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Abstract: Breast cancer (BC) is one of the most common cancers among women worldwide,
representing the majority of new cancer cases and cancer-related deaths according to global statistics,
making it a significant public health problem in today’s society. The early diagnosis of BC can
improve the prognosis and chance of survival significantly, as it can promote timely clinical treatment
to patients. Further accurate classification of benign tumours can prevent patients undergoing
unnecessary treatments. Thus, the correct diagnosis of BC and classification of patients into malignant
or benign groups is the subject of much research. Because of its unique advantages in critical features
detection from complex BC datasets, machine learning (ML) is widely recognised as the methodology
of choice in BC pattern classification and forecast modelling. In this paper, we aim to review ML
techniques and their applications in BC diagnosis and prognosis. Firstly, we provide an overview
of ML techniques including artificial neural networks (ANNs), support vector machines (SVMs),
decision trees (DTs), and k-nearest neighbors (k-NNs). Then, we investigate their applications in
BC. Our primary data is drawn from the Wisconsin breast cancer database (WBCD) which is the
benchmark database for comparing the results through different algorithms. Finally, a healthcare
system model of our recent work is also shown.

Keywords: breast cancer; machine learning; artificial neural networks; decision tree; support vector
machine; k-nearest neighbor; healthcare system; Wisconsin breast cancer database

1. Introduction

Over the past few decades, ML techniques have been widely used in intelligent healthcare systems,
especially for breast cancer (BC) diagnosis and prognosis. Traditionally the diagnostic accuracy of a
patient depends on a physician’s experience [1], however, this expertise is built up over many years of
observations of different patients’ symptoms and confirmed diagnoses. Even then the accuracy still
cannot be guaranteed. With the advent of computing technologies, it is now relatively easy to acquire
and store a lot of data, for example the dedicated databases of electronic patient records [2], and the
European Friedreichs Ataxia Consortium for Translational Studies (EFACTS) patient database [3].
Without the aid of computers it is impossible for health professionals to analyse these complex datasets
particularly when undertaking complex interrogations of the data. The intelligent healthcare system is
therefore a valuable and important domain. The intelligent healthcare system can assist physicians
to diagnose patients with greater accuracy or provide more meaningful benchmarks, and further it
can aid people to plan for their physical condition into the future. In this context, ML techniques
can take over some complex manual works from the physicians, for instance, text and voice analysis,
which have been applied to identify/code patient emotions corresponding to healthcare professionals’
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responses. Note that more and more evidences have shown that the emotions of patients can predict
and further affect health outcomes [4,5].

As the most prevalent cancer in women, BC has always had a high incidence rate and mortality
rate. According to the latest cancer statistics [6–8], BC alone is expected to account for 25% of all new
cancer diagnoses and 15% of all cancer deaths among women worldwide. Scientists have been aware
of the dangers of BC from very early on, therefore much early research has already been implemented
in the treatment of BC. Due to the efforts of researchers and early detection methods, the mortality rate
has shown a steady and declining trend over the past decades. According to the statistics of Cancer
Research UK, the five years survival rate for BC is almost 100% if detected at its earliest stage, but can
be as low as 15% when detected at the latest stage. Lately, ML techniques are playing a significant
role in diagnosis and prognosis of BC by applying classification techniques to identify people with
BC, distinguish benign from malignant tumours and to predict prognosis. Accurate classification can
further assist clinicians to prescribe the most appropriate treatment regime.

Classification is a kind of complex optimization problem. Many ML techniques have been applied
by researchers in solving this classification problem. In the following sections, a comprehensive
explanation of different classification methods applied to BC will be given. We focus on the artificial
neural network (ANNs), support vector machine (SVMs), decision tree (DTs) and k-nearest neighbor
(k-NNs) techniques as they are the main methods used in BC diagnosis and prognosis. Scientists
strive to find the best algorithm to achieve the most accurate classification result, however, data of
variable quality will also influence the classification result. Further, the rarity of data will influence
the number of algorithm applications as well. Overall, most ML techniques are first tested in open
source databases. Over time, a benchmark dataset has arisen in the literature: Wisconsin breast cancer
diagnosis (WBCD) [9,10]. There are also many other BC benchmark data sets, for instance Wisconsin
Prognostic Breast Cancer Chemotherapy (WPBCC), Wisconsin Diagnostic Breast Cancer (WDBC) [11]
and so on. ML techniques that have been used on the WBCD database in BC diagnosis and prognosis
show different levels of accuracy that ranged between 94.36% and 99.90%. Similarly, there are results
with differently modified algorithms relating to BC databases. This review attempts to provide readers
with the essential elements of BC diagnosis and prognosis using ML techniques on WBCD. By using
ML techniques to analyse the WBCD database, BC can be diagnosed accurately base on 9 attributes
as can be seen from Table 1. In the main body of the review section we will concentrate on how the
WBCD has been used to illustrate the great promise of ML algorithms.

Table 1. WBCD Attributes.

Number Attribute Domain

0 Sample code number id number
1 Clump Thickness 1–10
2 Uniformity of Cell Size 1–10
3 Uniformity of Cell Shape 1–10
4 Marginal Adhesion 1–10
5 Single Epithelial Cell Size 1–10
6 Bare Nuclei 1–10
7 Bland Chromatin 1–10
8 Normal Nucleoli 1–10
9 Mitoses 1–10

10 Class 2 for benign
4 for malignant

2. ML Approaches

Throughout the decades, ML algorithms have been widely used in BC diagnosis and prognosis to
gain different insights from data samples. ML is a form of Artificial Intelligence (AI) that uses a variety
of statistical, probabilistic and optimization tools to learn and improve performance automatically
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from new data and past experiences, without explicitly programmed instructions. Both statistics and
ML are used for analysing data. In dealing with complex, large, high dimensional data, ML approaches
are typically capable of extracting key features and potential rules which might be difficult to be
discovered using traditional statistics. As discussed in [12–15] for BC datasets, ML approaches have
proved to be more suitable than statistics ones.

Traditional statistical methods of data analysis to predict medical outcomes include but are
not limited to, logistic regression, linear regression and discriminant analysis [16–20]. Much work
comparing different traditional statistical methods with traditional ML classification methods have
been published to demonstrate the advantages of ML and its potential [21]. The early findings showed
results to the contrary; in 1998, Fogel et al. compared ANN with linear discriminant analysis of the
radiographic features of masses and patient’s age in 139 suspicious masses to detect whether they
developed breast cancer and demonstrated the superiority of latter [22]. Lately however with the
maturity and improvement of the ML algorithms, and the increasing quantity and complexity of the
data, results show ML approaches have better classification accuracy [12,14,15,23–25]. In 2004, two ML
classification methods (DT and ANN) were compared with a statistical method (linear regression)
to predict the breast cancer survival using a large dataset which has more than 200, 000 cases and
demonstrated that ML methods could be a promising classification method for practical use. The results
showed that DT was the best predictor with the accuracy of 93.6% with ANN achieving 91.2% and
both were better than linear regression achieving 89.2% accuracy [12].

ML algorithms can also be used to perform nonlinear statistical modelling demonstrating
advantages when compared to standard statistical methods, these include the ability to dispose
and detect complicated nonlinear relationships between variables, the ability to detect all possible
interactions between predictor variables, and the availability of multiple training algorithms [24].
The major trend illustrated in the literature in recent decades is to move away from using statistical
methods as the amount of data being analysed increases [26–28]. ML algorithms can be classified
into two general categories based on the way they “learn” about data; supervised learning and
unsupervised learning. Supervised learning is so named because the programmer teaches the learning
process about what results should be from the training data, as a guide to the algorithms. It is similar to
the way that the parents teach their child the names of different objects. Supervised learning requires
all training data to be labelled, and then algorithms can learn to predict the output from the input
data. In contrast, in unsupervised learning, all the data is unlabelled. It should be able to find the
internal structure or relationship between different inputs. Actually, unsupervised learning is how
humans learn about novel things. The most representative technique of unsupervised learning is
clustering [29].

Choosing whether to use a supervised or an unsupervised ML algorithm generally depends on
the data types and structures. A review of current research reveals that almost all the ML algorithms
employed in the BC diagnosis and prognosis are supervised [30]. In the next section, we will provide a
detailed introduction on the main types of supervised classification learning algorithms that have been
used in the BC diagnosis and prognosis, which are ANN [31,32], SVM [33], DT [34] and k-NN [35].

An artificial neural network (ANN) can be defined as a model of reasoning based on the human
brain [36]. Over the past few decades, ANNs have been employed increasingly by more and more
researchers, and become an active research area [37–40]. ANNs have afforded numerous successes with
great progress in BC classification and diagnosis in the very early stages [22,41–47]. A typical ANN
model is made up of a hierarchy of layers: input, hidden and output layers (Figure 1) [48]. Layers are
composed of interconnected neurons which contain an activation function for nonlinear transformation
to strengthen the nonlinear expression ability. The input layer receives the data and then transmits the
data to a hidden layer which is used for processing the data and providing the training results to the
output layer. The output layer shows the classification results. However, depending on the problems,
the process of training an ANN may involve long causal chains of computational stages. Since 1986,
a novel efficient gradient descent algorithm called backpropagation (BP) has had wide applications,
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especially for medical data [49]. It was created by generalizing the Widrow-Hoff learning rule to
multiple-layer networks and nonlinear differentiable transfer functions. Although the BP algorithm is
used, it still has some weaknesses when presented with vast and complicated data. The calculations of
BP are extensive and, as a result, training is slow, thus a pure BP algorithm is rarely used in practical
applications. Researchers are working to improve the BP algorithm to increase computational efficiency.
Different novel algorithms based on ANN that have been used to analyse WBCD will be discussed in
the next sections.

Clump Thickness

Uniformity of Cell Size

Uniformity of Cell Shape

 Bare Nuclei

 Mitoses

 

 Normal Nucleol

Input 
Layer

Hidden 
Layer

Output
Layer

Diagnostic Outcome

Figure 1. A simple example of how ANN is trained to predict the diagnostic outcome from six inputs
and one hidden layer with 8 neurons.

The concept of SVM, which was proposed by Vapnik on the basis of the statistical learning
theory [50], has become an essential component in ML techniques. SVM was initially developed for
binary classification, but it can be efficiently extended for multiclass problems [33,51] with widespread
use in fields of handwritten digit recognition [52], speaker identification [53], text categorization [54],
etc. The key feature of an SVM classifier is to find an optimized decision boundary that represents the
largest separation (maximum margin) between the classes. The principle of SVM starts from solving
linear separable problems then extends to deal with nonlinear problems. The way of solving nonlinear
problems is to map training samples from the original finite dimensional space to a higher dimensional
space to realize linear separability. SVM is one of the most popular approaches in BC diagnosis and
prognosis [55]. An example of SVM structure [33] for BC diagnosis is shown in Figure 2.

In ML, DT is a predictive model that represents a mapping between object attributes and object
values [56,57]. A DT is a tree-like classifier that partitions every possible outcome of data recursively
into classes. DT is similar to the flowchart, in which every non-leaf node indicates a test on a particular
attribute, every branch represents an outcome of that test and every leaf node expresses a classification
or decision. The node at the topmost label in the tree is called root node, which corresponds to the best
predictor. By using DT, both numerical and categorical data can be processed. Based on maximum
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information gain, decision-makers can choose best alternative and traversal from root node to leaf
nodes denoting unique class separation [58]. The most popular DT methods are Iterative Dichotomiser
3 (ID3) [34], C4.5 [59], C5.0 and classification and regression tree (CART) which use entropy-based
measures to grow the tree. To understand how DT works in the context of BC diagnosis and prognosis,
there is an example of a BC diagnosis and prognosis decision tree structure [34] in Figure 3, which is
used to predict whether a person has malignant or benign BC.

Figure 2. A simple example of how an SVM might work in distinguishing between benign and
malignant tumor.

Bare Nuelei

 Clump 
Thickness Malignant

Benign Cell Size

Benign Malignant

Figure 3. An example of how DT is used to solve BC diagnosis problem.

k-NN is one of the most central ML techniques in classification [60]. k-NN is a non-parametric
lazy learning algorithm used for classification, which classifies the objects using their “k” nearest
neighbours. k-NN only considers the neighbours around the object, not the underlying data
distribution. Additionally, there is no training phase with the training data [61]. In Figure 4, an example
of k-NN structure [35] is presented for determining BC diagnosis and prognosis if k = 3, the test
sample (circle) is assigned to malignant BC (square) because there are 2 squares and only 1 triangle
inside the inner circle. If k = 5, the test sample is assigned to benign BC (triangle).
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Figure 4. k-Nearest neighbor for breast cancer diagnosis. Blue circle means the test sample,
green triangle means the malignant BC and pink square means the benign BC.

3. ML Applications in BC Diagnosis and Prognosis

In the early 1990s, WBCD was released and in the next few decades, a large number of ML
algorithms have been used to analyse this dataset. In this section, detailed reviews of ANNs, SVMs,
DTs and k-NNs with their utilizations in BC diagnosis and prognosis using the WBCD are given.
A complete list of the four methods with their references, algorithm names, sample strategies and
classification accuracies will be shown in Table 2 at the end of this section. The WBCD includes
9 conclusive attributes to determine the BC class, excluding the first one (sample code number) and
the last one (output class). A brief structure of WBCD attributes can be seen in Table 1 based on
the contents in [9,10]. There are 699 samples in WBCD, but researchers generally remove 16 out
of 699 samples as these contain missing values. In some cases, more samples are removed in the
pre-processing phase.

In WBCD, ML techniques have been used to predict BC tumor class (benign or malignant) via
analysing combinations of different values in key attributes. Because of the differences between
individual patients, even if they have the same BC class, the values of different attributes will not
be the same. Depending on these values, the same BC tumor class can be divided into different
serious situations by physicians thus to assist cancer prognosis, such as predicting cancer susceptibility,
survivability, progression and so on. Sequentially, effective treatments can be provided to the patients.

There is a wide variety of BC data including open source and private. WBCD is one of the three
datasets collected by Wisconsin hospital in 1990s. Owing to the fact that many algorithms have been
applied to WBCD dataset, it has strong comparability and representation. The classification accuracies
of different algorithms range from 94.36% to 99.90%. Although a great number of algorithms have
achieved very high accuracy, the development of different improved ML algorithms is still necessary
for providing more alternative solutions to the real-wold complex BC data (or other medical data).
Classification accuracy is a very important and intuitive criterion but it is not the only one. It should be
stressed that different algorithms have specific advantages as well as drawbacks, so the development
of new algorithms to further improve the existing ones is still indispensable. These algorithms can
help to build healthcare systems to assist physicians as a second opinion for their final decision to
improve decision accuracies. The ML algorithms listed in the next subsections are all used to analyse
open source benchmark database, which start with ANNs, followed by SVMs, DTs and k-NNs.

3.1. ANNs

As early as 1993, a three-layer feedforward network with BP algorithm was utilized to predict
whether patients had malignant or benign lesions by analysing a mammography atlas of breast cancer
from a database of 133 cases [47]. The mammography atlas database was compiled by Taber and
Dean in 1985 [62]. This paper proved ANN can be helpful in the mammography analysis at early on.
A year after, Floyd et al. proposed an ANN method for predicting breast cancer from mammographic
findings [41]. At that time, Floyd et al. used the basic BP algorithm with a three-layer architecture.
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The use of the ANN proved to give better diagnostic performance than the radiologists when the
network output was compared to the radiologists’ categorical assessment. Both [41,47] utilized ANN to
predict malignancy using different mammographic elements as inputs. The accuracies were significant
and improved by 3–5% compared with conventional experts’ judgment.

Thus, more than twenty years ago, ANN has been proved excellent in BC diagnosis and prognosis.
Although ANN has shown a good predictor of results in pattern classification problems, the ANN
is not easily explained as ANN has been considered as a series of “black box”. By having a better
understanding of ANN, a three-phase algorithm [63] has been proposed to unveil the ANN workings
by building a weight-decay BP network, deleting insignificant connections and extracting rules by
recursively discretizing the activation values of the hidden unit. The rules from this pruned network
keep the accuracy as high as the rules from the standard ANN through a series of tests. After a year,
based on the previous method, a modified pruned network was presented with fewer connections
between each neuron, and higher accuracy [45]. This paper proposed an idea to extract rules from
pruned ANN for BC diagnosis using two processes. The first step was to prune network structures by
introducing a novel penalty function; as a result, only a few inputs, hidden units and connections were
left. The penalty term was normally added to the error function so that unnecessary connections would
have subtle weights assigned to them at end of the training process. Subtle-weighted connections
were eliminated from the networks without too much effect on the accuracy of ANN prediction.
The second step was to cluster the hidden unit activation values of a pruned network, which means
fewer hidden unit activation values are considered and the accuracy of the original ANN is retained.
These extracted rules in the “if-then” structure, which is similar to an expert system, has advantages
of natural knowledge representation, uniform structure, separation of the knowledge from their
processing, and coping with incomplete and uncertain knowledge. For WBCD analysis, simple
rules were proposed to achieve more than 96% accuracy on both the training set and testing set.
There is a balance between the interpretability and the computational burden according to the practical
requirements. This algorithm can provide interpretability but, when dealing with complex data,
the computation for rule extraction by recursively discretizing the activation values of the hidden unit
is extremely large. Setiono in 2000 showed that by pre-processing the WBCD data, the overall accuracy
can be increased to more than 98% [64].

In [65], an evolutionary ANN approach based on the Pareto-different evolution (PDE) algorithm
was employed by combining the advantages of evolutionary ANN and PDE algorithm. This method
not only has better network performance and architecture than ANN but also can deal with
multi-objective problems by minimizing the errors and the number of hidden units. WBCD was
used and an average accuracy of 98.12% was achieved. The radial basis network (RBN) [66], general
regression neural network (GRNN) [67] and probabilistic neural network (PNN) [68] were then used to
examine the WBCD [69]. Authors did not modify the algorithms. The 683 complete data records were
split into 50% training and 50% testing datasets to test these three kinds of ANNs. Compared with the
classical multilayer perceptron (MLP), RBF (96.18%), PNN (97.00%) and GRNN (98.80%) all provided
better performances than MLP (95.74%). According to overall performance, GRNN is considered to be
a preferred ANN model to classify WBCD or similar medical data.

After years of studying ANNs applications in BC, researchers discovered hybrid methods,
combining different approaches with ANNs, which achieved better outcomes in some aspects.
The hybrid intelligent system aims to exploit the advantages of the constituent models and, at the same
time, alleviate their limitations. In 2009, an expert system was introduced to detect BC in WBCD based
on association rules (AR) and ANN [70]. The AR approach has been used to reduce the dimension
of the database from 9 attributes to 4 attributes, without reducing the accuracy, while combining it
with a basic ANN method. AR aims at discovering the patterns of co-occurrence of attributes in a
database. Karabatak and Ince found that the 2nd (Uniformity of cell size), 8th (Normal nucleoli) and
9th (Mitoses) have the largest itemsets for benign class, and the 6th (Bare nuclei) has the largest itemset
for malignant class so these four parameters were used as the inputs for ANN. Although the correct
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classification rate of AR + ANN (95.6%) was just slightly higher than ANN (95.2%), the number
of epochs needed to train AR + ANN (33 epochs) is lower than ANN (61 epochs). WBCD does not
contain a lot of data, and therefore cannot fully reflect the advantage of AR + ANN in training time.
The major limitation of this method is the difficulty of selecting appropriate features. If the features are
not chosen well, the overall performance would be greatly affected.

In 2011, a metaplasticity ANN was proposed by Marcano-Cedeño et al. inspired by Shannon’s
information theory and activity-dependent changes in neural functions named artificial metaplasticity
multilayer perceptron (AMMLP) algorithm [71]. The word “metaplasticity” came from biological
terminology, which is defined as the modulation of subsequent synaptic plasticity depending on prior
activity [72]. This approach referenced the entropy concept of Shannon’s information theory [73]
where the information in less frequent patterns is more than frequent ones. So the AMMLP algorithm
provides prioritization for weights, updating the less frequent activations over the frequent activations.
Thus, AMMLP increases the efficiency during the training phase. An overall classification accuracy of
99.26% based on the WBCD was achieved using the AMMLP algorithm.

Two years later, rotation forest ANN (RF-ANN) was proposed to classify the entries in the
WBCD [74]. Rotation Forest (RF) [75] is an ensemble classifier which uses a group of individual
classifiers which are trained on different feature sets in a supervised classification problem. There are
two main approaches to obtain the feature sets, one is the principal component analysis, which was
used in this paper and the other is independent component analysis. When 9 classifiers were used
in rotation forest, the classification accuracy using WBCD was at its best at 98.05%. Particle swarm
optimization ANN (PSO-ANN) was also tested. PSO is a stochastic optimization technique [76] that
was inspired by the social behaviour of birds flocking and fish schooling. PSO was used to adjust
the weights of an ANN to enhance the classification accuracy and 97.36% was achieved using the
PSO-ANN approach with the objective function Griewank.

In 2015, using genetic programming (GP) based on ANN [77], a new genetically optimized ANN
(GOANN) algorithm was proposed to solve classification problems using the WBCD [78]. This paper
took the best features of the GP to optimize both the weights and architecture for an ANN, it also
proposed modified crossover and mutation operators which expanded the search area and increased
the performance. This modified approach of crossover and mutation can eliminate the destructive
nature of the standard method for crossover and mutation. 99.26% classification accuracy has been
achieved by using 10-fold cross validation. In the same year, 98.50% was achieved using rough set
BPANN (RS-BPANN) with 7 attributes (Number 1 to 7 from Table 1) [79]. A year later, a deep belief
network (DBN) approach with ANN architecture (DBN-ANN) was proposed to help increase the
accuracy of a computer-aided diagnosis (CAD) system in the area of breast cancer [80]. The main idea
was to initialize the weights from the deep belief network path, learnt by the restricted Boltzmann
machine (RBM). This method used the WBCD to test the results. A “nine inputs-four hidden-two
hidden-one output” DBN-ANN architecture was used to test WBCD. 99.59% was obtained by the
utilizing scaled conjugate gradient BP method with 63.84–36.16 training-testing data and 99.68% was
obtained by applying Levenberg-Marquardt with 54.9–45.1 training-testing data.

3.2. SVMs

A few decades ago, a basic SVM approach was used to interrogate the WBCD [81] and 97.2%
classification accuracy was obtained. The result has proved the basic SVM approach achieved a high
accuracy given quality data in BC. Then in 2007, a least square SVM (LS-SVM) [82] was used to improve
the accuracy up to 98.53% [83]. The main difference between SVM and LS-SVM is that LS-SVM uses a
set of linear equations instead of quadratic programming in SVM due to the equality constraints in
the formulation. An SVM-based algorithm combined with feature selection was proposed to achieve
99.51% when classifying the WBCD data [84]. This method chose the best feature combination (of five
features) by calculating the F-score of different feature combinations.
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With the same database, a rough set (RS)-based SVM classifier (RS-SVM) was proposed, in which
a different feature selection method using the rough set attribute reduction algorithm was applied to
generate 20 subsets of attributes [85]. The further reduction of subsets (from 20 to 7) was achieved by
calculating the correlation between each condition attribute with a decision attribute. The condition
attribute with the weakest relevancy was kept, since the prediction accuracy can be improved by
a weakly relevant feature [86]. The highest classification accuracies were 99.41%, 100% and 100%,
simultaneously the averages were 96.55%, 96.72% and 96.87% in 50–50, 70–30 and 80–20 training-testing
datasets. A year after, another paper was published by the same group using PSO-SVM to analyse
the WBCD data to achieve a 99.3% classification accuracy [87]. In 2014, five types of SVMs; proximal
support vector machine (PSVM), finite Newton method for Lagrangian support vector machine
(NSVM), linear programming support vector machine (LPSVM), Lagrangian support vector machine
(LSVM), and smooth support vector machine (SSVM), were tested on WBCD data [88]. Overall accuracy
was 97.20% in LPSVM, 96.60% in SSVM, 96.60% in NSVM, 96% in PSVM and 95.40% in LSVM.

In 2017, a weighted-particle swarm optimization (WPSO) with smooth support vector machine
(SSVM) for classification achieved 98.42% [89]. In the same year, a two-step-SVM algorithm has
been presented by combining two-step clustering algorithm with an efficient probabilistic support
vector machine to analyse WBCD with 99.10% classification accuracy. Different from other clustering
methods, the two-step clustering algorithm can identify the number of clusters, provide effective
analysis efficiency for big corpus, and have the capability of making groups of elements [90].

3.3. DTs

In 1996, Quinlan applied a modified C4.5 decision tree which has the benefits of having a smaller
construction and higher predictive accuracy, to twenty UCI databases, which included the WBCD [91].
In 2005, 3 features were extracted from the WBCD using the C4.5 decision tree with expert suggestions.
The 6 remaining features were used by an artificial immune recognition system (AIRS) [92] to do the
classification. The new feature selection AIRS (FS-AIRS) could achieve 98.51% accuracy [93]. A year
after, a novel fuzzy decision tree (FDT) was constructed to test on the WBCD [94]. Each attribute
was processed using fuzzy trapezoidal membership functions, and then the “if-then” fuzzy structure
mapped into a decision tree form. This provided a compact and interpretable look with a 95.27%
classification accuracy. A hybrid model method for medical data classification was proposed by
combining case-based reasoning and fuzzy decision tree methods (CBFDT) in 2011 [95]. Fan et al.
discovered that researchers were interested in finding potential disease factors, so they proposed an
approach consisting of applying a case-based fuzzy decision tree to diagnose the potential illness
symptoms. It is a hybrid model method because before using the fuzzy decision tree, they used
stepwise regression analysis (SRA) to select the important input factors. Afterwards they used a
genetic algorithm to improve the accuracy of the fuzzy decision tree in medical symptom decisions.
Genetic algorithms found the best number of fuzzy terms for every input data, then the fitness function
was recalculated after getting each new set of fuzzy terms. The final result had an average classification
accuracy of 98.4% when used on data of the WBCD.

In 2014, a J48 decision tree method, originally developed by the WEKA project team [96], was used
to classify WBCD with a classification accuracy of 94.56% [97]. In 2016, an accuracy of 99.9% was
achieved using three steps [98]: clustering using farthest first clustering (FFC), pre-processing using
outlier detection (OD) and classification using the J48 decision tree. By removing 120 extreme values
from malignant data, the new dataset only contained 578 instances. Although 99.9% classification
accuracy has been attained, this algorithm has the limitation of not considering all instances. In the
same year, a hybrid intelligent system for medical data classification was proposed [99] consisting of a
combination of the fuzzy min-max (FMM) ANN [100,101], the classification and regression tree (CART)
and random forest (FF) model [102]. This hybrid intelligent system combined the advantages of these
three techniques. This novel system was able to learn incrementally from data samples (owing to the
fuzzy min-max ANN), explain its predicted outputs (owing to the classification and regression tree)
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and achieve high classification performances (owing to random forest). By analysing the benchmark
dataset WBCD, 98.84% accuracy was obtained. In 2017, a voting classifier technique has been applied
to WBCD. It is an ensemble approach to combine multiple models with a strategy that the predicted
reliability of each classifier differs among the different types of output classes. This technique combined
SVM, Naive Bayes and J48 using voting classifier technique to achieve 97.13% which is better than
each of individual classifiers [103].

Table 2. Summary list of ML methods involving the use of ANNs, SVMs, DTs and k-NNs in WBCD.

References Algorithms Sampling Strategies 1 Classification Accuracies (%)

Quinlan 1996 [91] C4.5 DT 10–fold cross validation 94.74

Setiono 1996 [45] Pruned ANN 50–50 training-testing 96.56

Bennett & Blue 1998 [81] SVM 5–fold cross validation 97.20

Setiono 2000 [64] Neuro-rule ANN 10-fold cross validation 97.97

Sarkar & Leong 2000 [104] k-NN 50–50 training-testing 98.25
Fuzzy k-NN 50–50 training-testing 98.83

Abbass 2002 [65] EANN 80–20 training-testing 98.10

Bagui et al., 2003 [105] k-RNN 10-fold cross validation 98.10

Kiyan & Yildirim 2004 [69] RBN 50–50 training-testing 96.16
GRNN 50–50 training-testing 98.80
PNN 50–50 training-testing 97.00
MLP 50–50 training-testing 95.74

Polat et al., 2005 [93] C4.5 + FS-AIRS 10–fold cross validation 98.51

Pach & Abonyi 2006 [94] F-DT 10–fold cross validation 95.27

Polat & Gne 2007 [83] LS-SVM 10–fold cross validation 98.53

Akay 2009 [84] F-score-SVM 10–fold cross validation 99.51

Karabatak & Ince 2009 [70] AR-ANN 3–fold cross validation 97.40

Marcano-Cedeño et al., 2011 [71] AMMLP 60–40 training-testing 99.26

Chen et al., 2011 [85] RS-SVM 80–20 training-testing 96.87

Fan et al., 2011 [95] CBFDT 75–25 training-testing 98.90

Chen et al., 2012 [87] PSO-SVM 10-fold cross validation 99.31

Koyuncu & Ceylan 2013 [74] RF-ANN 50–50 training-testing 98.05
PSO-ANN 50–50 training-testing 97.36

Medjahed & Saadi 2013 [106] k-NN (Euclidean) Holdout method 98.70

Azar & El-Said 2014 [88] PSVM 4–fold cross validation 96.00
NSVM 4–fold cross validation 96.57
LPSVM 4–fold cross validation 97.14
LSVM 4–fold cross validation 95.43
SSVM 4–fold cross validation 96.57

Sumbaly et al., 2014 [97] J48 10–fold cross validation 94.36

Seera & Lim 2014 [99] FMM-CART-RF 50–50 training-testing 97.29

Bhardwaj & Tiwari 2015 [78] GOANN 10-fold cross validation 99.26

Nahato et al., 2015 [79] RS-BPANN 80–20 training-testing 98.60

Abdel-Zaher & Eldeib 2016 [80] DBN-ANN 54.9–45.1 training-testing 99.68

Devi & Devi 2016 [98] FFC + OD + J48 10–fold cross validation 2 99.90

Kumar et al., 2017 [103] SVM-Naive Bayes-J48 10–fold cross validation 97.13

Latchoumi & Parthiban 2017 [89] WPSO-SSVM 5–fold cross validation 98.42

Osman 2017 [90] Two-Step-SVM 10–fold cross validaiton 99.10
1 “n1–n2 training-testing” means n1% of data for training set and n2% of data for testing set. 2 The algorithm
only uses 578 of 699 samples.
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3.4. k-NNs

k-NN related algorithms have a number of applications in BC diagnosis and prognosis.
The quality of the classification depends on the selection of k. In 2000, the k-NN and fuzzy k-NN
algorithms were implemented to classify the WBCD [104]. The different values of k from 1 to 15
were considered, and the best performance was when k equalled 1. The k-NN algorithm achieved
the accuracy of 98.25% in the testing set, and fuzzy k-NN acquired 98.83%. In 2003, rank k-NN has
been used to achieve 98.10% [105]. In 2013, four methods of calculating distance were used for k-NN
to determine the distance between each WBCD of the data points [106]. The results showed that the
highest classification accuracy was 98.70% when using the Euclidean distance with k = 1. The Cityblock
distance with k = 1, achieved 98.48%, and Cosine distance obtained 95.67% and Correlation, 94.69%.

4. Conclusions and Future Work

In this paper, we have provided explanations of different ML approaches and their applications in
BC diagnosis and prognosis used to analyse the data in the benchmark database WBCD. ML techniques
have shown their remarkable ability to improve classification and prediction accuracy. Various
methods have been shown in Table 2 with references, algorithms, sampling strategies and classification
accuracies, providing a clear and intuitive catalogue of information. Although lots of algorithms
have achieved very high accuracy in WBCD, the development of improved algorithms is still
necessary. Classification accuracy is a very important assessment criteria but it is not the only one.
Different algorithms consider different aspects, and have different mechanisms. Although for several
decades ANNs have dominated BC diagnosis and prognosis, it is clear that more recently alternative
ML methods have been applied to intelligent healthcare systems to provide a variety of options
to physicians.

In the last few years, our group has achieved many noteworthy results in improving the PSO
algorithms [107–110]. Compared with traditional PSO algorithms, our modified PSO algorithms have
better performances in many aspects. For instance, using the switching particle swarm optimization
(SPSO) algorithm based on Markov chains and the competitive penalized method can achieve faster
local convergence speed with higher accuracy and reliability, and the switching delayed particle swarm
optimization (SDPSO) algorithm has been validated showing it can improve global search and increase
possibility of reaching the global best. Next, we will test these different novel PSO algorithms in
combination with ANN via tuning weights to find out whether we can achieve a higher classification
accuracy with WBCD data. Additionally, our novel PSO algorithms can be applied to SVM to resolve
the problem of parameter optimization in kernel function.

Furthermore, we are going to process a set of rare datasets obtained from Friedreich Ataxia (FRDA)
patients. These datasets have been analysed using some traditional statistical approaches, such as
cross-sectional [3] and linear regression analysis [111], to gain general statistical knowledge about the
distribution and variation of the data. We intend to conduct an in-depth study of these datasets using
ML techniques to explore some potential rules between different data and datasets consecutively and
their state space model [112], with the purpose of establishing an intelligent FRDA healthcare system.
The basic idea of our FRDA healthcare system shown in Figure 5, and the corresponding results will
be published in future papers.
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