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Abstract
Immortalizing primary cells with human telomerase reverse transcriptase (hTERT) has been common

practice to enable primary cells to be of extended use in the laboratory because they avoid replica-

tive senescence. Studying exogenously expressed hTERT in cells also affords scientists models of

early carcinogenesis and telomere behavior. Control and the premature ageing disease—Hutchinson-

Gilford progeria syndrome (HGPS) primary dermal fibroblasts, with and without the classical G608G

mutation have been immortalized with exogenous hTERT. However, hTERT immortalization surpris-

ingly elicits genome reorganization not only in disease cells but also in the normal control cells, such

that whole chromosome territories normally located at the nuclear periphery in proliferating fibro-

blasts become mislocalized in the nuclear interior. This includes chromosome 18 in the control fibro-

blasts and both chromosomes 18 and X in HGPS cells, which physically express an isoform of the

LINC complex protein SUN1 that has previously only been theoretical. Additionally, this HGPS cell

line has also become genomically unstable and has a tetraploid karyotype, which could be due to the

novel SUN1 isoform. Long-term treatment with the hTERT inhibitor BIBR1532 enabled the reduc-

tion of telomere length in the immortalized cells and resulted that these mislocalized internal chro-

mosomes to be located at the nuclear periphery, as assessed in actively proliferating cells.

Taken together, these findings reveal that elongated telomeres lead to dramatic chromosome mislo-

calization, which can be restored with a drug treatment that results in telomere reshortening and

that a novel SUN1 isoform combined with elongated telomeres leads to genomic instability. Thus,

care should be taken when interpreting data from genomic studies in hTERT-immortalized cell lines.
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1 | INTRODUCTION

Cellular senescence is a state of irreversible cell cycle arrest commonly

reached by replicative or cell stress pathways, which can be preceded

by signaling of DNA damage and/or telomere shortening.1–4 Cellular

senescence is purported to be a process that occurs in vivo to circum-

vent initiation and uncontrolled growth of cancers.5 The process of

cellular senescence in culture may proceed without telomere ero-

sion6,7 and could be induced by epigenomic changes such as methyla-

tion and inhibition of chromatin deacetylation.7,8

Whatever the cause of senescence, the gradual accumulation of

nondividing cells throughout the proliferative life spans of cell cul-

tures9,10 is seen as a major obstacle to the continuous propagation of

cells for experimentation. However, it is possible to force cells to

immortalize, thus avoiding replicative senescence by introducing the

human catalytic subunit-hTERT to activate telomerase in vitro11–13

leading to an infinite extension of the lifespan of an in vitro culture,14

without causing genomic instability.15 Indeed, human telomerase is

reactivated in cancer indicating that telomerase is required for prolif-

eration of cells toward malignancy.16,17 Thus, just the addition of the

telomerase activity and the consequent elongated telomeres does not

lead to genomic instability in normal cells but there may be other

aspects of genome behavior that could be affected. It should be noted

that exogenous telomerase will target the shorter telomeres in prefer-

ence.18,19 Indeed, chromosome and gene positioning in interphase

nuclei is often altered in cancer cells20–24 possibly through changes at

the epigenomic level, telomere repositioning and/or anchorage to

structures within the nucleoskeleton.20,25

Chromosome territories26–28 are nonrandomly positioned in

cells20,29,30 with distinct differences evident between cells in different

proliferative states. For example, in human-proliferating fibroblasts

more gene-poor chromosome territories are located at the nuclear

periphery and gene-rich chromosomes toward the nuclear interior.31–33

This organization of chromosomes has been confirmed with global

genome analysis experimentation revealing more gene-poor sequences

located or bound to the nuclear lamina.34–37 In nonproliferating primary

fibroblasts made quiescent either by serum removal or growth conflu-

ence, chromosome territories become reorganized into a size distribu-

tion with large chromosomes at the nuclear periphery and smaller

chromosomes in the nuclear interior.38–41 With serum removal this

reorganization happens rapidly with some chromosomes moving from

the periphery to the nuclear interior within several minutes.38 In repli-

cative senescent cells, chromosome territories also change location to a

size distribution, with some subtle differences between quiescent and

senescent cells [Mehta et al39]. This spatial positioning of the genome is

partially regulated through its interaction with, and anchorage through,

nuclear structures of the nucleoskeleton such as the nuclear lamina, the

LINC complex and integral membrane proteins found at the nuclear

periphery,42 nuclear motor proteins,43 and nucleoli.44,45 In addition, the

genome may well be organized by other nuclear structures such as

nuclear bodies46–48 or even a possible transnuclear structure such as

the nucleoskeleton.49–51 Telomeres are important structures involved

in anchoring the genome and have been shown to have binding interac-

tions with proteins of the nuclear envelope such as lamin A,52 SUN2,53

AKTIP, a telomere associated protein,54,55 and SUN1; although in

SUN1−/− mice telomere attachments to the envelope in meiosis were

still apparent.56,57 Telomeres are also seen to be tethered by the inter-

nal nuclear nucleoskeleton,51,58,59 yet it is unclear what they are binding

to. It is possible that they bind to internal lamin complexes in the

nuclear interior that contain lamin A and Lap2α,60 affected by epige-

netic changes.61,62

Given the evidence of telomeric binding to various nuclear struc-

tures in cells, especially those containing A-type lamins, it is not sur-

prising that in syndromes where there are mutations in A-type lamins,

and their binding partners, genome organization is affected.40,63–68

We and others have demonstrated previously that chromosomes are

mislocalized in primary cells derived from patients with laminopathy

and carriers, with mutations in lamin A.40,69 These studies indicate

that lamin A is involved in chromosome positioning within interphase

nuclei. Previously, we have demonstrated that chromosomes in prolif-

erating primary HGPS cells are mislocalized and are located in nonran-

dom positions as if the cells were quiescent.65 Although, recent

studies assessing the specific epigenetic clock DNA methylation mark-

ings of HGPS cells indicate that they have a prematurely aged signa-

ture.70 However, following treatment with farnesyl transferase

inhibitors (FTIs), that prevent the farnesylation of proteins, leads to

the mutant lamin A protein—progerin—to have no farnesylation moie-

ties, and so does not become associated aberrantly with the nuclear

envelope during mitosis, which restores chromosome territory to that

of control cells.66,71

In an effort to make HGPS cells more easily cultured and assay-

able, we employed cells that had been immortalized by hTERT.72 A

control hTERT normal fibroblast line was also employed.73 Most inter-

estingly we revealed that the inclusion of hTERT into primary control

cells altered the position of the territories of chromosome 18 toward

the nuclear interior, away from the nuclear periphery, even though

the cells were actively proliferating. Two HGPS cell lines also dis-

played chromosome 18 territories toward the nuclear interior, how-

ever, this is normal for HGPS cells.40,66 Most surprisingly the atypical

HGPS cell line, without the classical G608G mutation in the lamin A

gene (LMNA) displayed genomic instability, particularly aneuploidy,

with, in addition, the chromosome X territories located in the nuclear

interior. We normally use chromosome X as a control chromosome

very often as both copies are always found at the nuclear periphery in

our assays. In conclusion, telomere elongation via hTERT has led to

chromosome misplacement.

In the treatment of several cancer lines it was demonstrated that

a drug called BIBR1532 can repress telomerase activity and cause

tumor cell growth arrest without triggering acute cytotoxicity.74 We

found that over time in culture BIBR1532 also permitted telomeres to

return to a normal length, with the culture also beginning to contain

nonproliferating Ki67 negative cells. Excitingly, this treatment also

restored proper chromosome positioning in the immortalized control

cells for chromosome 18 and in the HGPS cell with the unknown

mutation for chromosome X. Further analysis of this HGPS cell line

with the unknown mutation revealed that there was a lower amount

of lamin B receptor and SUN1 present at the nuclear envelope. Exome

and RNA sequencing of the T08 cells has revealed that this cell line

has normal lamin B receptor (LBR) alleles, as well as normal sequences
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for all known nuclear envelope proteins; but had an isoform of SUN1

that has not been seen in vivo before and is not recognized by avail-

able antibodies. This suggests that SUN1 could be important in

anchoring chromosome X territories and the newly observed isoform

in vivo in combination with immortalization by hTERT leads to geno-

mic instability.

2 | MATERIALS AND METHODS

2.1 | Cell culture and BIBR1532 drug treatment

The NB1 primary human dermal fibroblast cell line73 was immortalized

with hTERT plasmid (a kind gift from Prof Robert Weinstein) and

named NB1T.75 The Hutchinson-Gilford progeria syndrome human

dermal fibroblasts AG06297 and AG08466 were purchased from Cor-

iell USA and also immortalized with hTERT,72 then named T06 and

T08, respectively. All fibroblasts were derived from skin biopsies for

HGPS cells and a neonate foreskin for the control NB1. Prior to immor-

talization both HGPS cell lines displayed diploid chromosome numbers

and AG06297 continued to do so after immortalization. Cells were

grown in Dulbecco's Modified Eagles Medium (DMEM) (Invitrogen,

UK), with 15% fetal bovine serum (FBS) (Invitrogen), 2% [vol/vol] strep-

tomycin and penicillin antibiotics (Invitrogen) and 200 mM L-glutamine

(Invitrogen). NB1T and T08 cells were treated with 10 μM of BIBR1532

for 8 weeks and 6 weeks, respectively. Control cells were treated with

corresponding solvent (DMSO) concentrations.

2.2 | Metaphase chromosome preparations

A volume of 1% colcemid solution was added to each dish 1 hour

prior to harvest and incubated in 0.075 M KCl at room temperature

for 15 minutes prior to fixation in methanol: acetic acid (3:1 vol/vol).

Fixed chromosomes were stained with DAPI and “Metafercell Soft-

ware” was used for the automated detection and imaging of meta-

phase spreads.

2.3 | Multiplex fluorescence in situ hybridization
assay

24-colour karyotyping (multiplex fluorescence in situ hybridization

[M-FISH]) was used to paint mitotic chromosomes of the T08 cell line

using a modified method of the Metasystems protocol as described

previously.76

For analysis, metaphase cells were visualized using an 8-position

Zeiss Axioplan II fluorescence microscope containing individual filter

sets for each component fluor of the Metasystems (Cambridge, UK)

probe cocktail plus DAPI. Digital images were captured for M-FISH

using a cooled charged-coupled device (CCD) camera (Photometrics

Sensys CCD, Tuscon, AZ, USA) coupled to and driven by ISIS

(Metasystems). In the first instance, cells were karyotyped and ana-

lyzed by enhanced DAPI banding. Detailed paint analysis was then

performed by assessing paint coverage for each individual fluor down

the length of each individual chromosome, using both the raw and

processed images for each fluor channel. A metaphase spread was

classified as being apparently normal if all 46 chromosomes were

observed by this process, and subsequently confirmed by the Meta-

systems M-FISH assignment, to have their appropriate combinatorial

paint composition down their entire length.

Structural chromosomal abnormalities were identified as color-

junctions down the length of individual chromosomes and/or by the

presence of chromosome fragments. The M-FISH paint composition

was used to identify the chromosomes involved in the abnormality

and assignment of a breakpoint to a specific chromosomal region

(pter, p, peri-centromere, q or qter) was based on the DAPI-banding

pattern at the M-FISH color junction, the location of the centromere

and the size of the painted material on each rearranged chromosome.

Abnormalities were described according to International System of

Cytogenetic Nomenclature (ISCN 2009).

2.4 | Chromosome-positioning assay by 2D FISH

Cells were fixed in ice-cold methanol: acetic acid (3:1, vol/vol, respec-

tively) and dropped onto slides. Aged slides were transferred into a

denaturing solution (70% (vol/vol) formamide, 2X saline sodium citrate

(SSC) at 70�C for 2 minutes. The slides were plunged into ice-cold

70% ethanol and then passed through the ethanol row.77

The chromosome templates 18 and X were made in-house by

amplifying flow-sorted chromosome arms (a kind gift from Dr Michael

Bittner) by degenerate oligonucleotide-primed polymerase chain reac-

tion (DOP-PCR). The chromosome paints were labelled with biotin-

16-dUTP (Roche). The probe was precipitated with ethanol with the

addition of human Cot 1 DNA (Roche, Basel, Switzerland), herring

sperm DNA and 3 M sodium acetate, pH 5 and then dissolved in

hybridization mix (50% formamide, 10% dextran sulfate, 10% 20X

SSC, 1% Tween 20 overnight at room temperature. The probes were

denatured at 75�C for 5 minutes and then allowed to re-anneal at

37�C. The probes were then applied to the slides, and hybridized at

37�C for at least 18 hours. The slides were washed thrice in buffer A

(50% vol/vol formamide, 2X SSC, pH 7.0) preheated to 45�C and then

thrice in buffer B (0.1X SSC, pH 7.0), preheated to 60�C. Slides were

then transferred to 4X SSC at room temperature and incubated with

100-μL blocking solution (4% bovine serum albumin [BSA], w/v) for

10 minutes at room temperature. In order to detect the biotin-labelled

probes, each slide was incubated in 100 μL of 1:200 diluted

streptavidin-cyanine (Cy3) (Amersham Life Science, Little Chalfont,

UK) at room temperature for 1 hour. Slides were washed in a 4X SSC

solution containing 0.05% Tween 20 in the dark at 42�C for

15 minutes. If required the slides were then incubated with anti-

pKi67 antibody (DAKO A0047) to identify proliferating cells for 1 hour

at room temperature followed by a secondary antibody swine anti-

rabbit (TRITC) (Dako R0156) fluorescein isothiocyanate. Afterward,

slides were mounted in Vectashield containing DAPI (Vectorlabs, Mur-

arrie, Australia). All slides were examined using 100X Plan Fluoropar

oil immersion lens (Leica) on an Olympus BX41 fluorescence micro-

scope. pKi-67 positive nuclei were selected randomly by following a

rectangular scan pattern. Imaging was performed using Digital Scien-

tifics software, the Quips Pathvysion. At least 50 images per slide

were captured by Smart Capture 3.00 software and signal position

analyzed with an erosion analysis script using IPLab Spectrum soft-

ware. The erosion analysis script (used with kind permission of Prof.
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Wendy Bickmore and Dr. Paul Perry, MRC Human Genetics Unit) was

devised to divide each captured nucleus into five concentric shells of

equal area, the first shell being at the periphery of the nuclei ending in

the interior of the nuclei (fifth shell).33,77 The erosion script measures

the pixel signal intensity of DAPI and the chromosome probe. The

percentage chromosome signal intensity measurement per shell was

divided by the percentage DNA signal intensity measurement of the

same shell in order to normalize the data. Bar charts and SE of the

mean (SEM) bars were plotted and calculated using these data. Finally,

statistical analyses were performed using unpaired two-tailed and Stu-

dent's t tests. To note in young proliferating cultures of HGPS cells,

nuclei do not tend to be misshaped and are normally ellipsoid. If the

nuclei do display an abnormal shape they are still included in the ero-

sion analysis and given that the script outlines the nuclei absolutely,

with invagination and herniations chromosomes are at the nuclear

envelope in an invagination will still be recorded at the nuclear

periphery.

2.5 | Interphase quantitative fluorescence in situ
hybridization

Mouse lymphoma LY-R (radio-resistant) and LY-S (radio-sensitive),

NB1 and hTERT (Human Telomerase Reverse Transcriptase) fibro-

blasts were used for interphase quantitative fluorescence in situ

hybridization (IQ-FISH). Mouse lymphoma LY-R (radio-resistant) and

LY-S (radio-sensitive) cells were used as a reference to measure telo-

mere length using IQ-FISH. Fixed LY-R, LY-S, NB1, NB1T, and T08 cell

suspensions were dropped onto glass microscope slides and were

immersed in PBS (pH 7.0) for 15 minutes with agitation. After that the

samples were treated with 4% formaldehyde for 2 minutes and

washed in PBS three times for 5 minutes each. Slides were then

immersed preheated (37�C) pretreatment solution for 10 minutes; a

total of 500 μL of pepsin (10% pepsin; Sigma) was mixed with 50 mL

of acidified dH2O of pH 2 and then added to 50 mL-PBS. The slides

were fixed again with 4% formaldehyde for 2 minutes. After washing

in PBS the slides were dehydrated in an ethanol row consisting of

70%, 85% and 95% (vol/vol). A Cy3-labelled Oligonucleotide PNA

(CCCTAA) 3 probe (Dako) complementary to telomeres was used as

per manufacturer's instructions. The samples were washed in 70%

formamide, followed by PBS and then dehydrated in ethanol (70%,

90%, and 100%). Slides were mounted in Vectashield. At least 30 inter-

phase cells were analyzed for each cell line in triplicate. A 63X objec-

tive on an Axioplan 2 Zeiss fluorescence microscope equipped with a

CCD camera and the Smart capture 2 image acquisition software

(Digital Scientific, Cambridge, UK) was employed to capture images. IP

Lab software was used to measure telomere signal intensity which is

proportional to telomere length. The two mouse cell lines, LY-R and

LY-S, with long and short telomeres, respectively, were used as cali-

bration standards in order to ensure the accuracy of fluorescence

intensity measurement.78,79 As described in Reference 79, in order to

obtain arbitrary unit as “CcFL” representing Corrected Calibrated

FLuorescence, the values of telomere fluorescence in cells were gen-

erated during the five different measurement sessions. It was shown

previously by Q-FISH that the parental L5178Y (LY-R) cell line has

telomere length of 49 kb and the LY-S cell line, derived from the LY-R

cell line has telomere length of 7 kb.80

2.6 | Telomere dysfunction-induced foci (TIF) assay

γ-H2AX antibody detection was combined with the IQ-FISH hybridi-

zation. γ-H2AX antibody (dilution of 1:500 in 1% PBS/ FCS, Upstate)

solution was incubated for 1 hour at room temperature. Goat anti-

mouse (FITC) (diluted 1:64 with 1% PBS/FCS, Sigma-F9006) second-

ary antibody was employed.

2.7 | Indirect immunofluorescence

Cell lines were grown on coverslips and fixed with 3.7% paraformalde-

hyde [wt/vol] for 7 minutes at room temperature. Subsequently, cells

were treated with ice-cold methanol: acetone (M:A = 1:1, vol/vol) for

4 minutes at room temperature. The cells were treated with PBS/FBS

mixture (1:500 dilution) at room temperature for 10 minutes and

then transferred to an humidified chamber and incubated with one

of the following primary antibodies CREST human anti-serum

(1:1000, Protein Reference Unit, Royal Hallamshire Hospital, Shef-

field), mouse anti-HP1α (1:500, Sigma Aldrich-mab3584), mouse

anti-H3me3k9 (1:100, Abcam-ab6001), rabbit anti-H3ME3K27

(1:100 Abcam-SAB480001), rabbit anti-H4Me3K20 (1:100, Abcam

ab9053), mouse anti-lamin A (1:50, Abcam ab8980-1), rabbit anti-

lamin B2 (1:250, Abcam-ab151735), mouse anti-emerin (1:30,

NCL-emerin), rabbit anti-LBR (1:500, Abcam-ab32535), rabbit anti-

SUN1 (1:100, Abcam-ab124770), rabbit anti-SUN2 (1:50, Abcam-

ab124916), mouse anti-NUP153 (1:1000, Abcam-ab24700) at RT

for 1 hour or overnight at 4�C. Fluorochrome-conjugated second-

ary antibodies swine anti-rabbit-TRITC (1:25, Dako R0156), goat

anti-human-FITC (1:100, Jackson Human Research), goat anti-mouse-

FITC (1:64, Sigma-F9006) and goat anti-mouse-TRITC (1:30, Sigma

T-5393) were used. Slides were incubated in the dark for either

30 minutes at 37�C or 1 hour at room temperature. The cells were

washed and mounted with Vectashield or Mowiol mountant medium

containing DAPI counterstain.

2.8 | Western blotting

NB1T, TO6, T08 fibroblast cell lines were cultured for 72 hours and sam-

ples for western blotting prepared in 3X SDS sample buffer (100 mM

Tris-HCL pH 6.8 (wt/vol), 4% SDS (vol/vol), 0.2% Bromophenol blue

(vol/vol), 20% glycerol, 0.2% β-mercaptoethanol (vol/vol)). The samples

were boiled at 100�C for 3 minutes and stored at −20�C until needed.

Cells were loaded onto mini-protean 4%-20% Tris glycin (Bio-Rad) gels

at a concentration of 2 × 105 cells per well. “Precision Plus Protein™

All Blue Prestained Protein Standards” (Bio-Rad, Watford, UK) were

employed as markers. Proteins were then electrophoretically trans-

ferred onto nitrocellulose membrane (Amersham Hybond-Cextra,

Amersham Biosciences). Membranes were incubated in blocking solu-

tion (4%(wt/vol)) dried milk powder (Marvel) in 1X transfer buffer over-

night at 4�C, followed by incubation in primary antibodies in 1%

FBS/PBS for 1 hour at RT. Following two washes for 5 minutes each in

1X TBS-Tween 20 (50 mM Tris pH 7.4, 150 mM NaCl, 0.1% Tween
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20 (vol/vol)). The primary antibodies used were; rabbit anti-LBR (diluted

1:500, Abcam-ab32535), rabbit anti-SUN1 (diluted 1:1000, Abcam-

ab124770), rabbit anti-SUN2 (diluted 1:1000, Abcam-ab124916),

mouse anti-α-tubulin (diluted 1:4000, Sigma Aldrich-T5168). The diluted

infrared secondary antibodies used for western blotting were: Goat

(polyclonal) anti-mouse (diluted 1:15 000, LI-COR 926-32 210), Donkey

(polyclonal) anti-rabbit (diluted 1:15 000, LI-COR 926-32 213). Fluores-

cence intensities were determined using a LiCor Odyssey CCD scanner

according to manufacturer's instructions (LiCor Biosciences, Cambridge,

UK). In order to analyze and quantify the levels of a range of proteins,

ImageJ software was employed.

2.9 | Cloning and PCRs

2.9.1 | Primers

LBR.f1: ATGCCAAGTAGGAAATTTGCCG; LBR.f2: CCTGACATCTGCA

GTCATCGG; LBR.r1: CCGATGACTGCAGATGTCAGG; LBR.r2: CAAA

TGGCAGCTGGAATTGC; SUN1.f1: GGTTTGAAGTGGTGAACATGG;

SUN1.f2: GGACAGTGCCACCACCATG; SUN1.r1: CCCAGAATATCTT

CCAAGTGTG; SUN1.r2: TCACTTGACAGGTTCGCCATG.

Total RNA was isolated from T08 cells using TRIzol reagent and

treated with RNase-free DNAse according to the protocol of manufac-

turer (Thermo Fisher Scientific). Total RNA isolated from T08 cells was

converted into cDNA using random hexamer primers and the Superscript

III reverse transcriptase as suggested by the manufacturer (Invitrogen).

2.9.2 | LBR cloning for sequencing

The longest protein-coding transcript from Ensembl database (LBR-001,

ENSG00000143815) corresponding to Q14739 protein in UniProt

database was used to design the primers. Two parts of the ORF defined

by the pairs of primers (LBR.f1 and LBR.r1; LBR.f2 and LBR.r2) as well

as the full-length ORF (LBR.f1 and LBR.r2) were amplified from the

cDNA using Phusion Hot Start DNA polymerase (Thermo Fisher Scien-

tific). The largest PCR fragment (LBR.f1 and LBR.r2) was cloned into

pJET2.1 vector and three clones were sequenced by GENEWIZ UK Ltd.

2.9.3 | SUN1 cloning for sequencing

The longest protein-coding transcript from Ensembl database

(SUN1-001, ENSG00000164828) was used to design the primers. The

N- and C- parts of the ORF defined by the pairs of SUN1.f1 and

SUN1.r1, and of SUN1.f2 and SUN.r2 primers, respectively, as well as

the full-length ORF (SUN1.f1 and SUN.r2) were amplified from the

cDNA using Phusion Hot Start DNA polymerase (Thermo Fisher Sci-

entific). The N- and C- parts of the ORF were independently cloned

into pJET2.1 vector and three clones from each set were sequenced

by GENEWIZ UK.

3 | RESULTS

3.1 | Chromosome complement of hTERT-
immortalized control and HGPS cells

Transfection with hTERT immortalization is a method used to control

and extend the life span of important or difficult to grow primary cells

in many laboratories.81 The karyotype of hTERT immortalized cells

remains normal for many passages.82,83 However, it is still not clear

how artificially lengthened telomeres affect chromosome behavior in

cells that have been stability transfected with hTERT. Thus, we wished

to investigate chromosome positioning in primary fibroblasts immor-

talized with hTERT. The cell lines we used were a primary male fibro-

blast cell line created at Brunel University London NB1s, that were

immortalized with the hTERT plasmid and named NB1T.74 We also

wished to analyze hTERT-immortalized HGPS primary cells for effects

on the genome of immortalization because progerin, the toxic protein

formed in HGPS cells, interacts with telomeres.84 Thus, we employed

an HGPS cell line with the classical G608G mutation and another cell

line generated from an HGPS patient with an unknown mutation that

is not the G608G alteration found in lamin A.85 These cells were

named T06 and T08, respectively.86

Initially, we examined whether the hTERT immortalization had

created any genomic instability by analyzing the numbers of meta-

phase chromosomes in 50-130 metaphases for the three immortalized

cell lines. Both NB1T and T06 had normal numbers of chromosomes

(Figure 1A,B), whereas the immortalized HGPS cell line T08 dis-

played genomic instability with a median chromosome number of

80 (Figure 1C,D) including both gains and losses and a wide range of

abnormalities when analyzed by multiplex-FISH (Figure 1E, Support-

ing Information Table S1).

It was pertinent to analyze the telomere lengths in all three cell

lines compared to a control of the parental NB1 cell line without

hTERT immortalization. This was performed using IQ-FISH87 and fluo-

rescent PNA telomere probes (Figure 2A–D) and it was revealed that

NB1 had telomeres that corresponded to 30 corrected calibrated fluo-

rescence lengths (CcFL) (Figure 2E) whereas the immortalized lines

had telomere measurements of 120 CcFL for NB1T, T06, and T08

(Figure 2E). Primary HGPS cells have been shown to have shorter

telomeres than age matched controls.88 To determine if the extended

telomeres affected their positioning within interphase, nuclei 50

images with delineated telomeres were analyzed using an erosion

script, whereby the nucleus is outlined using the DAPI signal to define

the edge of the nuclei. The script then erodes inwards creating

five shells of equal area in which the intensity of the fluorescence sig-

nal from the PNA telomere probe and the DAPI was measured. The

percentage intensity signal of the telomeres was normalized by the

percentage DAPI signal for each shell.33 These data were compared

between the primary and immortalized cells (Figure 2F). Intranuclear

position of telomeres was found not to be dramatically altered but

with some subtle and with significant differences within the interior

of the cell nuclei in shell 5 between the control cell line and the immortal-

ized cell lines. Overall, using the erosion analysis there were some evi-

dent and significant changes in centromere positioning, especially in shell

1 at the edge of nuclei (Supporting Information Figure S1), but again a

dramatic difference was not evident. However, when individual terri-

tories of chromosomes normally positioned at the nuclear periphery in

proliferating human dermal fibroblasts32,33,38,40 were revealed by FISH

dramatically altered nuclear locations became apparent in the hTERT-

immortalized cells. In the primary control NB1 cells (Figure 3A,E), positive

for the proliferation marker Ki67, the positioning for chromosome

18 was toward the nuclear periphery as has been shown in other
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proliferating human dermal fibroblast studies, with the chromosome sig-

nal more evidently distributed in the outer shells 1 and 2, signifying the

nuclear periphery. On contrary, chromosome 18 territories, in all hTERT-

immortalized cell lines, were located in the nuclear interior (Figure 3B-D,

F-H), with signals predominantly in shells 4 and 5. This is normal for pri-

mary HGPS-proliferating fibroblasts40,66 and has been shown for

AG06297 the parental line of T0640 and is also the case for AG08466

the parental line of T08 (Supporting Information Figure S2) but not prolif-

erating primary control fibroblasts.33,40,66 Most surprisingly, chromosome

X territories, a chromosome we have found only at the nuclear periphery

in primary control and HGPS cells including the primary parental line of

T08, AG08466 (Supporting Information Figure S2), were also located

FIGURE 2 Telomere distribution in the immortalized cell lines. Representative digital images of NB1, NB1T, T06 and T08 cells in interphase after

hybridization with cy3-conjugated telomeric peptide nucleic acid (PNA) oligonucleotides (A, B, C, D, respectively) in red and nuclear DNA in blue.
Corrected calibrated fluorescence (CcFL) telomere signal intensity for NB1T, T06, and T08 cells relative to the control NB1 cell line (E). *P < 0.05;
**P < 0.01; ***P < 0.001. Error bars represent SE of the mean (SEM). F displays the nuclear position of the telomeres in NB1, NB1, T06, and T08
cells after erosion analysis33,77 measuring the percentage of the cy3 telomere signal (%), normalized by the percentage of DAPI signal, over five
concentric shells of equal area from the nuclear periphery to interior. The x-axis displays the shells from 1 to 5 (left to right), with 1 being the
most peripheral shell and 5 being the most internal shell. The y-axis shows the normalized signal (%)/DAPI (%), error bars representing the SE of
mean (SEM). Significant differences are denoted by stars (*P ≤ 0.05; ** P ≤ 0.01) (B). Scale bar = 5 μm [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 1 Analysis of chromosomes in the immortalized cell lines. Representative images of metaphase chromosome spreads of NB1T (A), T06

(B) and T08 (C) cells. Scale bar: 5 μm. The graph in panel D reveals the number of chromosomes plotted against frequency (%) for each cell line,
binned for chromosome number (D). Representative M-FISH karyotype of T08 cell line which is cell 21 displaying genomic instability 83,XXX,t
(X;1),ins(1;14),der(1)t(14;1;17),del(2p),del(3p),der(4)t(4;19),der(5)t(5;10), del(5p),-6,der(7)t(7;21),-13,-14,der(14)t(10;14),-15,der(15)t(8;15),-16,del
(17q) (E) [Color figure can be viewed at wileyonlinelibrary.com]
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away from the nuclear edge in the HGPS T08 cells but not the other two

hTERT-immortalized cell lines, such as NB1T and T06 (Figure 3L,P). Two

other chromosomes that were analyzed at the same time (see Supporting

Information Figure S3) were chromosomes 10 and 13. In NB1T, T06 and

T08 chromosome 10 displays an intermediate location in NB1T where it

is normally located in control cells38 and more internal in T06 cells at

odds with what we have found before in nonimmortalized HGPS

nuclei.66 Chromosome 13 territories, which behave similarly to chromo-

some 18 territories, that is, are located at the nuclear periphery in control

fibroblasts,38,40 display a bimodal distribution in NB1T and are skewed

toward the interior in T06 cells. In T08, chromosome 13 is away from

the nuclear edge but gives a more random distribution (Supporting

Information Figure S3).

Overall, these data reveal that hTERT immortalization has indeed

affected positioning of chromosomes in normal control cells and in

the HGPS cells T08—the HGPS line with an undiscovered mutation.

Most notably these chromosomes are 18 and X and so these are the

chromosomes that were used to evaluate whether they can be reposi-

tioned following telomere erosion.

3.2 | Erosion of telomere length by BIBR1532 leads
to restoration of chromosome position

To address the hypothesis that telomere length is responsible for the

abnormal chromosome positioning, we employed a drug, BIBR1532,

which inhibits telomerase activity.89 A low dose was employed that

FIGURE 3 Nuclear locations of chromosome territories. Representative images displaying examples of peripheral, intermediate, and internal

positioned chromosome territories in proliferating NB1, NB1T, T06, and T08 cell lines for chromosome 18 (A-D) and chromosome X (I-L).
Fibroblasts were subjected to 2D-FISH using whole chromosome painting probes specific to chromosomes 18 and X. The probes were labeled
with biotin by degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR) and detected using streptavidin conjugated to cyanine
3 (colored green) and the nuclei were counterstained with DAPI (blue). Scale bar: 5 μm. The bar charts in panels E-H (chromosome 18) and M-P
(chromosome X) display the distribution of the chromosome signal in 50-55 nuclei for each chromosome for as analyzed by erosion analysis for
NB1, T06, and T08 cells. The x-axis displays the shells from 1 to 5 (left to right) with 1 being the most peripheral shell and 5 being the most
internal shell. The y-axis shows chromosome signal (%)/DAPI (%) signal. Bars represent the mean normalized proportion (%) of chromosome signal
for each human chromosome. Error bars represent SEM [Color figure can be viewed at wileyonlinelibrary.com]
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was not toxic to cells over a period of 0-8 weeks in culture and did

not produce massive amounts of DNA damage, as revealed by

γ-H2AX foci and TIFs assay (Supporting Information Figure S4). Telo-

mere lengths were measured every few weeks using IQ-FISH and it

was determined that telomere lengths were reduced in NB1T

(Figure 4A) and T08 (Figure 4B) cells to similar lengths as found in the

NB1 control cells after 8 weeks for NB1T and 6 weeks for T08 cells.

These cells were chosen because they both had mislocalized chromo-

somes. As predicted, the reduction of telomere repeats in the immor-

talized cells resulted in an increase in senescent cells within the

cultures (Figure 4C,D) as demonstrated by the absence of the prolifer-

ative marker anti-Ki67 (Figure 4E). The fraction of cells negative for

Ki67 increased incrementally over the time span of the experiment,

indicating that the immortalization phenotype is satisfactorily reversed

by the BIBR1532 drug, creating cells entering senescence.

Samples of cells exposed to BIBR1532 were taken over the long-

term culture at 0, 4, 6, and 8 weeks for the NB1Ts and 0, 4, 6 weeks

for the T08 cells (Figure 5). For NB1T cells, telomeres reached a simi-

lar length to the control NB1 cells after 8 weeks in culture. Chromo-

some 18 territories were found to be positioned similarly in both cell

lines toward the nuclear interior and not at the nuclear periphery

(Figure 5B,G). However, over the 8 weeks of BIBR1532 treatment

chromosome 18 territories were found to become less internally

located in proliferating (Ki67 positive) fibroblasts (Figure 5H,J) and by

8 weeks there was little difference with the NB1 control, with the

chromosomes being in an intermediate position in NB1 and NB1T

(+BIBR1532 for 8 weeks), with some statistical differences at the 95%

confidence interval in shells 1, 2, 4, and 5. This difference is not com-

parable to the highly significant differences revealed before the

BIBR1532 treatment has reached 8 weeks.

Chromosome X did not change its position significantly in the

NB1Ts after the drug treatment (Figure 5K-O and Figure 5P-T), but at

8 weeks of drug treatment the position of X was slightly more periph-

eral (Figure 5T). Interestingly, no relocation of chromosome 18 terri-

tories were observed in the HGPS T08 cells at all after 6 weeks in

BIBR1532 (Figure 5U-Z), as was to be expected. However, chromo-

some X territories were significantly located at the nuclear periphery

after the 6 week drug treatment (Figure 5C’F’).

3.3 | Novel isoform of SUN1 found in T08 cells

Although chromosome 18 is normally positioned in an interior location

in HGPS cells,40,66,71 it is a new finding that the X chromosome terri-

tories were also located at the nuclear interior. Thus, we hypothesized

that there must be a further factor required to anchor chromosomes

at the nuclear periphery in T08s, specifically required by the X chro-

mosomes. This could be an integral membrane/LINC protein, or simi-

lar. In order to test this hypothesis, we performed a series of studies

with a panel of antibodies recognizing proteins at the nuclear enve-

lope (Figures 6 and S5). Figure 6 displays staining for anti-LBR

FIGURE 4 Alterations of telomere length and proliferating cells in hTERT-immortalized cells treated with BIBR1532. Corrected calibrated

fluorescence (CcFl) before and after treatment with BIBR1532 NB1T and T08 cell lines relative to the control NB1 cell line. Every 2 weeks from
4 weeks onwards treated and untreated NB1T and T08 cells were measured for telomere fluorescence intensity by performing IQ-FISH (A, B).
*P ≤ 0.05; **P < 0.01; ***P < 0.001. Error bars represent SEM. Ki67 in hTERT-immortalized cells treated with BIBR1532. Panel E represents
Ki67 nuclei with Ki67 in red and the nuclear DNA stained by DAPI in blue. The fraction of cells displaying positive Ki67 staining was scored with
and without the BIBR1532 drug over the culture period of 0-8 weeks and is presented by the graphs (B, D). *P ≤ 0.05; **P < 0.01; ***P < 0.001.
Error bars represent SEM [Color figure can be viewed at wileyonlinelibrary.com]
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(Figure 6A,B) and anti-SUN1 (Figure 6C,D) in which both display a

normal distribution at the nuclear rim in NB1T cells, but in T08 cells

LBR staining is dull and SUN1 is totally missing from the nuclear rim,

localizing to a few small speckles in the nuclear interior (Figure 6D).

Assessing LBR and SUN1 levels by western blotting revealed that

there are indeed lower levels of LBR in T08 cells by almost one half

(Figure 6E) and 12x less SUN1 in T08s when compared to NB1Ts

(Figure 6F), normalized by α-tubulin (Figure 6G). All lamins (A-type

and B-type) showed normal levels and distributions in both NB1T and

T08 (Supporting Information Figure S5). Others have shown that

SUN1 can be involved in HGPS phenotype90–92 with the lack of

SUN1 being beneficial to HGPS cells.93 On contrary, LBR is overex-

pressed in skin cells with a classical LMNA G608G mutation.94,95

In order to determine if there was a mutation in the T08 cells in

either LBR or SUN1, sequencing of open reading frames was performed.

All the sequences matched the database entry except two silent

substitutions—39V(GTA > GTG) and 87P(CCC > CCT), and one

mutation—154S(AAT) > 154 N(AGT), which is considered to be a natural

variant as reported in References 96,97. Thus, the LBR sequencing ana-

lyses revealed no information that could indicate an impaired function of

the protein. However, there are a number of entries in GenBank and

UniProt databases linked to the human SUN1 protein. The longest

protein-coding SUN1 transcript in Ensembl database—SUN1-001

ENST00000405266, which corresponds to an 822-aa protein—was used

in silico to design the primers for PCR amplification. The sizes of

expected DNA fragments are shown in Figure 7A, and the PCR products

FIGURE 5 Chromosome repositioning after BIBR1532 treatment. Representative images of the position of chromosome 18 and X within NB1,

NB1T, and T08 fibroblasts nuclei before and after drug treatment (A-E, K-O, U-W and A’-C’). Fibroblasts were subjected to 2D-FISH using
probes specific to chromosomes 18 and X. Whole chromosome painting probes were labeled with biotin and detected using streptavidin
conjugated to cy3 (green) and the nuclei were counterstained with DAPI (blue). Ki-67 staining is not shown in the images. Histograms
displaying the nuclear positions of chromosomes 18 and X territories in Ki-67 positive NB1 and NB1T cells before and after drug treatments
(F-J) and (P-T). Erosion analyses were performed by ascertaining the distribution of the mean proportion of hybridization signal per
chromosome (%), normalized by the percentage of DAPI signal, over five concentric shells of equal area from the nuclear periphery to center.
The x-axis displays the shells from 1 to 5 (left to right), with 1 being the most peripheral shell and 5 being the most internal shell. The y-axis
shows signal (%)/DAPI (%). Error bars representing SEM were plotted for each shell for each graph (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001;
****P ≤ 0.0001). Scale bar = 5 μm. Bar charts displaying the position of human chromosomes 18 and X territories with Ki-67 positive in T08
cells before and after drug treatments (X-Z and D’-F’) [Color figure can be viewed at wileyonlinelibrary.com]
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amplified from the cDNA from T08 cells using of the pairs of primers, as

well as the full-length ORF are analyzed in Figure 7B. The amplification

using the SUN1.f2 and SUN.r2 primers produced an abundant band of

the size matching the designed C-terminal half of the SUN1 ORF. The

SUN1.f1 and SUN1.r1 primers generated several bands indicating the

presence of isoforms that are different at their N-termini. Interestingly,

the most abundant band migrated well above the 1500 bp DNA marker,

suggesting that the SUN1 protein from T08 cells is encoded by the

mRNA which is longer than the longest protein-coding SUN1 transcript

in Ensembl database. N-terminal clones were different from the canonical

SUN1 sequences. Two clones, containing the longest PCR product

(Figure 7B, lane 5), matched SUN1 isoform-9 annotated without experi-

mental confirmation on the UniProt database, and one clone, correspond-

ing to the shorter, less abundant PCR product (Figure 7, lane 5), is a novel

SUN1 isoform. We also found the H118 (CAC) > Y118 (TAC) substitu-

tion which could be considered as a natural variant.98 Further analysis of

both of these genes by PCR amplification and sequencing revealed that

there is no mutation in LBR within exons. Therefore, we have found, in

the T08 cells, an isoform of SUN1 that has only ever been suggested to

exist in theory (Figure 8). Exons 4 and 5 are both missing which compares

to isoform-9. This isoform would correspond to the lower molecular

weight PCR fragment in Figure 7 whereas the higher molecular weight

fragment matches the isoform-9. We did not attempt to quantify the

expression of different isoform, but a relative abundance of bands in

Figure 7B would match the 2:1 ratio of the sequenced clones.

The novel SUN1 isoform would not be recognized by the anti-

bodies employed here and so its presence, rather than typical SUN1,

may be responsible for lack of chromosome X at the nuclear periphery

and the genomic instability once the atypical HGPS cells had been

immortalized with hTERT. Furthermore, full exome sequencing did not

reveal any other variations in known integral membrane proteins (data

to be deposited in figshare at Brunel University London as an open

access data set).

4 | DISCUSSION

This study has revealed that by immortalizing normal primary human

dermal fibroblasts with hTERT, interphase chromosome positioning is

affected in two cell-lines, one from an HGPS primary line and a normal

control primary fibroblast line. In young proliferating primary cells, the

gene-poor chromosome 18 territories are normally located at the

nuclear periphery, with a number of attachments through lamina-

associated domains (LADs). However, in cells that are resting in repli-

cative senescence or quiescence chromosome 18 is located in the

nuclear interior.20 In this study, we demonstrate for the first time that

chromosome 18 territories are found in the nuclear interior of normal

FIGURE 5 Continued [Color figure can be viewed at wileyonlinelibrary.com]
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proliferating control cells, the only change being that they have been

immortalized by hTERT. This interior location is also observed in the

two immortalized HGPS cell lines and corresponds to that previously

observed nuclear position for chromosome 18 territories in HGPS

cells.40,66,71 Another novel finding of this study is that chromosome X

territories are located in the nuclear interior in the T08 HGPS cell line.

This line does not contain the classical G608G lamin A mutation and

so does not express progerin, and displays lamin A expression

(Supporting Information Figure S6).

We propose these unusual positions of chromosomes 18 and X in

the hTERT-immortalized cells must be due to the elongation of the

telomere repeats in the cells because, with the erosion of the telo-

mere length by the drug BIBR1532, both of these chromosomes in

the NB1Ts and T08s, respectively, are relocated back to the nuclear

periphery. The timing of this is coincident with telomeres becoming

on average of similar length to the control cells at an early passage

number. Thus, a conclusion from this work must be that elongated

telomeres found in immortalized and transformed cells leads to whole

chromosome repositioning in proliferating cells. As all of the chromo-

some positioning was performed on proliferating cells, positive for

Ki67, no cells that were either senescent or quiescent could have

been analyzed. Therefore, the reactivation of telomerase in cancer

cells could be responsible for changes of specific chromosome posi-

tioning (for overview see 20,21: especially of chromosome 18 and the

subsequent consequences of genome reorganization). Consequently,

this finding that chromosomes are repositioned in interphase is a

concerning finding and has implications both for carcinogenesis and for

hTERT-immortalized cells being used for modeling in vivo conditions.

Most interestingly, immortalizing the AG08466 cell line to give us

the T08 line resulted in tetraploid cells from a near normal karyotype

indicative of genomic instability (Supporting Information Table S1).

Extra copies of chromosomes have been shown to go to the same

nuclear compartments33,99 and this is what we have observed as well

in this study. Thus, the number of individual chromosomes should not

change the overall probabilistic chromosome position.

The chromosome repositioning and aneuploidy of chromosome

18 in the T08s does not appear to be due to any issues with lamin B2,

FIGURE 6 Expression differences of nuclear envelope proteins.

Representative images of lamin B receptor (red), SUN1 (red) in NB1T
(A, C, respectively) and T08 cells (B, D, respectively). Nuclear DNA is
counter-stained with DAPI (blue). Scale bar = 5 μm. Samples of NB1T
control and atypical HGPS (T08) cell lines in 3X SDS sample buffer
were resolved on 10% SDS-PAGE gels, and anti-SUN1 and anti-LBR
antibodies were used to identify SUN1 and LBR in western blots. All
samples were loaded equally, with 2 × 105 cells per lane. α-tubulin
was visualized to normalize the level of proteins [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 7 Cloning of the LBR and SUN1 fragments generated from cDNA of HGPS T08 cells for sequencing analysis. Schematics of the in silico

designed DNA fragments generated using primers designated by the arrows (A). The expected sizes of DNA fragments are shown in numbers of
base-pairs. (B) Gel electrophoresis analysis of LBR fragments (lanes 2, 3, 4) and the SUN1 fragments (lanes 5, 6, 7) amplified from cDNA of T08
cells using the pairs of primers indicated above the lanes. Lanes 1 and 8 are the DNA molecular weight markers, BIOLINE Hyperladder II and I,
respectively. The sizes of the DNA markers in base-pairs are shown on the left and the right side

BIKKUL ET AL. 351

http://wileyonlinelibrary.com


which might have led to genomic instability,100 as lamin B2 is found in

good amounts in the nuclear envelope (Supporting Information Figure S5),

although we do see a possible mutation in whole exome sequencing.

However, LBR levels are affected in T08 cells and could be responsible

for problems with chromosome anchorage as LBR is known to bind chro-

matin.101 We have also seen chromosome and gene mislocalization in

breast cancer cells that are missing LBR102 and have revealed that LBR

has a role to play in development of breast cancer.103 Indeed, lack of

LBR has been linked to chromatin mislocalization before.104 However, in

T08 we have found that there was a lack of SUN1 at the nuclear enve-

lope but after some genomic analyses we have found a SUN1 isoform

lacking exons 4 and 5B and none of the isoform 1 normally found. The

gene encoding SUN1 protein is located on chromosome 7 (Ensembl

database, ENSG00000164828). Exons 1 to 20 are annotated for the lon-

gest protein coding SUN1 transcript in Ensembl database—SUN1-001

ENST00000405266, which corresponds to the 822-aa protein—that is

10 aa longer than the canonical SUN1 isoform-1 of 812 aa deposited

into UniProt database O94901. The 10-aa peptide TAAHSQSPRL (exon

6) missing in the canonical isoform-1 was experimentally identified during

phosphoproteomics analysis via the presence of the phosphoserine in

this peptide.105 There are nine isoforms of SUN1 protein annotated in

UniProt database under the entry O94901 that are schematically

depicted in Figure 8. The isoforms -2, -3, -4, -5, -6 and -7 were character-

ized by Ota et al 97; the existence of isoforms -2, -7 and 8 was also

reported by Gerhard et al106; and isoform-4 was confirmed by Bechtel

et al107; the 10-aa phosphopeptide identified by Olsen et al105 is a signa-

ture of the isoform-9. However, according to UniProt database, no

experimental confirmation available for isoforms -2, -3, -6, -7, -8, -9 is

available. In addition, there are two GenBank entries relevant to the

SUN1 protein-AB648918.1 (direct submission of [Nishioka, Y. and Hieda,

M., 2011, “Novel function of SUN1”, unpublished] is identical to isoform-

9 but the exon 5C is absent. EAL23707.1, the longest SUN1 protein cod-

ing sequence (974-aa) deposited into GenBank, is the result of so-called

conceptual translation, of the chromosome 7 sequence.108 This sequence

is identical to the isoform-9 from Uniprot, but it also contains additional

58-aa at the N-terminus that are present in the isoform-7. The presence

of these 58-aa is very unlikely as this could only occur if noncanonical

splice sites are used. To analyze the cDNA sequence of SUN1 from T08

cells, we amplified the N-terminal part encompassing exons 1-12 and the

C-terminus—exons 11-20; cloned them and sequenced three clones from

each set. All the C-terminal sequences were identical to those sequences

which were already deposited in GenBank supporting the notion the

C-terminal half is not subjected to alternative splicing. Two clones for the

N-terminal half aligned perfectly to the isoform-9, including the 10-aa

peptide identified by Olsen et al.105 The isoform-9 is longer compared to

the canonical isoform-1 and contains two additional exons which we

designated as exons 5B and 5C. Both exons are nicely spaced between

exon 5 and exon 6 and are surrounded by nearly perfect splicing signals.

Thus, we provide the experimental confirmation for existence of the

isoform-9.

It is possible that the lack of canonical SUN1 and presence of a

new isoform was responsible for the lack of LBR at the nuclear

envelope as it is expressed (Figures 6B and 8). Furthermore, the

presence of the novel isoform of SUN1 in combination with

FIGURE 8 Schematic presentation of the human SUN1 isoforms annotated under O94901 at UniProt database as well as other relevant

sequences deposited into GenBank. A novel isoform identified in this work is shown at the bottom of the schematic. The exon numbers are
annotated in Ensembl database for SUN1-001 transcript (ENSG00000164828). The exons are shown as boxes with the corresponding number.
The exons 10-19 are presented as a dash line as they are identical for all the isoforms containing the C-terminal half. A vertical bar in exon
6 represents the 10-aa peptide missing in the canonical isoform-1 that was identified during phosphoproteomics analysis by93 [Color figure can
be viewed at wileyonlinelibrary.com]
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elongated telomeres could be why chromosome X was not

anchored at the periphery but can return after telomere erosion. In

addition, the combination of elongated telomeres and the presence

of the SUN1 isoform 9 has seemed to generate genomic instability

in the T08s. This is not the first time that SUN1 has been impli-

cated in genome instability since studies in Dictyostelium109 and

mouse110 have revealed SUN1's role in maintaining genomic health

and is known to interact with telomeres56,111–114 and nuclear

envelope flexibility.115 Obviously, further studies are required to

reveal the relationship of telomeres and the SUN1 isoform 9.

How might this relocation of chromosomes be elicited? It is possi-

ble that expansion of the telomeres changes their epigenetic finger-

print and so they are no longer able to interact with nuclear lamins in

the same way and do not become attached to the nuclear envelope in

nuclear reformation after mitosis.116 It could also be that elongated

telomeres may load up more nucleolar proteins at mitosis due to the

extended repeats and then end up being taken into the nuclear inte-

rior and embedded within nucleoli. Ki67, a nucleolar protein, has been

observed in mitotic chromosomes117,118 associated with telomeres

with these genomic regions being then coalesced with the rebuilding

nucleoli.119 This would imply in this situation that all telomeres and

chromosomes would be associated with nucleoli and away from

the nuclear periphery but DAPI distributions across the five shells are

normal and so is unlikely. A further question has to be why do chro-

mosomes behave differently within the T08 cells, such that chromo-

some 10 does not differ as much as the X chromosomes. We have

found dramatic differences in the some heterochromatin marks and

proteins (Supporting Information Figure S7). Indeed, HP1α is missing

totally in T08 cells and since it is located on X chromosomes, specifi-

cally the Barr body,120 its lack may well affect chromosomes binding

at the nuclear envelope. Indeed, HP1α binds to LBR, anchoring chro-

matin at the nuclear periphery, with both proteins compromised in

these cells in addition to elongated telomeres there may well be a

binding issue. Lamin B is implicated in altering genome organization in

progeria cells—indeed gene-rich areas of the genome are more preva-

lent at nuclear sites lacking B-type lamins.121 However, in the T08

cells there is not an abnormal amount of B-type lamin (Supporting

Information Figure S3).

When the parental cell-line AGO8466 was subjected to exome

sequencing and the data analyzed, mutations in two DNA repair

enzymes were revealed, MSH4 and HELQ (see Supporting Informa-

tion Figure S8). These mutations could affect the amount of protein

present for these two genes because for MSH4 there is a predicted loss

of the acceptor splice site for exon 10 with the likely effect being the

exclusion of exon 10 resulting in a frameshift and an early stop codon.

For HELQ, there are two possible effects of that mutation—either the

continued usage of the donor splice site with a frameshift caused by

the deletion of 10 nucleotides or the loss of the donor splice site with a

possible intron retention and stop codon after 16 codons (Supporting

Information Figure S8). Further investigation into the effect of these

mutations is also warranted and such mutations may also be implicated

in the genomic instability observed when the cells were immortalized.

Furthermore, the cell lines associated with this patient diagnosis may

perhaps be described as HGPS-like progeroid disease, although SUN1

interactions with lamin A are involved in progeric laminopathies.92,93

BIBR1532 has been used in many studies to cause apoptosis of

cancer cells with extended telomeres. However, in our study we used

a low dose that did not induce noticeable amounts of cell death, but

was able to produce cell cultures that were passaged normally over

the 6-8–week period. Instead, we found shorter telomeres and senes-

cent cells, determined using anti-Ki67 as a proliferation marker in the

presence of BIBR1532. One interesting exploitation of our findings

could be that at a low dose, BIBR1532 could work as a companion

drug for chemotherapy working through the telomeres to result in the

restoration of a more normal spatial positioning of chromosomes,

allowing their spatio-epigenetics responses to be more like nonimmor-

talized cells.
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