temperature reach up to 300C. In 

this case, if the thermal insulation is not appropriate, the stored water temperature 

could reach as the same as ambient temperature which is in favour of Legionella 

proliferation. Thus, season is a major contributing factor to the Legionella proliferation 

(Doelman, 2012). According to Rakic and colleagues, seasonal changes, especially the 

approach of summer, can accelerate the proliferation of Legionella bacteria within 

water systems (Rakic et al., 2011).  

Showers are one of the major sources of Legionella proliferation and also been 

identified as a route for spreading infectious diseases including Legionnaires’ disease     

(De Filippis et al., 2017; HSE, 2016). Mainly there are two types of showers; mixed 

showers and electric showers. Mixed showers work by mixing hot and cold water from 
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separate pipes to generate warm water where the temperature is somewhere in 

between. Cold water temperature is normally below 20ºC and hot water temperature is 

above 50ºC and the mixed water discharging through the showerhead normally fall in 

the range of 35-40ºC (Dimitriadi and Velonakis, 2014). This is an ideal temperature for 

Legionella proliferation. Moreover, scale from the hot water as well as the cold water 

can easily be deposited within the showerheads and can use as a nutrient for Legionella 

bacteria (GROWTH-PROMOTING, 1998). Another concern is the stagnant water within 

the showerheads as this water stagnation with favourable temperature can 

significantly encourage the proliferation of Legionella and can accelerate the 

multiplication if enough nutrients are present. Generally, showers generate plenty of 

aerosols as infectious microorganisms can spread into the surrounding atmosphere 

and get contacted with susceptible hosts.   In the case of infrequently used showers, this 

risk increases significantly as the users can directly inhale the concentrated infectious 

dose of this pathogen while using the shower after the break (Ditommaso et al., 2010).       

Electric showers pose a slightly lower risk in terms of Legionella compared to mixed 

showers; however, the showerhead of electric showers also can act as a breeding 

ground and harbour the Legionella bacteria in the same way as of a mixed shower. 

Moreover, in both mixed and electric showers, discharging water temperatures are in 

favour of Legionella and the rate of aerosol generation is also same (Euser et al., 2016; 

EPA, 2016).  

The number of positive Legionella detection in any particular building is a clear 

indication of the potential risk in terms of Legionnaires disease. Most often a Legionella 

outbreak is an after effect of water system non-compliance and possible hidden factors 

of non-compliance accelerate the frequency of Legionella positive results. Thus, the 

increased number of positive results becomes one of the clear indicators of the 

potential risk in terms of Legionnaires disease (HPS, 2014). 

 

 The less or non-contributing factors for Legionella proliferation was also 

identified using t-test and comparative studies.  These are age of the building, building 

usage, Legionella risk assessment, size of the building, total number of TMV’s in the 

building, and TVC analysis of water samples. Calculated p-value for these factors (Table 

5.2b) indicated that these parameters do not differ significantly with 95% confidence 

between infected and non-infected sites. However, a Legionella risk assessment 
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normally highlights the potential risk factors and helps to reduce the risk in terms of 

Legionella proliferation. In contrast, the risk reduction is not dependant on the 

presence of a Legionella risk assessment; rather implementation of the remedial 

actions recommended in the risk assessment is needed to mitigate the potential risks 

identified.     

5.5.2  Assessment of the effectiveness of temperature monitoring 

 

Sites with regular temperature monitoring were found to be safer than the sites 

without temperature monitoring. Historical data shows that only one of five sites, i.e. 

20% of the total sites had Legionella outbreak when regular temperature monitoring 

was in place. In contrast, 80% of the sites without regular thermal monitoring had 

Legionella positive results. Legionella can multiply only in the temperature range of 20-

450C. In the event any water system operating temperature fall in to this range, it can 

be rectified if there is a regular temperature monitoring regime in place, which will 

eliminate the possibility of Legionella proliferation due to the favourable temperature.  

A study on cold water was carried out in a newly commissioned hospital building by 

Srivastava and team in 2010. Cold water discharging temperature was above 200C and 

Legionella pneumophila serogroup -1 was detected during outlet sample culture. 

Increased cold water temperature contributed to this proliferation as the water system 

was newly commissioned and was free from all other possible contributing factors 

(Srivastava et al., 2011). Another study by Darelida et al., on hot water in a district 

general hospital shows that the temperature maintenance and monitoring can 

effectively control Legionella and reduce the possibility of positive Legionella detection 

(Darelida et al., 2002).    

  

5.5.3 Legionella risk predictive model 

 

On the basis of the significance of the contributing factors, PCA categorically 

separates the sites into ‘high risk’ buildings and ‘low risk’ buildings. Infected buildings 

are on the RHS of Y-axis and non-infected buildings are on the LHS of Y-axis. Out of 120 

buildings, 60 infected buildings fell on the RHS of the Y-axis and 60 non-infected 

buildings fell on the LHS of the Y-axis which indicates that the Legionella risk predictive 

model is 100% accurate. Among infected sites, most of the parameters were 
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satisfactory in some of the buildings, however, 2 or 3 contributing factors were not in 

compliance and PCA was able to identify those non-compliances while distinguishing 

the sites.   

For example, building number 11 has an 85% occupancy rate, 23% excess water 

storage and has had one Legionella outbreak in the past six years. There is no deadleg 

in this building and all other factors are satisfactory. However, PCA successfully 

identified this site as ‘high risk’ category. Similarly, building number 25 has a 100% 

occupancy rate, no excess water storage; but there was one deadleg and there were 

three Legionella positive results from the showerheads in the past six years. PCA was 

successful in identifying this building as a high risk building. However, exclusion of this 

variable (number of past positive results) did not affect the predictive power of the 

model; for some of the other sites where there was no historical data available but, on 

the basis of the other contributing factors, the model was successful in predicting the 

Legionella risk in those particular sites. Thus the PCA based Legionella risk predictive 

model gives more accuracy and confidence in categorising the risk in terms of 

Legionella bacteria.  

Even if the hot and cold water system is operating fully in compliance with the 

precautionary measures, showerheads need to be considered as a separate system. Hot 

and cold waters mix together prior to their discharge through the showerhead and this 

water temperature always will be in favour of Legionella proliferation. Moreover, 

calcium and magnesium precipitates (scale) from the hot water can easily accumulate 

within the showerheads and this can be the nutrient for Legionella bacteria once it has 

proliferated.    Proceedings of the National Academy of Sciences of the United State of 

America conducted a study in 45 showerhead sites across United States in 2009 and 

they concluded that the showerheads present significant potential exposure to 

Legionella pneumophila (Feazel et al., 2009).  Showerheads in any buildings need to be 

treated as a separate system and regular cleaning, de-scaling and flushing is highly 

necessary (Delia et al., 2007). On the basis of these findings and in comparison with 

infected and non-infected buildings, the accuracy of the assessment by PCA risk 

predictive model is 100%.  
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5.5.4   Validation of the risk predictive model with new client buildings 

 

Table 5.6 SWOT analysis of the new PCA Legionella risk predictive model 

Strength Weaknesses 

 

1. High risk buildings can be identified quickly. 

2. Once the data is collected, the risk status of 

buildings can be identified in a single analysis. 

3. 100% accuracy in risk determination. 

4. High risks buildings can be treated with more 

care and attention and thus reduce the 

possibility of Legionella positive results.  

5. Water sampling frequency can be reduced or 

avoided for low risk buildings to save money. 

6. Human errors present in current risk 

categorising can be eliminated and better 

consistency can be achieved in assessing the 

actual risk of any building.  

 

1. Detailed data collection is necessary for the use of 

this risk predictive model and not all data will be 

available for some buildings. 

2. Data need to be converted into numerical values 

and this should be uniform. Small error while 

converting the data into the numerical value can 

affect the results. 

3. The model is not a replacement for routine 

monitoring.  The presence or absence of 

Legionella cannot be confirmed until water 

sample analysis has been carried out using 

current diagnostic methods.  

 

Opportunities Threats 

 

1. Current Legionella control method, treating all 

the buildings in the same way can be altered by 

giving more attention to the high risk buildings. 

Thus, significant cost savings can be achieved.  

2. Very high possibility of the development of an 

accurate Risk Predictive Model and anybody 

involved in the Legionella control can use this 

tool without expert help.   

3. Significant financial savings can be achieved with 

reduced water sampling frequency and less 

number of water samples. 

4. Possibility of the development of dedicated 

software to enable building managers to carry 

out their own risk assessment more efficiently 

and accurately. 

5. Possibility of the approval and support from the 

regulating government authorities and private 

experts. 

6. Significant commercial benefit from the possible 

high potential marketing of proposed software in 

the Legionella control sector worldwide. 

7. Building managers can assess the possible 

impacts of remedial work to buildings on 

Legionella risk before commissioning work. 

 

 

1. Building managers responsible to control 

Legionella in their premises may not entertain the 

new method due to the legal implications in the 

event of possible failure.  

2. A minor error in categorising the risk buildings 

can lead to the Legionella outbreak and serious 

health impacts. 

3.  Regulating authorities may not support/approve 

the new method. 

4. Public attitude towards the new method could be 

negative due to the diversion from the traditional 

water sampling method (current industry 

practice is to carry out water sampling as the part 

of a routine monitoring program regardless of 

high risk or low risk building)   and the existing 

fear of Legionnaires’ disease.  
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While applying this Legionella Risk Predictive Model  with 66 new client buildings, 

32 sites (buildings numbers 1-32) fell in high risk category and the remaining 34 sites 

(buildings numbers 33-66) fell in low risk category. On comparing this result with the 

real historical data available from the site showed that the buildings 1-32 had 

Legionella positive results in the past. This shows that the tool is 100% accurate for 

contaminated sites; and in the same way, non-infected buildings 33-66 fell into the low 

risk category which further confirms that the tool is 100% accurate for non-

contaminated sites also. A ‘SWOT’ analysis has been carried out to assess the strength 

and weakness of the Risk Predictive Model (Table 5.6).   

 

5.6 Conclusions 

 

The PCA Legionella Risk Predictive Model shows accuracy and promise in 

categorising buildings into high and low risk. Risk category of any building in terms of 

Legionella proliferation can be identified in a single analysis and the buildings that fall 

into high risk category can be monitored with additional care. In addition, the human 

errors present in current risk assessment can be eliminated and better consistency in 

Legionella risk assessment can be achieved. However, detailed collection of the 

historical monitoring data can be practically difficult in some of the buildings (buildings 

with no/limited historical data) and human expertise may be required in such cases to 

collect the accurate data to use with the model. More validation from other parts of the 

world is needed to increase the confidence in the method and achieve a global 

perspective. There is a high possibility for this model to incorporate into a handheld 

device (e.g. a mobile app) which may be easy to use for practioners involved in the 

practical Legionella control in the real world.   
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CHAPTER SIX 

                                      GENERAL DISCUSSION 
 

6.1 General discussion 

 

Legionnaires’ disease continues to present a serious threat to public health.  This is 

especially true for the immunocompromised elderly population.  An increasing number 

of elderly people (many with immunocompromised) are choosing to live in large 

privately-owned individual residential complexes Importantly, these people have less 

protection against Legionnaires’ disease compared to people of similar age and health 

that reside in health care premises or care homes (Totaro et al., 2017; Whiley, 2016).  A 

survey that I undertook of 20 residential complexes from different boroughs in London 

has confirmed the presence of this vulnerable elderly population who, despite being as 

susceptible to Legionella as care home residents, are still offered less protection in 

terms of LD.  

Water-borne bacteria, found in cold water storage tanks, are causative agents 

for various human infections and diseases including Legionnaires’ disease. Regular 

microbiological monitoring of tank water is undertaken as part of the risk management 

strategy to control pathogenic bacteria including Legionella. I have investigated the 

appropriateness of water sampling strategies currently used to protect the public from 

exposure to pathogenic bacteria. Domestic water samples taken from different 

locations within 15 tanks in London properties between December 2015 and July 2016 

were analysed for TVCs, Pseudomonas and Legionella at an accredited laboratory. 

Despite seasonal differences in water temperature, I found 100% compliance at the ball 

valve end.  40% of the tanks exceeded the regulatory threshold for temperature at the 

far end of the tank in the summer months.  Consequently, 20% of the tanks surveyed 

showed significant difference based on microbiological analyses of the water sample 

taken under the ball valve (n=15 tanks) compared to the far end samples. Typical water 

samples collected for routine monitoring will underestimate the microbiological status 

of the water entering the building. Many studies on cold water distribution system have 

reported that the water distribution system promote colonisation of domestic water 

with a number of microbial species causing serious risk to public health (McClung et al., 

2017; Kulinkina  et al., 2016; Kilvington et al., 2004). In order to address this serious 

concern, I propose that water storage tanks should be redesigned to allow access to the 
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far end of tanks for monitoring purposes, and that water samples used for compliance 

should be taken at the point at which water is abstracted for use in the building. 

Implementation of this proposed method will significantly improve the water hygiene 

and reduce the risk of pathogenic bacterial infections from domestic water systems.  

Evidence suggests that current detection methods for Legionella, by culture and 

quantitative polymerase chain reaction (qPCR) show large disparities in the detection 

and quantification of bacteria in water samples, raising concerns about the reliability of 

measures needed to safeguard public health. Many studies have reported that all the 

diagnostic methods currently in use for Legionella detection are weak and cannot be 

completely reliable (Polo-López et al., 2017; Peci et al., 2016; Whiley, 2016; Ditommaso 

et al., 2014).  However, some studies have suggested that the use of qPCR with 

improvements is the best way of monitoring Legionella to protect the public health (Lee 

et al., 2011). Under this circumstances, development of qPCR based diagnostic method 

for the live detection of Legionella bacteria in water samples will be a milestone in 

Legionella control and water hygiene management industry. Despite the requirement of 

further research for result interpretation and establishing a relationship with standard 

culture analysis (cfu/L), this research was highly successful in live detection and 

quantification of Legionella bacteria using qPCR techniques. Refinement of this 

developed method can provide accurate, reliable and rapid quantification of viable 

bacteria present in any given environmental water samples. Recent studies on the lack 

of correlation between Legionella diagnostic methods highlights the necessity of an 

acceptable standardised rapid method for quantification of Legionella bacteria and that 

will be sufficient for risk assessment and management of this life threating human 

pathogen (Whiley and Taylor, 2016). 

According to the current Legionella risk assessment strategy, qualified and trained 

individuals carry out the risk assessments using the specific guidelines BS 8580:2010.  

On the basis of identified risk factors during the risk assessment survey, individuals 

making the decision of risk category of the buildings on their practical experience and 

establishing a monitoring programme for ongoing maintenance of the water system 

surveyed (HSE, 2013). There are lots of disparities in this decision making as one 

individual risk accessor can put a high risk building in low risk category on the basis of 

his own experience; but at the same time another risk accessor may put the same 

building in high risk category followed by his own assessment. In my personal 

experience as a Legionella control manager; this is quite normal in the current practice 



 

243 
 

of Legionella risk assessment (personal observation of Aji Peter).   However, occurrence 

of human errors whilst making the decision is normal but, categorising a low risk 

building into a high risk category would result in a significant intensification of 

monitoring and water sampling frequencies thereby adding additional financial 

burdens to building management companies in terms of Legionella control. On the 

other hand, placing a high risk building into the low risk category would put water 

facility users in hidden threat of Legionnaires disease from their domestic water 

systems.  

The tool developed in this research ‘evidence based risk predictive model’ showed 

100% accuracy in predicting the Legionella risk in any building and its validation with 

‘London buildings’ and ‘out of London buildings’ confirms that it is powerful in any 

region with different water quality parameters. Therefore, this model can be used as an 

easy tool and a standard platform for the risk assessment in any domestic water 

system. Moreover, this model would be of great advantage in eliminating possible 

human errors when making a decision to categorise the buildings in terms of Legionella 

risk. The possibility of integrating the predictive model into a handheld device (or as an 

App) would increase its commercial potential as well as providing another ‘tool’ in the 

armoury for the Legionella control management sector worldwide.   

However, there are certain limitations for this model as detailed Legionella risk 

monitoring data is required for the effective prediction by this model, and this may be 

practically difficult on occasions due to the lack of necessary monitoring data in some 

buildings. In such cases, expert Legionella control practitioners help may be required 

for the collection of accurate data of any particular building.     
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CHAPTER SEVEN  

CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORKS 

 

7.1 Conclusions 
 

Legionnaires’ disease caused by Legionella bacteria remain a serious threat to 

human health.  Discrepancies in quantification of Legionella, non-reliability of 

microbiological analysis of water samples collected from cold water storage tanks 

under present water sampling strategy, shortfalls when undertaking a Legionella risk 

assessment, potential long term issues such as climate change and global warming etc. 

point to the need for more accurate, reliable and rapid standard diagnostic methods to 

quantify viable Legionella in domestic water systems. Review of the regulatory 

guidelines of representative sample collection in view of achieving the microbiological 

status of the entire cold water tank in order to inform risk management strategies is 

very important to control Legionella and maintain water hygiene standards in domestic 

water systems. Last of all, development of a standard reliable Legionella risk 

assessment tool is vital for Legionella control and management in order to categorise 

the buildings on the basis of the actual risk factors present in each individual buildings. 

These three major shortfalls in Legionella control and management have been 

addressed in my research through development of a reliable and rapid method to 

detect live Legionella in water samples, the shortcomings of present-day sampling 

regimens in tackling the microbiological threat of pathogenic bacteria (including 

Legionella) in cold water storage tank was unveiled, and ‘an evidence based risk 

predictive model’ that can predict the Legionella risk in any domestic water system has 

been developed.   

 

7.2 Recommendations      
 

a. Live detection of Legionella bacteria using PCR technique is possible, although 

accurate quantification of viable bacteria still presents some challenges. 

However, this assay confirms that RNA extraction from live Legionella present in 

lenticules using the Qiagen RNA extraction kit, cDNA synthesise and amplification 

of cDNA using the 23S primers was successful.  
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b. Typical water samples collected for routine monitoring will underestimate the 

microbiological status of the water entering the building. Therefore,   the water 

storage tanks should be redesigned to allow access to the far end of tanks for 

monitoring purposes, and that water samples used for compliance should be 

taken at the point at which water is abstracted for use in the building.  Such 

measures will be increasingly important in protecting the vulnerable ageing 

population, especially given the tendency of the elderly to congregate in large 

residential blocks that fall outside the stringent regulations of hospitals and care 

homes. 

 

c. The PCA Legionella Risk Predictive Model shows accuracy and promise. More   

validation from other parts of the world is needed to increase the confidence in 

the method and achieve a global perspective. There is very high possibility for the 

development of dedicated software/mobile app to carry out the Legionella risk 

assessment more efficiently and accurately. Significant commercial benefit can be 

achieved from the possible high potential marketing of proposed software in the 

global Legionella control sectors.  

 

 

7.3 Future work 

 

 Investigate the sensitivity of the method from 100 cfu/L and below (real world 

applicability). 

 Establish the relationship between cfu/L and CT value more accurately.   

 Lenticule standards with accurate levels of bacteria should be developed to 

support development of a rapid qPCR kit.  These could serve as positive control 

whilst providing quantitative information (cfu/L)  

 Investigate to identify the possible interfering substances (inhibiting 

substances) and develop methods to get rid of the possible inhibitors.  

 Carry out further validation of the method after the above mentioned 

refinement. Carry out the test use of this novel approach to detect live 

Legionella in real-world samples (environmental water samples) and compare 

it with Gold Standard (culture)  
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 More validation of PCA based ‘Legionella Risk Predictive Model’ with water 

system having different water quality parameters from other parts of the 

world need to be carried out to ensure the predictive power of the model. 

  Development of dedicated software/mobile app as tool to carry out the 

Legionella risk assessment. 
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Appendix-1

Approx 

Year Built

Size Usage Approximate 

Annual 

Occupancy rate ( 

%)

No of 

CWST

No of 

Calorifiers

Building Name RA Remedial 

Works

Monitoring Programme

1 1937 6 storeys Residential Development 51 8 5 40 – 41 Chester Square Yes N/A Temperature monitoring & Sampling

2 1930 5 storeys Residential Development 71 7 3 Frognal Estate, London, NW3 5HG No Yes Temperature monitoring & Sampling

3 1930's 6 Storeys
Mixed use, Residential and Commercial 75 6 3 28-56 Parkside, London, SW1X 7JP

Yes N/A
Temperature monitoring & Sampling

4 1945 4 storeys Residential Development 55 4 4 2-12B Gladstone Court, Anson Road, NW2 4LA No No Temperature monitoring & Sampling

5 1900's 4 storeys Residential Development 78 12 0 Denham Court, 114 Kirkdale, London, SE26 4BE No Yes Temperature monitoring & Sampling

6 1900
7 storeys Residential Development 72 8 1 14 Cadogan Gardens

Yes Yes
Temperature monitoring & Sampling

7 1940's 8 Storeys Large Residential Development 75 6 3 Arthur Court Yes N/A Temperature monitoring & Sampling

8 1940
2 storeys Residential Development 79 8 3

Waverley Court, 34-37 Beaumont Street, London, 

W1G 6DH No Yes
Temperature monitoring & Sampling

9 2000's 4 storeys Mixed use, Residential and Commercial 55 9 4 Cross & Pillory House No Yes Temperature monitoring & Sampling

10 2000's 2 storeys Residential Development 54 4 2 Hampton Court, Hampden Road, London, N10 2HN Yes Yes Temperature monitoring & Sampling

11 2003
22 storeys Residential Development 85

11 2 Electron Tower, Blackwall Way,Leamouth, E14 9GW No No
Temperature monitoring & Sampling

12 2000's
5 storeys Care Home 87

16 2

Ealing Eventide Homes Ltd, Downhurst, 76 Castlebar 

Road, Ealing, W5 2DD Yes Yes
Temperature monitoring & Sampling

13 1800's 4 storeys Care Home 72 14 2 Wolsley House 08/08/2012 Yes Temperature monitoring & Sampling

14 1940's 8/9 Storeys Residential Development 75 12 2 One Princes Gate Yes Yes Temperature monitoring & Sampling

15 1800's 2 storeys Residential Development 79 10 3 The Lock House No Yes Temperature monitoring & Sampling

16 1937
8 Storeys

largest privately owned block of flats 

under one roof in Europe
72 4 2 Du Cane Court

Yes Yes
Temperature monitoring & Sampling

17 1945 7/8 storeys Residential Development 61 7 2 Regent Park House, Park Road, London, NW8 7JP Yes no Temperature monitoring & Sampling

18 1900's
4 storeys

Mixed use, Residential and Commercial 63 6 3

118A Cholmley Gardens, Fortune Green Road, NW6 

1AA No Yes
Temperature monitoring & Sampling

19 1940's 5 storeys Residential Development 15 3 4 Ashworth Mansions, Elgin Avenue, W9 1JP No Yes Temperature monitoring & Sampling

20 1930's 7 storeys Residential Development 62 3 4 Cumberland Mansions, London SW5 No Yes Temperature monitoring & Sampling

21 1800's
8 storeys Large Residential Development 75 30 0

Bryanston Court II, 137 George Street, London, W1H 

7HD No N/A
Temperature monitoring & Sampling

221920-1930’s5 storeys Care Home 79 6 4 42 Newstead Road 07/08/2012 Yes Temperature monitoring & Sampling

23 1800's 7 storeys Residential Development 77 5 2 Cheyne Place Yes Yes Temperature monitoring & Sampling

24 1940's 8 storeys Mixed use, Residential and Commercial 55 2 2 86-89 Piccadilly No N/A Temperature monitoring & Sampling

25 2000's
5 storeys Residential Development 100

3 3

The Chambers,3 Constable Close,Friern Barnet, 

London,N11 3GW No No
Temperature monitoring & Sampling

26 1940 5 storeys Residential Development 55 5 3 Greenwich Heights Yes Yes Temperature monitoring & Sampling

27 1930 3 Storeys Residential Development 36 5 3 Bernersmede No Yes Temperature monitoring & Sampling

28 1930 5 storeys Care Home 15 4 2 146-148 New Cross Road 10/10/2011 Yes Temperature monitoring & Sampling

29 1800's
2/3 Storeys Care Home 20 3 5

Tilehurst Lodge, 142 Tilehurst Road, Reading, 

Berkshire, RG30 2LX  No Yes
Temperature monitoring & Sampling

30 1930's
2 storeys Care Home 72 9 1 58 Halls Road, Tilehurst, Reading, Berkshire RG30 4EX

No Yes
Temperature monitoring & Sampling

31 1940's
Single storey School 82 13 2

Aldwickbury Preparatory School, wheathampstead 

Road Harpenden AL5 1AD No Yes
Temperature monitoring & Sampling
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32 1800's
7 storeys Residential Development 78 14 2

Hillside Court, 409 Finchley Road, London, NW3 6HQ 16.02.2011
no Temperature monitoring & Sampling

33 1800's
3 storeys Residential Development 75 21 1

69-76 Church Crescent, Muswell Hill, London, N10 

3NE No Yes
Temperature monitoring & Sampling

34 1900's
2 storeys Care Home 78 16

0

Whitefriars Nursing & Dementia Home, 9 Dormers 

Wells Lane, Southall, UB1 3HU 26.04.10 Yes
Temperature monitoring & Sampling

35 1900 5 storeys offices 79 11 3 One Vincent Square, London, SW1P 2PN 24.04.12 Yes Temperature monitoring & Sampling

36 2000's 3 Storeys Residential Development 62 4 4 Bouton Place, Waterloo Terrace, N1 1TR No Yes Temperature monitoring & Sampling

37 1994 6 Storeys Residential Development 65 12 5 Meath Crescent, London, E2 0QA 19.11.2010 Yes Temperature monitoring & Sampling

38 1940 4 storeys Residential Development 10 6 2 Sheridan House, Wincott street ,London, SE11 4NY Yes Yes Temperature monitoring & Sampling

39 1920 7 storeys Mixed use, Residential and Commercial 56 7 2 My Base,130 Webber Street,  SE1 0QL,london No Yes Temperature monitoring & Sampling

40 1910 3 storeys Commerical 20 10 1 Kent County  Council Library and History Centre No Yes Temperature monitoring & Sampling

41 1937
7/8 storeys Residential Development 75

5 0

Coin Street Neighbourhood Centre, 108 Stamford 

Street, South Bank, London SE1 9NH 29.11.11 Yes
Temperature monitoring & Sampling

42 1900's
5 storeys Residential Development 79

4 2

West Gate House, 661 London Road, Isleworth, 

Middlesex, TW7 4AS No Yes
Temperature monitoring & Sampling

43 1937
4 storeys Residential Development 55

5 3 Avanti Court,Bittons, Kingston upon Thames, KT1 2AN Yes Yes
Temperature monitoring & Sampling

44 1800's
3 Storeys Residential Development 70

24 6

51-55 Marlborough Hill, St.Johns Wood, London, NW8 

0NG Yes Yes
Temperature monitoring & Sampling

45 1940's
4 storeys Residential Development 56

7 4

Ranelagh Mansions, 319 New Kings Road, London, 

SW6 9TJ Yes Yes
Temperature monitoring & Sampling

46 1945
7 storeys Residential Development 61

6 3

West Bourne Corner, 2 Chepstow Road, London, W2 

5AH Yes Yes
Temperature monitoring & Sampling

47 1800's 3 storeys
Residential Development 75

13 3

Christchurch House, Christchurch Rd, Lambeth, 

London, SW2 3UA No Yes
Temperature monitoring & Sampling

48 1994
4 storeys Residential Development 79

8 4 Emmaus UK, Hill End Lane, St Albans, Herts, AL4 0FE No Yes
Temperature monitoring & Sampling

49 1940 6 Storeys Residential Development 70 30 0 Cathcart House No No Temperature monitoring & Sampling

50 1920 4 storeys Residential Development 20 6 4 Shepherd House Yes Yes Temperature monitoring & Sampling

51 1930 6 storeys Residential Development 71 3 2 21/22 Queensgate Gardens Yes Yes Temperature monitoring & Sampling

52 1900's 2 storeys Residential Development 75 7 2 41/43 Cadogan Square Yes Yes Temperature monitoring & Sampling

53 1800's 4 storeys Residential Development 78 8 2 26/27 Egerton Crescent No Yes Temperature monitoring & Sampling

54 1930's 6 Storeys Residential Development 85 4 2 Ashburn House No Yes Temperature monitoring & Sampling

55 1945 3 Storeys Residential Development 70 4 2 63-72 Harvard Court Yes Yes Temperature monitoring & Sampling

56 1800's 4 storeys Residential Development 72 6 2 73-82 Harvard Court Yes Yes Temperature monitoring & Sampling

57 2000's 7 storeys Industial Development (Factory) 75 10 2 Henkel Ltd No Yes Temperature monitoring & Sampling

58 1994 7-9 storeys Residential Development 55 3 2 Oyster Wharf Yes Yes Temperature monitoring & Sampling

59 1920 2 storeys Residential Development 60 7 2 21/23 Cadogen Gardens, London, SW3 2EW No Yes Temperature monitoring & Sampling

60 1900 5 storeys Residential Development 72 5 3 Hylton House,34 The Ridgway, Sutton, SM2 5JU No Yes Temperature monitoring & Sampling

61 1930 4 storeys Commercial 92 2 2 J&P, 16 Hanover Street, London, W1S 1YL Yes Yes Temperature monitoring & Sampling

62 1900's
3 Storeys Residential Development 98

3 1 Gladbeck Heights, 5 Gladback Way,Enfield, EN2 7FG Yes Yes
Temperature monitoring & Sampling

63 1937 4 storeys Residential Development 100 2 0 City Gate home Yes Yes Temperature monitoring & Sampling

P /2 Aji Peter, Brunel ID: 1239752



Appendix-1

Approx 

Year Built

Size Usage Approximate 

Annual 

Occupancy rate ( 

%)

No of 

CWST

No of 

Calorifiers

Building Name RA Remedial 

Works

Monitoring Programme

64 1800's 7 storeys Residential Development 91 4 0 Cline Road, Bounds Green, N11 2ND No Yes Temperature monitoring & Sampling

65 1930's 3 storeys Residential Development 95 1 0 Chase Court No Yes Temperature monitoring & Sampling

66 1945 4 storeys Residential Development 100 2 0 Heath Rise, Kersfield Road, London, SW15 3HF Yes Yes Temperature monitoring & Sampling

671920-1930’s2/3 Storeys Hospital 91 3 0 Marie Stopes, Brixton Hill No N/A Temperature monitoring & Sampling

68 1800's
7 storeys Residential Development 95

2 1

Woodlands Gate, Woodlands Way, Putney, London, 

SW15 2SY 10.11.11. Yes
Temperature monitoring & Sampling

69 1800's
7 storeys Residential Development 98

3 2

New Hurlingham Court, Ranelagh Gardens, London 

SW3 3UR No Yes
Temperature monitoring & Sampling

70 1900's 7 storeys Residential Development 97 2 2 Arundel Mansions, Kelverdon Road, SW6 5BS No Yes Temperature monitoring & Sampling

71 1900 7 storeys Residential Development 100 2 2 Cameret Court No Yes Temperature monitoring & Sampling

72 1900's

7 storeys Residential Development 90

3 0

kenilworth Court,34A Kenilworth court

Lower Richmond Road

London SW15 1EN Working on it Yes

Temperature monitoring & Sampling

73 1994 3 Storeys Residential Development 95 2 2 Hamilton House No Yes Temperature monitoring & Sampling

74 1940 2 storeys Residential Development 93 1 1 Rider House, 121 High Road, Loughton, IG10 4LT 01.03.13 Yes Temperature monitoring & Sampling

75 1920 8 Storeys Hospital 98 2 1 MS-Central London 30.11.11 Yes Temperature monitoring & Sampling

76 1900 3 Storeys Residential Development 95 3 1 1 Conway Street. Fitzroy Square. London. W1T 6LP. No Yes Temperature monitoring & Sampling

77 1930 4 storeys Hospital 97 2 0 MS-Reading 18.04.12 Yes Temperature monitoring & Sampling

78 1900's
7 storeys Residential Development 95 3

1

B R Maunder Taylor LVT Appointed Manager 

(Courtenay House) No Yes
Temperature monitoring & Sampling

79 1937
7-9 storeys Residential Development 85

3 2 Tenby Mansions, 12-22 Nottingham Street, London. No Yes
Temperature monitoring & Sampling

80 1930's 2 storeys Residential Development 80 2 2 Flat M, 49 Willington Street, London, WC2E 7BN Yes Yes Temperature monitoring & Sampling

81 1940's 5 storeys Residential Development 95 2 1 Buckingham Lodge Yes Yes Temperature monitoring & Sampling

82 1945
4 storeys Residential Development 92

8 1

Chessington Lodge, Regents Park Road, London, N3 

3AA Yes Yes
Temperature monitoring & Sampling

83 1800's
7 storeys Residential Development 100

3 1

Church Garth, St Johns Grove, Islington, London, N19 

5RN No Yes
Temperature monitoring & Sampling

84 1937 7 storeys Residential Development 91 3 1 Highgate Edge No Yes Temperature monitoring & Sampling

85 1800's 7 storeys Residential Development 98 2 0 Noblefield Heights No Yes Temperature monitoring & Sampling

86 1930's 7 storeys Residential Development 100 2 2 The Pantiles Yes No Temperature monitoring & Sampling

87 1945
6 storeys Residential Development 93

2
1

Western Beach Apartments, 36 Hanover Avenue, E16 

1DZ. No Yes
Temperature monitoring & Sampling

88 1800's 6 storeys Residential Development 95 2 1 Palace Court, 250 Finchley Road,NN3 6DN No Yes Temperature monitoring & Sampling

89 1800's 6 storeys Commercial 100 2 1 Redhill Chambers No Yes Temperature monitoring & Sampling
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90 1900's
6 storeys Residential Development 88

8
0

Northways Flats, CollegeCrescent ,London,NW3 5DR No Yes
Temperature monitoring & Sampling

91 1900
6 storeys Residential Development 95

2
1

Collingwood Court, Queens Road, London, NW4 2HE No Yes
Temperature monitoring & Sampling

92 1900's 11 Storeys Residential Development 98 4 0 Highstone Mansions Yes Yes Temperature monitoring & Sampling

93 1994 5 storeys Residential Development 100 1 2 14 Hyde Park Gardens, London W2 2LU Yes Yes Temperature monitoring & Sampling

94 1940 4 storeys Residential Development 95 2 2 79-85 Hackney Road, London, E2 8EU Yes Yes Temperature monitoring & Sampling

95 1937 7 storeys Residential Development 96 3 0 87-91,Hackney Road, London, E2 8ET Yes Yes Temperature monitoring & Sampling

96 1800's 5 storeys Residential Development 91 2 1 14-16 Long Street, London, E2 8HQ No No Temperature monitoring & Sampling

97 1930's Single storey Industial Development (Factory)
100

3 2

Platt Industrial Estate, 1-10 Mill Place, Platt, 

Sevenoaks, Kent, TN15 8TB No No
Temperature monitoring & Sampling

98 1940's 7 storeys Commercial 94 2 2 109 Uxbridge Road Yes Yes Temperature monitoring & Sampling

99 1945 7 storeys Residential Development 100 2 2 The Eadmund-68- 70 Brighton Road No No Temperature monitoring & Sampling

100 2003 22 storeys Residential Development 91 6 0 Proton Tower, Blackwall Way,Leamouth, E14 9GW No No Temperature monitoring & Sampling

101 2003
22 storeys Residential Development 90

2 2 Neotron Tower, Blackwall Way,Leamouth, E14 9GW Yes Yes
Temperature monitoring & Sampling

102 2003 22 storeys Residential Development 95 1 1 Switch House,Blackwall Way,Leamouth, E14 9GW Yes Yes Temperature monitoring & Sampling

103 1900's
2 storeys Residential Development 93

2 0

Fallow Gate, 451 High Road, Finchley,London, N12 

0AF Yes Yes
Temperature monitoring & Sampling

104 1994
7 storeys Residential Development 97

3 2

Regency Apartments, Montaigne Close, Regency 

Street, London, SW1P 4BB No No
Temperature monitoring & Sampling

105 1940
9 storeys Residential Development 98

2 2

Regency Apartments, Montaigne Close, Regency 

Street, London, SW1P 4BB No No
Temperature monitoring & Sampling

106 1920 6 storeys Residential Development 81 3 1 Heron Court Yes Yes Temperature monitoring & Sampling

107 1900 6 storeys Residential Development 85 3 2 Dorset Court, 18-21 Dorset Street Yes Yes Temperature monitoring & Sampling

108 1930 6 storeys Residential Development 98 2 2 Rosemary Lodge Care Home Yes Yes Temperature monitoring & Sampling

109 1900's
6 storeys Residential Development 92

2 1 Trinity Court, 254 Gray's Inn Road, London, WC1X 8JX Yes Yes
Temperature monitoring & Sampling

110 1937 6 storeys Residential Development 92 8 1 Priors Lodge Yes Yes Temperature monitoring & Sampling

111 1800's 6 storeys Residential Development 97 3 1 The Reach Yes Yes Temperature monitoring & Sampling

112 1930's
8 storeys Residential Development 98

3 1 1-18 Beechwood Hall, regents Park, London, N3 3AT Yes Yes
Temperature monitoring & Sampling

113 1945 5 storeys Residential Development 100 2 0 Stone House Yes Yes Temperature monitoring & Sampling

114 1800's 4 storeys Residential Development 91 2 0 92 Wilton Road No Yes Temperature monitoring & Sampling

115 1937 7 storeys Residential Development 90 2 1 Ashford Court No Yes Temperature monitoring & Sampling

116 1800's
7 storeys Residential Development 93 2 1

Hillbrow(Parkgate Aspen), Richmond Hill, Richmond, 

Surrey, TW10 6BH No Yes
Temperature monitoring & Sampling

117 1940's 7 storeys Residential Development 95 2 1 Sherwood Court, Seymour Place, W1H 5TH Yes Yes Temperature monitoring & Sampling

118 1945 8 storeys Residential Development 100 3 2 Crescent Court No Yes Temperature monitoring & Sampling

119 1800's
6 storeys Residential Development 98 2 0

Brunswick Mansions, 8 Handel Street, London, WC1N 

1PE No Yes
Temperature monitoring & Sampling

120 1800's 6 storeys Residential Development 100 2 0 Highpoint Yes Yes Temperature monitoring & Sampling

121 1900's 4 storeys Residential Development 100 2 1 4 Belgrave Square, London, SW1X 8PH No Yes Temperature monitoring & Sampling

122 1900 3 Storeys Residential Development 95 3 3 The Horizon, 2 Navigation Street, Leicester, LE1 3UJ No Yes Temperature monitoring & Sampling
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123 1900's

4 storeys Residential Development 95 2 2 Claydon House,Holders Hill Road, London,NW4 1LS

No Yes

Temperature monitoring & Sampling

124 2000's
7 storeys Residential Development 100 3 1

Molasses House, Clove Hitch Quay, 

Wandsworth,London, SW11 3TN No Yes
Temperature monitoring & Sampling

125 1994 3 storeys Residential Development 100 18 2 Conal Court No Yes Temperature monitoring & Sampling

126 1920 4 storeys Residential Development 100 5 1 Minerva Lodge No No Temperature monitoring & Sampling

127 1900 7 storeys Residential Development 100 17 2 Babington Court No No Temperature monitoring & Sampling

128 1930 2/3 Storeys Residential Development 90 6 2 Eaton House No No Temperature monitoring & Sampling

129 1900's 7 storeys Residential Development 90 4 1 Chestnuts No No Temperature monitoring & Sampling

130 1937 7 storeys Commercial 100 2 3 RMG House-EN11 0DR No No Temperature monitoring & Sampling

131 1800's 7 storeys Residential Development 100 3 3 31 Plympton Street, London, NW8 8AB No No Temperature monitoring & Sampling

132 1930's
3 storeys Residential Development 97 2 2

Sandhurst Court (Flats 1 - 57), Acre Lane, London, 

SW2 5TX No No
Temperature monitoring & Sampling

133 1940's 2 storeys Residential Development 95 3 3 Hampton 55 (Teddington) MCL No No Temperature monitoring & Sampling

134 1945
5 storeys Residential Development 100 2 2

St. Mary Abbots Court, Warwick Gardens, London, 

W14 8RA No No 
Temperature monitoring & Sampling

135 2000's
7 storeys Residential Development 100

2
3

Antilles Bay Apartments, 3 Lawn House Close, 

Docklands, London E14 No No
Temperature monitoring & Sampling

136 1994 3 storeys Residential Development 100 2 2 9-11 Broadwick Street Yes No Temperature monitoring & Sampling

137 1940
2 storeys Residential Development 95 6 3

Bear Pit Apartments, New Globe Walk, London, SE1 

9DR No Yes
Temperature monitoring & Sampling

138 1920 5 storeys Residential Development 95 2 2 West End Court, Priory Road, London, NW6 3NU No No Temperature monitoring & Sampling

139 1900
4 storeys Residential Development 100

2
3

85 Robins Court, Kings Avenue, Clapham, SW4 8EE. Yes No
Temperature monitoring & Sampling

140 1900's 6 Storeys
Residential Development 100

8
3

Cedar Lodge-Jubilee Heights.Exeter Road, Kilburn, 

London, NW2 3UL No No
Temperature monitoring & Sampling

141 1937 4 storeys Residential Development 100 3 2 Cocharane Close Yes No Temperature monitoring & Sampling

142 1800's 7 storeys Residential Development 100 3 1 Moorcroft No Yes Temperature monitoring & Sampling

143 1930's 3 storeys Residential Development 98 2 1 27 lexham gardens, london, W8 5JJ No No Temperature monitoring & Sampling

144 1940's 5 storeys Residential Development 100 2 1 104 Fitzjohns Avenue, London, NW3 6NT No No Temperature monitoring & Sampling

145 1800's 7/8 storeys Residential Development 100 2 1 Water Dale Manor House No No Temperature monitoring & Sampling

146 2000's 2 storeys Care Home 100 2 1 1 Friendly Street 19/09/2011 Yes Temperature monitoring & Sampling

147 1994 Single storey Care Home 95 6 1 10 Friendly Street 19/09/2011 Yes Temperature monitoring & Sampling

148 1940 Single storey Care Home 100 1 1 10 Hindmands Road 19/09/2011 Yes Temperature monitoring & Sampling

149 1920 3 storeys Care Home 100 2 1 114-118 Friern Road 30/07/2012 Yes Temperature monitoring & Sampling

150 1900 2 storeys Care Home 100 2 1 130-136 Sydenham Road 07/08/2011 Yes Temperature monitoring & Sampling

151 1900's 3 storeys Care Home 100 6 1 155-157 Asaph Road 19/09/2011 Yes Temperature monitoring & Sampling

152 1937 2 storeys Care Home 100 1 1 2-3 Townley Road 30/07/2012 Yes Temperature monitoring & Sampling

153 1800's 5 storeys Care Home 95 2 1 26 Liverpool Grove 19/09/2011 Yes Temperature monitoring & Sampling

154 1940's 2 storeys Care Home 100 8 1 27 Siddons Road 11/07/2012 Yes Temperature monitoring & Sampling

155 1945 5 storeys Care Home 100 3 1 272 Stanstead Road 11/07/2012 Yes Temperature monitoring & Sampling

156 1800's 2 storeys Care Home 100 3 1 38 Queens Road 31/07/2012 Yes Temperature monitoring & Sampling

157 1800's 3 storeys Care Home 100 2 1 47 Montem Road 19/09/2012 Yes Temperature monitoring & Sampling
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Approx 

Year Built

Size Usage Approximate 

Annual 

Occupancy rate ( 

%)

No of 

CWST

No of 

Calorifiers

Building Name RA Remedial 

Works

Monitoring Programme

158 1800's 2 storeys Care Home 100 3 1 54 Vancouver Road 11/07/2012 No Temperature monitoring & Sampling

159 1900's 5 storeys Care Home 98 2 1 63 Finland Street 29/09/2011 Yes Temperature monitoring & Sampling

160 1900 3 storeys Care Home 100 2 1 67 Medora Road 09/10/2011 Yes Temperature monitoring & Sampling

161 1900's 4 storeys Care Home 95 6 1 7 Ratcliff Close 19/09/2011 Yes Temperature monitoring & Sampling

162 2000's 6 Storeys Care Home 100 1 1 71-73 Dunton Road 22/04/2010 Yes Temperature monitoring & Sampling

163 1994 8 Storeys Care Home 100 2 1 75 Woodcote Road 08/08/2012 No Temperature monitoring & Sampling

164 1940 3 Storeys Care Home 100 1 1 87 Friern Road 30/07/2012 Yes Temperature monitoring & Sampling

165 1920 4 storeys Care Home 95 2 1 Aspinden Woods 07/08/2012 Yes Temperature monitoring & Sampling

166 1900 7 storeys Care Home 95 4 1 Joe Richards House 19/09/2011 Yes Temperature monitoring & Sampling

167 1930 7-9 storeys Care Home 95 2 1 Mary Secole Court 12/04/2013 Yes Temperature monitoring & Sampling

168 1900's 2 storeys Care Home 95 2 1 Park Court 20/05/2013 Yes Temperature monitoring & Sampling

169 1937 2 storeys Care Home 100 2 1 Parkspring 14/05/2013 Yes Temperature monitoring & Sampling

170 1800's 5 storeys Care Home 95 2 1 Patrick Court 12/04/2013 Yes Temperature monitoring & Sampling

171 1930's 4 storeys Care Home 100 2 1 Priory Court 13/05/2013 Yes Temperature monitoring & Sampling

172 1940's 3 Storeys Care Home 100 2 1 Reader House 13/05/2013 Yes Temperature monitoring & Sampling

173 1945 4 storeys Care Home 95 2 1 Rosia & Dryad House 14/05/2013 Yes Temperature monitoring & Sampling

174 1937 6 Storeys Commercial 100 2 2 60 Gresham Street, London, EC2V 7BB No Yes Temperature monitoring & Sampling

175 1800's 8 Storeys Commercial 95 4 2 11 Berkeley Street, London, W1J 8DS 25/04/2013 Yes Temperature monitoring & Sampling

176 1930's 3 Storeys Commercial 100 2 2 17c Curzon Street, London, W1J 5HU 25/04/2013 Yes Temperature monitoring & Sampling

177 1940's 4 storeys Commercial 70 2 2 40 Gracechurch Street, London, EC3V 0BT 26/02/2013 Yes Temperature monitoring & Sampling

178 1945 7 storeys Residential Development 100 2 1 15 Cromwell Road, London No Yes Temperature monitoring & Sampling

179 1800's 7-9 storeys Residential Development 100 2 2 63-65 Hamilton Terrace, London Yes Yes Temperature monitoring & Sampling

180 1940's 2 storeys Residential Development 100 2 3 Hampton 50 (Teddington) MCL No No Temperature monitoring & Sampling

Colour code

Commercial

Residential Development

Care Home

 Mixed use, Residential and Commercial

School

Hospital
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Appendix-1

Temperature 

Monitoring 

Frequency

No. of 

Samples

No. of  

communal 

showers

Sampling 

Frequency

Tank(s) internal conditon  at the time of out 

break

Thermal insulation of the tanks 

and pipeworks 

Total Tank(s)  actual 

approximate 

Storage capacity in 

litres

Maximum requirement of 

stored water @ 150 litres 

per person for 24 hours 

consumption (Residential)

Maximum requirement of 

stored water @ 50 litres 

per person for 24 hours 

consumption 

(Commercial)

No. of 

deadlegs  in 

the system

Monthly 4 2 Twice Annually Corrosion and sedimentation Uninsulated tank 23 11,340 1

Monthly 15 1 Twice Annually Stagnant water with bio film Pipework not insulated 28 36,000 4

Half yearly 8
1

Twice Annually Sedimentation Pipework not insulated 14 21,600 1

Half yearly 5 2 Twice Annually Scale and sedimentation Uninsulated tank and pipework 40 14,400 4

Half yearly 3 3 Twice Annually Corrosion Pipework not insulated 0 17,280 1

Monthly 6
3

Twice Annually Stagnant water with bio film N/A 60 63,000 1

Half yearly 9 3 Twice Annually Corrosion and sedimentation N/A 14 114,750 2

Monthly 10
2

Twice Annually Scale and sedimentation Uninsulated tank and pipework 4 10,800 2

Half yearly 5 1 Twice Annually Corrosion and sedimentation N/A 49 4,425 1

Half yearly 12 1 Twice Annually Sedimentation Pipework not insulated 16 18,900 4

Half yearly
5 1

Twice Annually Visibly clean Satisfactory 23 67,000 0

Half yearly
8 1

Twice Annually Corrosion Satisfactory 13 12,000 2

Half yearly 9 1 Twice Annually Stagnant water with bio film N/A 15 5,400 1

Half yearly 4 1 Twice Annually Corrosion Uninsulated tank 27 12,930 1

Half yearly 4 1 Twice Annually Stagnant water with bio film Pipework not insulated 13 12,240 4

Monthly 14 1 Monthly
Stagnant water with bio film

Uninsulated tank 53 219,555 2

Quarterly 3 2 Twice Annually Corrosion N/A 14 126,000 2

Half yearly 31 1 Annually Scale and sedimentation N/A 26 9,450 1

Half yearly 4 1 Twice Annually Sedimentation N/A 15 17,550 4

Half yearly 26 1 Twice Annually Scale and sedimentation Pipework not insulated 68 12,960 2

Monthly 9
2

Twice Annually
Stagnant water with bio film

Satisfactory 66 46,000 4

Half yearly 7 1 Twice Annually Scale, sedimentation, and corrosion with bio filmUninsulated tank 21 5700 4

Half yearly 5 1 Twice Annually Scale and sedimentation Uninsulated tank 12 11,970 2

Monthly 3 1 Quarterly Stagnant water with bio film Pipework not insulated 40 13,250 1

Half yearly
5 6

Twice Annually Sedimentation
Pipework not insulated

0 30,650 1

Half yearly 9 2 Twice Annually Stagnant water with bio film Pipework not insulated 37 19,125 2

Half yearly 5 1 Twice Annually Scale and sedimentation N/A 29 7,290 2

Half yearly 5 1 Twice Annually Corrosion and sedimentation Uninsulated tank and pipework 18 7,650 4

Quarterly 7 2 Twice Annually Sedimentation Uninsulated tank and pipework 23 18,900 1

Half yearly 4 0 Twice Annually Stagnant water with bio film N/A 28 67,000 4

Half yearly 5 0 Monthly Corrosion and sedimentation Satisfactory 14 12000 2,000 1
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Temperature 

Monitoring 

Frequency

No. of 

Samples

No. of  

communal 

showers

Sampling 

Frequency

Tank(s) internal conditon  at the time of out 

break

Thermal insulation of the tanks 

and pipeworks 

Total Tank(s)  actual 

approximate 

Storage capacity in 

litres

Maximum requirement of 

stored water @ 150 litres 

per person for 24 hours 

consumption (Residential)

Maximum requirement of 

stored water @ 50 litres 

per person for 24 hours 

consumption 

(Commercial)

No. of 

deadlegs  in 

the system

Quarterly 2 1 Twice Annually Scale and sedimentation N/A 40 5,400 4

Quarterly 2 2 Twice Annually Sedimentation Satisfactory 22 12,930 1

Half yearly 4 1 Twice Annually Stagnant water with bio film Uninsulated tank 60 12,240 1

Half yearly 4 1 Quarterly Sedimentation Uninsulated tank 13 219,555 4,250 2

Half yearly 7 4 Twice Annually Scale and sedimentation Pipework not insulated 10 126,000 2

Half yearly 7 1 Quarterly Sedimentation Uninsulated tank 49 17,280 1

Half yearly 5 1 Twice Annually Sedimentation Uninsulated tank and pipework 16 63,000 4

Monthly 4 1 Twice Annually Visibly Clean Uninsulated tank 23 114,750 2

Monthly 8 1 Quarterly Visibly clean Uninsulated tank and pipework 13 10800 1,900 2

Quarterly
7 1

Quarterly Stagnant water with bio film
Pipework not insulated

15 4,425 1

Half yearly
3 1

Twice Annually Corrosion Uninsulated tank and pipework 27 18,900 1

Half yearly
5 1

Twice Annually Stagnant water with bio film N/A 13 67,000 4

Half yearly
3 1

Twice Annually Stagnant water with bio film Uninsulated tank and pipework 53 14,400 2

Quarterly
4 2

Twice Annually Sedimentation
Pipework not insulated

14 17,280 2

Half yearly
3 1

Twice Annually Scale and sedimentation
Pipework not insulated

26 63,000 1

Half yearly
7 1

Twice Annually Sedimentation Not Satisfactory 15 114,750 4

Half yearly
4 1

Twice Annually Corrosion Satisfactory 68 10,800 2

Half yearly 2 1 Twice Annually Stagnant water with bio film Uninsulated tank 66 4,425 4

Half yearly 5 1 Twice Annually Scale, sedimentation, and corrosion with bio filmN/A 21 18,900 4

Half yearly 4 1 Twice Annually Scale and sedimentation Uninsulated tank and pipework 20 67,000 2

Half yearly 4 1 Twice Annually Stagnant water with bio film Uninsulated tank and pipework 40 4,425 1

Half yearly 4 0 Twice Annually Sedimentation Uninsulated tank 20 18,900 2

Half yearly 4 0 Twice Annually Stagnant water with bio film Uninsulated tank 37 67,000 2

Half yearly 2 0 Twice Annually Scale and sedimentation Uninsulated tank and pipework 29 12,000 2

Half yearly 3 1 Twice Annually Sedimentation N/A 30 5,400 4

Monthly 8 1 Twice Annually Sedimentation Uninsulated tank and pipework 13 12930 5,000 2

Monthly 9 1 quarterly Stagnant water with bio film N/A 15 12,240 1

Half yearly 8 1 Twice Annually Corrosion and sedimentation N/A 27 10,800 1

Half yearly 6 1 Twice Annually Stagnant water with bio film N/A 2 36,000 4

quarterly 4 0 quarterly Corrosion Satisfactory 4 2,000 3

Half yearly
4 0

Twice Annually Visibly Clean N/A 0 4860 1

Half yearly 5 0 Twice Annually Visibly clean N/A 4 7,200 1
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Temperature 

Monitoring 

Frequency

No. of 

Samples

No. of  

communal 

showers

Sampling 

Frequency

Tank(s) internal conditon  at the time of out 

break

Thermal insulation of the tanks 

and pipeworks 

Total Tank(s)  actual 

approximate 

Storage capacity in 

litres

Maximum requirement of 

stored water @ 150 litres 

per person for 24 hours 

consumption (Residential)

Maximum requirement of 

stored water @ 50 litres 

per person for 24 hours 

consumption 

(Commercial)

No. of 

deadlegs  in 

the system

Quarterly 3 0 Twice Annually Visibly clean N/A 0 12,600 2

Half yearly 3 0 Twice Annually Corrosion N/A 14 5,400 1

Half yearly 5 0 Twice Annually Visibly clean N/A 6 14,400 1

Monthly 9 0 Twice Annually Visibly Clean N/A 0 2,500 1

Half yearly
3 0

Twice Annually Corrosion N/A 0 18,900 1

Half yearly
3 0

Twice Annually Visibly Clean N/A 2 37,800 2

Half yearly 4 0 Twice Annually Visibly Clean N/A 0 18,900 2

Half yearly 9 0 Twice Annually Visibly Clean N/A 2 44,100 1

Half yearly

7 0

Twice Annually Visibly Clean Satisfactory 14 18,900 2

Half yearly 4 0 Twice Annually Visibly Clean N/A 12 5,400 1

Half yearly 4 0 Twice Annually Visibly Clean N/A 0 3,600 1

quarterly 8 0 quarterly Visibly clean N/A 11 3,000 1

Half yearly 4 0 Twice Annually Visibly clean N/A 3 1,500 2

Monthly 5 0 Twice Annually Visibly clean Satisfactory 10 2,500 1

Half yearly
10 0

Twice Annually Corrosion N/A 0 25,200 1

Half yearly
4 0

Twice Annually Corrosion N/A 0 29,300 1

Half yearly 6 0 Twice Annually Visibly Clean Satisfactory 0 3,600 2

Quarterly 11 0 Annually Visibly Clean Satisfactory 0 9,000 2

Half yearly
4 0

Twice Annually Visibly clean N/A 0 23,040 1

Half yearly
6 0

Twice Annually Visibly clean N/A 0 12,600 1

Half yearly 5 0 Annually Scale and sedimentation N/A 0 12,600 1

Half yearly 6 0 Twice Annually Visibly clean N/A 0 25,200 1

Monthly 5 0 Twice Annually Visibly clean Satisfactory 0 9,450 1

Half yearly
7 0

Twice Annually Corrosion N/A 0 10,800 1

Half yearly 3 0 Twice Annually Visibly clean N/A 0 16,200 1

Half yearly 4 0 Annually 0 Satisfactory 4 4500 3
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Temperature 

Monitoring 

Frequency

No. of 

Samples

No. of  

communal 

showers

Sampling 

Frequency

Tank(s) internal conditon  at the time of out 

break

Thermal insulation of the tanks 

and pipeworks 

Total Tank(s)  actual 

approximate 

Storage capacity in 

litres

Maximum requirement of 

stored water @ 150 litres 

per person for 24 hours 

consumption (Residential)

Maximum requirement of 

stored water @ 50 litres 

per person for 24 hours 

consumption 

(Commercial)

No. of 

deadlegs  in 

the system

Half yearly
6 0

Twice Annually Visibly clean N/A 0 15,120 1

Half yearly
6 0

Twice Annually Visibly Clean N/A 4 16,200 1

Half yearly 5 0 Twice Annually Visibly clean N/A 0 19,800 2

Half yearly 4 0 Twice Annually Corrosion N/A 4 9,000 1

Half yearly 3 0 Annually Visibly Clean N/A 6 6,840 1

Half yearly 4 0 Annually Visibly Clean N/A 0 9,400 1

Half yearly 6 0 Annually Corrosion N/A 0 9,000 1

Half yearly
3 0

Annually Visibly clean N/A 2                                        N/A 2

Monthly 4 0 quarterly Visibly Clean N/A 0 3,500 2

Half yearly 4 0 Twice Annually Visibly Clean N/A 2 12,600 1

Half yearly 4 0 Twice Annually Visibly Clean Satisfactory 9 39,600 2

Half yearly
4 0

Twice Annually Visibly Clean N/A 0 39,600 1

Half yearly 3 0 Twice Annually Visibly Clean N/A 0 39,600 1

Half yearly
3 0

Twice Annually Visibly clean N/A 5 3,420 1

Monthly
7 0

monthly Visibly clean N/A 3 12,600 2

Monthly
4 0

Twice Annually Visibly clean Satisfactory 5 32,400 1

Half yearly 4 0 Twice Annually Corrosion N/A 0 16,200 1

Half yearly 4 0 Twice Annually Corrossion N/A 0 10,800 1

Monthly 3 0 Twice Annually Visibly clean Satisfactory 0 10,800 2

Monthly
3 0

Twice Annually Visibly Clean Satisfactory 0 10,800 2

Monthly 4 0 Twice Annually Visibly Clean N/A 0 10,200 1

Half yearly 6 0 Twice Annually Visibly Clean N/A 0 10,800 1

Half yearly
6 0

Twice Annually Visibly clean N/A 0 11,600 1

Half yearly 3 0 Twice Annually Visibly clean N/A 0 9,000 1

Half yearly 3 0 Twice Annually Visibly Clean Satisfactory 0 7,200 1

Half yearly 5 0 Twice Annually Corrosion N/A 0 12,600 1

Half yearly
3 0

Twice Annually Visibly clean N/A 0 12,600 1

Half yearly 10 0 Twice Annually Corrosion N/A 0 12,600 1

Half yearly 3 0 Twice Annually Visibly Clean N/A 4 12,800 2

Half yearly
5 0

Twice Annually Visibly Clean N/A 0 10,600 2

Quarterly 5 0 Twice Annually Visibly Clean N/A 2 10,800 1

Half yearly 4 0 Twice Annually Visibly clean Pipework not insulated 5,000 7,200

Half yearly 6 0 Twice Annually Visibly clean Pipework not insulated 4,000 5,100 1

P /10 Aji Peter, Brunel ID: 1239752



Appendix-1

Temperature 

Monitoring 

Frequency

No. of 

Samples

No. of  

communal 

showers

Sampling 

Frequency

Tank(s) internal conditon  at the time of out 

break

Thermal insulation of the tanks 

and pipeworks 

Total Tank(s)  actual 

approximate 

Storage capacity in 

litres

Maximum requirement of 

stored water @ 150 litres 

per person for 24 hours 

consumption (Residential)

Maximum requirement of 

stored water @ 50 litres 

per person for 24 hours 

consumption 

(Commercial)

No. of 

deadlegs  in 

the system

Half yearly

4 0

Annually Visibly clean Pipework not insulated 6,000 6,800

Half yearly
5 0

Twice Annually Visibly clean Satisfactory 12,000 12,600

Half yearly 20 0 Twice Annually Visibly clean Satisfactory 5,600 8,100

Half yearly 7 0 Twice Annually Visibly clean Satisfactory 4,000 6,800

Half yearly 19 0 Twice Annually Visibly clean Satisfactory 18,000 14,400

Half yearly 7 0 Twice Annually Visibly Clean Pipework not insulated 15,000 9,720

Half yearly 7 1 Twice Annually Corroded Pipework not insulated 32,000 22,680

Monthly 5 0 Twice Annually Sedimentation Satisfactory 6,000 5,500 1

Half yearly 5 0 Twice Annually Visibly clean Satisfactory 10,000 12,600

Half yearly
5 1

Twice Annually Visibly clean Satisfactory 8,000 7,800

Half yearly 6 1 Twice Annually Visibly Clean Pipework not insulated 6,000 6,840 2

Monthly
4 0

Twice Annually Corroded Satisfactory 8,000 9,000

Half yearly
4 0

Twice Annually Sedimentation Satisfactory 12,000 12,600

Half yearly 4 0 Twice Annually Visibly clean Pipework not insulated 6,000 5,400

Half yearly
9 0

Twice Annually Pipework not insulated 12,000 10,260

Half yearly 3 0 Twice Annually Satisfactory 8,000 8,500

Half yearly
5 0

Twice Annually Satisfactory 8,000 7,200

Half yearly
11 0

Twice Annually Satisfactory 18,000 21,600

Half yearly 5 0 Twice Annually Pipework not insulated 6,000 7,200

Half yearly 5 0 Twice Annually Pipework not insulated 20,000 25,200

Half yearly 4 0 Twice Annually Satisfactory 4,000 5,300 2

Half yearly 4 0 Twice Annually Satisfactory 16,000 18,000

Half yearly 5 1 Twice Annually Satisfactory 20,000 25,200

Half yearly 6 2 Twice Annually Satisfactory 1000 1500

Half yearly 10 2 Twice Annually Stagnant water with oily film Pipework not insulated 3,600 2,850 1

Half yearly 5 2 Twice Annually Satisfactory 1500 1500

Half yearly 5 2 Twice Annually Satisfactory 2000 3000

Half yearly 5 2 Twice Annually Satisfactory 2000 2250

Half yearly 9 2 Twice Annually Satisfactory 1800 2700

Half yearly 5 3 Twice Annually Satisfactory 1000 1800

Half yearly 6 3 Twice Annually Pipework not insulated 5000 7800 1

Half yearly 13 3 Twice Annually Satisfactory                                     24,00 3000

Half yearly 7 2 Twice Annually Satisfactory 3,000 3,750

Half yearly 7 2 Twice Annually Satisfactory 3,000 3,000

Half yearly 7 3 Twice Annually Satisfactory 4,000 4500
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Temperature 

Monitoring 

Frequency

No. of 

Samples

No. of  

communal 

showers

Sampling 

Frequency

Tank(s) internal conditon  at the time of out 

break

Thermal insulation of the tanks 

and pipeworks 

Total Tank(s)  actual 

approximate 

Storage capacity in 

litres

Maximum requirement of 

stored water @ 150 litres 

per person for 24 hours 

consumption (Residential)

Maximum requirement of 

stored water @ 50 litres 

per person for 24 hours 

consumption 

(Commercial)

No. of 

deadlegs  in 

the system

Half yearly 8 3 Twice Annually Satisfactory 3000 3,600

Half yearly 7 3 Twice Annually Satisfactory 4,000 5,880 1

Half yearly 7 4 Twice Annually Satisfactory 3,000 3,600

Half yearly 12 4 Twice Annually Stagnant water with oily film Tank not insulated properly 9,000 5,400

Half yearly 7 3 Twice Annually Satisfactory 6,000 7,200

Half yearly 8 4 Twice Annually Pipework not insulated 8,000 9,600

Half yearly 6 3 Annually Satisfactory 4,000 3,600

Half yearly 7 3 Twice Annually Satisfactory 4,000 4,560

Half yearly 9 3 Twice Annually Pipework not insulated 8,000 7,980

Half yearly 4 0 Twice Annually Satisfactory 8,000 11,400 1

Half yearly 9 5 Twice Annually Satisfactory 3,000 2,700

Half yearly 10 6 Twice Annually Satisfactory 2,000 2,400

Half yearly 9 5 Twice Annually Stagnant water with oily film Tank not insulated properly 8,000 7,125

Half yearly 9 5 Twice Annually Satisfactory 6,000 6,000

Half yearly 9 5 Twice Annually Tank not insulated properly 4,000 3,600

Half yearly 8 4 Twice Annually Satisfactory 4,000 4,560

Half yearly 7 3 Twice Annually Satisfactory 2,000 1,500

Half yearly 8 2 Twice Annually Satisfactory 7,000 5,700

Half yearly 6 2 Twice Annually Tank not insulated properly 3,000 2,250

Half yearly 6 1 Twice Annually Stagnant water with oily film Satisfactory 4,000 1,400

Half yearly 4 0 Twice Annually Tank not insulated properly 18,000 25,200

Half yearly 4 0 Twice Annually Pipework not insulated 14,000 30,000 1

Half yearly 6 1 Twice Annually Visibly Clean Pipework not insulated 6000 6840 2
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Number of Legionella Outbreak(s) Legionella detected  samples Sample temperature in Degree 

Celcious   H - Hot, C - Cold

Season of outbreaks High TVC Count Remediation Method Used Resampling Result

Yes  - Legionella (SG1) -1 Hot  tap  -2  and  CWST -1 H - 49,  C - 20 June Chlorination Legionella Not Detected

Yes - Legionella (SG2-14) -  0  CWST  -3 H- 60 C - 19 May Chlorination  Not Detected

Yes - Legionella (SG2-14) -  0 CWST - 2 and Hot tap -1 C - 20 and H - 60 November Yes - TVC EST1458
Chlorination of cold water tank feeding 

calorifiers

Legionella and TVC Not 

Detected
Yes - Legionella (SG2-14) -  0 Hot tap  - 4 H - 60 C-23 November 

Yes - Legionella (SG2-14) - 1 Cold -1 H-53 C - 23 0 Chlorination  Not Detected

Yes - Legionella (SG2-14) - 2 Hot  tap - 2   H - 52 C -22 May - November
Chlorination of cold water tank feeding 

calorifiers

Legionella and TVC Not 

Detected
Yes - Legionella (SG2-14) - 1 Hot tap  - 2 H - 48  C- 15 0 Pasteurisation Legionella Not Detected

Yes - Legionella (SG2-14) - 2 Hot  tap - 2 H - 48 C-14 0 Chlorination  Not Detected

Yes - Legionella (SG2-14) -1 Hot  tap - 2 H - 49 C- 20 March Chlorination  Not Detected

Yes - Legionella (SG2-14) - 1 Hot tap -2 H - 46 C- 23 May Chlorination  Not Detected

Yes - Legionella (SG2-14) - 1 CWST-1 H-48 C-15 March Chlorination  Not Detected

Yes - Legionella (SG2-14) - 0 Shower H-49 C- 17 0
Chlorination of cold water tank feeding 

calorifiers

Legionella and TVC Not 

Detected
Yes - Legionella (SG2-14) - 0 Hot tap -2 and Showers -2 H - 60 C-19 June

Yes - Legionella (SG2-14) - 1 Hot tap -3 and  CWST -3 H - 54, C 17 0 Chlorination of Hot Water System Legionella Not Detected

Yes - Legionella (SG2-14) -0 Hot tap - 1 H -53 C-22 November Chlorination  Not Detected

Yes - Legionella (SG2-14) -0 Hot  -1  and  Cold -1 H - 48  C - 19 May Yes - TVC   Tanks >10000 Chlorination  Not Detected

Yes - Legionella (SG2-14) -0 CWST -2 H-49 C-20 0

Yes - Legionella (SG2-14) -0  CWST  -2  H-52 C- 23 May Chlorination  Not Detected

Yes - Legionella (SG2-14) -0 Hot  tap -2 and Cold  tap -1 H - 53 and C -  20 March Chlorination  Not Detected

Yes Legionella (SG2-14) - 1 Hot tap -1  and CWST -1 H -50, C - 11 0 Yes - TVC   Tanks >10000 Chlorination  Not Detected

Yes Legionella (SG2-14) - 1 Hot tap -1  and CWST -1 H - 60  and C - 18 April Pasteurisation Legionella Not Detected

Yes Legionella (SG2-14) - 1 Showers -2 and  CWST -1 H- 48 C- 10 May Yes - TVC >10000 Chlorination TVC Not Detected

Yes Legionella (SG2-14) - 1 Hot  tap -3, Cold tap -1 and CWST -2 H-53 C-15 0

Yes Legionella (SG2-14) - 1 Hot  tap -5 and CWST- 1 H  - 54 -  57  and C - 21 November Chlorine Dioxide Legionella Not Detected

Yes Legionella (SG2-14) - 6 Showerhead -6 H - 55 C- 8 January
Chlorination  Not Detected

Yes Legionella (SG2-14) - 2 Hot tap -6 H - 60 C-23 November Yes - TVC   Tanks >10000 Chlorination

Yes Legionella (SG2-14) -1 Hot tap -1 and CWST -1 H - 60  and C - 24 May Chlorination  Not Detected

Yes Legionella (SG2-14) -1 CWST -2 H-56 C- 12 0 Chlorination  Not Detected

Yes - Legionella (SG2-14) - 2 Cold -1 H- 49 C- 23 June

Yes - Legionella (SG2-14) - 0 Hot  tap - 2   H - 60  C- 19 May

Yes - Legionella (SG2-14) - 0 Hot tap  - 2 H - 59 C- 20 November
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Number of Legionella Outbreak(s) Legionella detected  samples Sample temperature in Degree 

Celcious   H - Hot, C - Cold

Season of outbreaks High TVC Count Remediation Method Used Resampling Result

Yes - Legionella (SG2-14) - 1 Hot  tap - 2 H - 59 C-22 May

Yes - Legionella (SG2-14) - 2 Hot  tap - 2 H - 45 C -9 0

Yes - Legionella (SG2-14) - 2 Hot tap -2 H - 49 C-20 May

Yes - Legionella (SG2-14) - 2 Cold tap -1 and CWST-1 H-48 C-13 January Yes - TVC   Tanks >10000 Chlorination  Not Detected
Yes - Legionella (SG2-14) - 2 Shower H-52 C-12 0

Yes - Legionella (SG2-14) -1 Hot tap -2 and Showers -2 H - 52 C- 20 March

Yes - Legionella (SG2-14) -1 Hot tap -3 and  CWST -3 H - 46 C- 20 May

Yes - Legionella (SG2-14) -1 Hot tap - 1 H -49 C- 15 April

Yes - Legionella (SG2-14) -1 Hot  -1  and  Cold -1 H - 48 C - 5 0 Yes - TVC   Tanks >10000 Chlorination  Not Detected

Yes - Legionella (SG2-14) -0 CWST -2 H-52 C-15 October 
Yes - TVC   Tanks >10000 Chlorination  Not Detected

Yes - Legionella (SG2-14) - 1  CWST  -2 H- 53 C-5 0

Yes - Legionella (SG2-14) - 1 Showers -2 and  CWST -1 H-48 C-22 May

Yes - Legionella (SG2-14) - 0 Hot  tap -3, Cold tap -1 and CWST -2 H -49 C-18 November

Yes - Legionella (SG2-14) - 1 Hot  tap -5 and CWST- 1 H-48 C- 6 0

Yes - Legionella (SG2-14) - 2 Hot tap -6 H -52 C- 22 May- November

Yes - Legionella (SG2-14) - 1 Hot tap -6 H - 53 C- 20 March

Yes - Legionella (SG2-14) - 1 Hot tap -1 and CWST -1 H - 48 C-10 0

Yes - Legionella (SG2-14) - 0 CWST -2 H-60 C-19 April Yes - TVC   Tanks >10000 Chlorination  Not Detected
Yes - Legionella (SG2-14) - 1 Cold -1 H-48 C- 15 May

Yes - Legionella (SG2-14) - 0 Hot  tap - 2   H - 52 C-8 0

Yes - Legionella (SG2-14) - 1 Hot tap  - 2 H - 53 C-23 November

Yes - Legionella (SG2-14) - 3 Hot  tap - 2 H - 52 C-13 December, January, FebruaryYes - TVC EST7542 Chlorination TVC Not Detected
Yes - Legionella (SG2-14) - 0 Hot  tap - 2 H - 52 C-23 May

Yes - Legionella (SG2-14) - 3 Hot tap -2 H - 48 C- 20 May- November

Yes - Legionella (SG2-14) -1 Cold tap -1 and CWST-1 H-49 C- 5 0

Yes - Legionella (SG2-14) -1 Hot tap  - 2 H -46 C-8 0

Yes - Legionella (SG2-14) -2 Hot  tap - 2 H - 49 C-15 June. October

Yes - Legionella (SG2-14) -2 Hot  tap - 2 H - 48 C-12 0

Yes - Legionella (SG2-14) - 1 Hot tap -2 H -49 C-23 May

0 H-60 C-11 0

Yes - Legionella (SG2-14) - 0
H-60 C-12 0

Yes - TVC   Tanks >10000 Chlorination  Not Detected

Yes - Legionella (SG2-14) - 0 H-60 C-10 0
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Appendix-1

Number of Legionella Outbreak(s) Legionella detected  samples Sample temperature in Degree 

Celcious   H - Hot, C - Cold

Season of outbreaks High TVC Count Remediation Method Used Resampling Result

Yes - Legionella (SG2-14) - 0 H-60 C-5 0

Yes - Legionella (SG2-14) - 0 H-60 C-8 0

Yes - Legionella (SG2-14) - 0 H-60 C-7 0

Yes - Legionella (SG2-14) - 0 H-60 C-5 0

Yes - Legionella (SG2-14) - 0
H-60 C-12 0

Yes - Legionella (SG2-14) - 0
H-60 C-8 0

Yes - TVC   Tanks >10000 Chlorination  Not Detected

Yes - Legionella (SG2-14) - 0 H-60 C-6 0

Yes - Legionella (SG2-14) - 0 H-60 C-10 0

Yes - Legionella (SG2-14) - 0

H-60 C-6 0

Yes - Legionella (SG2-14) - 0 H-60 C-5 0

Yes - Legionella (SG2-14) - 0 H-60 C-9 0

Yes - Legionella (SG2-14) - 0 H-60 C-11 0

Yes - Legionella (SG2-14) - 0 H-60 C-12 0

Yes - Legionella (SG2-14) - 0 H-60 C-5 0

Yes - Legionella (SG2-14) - 0
H-60 C-4 0

Yes - Legionella (SG2-14) - 0
H-60 C-2 0

Yes - Legionella (SG2-14) - 0 H-60 C-6 0

Yes - Legionella (SG2-14) - 0 H-60 C-8 0

Yes - Legionella (SG2-14) - 0
H-60 C-10 0

Yes - TVC   Tanks >10000 Chlorination  Not Detected

Yes - Legionella (SG2-14) - 0
H-60 C-12 0

Yes - Legionella (SG2-14) - 0 H-59 C-10 0

Yes - Legionella (SG2-14) - 1 H-60 C-8 0

Yes - Legionella (SG2-14) - 0 H-60 C-9 0

Yes - Legionella (SG2-14) - 0
H-60 C-7 0

Yes - Legionella (SG2-14) - 0 H-60 C-5 0

Yes - Legionella (SG2-14) - 0 H-60 C-11 0
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Appendix-1

Number of Legionella Outbreak(s) Legionella detected  samples Sample temperature in Degree 

Celcious   H - Hot, C - Cold

Season of outbreaks High TVC Count Remediation Method Used Resampling Result

Yes - Legionella (SG2-14) - 0
H-60 C-12 0

Yes - TVC   Tanks >10000 Chlorination  Not Detected

Yes - Legionella (SG2-14) - 0
H-60 C-5 0

Yes - Legionella (SG2-14) - 0 H-60 C-8 0

Yes - Legionella (SG2-14) - 0 H-60 C-10 0

Yes - Legionella (SG2-14) - 0 H-60 C-7 0

Yes - Legionella (SG2-14) - 0 H-60 C-12 0

Yes - Legionella (SG2-14) - 0 H-60 C-5 0

Yes - Legionella (SG2-14) - 0
H-59 C-8 0

Yes - Legionella (SG2-14) - 0 H60- C -5 0

Yes - Legionella (SG2-14) - 0 H-60 C-8 0

Yes - Legionella (SG2-14) - 0 H-60 C-6 0

Yes - Legionella (SG2-14) - 0
H-60 C-9 0

Yes - Legionella (SG2-14) - 0 H-60 C-11 0

Yes - Legionella (SG2-14) - 0
H-60 C-12 0

Yes - Legionella (SG2-14) - 0
H-60 C-4 0

Yes - Legionella (SG2-14) - 0
H-60 C-5 0

Yes - Legionella (SG2-14) - 4 H-60 C-8 0 Yes - TVC   Tanks >10000 Chlorination  Not Detected

Yes - Legionella (SG2-14) - 0 H-60 C-10 0

Yes - Legionella (SG2-14) - 0 H-60 C-12 0

Yes - Legionella (SG2-14) - 0
H-60 C-6 0

Yes - Legionella (SG2-14) - 0 H-60 C-5 0

Yes - Legionella (SG2-14) - 0 H-60 C-8 0

Yes - Legionella (SG2-14) - 0
H-60 C-9 0

Yes - Legionella (SG2-14) - 2 H-60 C-11 0

Yes - Legionella (SG2-14) - 0 H-60 C-5 0

Yes - Legionella (SG2-14) - 0 H-60 C-6 0

Yes - Legionella (SG2-14) - 0
H-60 C-9 0

Yes - Legionella (SG2-14) - 0 H-60 C-5 0

Yes - Legionella (SG2-14) - 0 H-60 C-7 0

Yes - Legionella (SG2-14) - 1
H-58 C-5 0

Yes - Legionella (SG2-14) - 0 H-60 C-12
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Appendix-1

Number of Legionella Outbreak(s) Legionella detected  samples Sample temperature in Degree 

Celcious   H - Hot, C - Cold

Season of outbreaks High TVC Count Remediation Method Used Resampling Result

Yes - TVC   Tanks >10000 Chlorination

Yes - TVC   Tanks >10000 Chlorination

Yes - TVC   Tanks >10000 Chlorination  Not Detected

P /17 Aji Peter, Brunel ID: 1239752



Appendix-1

Number of Legionella Outbreak(s) Legionella detected  samples Sample temperature in Degree 

Celcious   H - Hot, C - Cold

Season of outbreaks High TVC Count Remediation Method Used Resampling Result

Yes - TVC   Tanks >10000 Chlorination  Not Detected

Yes - TVC   Tanks >10000 Chlorination  Not Detected

Yes - TVC   Tanks >10000 Chlorination  Not Detected
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Appendix-2

Bldg No. Occupancy rate No. of water tanks No. of calorifiers Tank’s internal conditions Thermal insulation Excess water storage (%)

1 4 8 5 4 4 23

2 3 7 3 6 3 28

3 3 6 3 3 3 14

4 4 4 4 5 5 40

5 3 12 0 2 3 0

6 3 8 1 6 7 60

7 3 6 3 4 6 14

8 3 8 3 5 5 4

9 4 9 4 4 8 49

10 4 4 2 3 3 16

11 2 11 2 1 1 23

12 2 16 2 2 1 13

13 3 14 2 6 0 15

14 3 12 2 2 4 27

15 3 10 3 6 3 13

16 3 4 2 6 4 53

17 4 7 2 2 7 14

18 4 6 3 5 6 26

19 5 3 4 3 6 15

20 4 3 4 5 3 68

21 3 30 0 6 1 66

22 3 6 4 7 4 21

23 3 5 2 5 4 12

24 4 2 2 6 3 40

25 0 3 3 3 3 0

26 4 5 3 6 3 37

27 5 5 3 5 6 29

28 5 4 2 4 5 18

29 5 3 5 3 5 23

30 3 9 1 6 9 28

31 2 13 2 4 1 14

32 3 14 2 5 0 40
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Appendix-2

Bldg No. Occupancy rate No. of water tanks No. of calorifiers Tank’s internal conditions Thermal insulation Excess water storage (%)

33 3 21 1 4 1 22

34 3 16 0 6 4 60

35 3 11 3 3 4 13

36 4 4 4 5 3 10

37 4 12 5 3 4 49

38 5 6 2 3 5 16

39 4 7 2 1 4 23

40 5 10 1 1 5 13

41 3 5 0 6 3 15

42 3 4 2 2 5 27

43 4 5 3 6 6 13

44 3 24 6 6 5 53

45 4 7 4 3 3 14

46 4 6 3 5 3 26

47 3 13 3 3 2 15

48 3 8 4 2 1 68

49 3 30 0 6 4 66

50 5 6 4 7 6 21

51 3 3 2 5 5 20

52 3 7 2 6 5 40

53 3 8 2 3 4 20

54 2 4 2 6 4 37

55 3 4 2 5 5 29

56 3 6 2 3 6 30

57 3 10 2 3 5 13

58 4 3 2 6 8 15

59 4 7 2 4 9 27

60 3 5 3 6 11 2

61 1 2 2 2 1 4

62 1 3 1 1 0 0

63 1 2 0 1 0 4

64 1 4 0 1 0 0
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Appendix-2

Bldg No. Occupancy rate No. of water tanks No. of calorifiers Tank’s internal conditions Thermal insulation Excess water storage (%)

65 1 1 0 2 0 14

66 1 2 0 1 0 6

67 1 3 0 1 0 0

68 1 2 1 2 0 0

69 1 3 2 1 0 2

70 1 2 2 1 0 0

71 1 2 2 1 0 2

72 1 3 0 1 1 14

73 1 2 2 1 0 12

74 1 1 1 1 0 0

75 1 2 1 1 0 11

76 1 3 1 1 0 3

77 1 2 0 1 1 10

78 1 3 1 2 0 0

79 2 3 2 2 0 0

80 2 2 2 1 1 0

81 1 2 1 1 1 0

82 1 8 1 1 0 0

83 1 3 1 1 0 0

84 1 3 1 5 0 0

85 1 2 0 1 0 0

86 1 2 2 1 1 0

87 1 2 1 2 0 0

88 1 2 1 1 0 0

89 1 2 1 0 1 4

90 2 8 0 1 0 0

91 1 2 1 1 0 4

92 1 4 0 1 0 0

93 1 1 2 2 0 4

94 1 2 2 1 0 6

95 1 3 0 1 0 0

96 1 2 1 2 0 0
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Appendix-2

Bldg No. Occupancy rate No. of water tanks No. of calorifiers Tank’s internal conditions Thermal insulation Excess water storage (%)

97 1 3 2 1 0 2

98 1 2 2 1 0 0

99 1 2 2 1 0 2

100 1 6 0 1 1 9

101 1 2 2 1 0 0

102 1 1 1 1 0 0

103 1 2 0 1 0 5

104 1 3 2 1 0 3

105 1 2 2 1 1 5

106 2 3 1 2 0 0

107 2 3 2 2 0 0

108 1 2 2 1 1 0

109 1 2 1 1 1 0

110 1 8 1 1 0 0

111 1 3 1 1 0 0

112 1 3 1 1 0 0

113 1 2 0 1 0 0

114 1 2 0 1 1 0

115 1 2 1 2 0 0

116 1 2 1 1 0 0

117 1 2 1 2 0 0

118 1 3 2 1 0 4

119 1 2 0 1 0 0

120 1 2 0 1 0 2
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Appendix-2

Number of deadlegs Hot water temperature Cold water temperature Seasonality No. of showerheads No. of  Legionella  outbreaks

1 4 4 4 2 1

4 0 4 3 1 0

1 0 4 3 1 0

4 0 5 3 2 0

1 3 5 0 3 1

1 3 5 3 3 2

2 4 2 0 3 1

2 4 2 0 2 2

1 4 4 2 1 1

4 5 5 3 1 1

0 4 2 2 1 1

2 4 3 0 1 0

1 0 4 4 1 0

1 3 3 0 1 1

4 3 5 3 1 0

2 4 4 3 1 0

2 4 4 0 2 0

1 3 5 3 1 0

4 3 4 2 1 0

2 3 0 0 1 1

4 0 3 2 2 1

4 4 0 3 1 1

2 3 2 0 1 0

1 3 5 3 1 0

1 2 0 1 6 6

2 0 5 3 2 0

2 0 5 3 1 3

4 3 1 0 1 1

1 4 5 4 2 1

4 0 4 3 0 1

1 1 4 3 0 1

4 1 5 3 1 1
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Appendix-2

Number of deadlegs Hot water temperature Cold water temperature Seasonality No. of showerheads No. of  Legionella  outbreaks

1 5 0 0 2 2

1 4 4 3 1 2

2 4 1 1 1 2

2 3 1 0 4 1

1 3 4 2 1 1

4 5 4 3 1 1

2 4 2 2 1 1

2 4 0 0 1 1

1 3 2 4 1 0

1 3 0 0 1 1

4 4 5 3 1 1

2 4 3 3 1 0

2 4 0 0 2 1

1 3 5 3 1 2

4 3 4 2 1 1

2 4 0 0 1 1

4 0 4 2 1 0

4 4 2 3 1 1

2 3 0 0 1 0

1 3 5 3 1 1

2 3 1 1 0 3

2 3 5 3 0 0

2 4 4 3 0 3

4 4 0 0 1 1

2 5 0 0 1 1

1 4 2 4 1 2

1 4 1 0 1 2

4 4 5 3 1 1

3 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0
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Appendix-2

Number of deadlegs Hot water temperature Cold water temperature Seasonality No. of showerheads No. of  Legionella  outbreaks

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

1 0 0 0 0 1

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

3 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 1

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0
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Appendix-2

Number of deadlegs Hot water temperature Cold water temperature Seasonality No. of showerheads No. of  Legionella  outbreaks

2 1 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 4

1 0 0 0 0 0

2 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 2

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

2 1 0 0 0 1

1 0 0 0 0 0
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Table: 1 

Legionella outbreak:  Possible contributed factors to the outbreak  

Bldg 
No. 

Age Usage Occup
-ancy 
Rate 
(%) 

Excess 
Water 

Storage 
(%) 

No. of 
dead 
legs 

Sample 
Detected 

(H/C -
tap/WT/ 
Shower) 

Sample 
Tempe-
rature  

(s) 

Sampling 
Month 

Total 
number of 

outbreaks in 
6 years 

Tank’s 
Internal 

condition 

Thermal 
Insulation 

1 1937 Res 70 23 2 H,C 51, 18 OCT-APR 2 Sediment S 
2 1945 Res 100 28 0 WT 17, 19 FEB-AUG 2 Water Stagnation NS 
3 1900 Res 85 14 1 C Tap 18 JUN 1 Clean S 
4 1930 Res 70 40 0 WT 18-22 FEB-AUG 3 Sediment & scale NS 
5 1900 Mix 75 N A 2 WT 16 APR 2 Water Stagnation NS 
6 1930 Mix 60 60 0 WT, H-tap 16,18, 

52 
FEB-AUG 3 Corrosion & oily 

film 
NS 

7 2000 Care 
Home 

100 NA 1 Shower NA JUN-DEC 3 Clean NS 

8 1900 Res 100 NA 1 H-2 47, 51 MAY-NOV 2 Clean S 
9 1937 Res 70 49 0 H-2, WT 55, 20 JAN- JUL 3 Water stagnation 

& oily film 
S 

10 1940 Res 75 16 1 H-2 56, 54 FEB-AUG 2 Clean NS 
11 1940 Res 80 23 2 H-2 55 MAR-SEP 2 Sediment & scale NS 
12 1940 Res 65 13 1 H-2, C 53,20 NOV-MAY 3 Clean S 
13 1800 Res 65 15 0 H-3,C-1, 

WT-2 
47-50, 

20, 
19,18 

DEC-JUN 6 Corrosion NS 

14 2000 Mix 75 27 0 H-2 57, 55 JAN- JUL 2 Sediment & scale NS 
15 1800 Res 85 13 0 H 53 JAN 1 Clean NS 
16 1940 Mix 35 53 0 H-5, WT-1 54-57, 

21 
NOV-AUG 6 Water stagnation 

& oily film 
S 
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Bldg 
No. 

Age Usage Occup
-ancy 
Rate 
(%) 

Excess 
Water 

Storage 
(%) 

No. of 
dead 
legs 

Sample 
Detected 

(H/C -
tap/WT/ 
Shower) 

Sample 
Tempe-
rature  

(s) 

Sampling 
Month 

Total 
number of 

outbreaks in 
6 years 

Tank’s 
Internal 

condition 

Thermal 
Insulation 

17 2000 Res 70 14 0 H-2 51,53 JAN-JUL 2 Clean NS 
18 2003 Res 85 26 1 C-1, WT -1 16,11 SEP-MAR 2 Water stagnation 

& oily film 
S 

19 2000 Res 90 15 1 H-6 55-58 JAN-JUL 6 Clean S 
20 1940 Res 25 68 0 H-3, WT-3 54-55, 

17-22 
DEC-JUN 6 Water stagnation 

& oily film 
NS 

21 1930 Res 60 66 3 H-1,WT-1 50, 18 FEB-AUG 2 Water stagnation 
& oily film 

N S 

22 1940 Res 85 21 0 H-6 52-56 APR-OCT 6 Clean NS 
23 1800 Res 80 NA 0 H-1, WT -

1 
56, 22 JUN-DEC 2 Sediment & scale S 

24 1930 Res 90 40 2 H-1, WT-1 56, 18 MAY-NOV 2 Corrosion NS 
25 1945 Res 70 20 1 H-4 54-58 NOV-MAY 4 Clean NS 
26 1930 Care 

Home 
85 37 0 WT-2 22,14 JUN-DEC 2 Water stagnation 

& oily film 
NS 

27 1920 Care 
Home 

95 29 0 Shower-2, 
WT-1 

20 JUN-DEC 3 Sediment & scale NS 

28 1800 Care 
Home 

85 NA 1 H-2, 
Shower -2 

54, 56 NOV-MAY 4 Clean NS 
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Table: 2 

Outbreak in buildings with 100% Occupancy  

Bldg. No. Age Usage Occup-
ancy 

Rate (%) 

Excess 
Water 

Storage 
(%) 

No. of 
dead 
legs 

Sample 
Detected 

(H/C -
tap/WT/ 
Shower) 

Sample 
Tempe-
rature  

(s) 

Sampling 
Month 

Total 
number 

of 
outbreaks 
in 6 years 

Tank’s 
Internal 

condition 

Thermal 
Insulation 

1 1945 Res 100 28 0 WT 17, 19 FEB-AUG 2 Water 
Stagnation 

NS 

2 2000 Care 
Home 

100 NA 1 Shower NA JUN-DEC 3 Clean NS 

3 1900 Res 100 NA 1 H-2 47, 51 MAY-
NOV 

2 Clean S 
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Table: 3 

Outbreak in buildings with occupancy rate 50< and 100> 

Bldg. No. Age Usage Occup-
ancy 

Rate (%) 

Excess 
Water 

Storage 
(%) 

No. of 
dead 
legs 

Sample 
Detected 

(H/C -
tap/WT/ 
Shower) 

Sample 
Tempe-
rature  

(s) 

Sampling 
Month 

Total 
number 

of 
outbreaks 
in 6 years 

Tank’s 
Internal 

condition 

Thermal 
Insulation 

1 1937 Res 70 23 2 H,C 51, 18 OCT-APR 2 Sediment S 
2 1900 Res 85 14 1 C Tap 18 JUN 1 Clean S 
3 1930 Res 70 40 0 WT 18-22 FEB-AUG 3 Sediment 

& scale 
NS 

4 1900 Mix 75 N A 2 WT 16 APR 2 Water 
Stagnation 

NS 

5 1930 Mix 60 60 0 WT, H-
tap 

16,18, 52 FEB-AUG 3 Corrosion 
& oily film 

NS 

6 1937 Res 70 49 0 H-2, WT 55, 20 JAN- JUL 3 Water 
stagnation 
& oily film 

S 

7 1940 Res 75 16 1 H-2 56, 54 FEB-AUG 2 Clean NS 
8 1940 Res 80 23 2 H-2 55 MAR-SEP 2 Sediment 

& scale 
NS 

9 1940 Res 65 13 1 H-2, C 53,20 NOV-
MAY 

3 Clean S 

10 1800 Res 65 15 0 H-3,C-1, 
WT-2 

47-50, 
20, 19,18 

DEC-JUN 6 Corrosion NS 

11 2000 Mix 75 27 0 H-2 57, 55 JAN- JUL 2 Sediment 
& scale 

NS 

12 1800 Res 85 13 0 H 53 JAN 1 Clean NS 
13 2000 Res 70 14 0 H-2 51,53 JAN-JUL 2 Clean NS 
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14 2003 Res 85 26 1 C-1, WT -
1 

16,11 SEP-MAR 2 Water 
stagnation 
& oily film 

S 

15 2000 Res 90 15 1 H-6 55-58 JAN-JUL 6 Clean S 
16 1930 Res 60 66 3 H-1,WT-

1 
50, 18 FEB-AUG 2 Water 

stagnation 
& oily film 

N S 

17 1940 Res 85 21 0 H-6 52-56 APR-OCT 6 Clean NS 
18 1800 Res 80 NA 0 H-1, WT -

1 
56, 22 JUN-DEC 2 Sediment 

& scale 
S 

19 1930 Res 90 40 2 H-1, WT-
1 

56, 18 MAY-
NOV 

2 Corrosion NS 

20 1945 Res 70 20 1 H-4 54-58 NOV-
MAY 

4 Clean NS 

21 1930 Care 
Home 

85 37 0 WT-2 22,14 JUN-DEC 2 Water 
stagnation 
& oily film 

NS 

22 1920 Care 
Home 

95 29 0 Shower-
2, WT-1 

20 JUN-DEC 3 Sediment 
& scale 

NS 

23 1800 Care 
Home 

85 NA 1 H-2, 
Shower -

2 

54, 56 NOV-
MAY 

4 Clean NS 

 

 

 

 

 

 

                 



Appendix 3 

6 | P a g e   A j i  P e t e r ,  B r u n e l  I D :  1 2 3 9 7 5 2  
 

 

                

 Table: 4 

Outbreak in buildings with occupancy rate 50> 

Bldg. No. Age Usage Occup-
ancy 

Rate (%) 

Excess 
Water 

Storage 
(%) 

No. of 
dead 
legs 

Sample 
Detected 

(H/C -
tap/WT/ 
Shower) 

Sample 
Tempe-
rature  

(s) 

Sampling 
Month 

Total 
number 

of 
outbreaks 
in 6 years 

Tank’s 
Internal 

condition 

Thermal 
Insulation 

1 1940 Res 25 68 0 H-3, WT-
3 

54-55, 
17-22 

DEC-JUN 6 Water 
stagnation 
& oily film 

NS 

2 1940 Mix 35 53 0 H-5, WT-
1 

54-57, 
21 

NOV-AUG 6 Water 
stagnation 
& oily film 

S 
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Table: 5 

Outbreak on the basis of building usage - Mix Use (Residential and commercial) 

Bldg. No. Age Usage Occup-
ancy 
Rate (%) 

Excess 
Water 
Storage 
(%) 

No. of  
dead 
legs  

Sample  
Detected 
(H/C -
tap/WT/ 
Shower) 

Sample  
Tempe-
rature  (s) 

Sampling 
Month 

Total 
number of 
outbreaks 
in 6 years 

Tank’s  
Internal  
condition 

Thermal  
Insulation 

1 1900 Mix 75 N A 2 WT 16 APR 2 Water 
Stagnation 

NS 

2 1930 Mix 60 60 0 WT, H-
tap 

16,18, 52 FEB-AUG 3 Corrosion 
& oily film 

NS 

3 2000 Mix 75 27 0 H-2 57, 55 JAN- JUL 2 Sediment 
& scale 

NS 
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Table: 6 

Outbreak on the basis of building usage – Care Home 

Bldg. No. Age Usage Occup-
ancy 
Rate (%) 

Excess 
Water 
Storage 
(%) 

No. of  
dead 
legs  

Sample  
Detected 
(H/C -
tap/WT/ 
Shower) 

Sample  
Tempe-
rature  
(s) 

Sampling 
Month 

Total 
number 
of 
outbreaks 
in 6 years 

Tank’s  
Internal  
condition 

Thermal  
Insulation 

1 2000 Care 
Home 

100 NA 1 Shower NA JUN-DEC 3 Clean NS 

2 1930 Care 
Home 

85 37 0 WT-2 22,14 JUN-DEC 2 Water 
stagnation 
& oily film 

NS 

3 1920 Care 
Home 

95 29 0 Shower-
2, WT-1 

20 JUN-DEC 3 Sediment 
& scale 

NS 

4 1800 Care 
Home 

85 NA 1 H-2, 
Shower -

2 

54, 56 NOV-
MAY 

4 Clean NS 
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Table: 7  

Legionella outbreak: Sites with up to 25% Excess water storage  

Bldg. No. Age Usage Occup-
ancy 
Rate (%) 

Excess 
Water 
Storage 
(%) 

No. of  
dead 
legs  

Sample  
Detected 
(H/C -
tap/WT/ 
Shower) 

Sample  
Tempe-
rature  
(s) 

Sampling 
Month 

Total 
number 
of 
outbreaks 
in 6 years 

Tank’s  
Internal  
condition 

Thermal  
Insulation 

1 1937 Res 70 23 2 H,C 51, 18 OCT-APR 2 Sediment S 
2 1900 Res 85 14 1 C Tap 18 JUN 1 Clean S 
3 1940 Res 75 16 1 H-2 56, 54 FEB-AUG 2 Clean NS 
4 1940 Res 80 23 2 H-2 55 MAR-SEP 2 Sediment 

& scale 
NS 

5 1940 Res 65 13 1 H-2, C 53,20 NOV-
MAY 

3 Clean S 

6 1800 Res 65 15 0 H-3,C-1, 
WT-2 

47-50, 
20, 19,18 

DEC-JUN 6 Corrosion NS 

7 1800 Res 85 13 0 H 53 JAN 1 Clean NS 
8 2000 Res 70 14 0 H-2 51,53 JAN-JUL 2 Clean NS 
9 2000 Res 90 15 1 H-6 55-58 JAN-JUL 6 Clean S 

10 1940 Res 85 21 0 H-6 52-56 APR-OCT 6 Clean NS 
11 1945 Res 70 20 1 H-4 54-58 NOV-

MAY 
4 Clean NS 
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Bldg No. Occupancy rate No. of water tanks No. of calorifiers Tank’s internal conditions Thermal insulation Excess water storage (%)

1 4 8 5 2 4 31

2 2 4 4 6 2 18

3 3 3 2 6 6 24

4 4 14 2 0 0 50

5 4 5 3 1 5 10

6 4 5 2 6 1 40

7 5 6 3 4 6 5

8 3 8 2 5 7 17

9 3 4 2 6 9 19

10 5 5 3 4 4 44

11 4 4 4 5 0 43

12 4 4 5 3 3 30

13 5 3 0 4 1 18

14 4 2 2 6 8 23

15 4 6 3 5 3 11

16 5 24 2 5 3 18

17 5 7 2 5 1 22

18 4 6 3 5 0 45

19 4 3 3 5 2 10

20 3 5 1 5 4 42

21 5 30 0 4 2 5

22 4 6 4 2 0 17

23 4 3 2 3 6 19

24 5 4 2 2 2 44

25 5 3 3 2 3 20

26 4 13 4 1 6 31

27 4 9 1 2 1 29

28 4 3 3 2 1 0

29 4 2 2 3 1 4

30 5 8 3 3 0 0

31 3 9 2 1 7 14

32 2 4 0 4 4 10

33 0 1 2 2 0 14

P /1 Aji Peter, Brunel ID: 1239752
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34 1 2 2 1 0 6

35 1 3 0 1 0 0

36 1 2 1 2 0 0

37 1 3 2 1 0 12

38 1 2 2 1 0 0

39 1 2 2 1 0 2

40 2 2 3 1 1 14

41 1 2 2 1 0 0

42 1 1 1 1 0 0

43 1 2 3 1 0 11

44 1 3 2 1 0 3

45 1 2 2 1 1 10

46 2 3 1 2 0 0

47 1 3 2 2 0 0

48 1 2 2 1 1 0

49 2 2 1 1 1 0

50 1 8 1 1 0 0

51 1 3 1 1 0 0

52 1 3 1 0 0 0

53 1 2 0 0 0 0

54 1 2 3 0 1 0

55 2 2 1 2 0 0

56 1 2 1 1 0 0

57 1 2 2 0 1 0

58 2 2 2 0 1 0

59 1 2 0 1 1 0

60 1 1 2 1 0 0

61 1 1 1 1 0 0

62 1 1 0 0 2 0

63 1 2 0 1 0 0

64 2 2 1 0 0 0

65 1 3 2 0 0 0

66 1 4 0 1 0 0

P /2 Aji Peter, Brunel ID: 1239752
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Number of deadlegs Hot water temperature Cold water temperature Seasonality No. of showerheads No. of  Legionella outbreaks
4 2 5 4 5 3

4 2 0 4 4 2

3 1 1 5 4 2

4 3 1 5 5 2

4 2 5 0 5 1

5 3 1 4 3 1

2 2 4 0 4 1

2 2 4 0 5 3

1 3 0 5 4 3

4 6 0 5 4 3

2 1 3 4 0 4

2 2 4 0 0 2

1 2 0 4 4 1

1 6 5 1 0 2

4 6 3 5 3 1

2 2 4 4 3 0

2 6 3 5 0 0

1 2 0 5 3 1

4 2 1 5 2 1

3 4 5 4 2 3

4 2 4 5 2 3

4 3 3 5 3 2

2 2 5 0 0 0

5 6 1 3 3 2

2 3 5 0 1 3

4 2 5 2 3 0

2 3 4 3 3 3

5 4 4 3 0 2

5 0 2 0 1 4

5 0 2 5 2 2

4 0 3 4 5 2

5 0 0 3 5 3

1 0 0 0 0 0

P /3 Aji Peter, Brunel ID: 1239752
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1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2 0 1 0 0 1

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

2 0 0 0 0 1

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 2

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 1

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 2

2 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 1 0 0 0

0 0 0 0 0 0

P /4 Aji Peter, Brunel ID: 1239752
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Bldg No. Occupancy rate No. of water tanks No. of calorifiers Tank’s internal conditions Thermal insulation Excess water storage (%)

1 2 3 4 2 6 9

2 2 5 5 3 4 4

3 4 4 4 4 5 0

4 4 4 4 5 3 3

5 5 4 14 2 0 0

6 1 2 2 1 1 0

7 1 1 1 1 1 0

8 1 1 1 1 0 0

9 1 2 1 1 0 0

P/1 Aji Peter, Brunel ID: 1239752
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Number of deadlegs Hot water temperature Cold water temperature Seasonality No. of showerheads No. of  Legionella outbreaks

12 1 3 0 5 4

21 4 6 0 5 4

6 2 1 3 4 0

5 2 2 4 0 0

13 4 3 1 5 5

4 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

P/2 Aji Peter, Brunel ID: 1239752


