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An Exploratory Study of the Inputs for Ensemble
Clustering Technique as a Subset Selection Problem
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Abstract. Ensemble and Consensus Clustering address the problem of unifying
multiple clustering results into a single output to best reflect the agreement of
input methods. They can be used to obtain more stable and robust clustering
results in comparison with a single clustering approach. In this study, we propose
a novel subset selection method that looks at controlling the number of clustering
inputs and datasets in an efficient way. The authors propose a number of manual
selection and heuristic search techniques to perform the selection. Our investi‐
gation and experiments demonstrate very promising results. Using these techni‐
ques can ensure better selection methods and datasets for Ensemble and
Consensus Clustering and thus more efficient clustering results.

Keywords: Ensemble clustering · Consensus clustering
Subset selection problem · Heuristic search · Machine learning

1 Introduction

Clustering is the process of differentiating groups inside a given set of objects. The
resulting groups are assigned so that objects that are with each subset are more closely
related to each other than objects that are assigned in different subsets. There are various
practical applications involving the grouping of a set of objects into a number of non-
overlapping subsets. Partitioning methods formulated on the relationship between
objects through correlation or other distance metrics are mutually known as clustering
algorithms [18]. There is extensive work in the field of clustering, with many clustering
algorithms being developed. Each one of these algorithms can utilise different similarity
methods and/or have a different objective function. In addition, varying the parameters
of the same method or different methods and applying it on the same data can produce
varying results. Moreover, clustering methods can perform well on some datasets but
not on others. Thus, an essential question to ask is: given the number of clustering
methods and datasets, how do we choose between them?

One way to solve the varying clustering results is through the use of input formulated
from multiple clustering results, a technique called Ensemble Clustering that has been
gaining popularity recently. The Ensemble Clustering problem aims to operate summa‐
tion in order to gain a representative clustering with the least variability and an augmen‐
tation in mutual agreement. Ensemble Clustering overcomes inherent biases in the
search method by relaxing constraints to accept a solution rated as poorer than
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neighbouring solutions. This allows clustering algorithms to expand their local maxima
and further explore the search space beyond local bounds. The ensemble methodology
explores beyond the local maxima through the use of an input, formulated from multiple
clustering results to return a clustering result based upon the agreement between these
inputs.

Ensemble Clustering was first introduced by Strehl and Ghosh [27], has gained great
momentum and has been covered in the literature of [1, 5, 7, 12, 14, 15, 23]. This problem
relates to a structure which targets a combination of a set of multiple clustering solutions
or partitions into a single concrete clustering which optimises the data shared amongst
all the accessible clustering solutions. Undoubtedly, single clustering may not always
generate promising results and similarly, multiple algorithms may independently make
inferior choices by assigning some elements to the wrong clusters [25]. However, by
taking into account the outcome of several different clustering algorithms jointly, better
results can be achieved by mitigating degeneracies in distinctive solutions. These prob‐
lems have been further investigated in the literature of [10, 13, 21] in the context of the
stability and accuracy of the results. The Ensemble Clustering technique has been shown
to work on different datasets and especially well in bioinformatics [28]. It has highlighted
the potential of certain algorithms in applications to synthetic datasets. While ensemble
clustering is becoming ubiquitous in other aspects of data mining, however, there has
been little research into the implementation of an ensemble approach in the area of
cluster analysis [28].

Consensus Clustering (CC) is an ensemble method which uses an agreement matrix
to serve as a communal reservoir of clustering inputs, from which a consensus can be
iteratively obtained. CC receives a number (r), of clustering results as input and returns
a single consensus based on the level of agreement between these inputs. It is oriented
towards generating an optimum solution by iteratively comparing pairwise clustering
methods to determine a level of agreement. CC subsequently filters out poor agreements
until an optimised clustering ensemble is generated.

For this project, we look to model the behaviour of a variety of clustering methods
(inputs for consensus clustering) and datasets to create a large number of synthetic data‐
sets for investigating consensus clustering and the way it performs with the inputs.
However, before this can be accomplished it is difficult to get representative datasets
just by performing experiments on all datasets since they are of different properties and
sizes. In addition, datasets can work well on some clustering techniques and not others.

A number of studies have looked at the cluster ensemble selection problem [4, 6,
11]. Given a large library of clustering methods, the problem looks at identifying and
selecting a subset from the library to produce a smaller cluster ensemble with an equiv‐
alent or better clustering methods performance. The majority of studies use metrics that
may influence the performance of ensemble clustering such as diversity, quality or
accuracy to design the methods. However, there seems to be a lack of approaches which
look at identifying the optimal subset of both clustering inputs (for Ensemble Clustering)
and datasets. We propose a different metric, Weighted Kappa (WK), which measures
agreements between the clustering inputs for all selected datasets [2]. One advantage of
using the WK metric is that there is an interpretable table that can provide input on the
quality of the results. To our knowledge, this is the first study that makes use of this

2 S. Ayed et al.

A
u

th
o

r 
P

ro
o

f



metric in the cluster ensemble selection problem, in addition, no previous study has
looked at selecting both the clustering inputs and datasets for CC using heuristic search
techniques. Hence, this paper investigates a novel combinatorial optimisation technique
that looks at identifying and selecting a suitable subset for benchmarking and testing
Ensemble clustering by controlling the number of inputs and datasets in a much more
efficient manner. We propose two manual selection methods and three heuristic tech‐
niques (Genetic Algorithm, Simulated Annealing and Hill Climbing) to perform the
selection. We believe that by using heuristic algorithms it is possible to obtain better
selection results. A quality metric needs to be defined to maximise the number of inputs
and datasets to include in CC. We look to investigate if the inputs and datasets chosen
are enough to produce a model out of them i.e., evaluate the results to see if there is a
distribution that they fit into. We look to extend this work to explore and assess the CC
methodology for evaluating the efficiency of a given clustering method clusters more
comprehensively.

The paper is organised as follows. In the next section, we describe the datasets and
the clustering techniques chosen for this study. In Sect. 3, we introduce our quality
measurement metric, Weighted Kappa. Section 4 details the experimentations conducted
to select the appropriate WK threshold. The process of matrix creation and data prepa‐
ration is introduced in Sect. 5. Section 6 details the experimental methods chosen for
this study. A total of five proposed methods are introduced in this section. Section 7
explains the results produced from the experiments and Sect. 8 presents the post-analysis
results. Finally, Sect. 9 gives a brief description of our conclusions and presents future
directions.

2 Datasets and Consensus Clustering Inputs

2.1 Datasets

The datasets used for this paper are derived from various data repositories used by the
machine learning community for the empirical analysis of machine learning algorithms.
Particular attention is given to the type and nature of the datasets selected with strong
emphasis on real-world data. We collated a wide range of data categories mainly clus‐
tering data that includes; bio-medical, statistical, botanical and ecological. Data were
collected from: MLData [22], UCI Machine Learning Repository [9], Kaggle Datasets
[19], StatLib [26] and Time Series Data Library [17].

The database currently contains 198 datasets, with attributes (number of columns)
ranging from 3 to 167 and instances (number of rows) up to 4,898. All datasets went
through a data cleansing process to make sure that they were accurate and in the correct
format before running them on the clustering methods. The authors would like to note
that the expected clustering arrangements are known for all datasets.

2.2 Clustering Methods (Inputs)

There are broad classes of traditional approaches to the clustering problem, for this work
we present a wide range of different clustering algorithms (input methods), 32 in total.

An Exploratory Study of the Inputs 3

A
u

th
o

r 
P

ro
o

f



This allowed us to be more confident about the reliability of our methods. R was used
to implement the inputs for CC, which in this case was used on our subset selection
problem. The R script produces the 32 inputs selected and the expected clustering
arrangement for the 198 datasets. Table 1 displays a summary of the input methods
selected for this work and the number of variations implemented for each method.

Table 1. Clustering methods (inputs) summary

Clustering methods Details Variations
K-means The ‘stats’ package is used for implementing the K-

means function. The following algorithms were used:
Forgy, Lloyd, MacQueen and Hartigan-Wong

4

Hierarchical
clustering

The agglomeration methods are Ward, Single, Complete,
Average, Mcquitty, Median and Centroid. Two versions
of the methods are produced, using both Euclidian and
Correlation distance methods. The ‘stats’ package is used

14

Model-based
clustering

Model-based clustering is implemented using a
contributed R package called ‘mclust’. The following
identifiers is used VII, EEI, VVI, EEV and VVV

5

Affinity Propagation
(AP)

An R package for AP clustering called ‘apcluster’ is used.
AP was computed using the following similarity
methods: negDistMat, expSimMat and linSimMat

3

Partitioning Around
Medoids (PAM)

A more generic version of the K-means method is
implemented using the ‘cluster’ package. Two similarity
distance methods are used: Euclidean and Correlation

2

Clara (partitioning
clustering)

Clara is a partitioning clustering method for large
applications. It is part of the ‘cluster’ package

1

X-means clustering An R Script based on [24] 1
Density Based
Clustering of
Applications with
Noise (DBSCAN)

A density-based algorithm as part of the ‘dbscan’
package

1

Louvain clustering A multi-level optimisation of modularity algorithm for
finding community structure

1

3 Weighted-Kappa

WK is a simple statistical metric derived from Cohen’s Kappa Coefficient of Agreement
[8]. It is used for measuring the inter-rater agreement between two or more observers.
In clustering problems, this allows for a comparative assessment of two or more compo‐
nents. Moreover, the class relationships between clustering arrangements generated
through multiple clustering techniques can be evaluated. WK evaluates both the simi‐
larities and disagreements between pair-wise clustering arrangements in a matrix. This
allows for agreements between different inputs to be produced. WK compares clusters
that generate a score within the range −1.0 to +1.0 where −1.0 denotes no concordance
and +1.0 denotes complete concordance between the clustering arrangements. The
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distinction between the score establishes the structure of the arrangements. For example,
a high WK value indicates that the two arrangements are very similar, whilst a low value
indicates that they are dissimilar. A value close to 0.0 is usually observed for random
clusters, indicating they are not similar and has no values in common. Table 2 shows
the interpretation table for WK values.

Table 2. Agreement strength of Weighted-Kappa

Weighted-Kappa Agreement strength
0.0 ≤ K ≤ 0.2 Poor
0.2 < K ≤ 0.4 Fair
0.4 < K ≤ 0.6 Moderate
0.6 < K ≤ 0.8 Good
0.8 < K ≤ 1.0 Very good

Some of the inputs and the datasets are poor for consensus clustering; however, it is
difficult to easily identify the inputs and datasets that are poor as unsupervised learning
has no gold standard to compare it to. Thus, this research work relies on the WK metric
for the evaluation of the inputs. WK is implemented to measure the similarity between
inputs for all of the selected datasets. An equivalent metric to the WK metric is Hubert-
Arabie Adjusted Rand [16]. They can be both used in cluster analysis for comparing
two clustering inputs obtained from different clustering methods. WK was selected for
this study because of its similarity with Adjusted Rand and the benefit of having a qual‐
itative interpretation, c.f. Table 2.

4 Defining the Threshold

As mentioned earlier, certain inputs and datasets can produce poor WK values. There
is therefore a need to select an appropriate threshold value. Data that does not cluster
are data that has an average WK value of less than that of a particular threshold. Even
though the WK interpretation table, Table 2 displays a rough scale of what is expected
for the agreement strength, another way was needed to define the threshold value. Thus,
we conducted a simulation experiment which generated a million pairs of random clus‐
tering arrangements of different number of variables, n. The values of n start at 100 and
increments by 100 each time until it reaches 1,000 (10 different sizes). Then, two random
clusters are chosen and the WK values of these two clustering arrangements are recorded.
This is repeated for all clustering arrangements produced. The simulations results were
plotted and the distribution of WK is observed to find the most appropriate threshold.
The maximum, minimum, average and standard deviation WK values of the million
random clusters, for each of the 10 sets of n variables, are computed and displayed on
a plot (Fig. 1). The plot clearly shows a decreasing trend of the maximum WK values
as the number of variables increase - the maximum value for a million simulations is
rapidly approaching zero. We assume that the same pattern would continue after n =
1,000, continuing to get closer to zero. However, we believe it will never reach zero
along the x-axis as the model seems to be asymptotic.
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Fig. 1. Simulation experiment results plot of a million two random clustering arrangements of
10 varying number of variables, n.

From the simulations conducted it is clear that there is a very small chance of n
variables to be above WK value of 0.1, as the maximum value starts off from approxi‐
mately 0.1. In fact, the only time a WK value of 0.1 is attained was for the 100 variables
run and that was only for one value out of a million simulations. Analysing the rest of
the results from the simulations, it seems that this particular value is an outlier as the
next maximum WK value achieved was for 0.08. There were only 12 points produced
above the 0.08 threshold (out of a million simulations) and there are no points for the
0.09 WK value scale.

Since the WK value range is between +1.0 and −1.0, the minimum WK values
generated from the simulation are negatives values. The minimum WK value seems to
show the same trend as the maximum plot, except that it is on the opposite axis and that
the negative values seem to be lower for the majority of the simulations. The average
WK values produced from the simulations is around zero, as the simulations are
producing small negative values as well as small positive values, this is indicated by the
minimum and maximum plots. In addition, for the standard deviation plot, it seems that
as the number of variables increases the range between them starts tightening down i.e.,
as the minimum and maximum plots converge, the standard deviation gets smaller. Both
the mean and the standard deviation approach zero as the number of variables increase
in size.

The average number of variables for the 198 datasets is 421. Thus, from the plot of
the simulations, it can be seen that for 421 variables, the maximum WK value that can
be produced is around 0.02. Anything above 0.02 is unlikely to occur at random. A WK
threshold of 0.1 is still quite high, as the chance of two clustering arrangements that are
being compared being random is extremely rare and if they are not random then they
must be similar instead. However, the authors have decided to use it as the threshold
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due to the maximum WK value produced from the simulations was 0.1 and also due to
it being half-way between the poor scales of the agreement table (Table 2).

5 Matrix Creation and Problem Definition

For this work, 198 datasets were collated and 32 clustering techniques were selected as
inputs. On an initial inspection of the datasets and inputs, it is clear that some of the
datasets do not cluster well and some of the clustering methods are not as effective as
others on the datasets. It is difficult to get representative datasets just by performing
experiments on all datasets as they are all of different sizes and properties. The same
difficulty can be said for the inputs (clustering methods).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

W11 W12 W13 ⋯ W1m

W21 W22 ⋯ ⋯ W2m

W31 ⋮ W3m

W41 ⋮ W4m

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

Wn1 Wn2 ⋯ ⋯ Wnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Since all of the datasets under analysis contain the expected clustering arrangements,

the techniques used in this work can be verified. To address this problem, a 198 × 32
matrix of the WK values of the inputs’ (clustering methods) clustering arrangements
versus the expected clustering arrangements for each of the datasets was constructed.
Thus, let W be an n rows (number of datasets) by m columns (number of inputs) real
matrix where the ith, jth value wij is the WK of input j (the actual clustering arrangement
versus the expected clustering arrangement) applied to dataset i. Figure 2 displays a
simplified representation of the matrix.

Fig. 2. Matrix representation of WK values (clustering inputs versus datasets).

To aid in the visualisation of the WK matrix (198 × 32), a heatmap of the WK values
of the datasets and inputs was produced, shown in Fig. 3. An R package ‘stats’ (Version
3.5.0) was used to create the heatmap. WK values of 0.0 are shown in white (indicating
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poor results) and WK values of 1.0 are shown in black (indicating identical clustering
arrangements). Values between 0.0 and 1.0 are shown as shadows of grey. It can be
clearly seen from the figure that many of the WK values of the inputs (compared to the
actual clustering arrangements) for the datasets are poor. This indicates that some of the
inputs do not cluster well on all of the datasets and that some of the datasets do cluster
well at all. Thus, being able to identify the inputs and datasets that are poor and to exclude
them from the matrix is important. The aim is to find the best balance between inputs
and datasets. Manually removing the poor datasets or poor inputs would alter the row
averages and column averages as they are interconnected. Thus, selecting the appro‐
priate datasets and inputs becomes a sub-selection problem where the goal is to include
as many datasets and as many clustering methods as possible.

Fig. 3. A heatmap representation of the WK matrix.

6 Experimental Methods

As it is a subset selection problem and we look to maximise both datasets and clustering
methods (inputs), we propose five methods for selecting the inputs and datasets. Two
of the methods are based on manual selection (MS1 and MS2) and the other three are
based on heuristic search techniques (Random Mutation Hill climbing, Simulated
Annealing and Genetic Algorithms). The 198 × 32 matrix is used as input for the sub-
selection algorithm and the output is a subset containing the selected datasets and inputs.
As previously explained in Sect. 4, a WK threshold of 0.1 was selected and incorporated
into the techniques proposed. The aim was to include as many datasets (rows) and clus‐
tering inputs (columns) as possible. The maximum number of datasets to include corre‐
sponds to the total number of datasets available and likewise for inputs.

6.1 Manual Selection Methods

The manual process involves removing all rows and all columns where the average WK
value is less than 0.1. It is computed in two stages and thus two manual selection methods
need to be defined. The WK threshold that was chosen for this work is 0.1. The first
manual selection method (MS1) removes all rows that have an average WK value less
than the threshold (step 1), then removes all columns that have an average WK value
less than the threshold (step 2). The second manual selection method (MS2) removes
all columns that are below the threshold (step 1) then removes all rows that are less than
the threshold (step 2). Both methods will effectively reduce the original WK matrix in
size. Results of both methods are displayed in Table 3.
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Table 3. Sub-selection methods results table, displaying the number of included inputs and
datasets for each of the proposed methods

Method Datasets Inputs % Datasets % Inputs
MS1 79 11 39.9 34.4
MS2 53 28 26.8 87.5
RMHC 60 28 30.3 87.5
SA 60 28 30.3 87.5
GA 60 28 30.3 87.5

6.2 Heuristic Search Methods

Three heuristic search methods were implemented - Genetic Algorithm, Hill Climbing
and Simulated Annealing. For the three techniques selected a fitness function of quality
was needed, defined in the next section. The same program with the same fitness function
was used for the three algorithms. The fitness function simply works by creating a binary
mask which corresponds to include or exclude from the matrix, such that 1 to include a
dataset or an input from the matrix and vice versa for excluding a dataset or an input.
Given a binary string, the number of rows and columns that is less than the threshold
can be counted.

All three techniques were run for 10,000 iterations (or fitness function calls). The
time it undertakes the program to run is proportional to the fitness function calls. For
some of the experiments, the fitness function calls are referred to as the number of
iterations and the runtime of the program is proportional to the iterations number. Either
iterations or fitness function calls might be used throughout this paper. A well-known
issue with heuristic search techniques is that they can get stuck at local maximums. One
common solution to the problem is to restart the search at another random point. Thus,
the three heuristic experiments were repeated 25 times each and the average was
recorded.

f (S, W) =

n∑
i=1

m∑
j=1

𝛿(si, 1)𝛿(sj+n, 1)(wij − T)

=

n∑
i=1

m∑
j=1

𝛿(si × sj+n, 1)(wij − T)

(1)

Random Mutation Hill Climbing (RMHC) is a heuristic search algorithm that uses
an iterative approach to find an objective in the search space by simply maximising the
objective function. This algorithm starts at a random point in the search space and aims
for a better fitness of the objective function by randomly searching the adjacent or closer
neighbours. The process continues until the optimal solution is obtained and it starts all
over again at the new point reached. The RMHC algorithm was chosen as it is the most
basic variant of an evolutionary algorithm and it has been previously used in numerous
studies such as [3].

Simulated Annealing (SA) is a meta-heuristic technique which improves on
RMHC. The idea of SA originated from the natural process of annealing in metallurgy,
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which involves heating materials to a very high temperature and then allowing it to
slowly cool down to alter its physical structure. In SA a temperature parameter is kept
to simulate the heating process (it expresses the probability of accepting a solution with
a worst fitness). The temperature is initially set to a high value, allowing the temperature
to steadily “cool” (decreasing whilst running the algorithm). This temperature keeps
decreasing to reach a zero by the end of the algorithm, revealing the solutions. SA have
been applied to various problems [20] and was chosen for this reason. We note that one
per cent of the fitness function calls was used to find the starting temperature [28].

Genetic Algorithm (GA) was chosen as it is a powerful tool which can perform
various optimisation problems. GA represents the solution to a problem as string
(encoded as a chromosome). A population of chromosomes represents a subset of the
search space of all possible solutions. The fitness function is also used to rate the worth
of a solution that the chromosome represents. A standard binary GA using elitism was
used. The population size of the GA was set to 25 and the generations were terminated
after 10,000 fitness function calls. Genetic operations, mutation and crossover, are
applied to the solutions to help find the best fitness. The mutation is set at 0.5/number
of bits, whereas the crossover rate = 0.5.

6.3 Fitness Function

Let W be an n rows (number of datasets) by m columns (number of inputs) real matrix
where the ith,jth value wij is the WK of input j applied to dataset i. Given a binary string
S of length n + m, the first n bits are a mask of what datasets are selected and the next
m bits are a mask of what inputs have been selected. For example, if n = 5 and m = 3,
then the string S = “10101010” means that datasets 0, 2 and 4 have been selected along
with input 1. Let si be the ith bit of string S. The fitness function used in this paper is
defined as follows:

The function δ(i, j) is the Kronecker delta function δij, i.e. 1 if i = j, 0 otherwise.
Essentially the fitness function sums all of the WK values remaining after the binary

string S has been applied, penalised by a threshold value T, 0.1. The rationale behind
this fitness function is that when used in conjunction with a heuristic search method, a
configuration of S will be found that maximises the number of WK values that are above
T, excluding configurations where there are values below T. Alternative fitness functions
were experimented with before selecting the current fitness function.

7 Results

Results from the experiments are shown in Table 3. It displays the number of inputs and
datasets for each of the five proposed techniques. For all five methods, a threshold of
0.1 WK was used. Selecting a higher threshold would obtain worst results, fewer datasets
and inputs. The table also displays the percentages of the inputs and datasets in propor‐
tion of the total number of inputs and datasets, respectively. From the table, it can be
seen that MS1 produced the most datasets, 79, but much fewer inputs, 11. There is a
large difference between the inputs for this method and the rest of the methods. As the
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aim of the experiments is to include as many datasets and clustering inputs as possible,
it seems that the three heuristic techniques produce the best results, 60 datasets and 28
inputs. However, as can be seen from the results all three heuristic methods produce the
same optima, the same number of inputs and datasets. These identical results imply that
the search space is relatively smooth and easy to search. In order to find the best tech‐
nique, we need to analyse the three heuristic techniques in terms of runtime.

To find out the most efficient technique from the three heuristic methods, the conver‐
gence graphs of the three experiments were produced. As the experiments were repeated
25 times for each method, the average fitness is calculated and plotted on a graph
(Fig. 4). From the plot, it can be seen that RMHC converges at the least number of
iterations, 3,283, indicating that it is the most efficient in terms of runtime for this
particular combinatorial optimisation problem. SA comes second in terms of runtime,
converging at 5,701 iterations. Note that one per cent of the fitness function calls are
sacrificed to find the initial temperature. GA performed the worst in terms of runtime
converging the last out of the three methods. The authors presume if this was a larger
feature subset selection problem, GA and/or SA might perform better.

Fig. 4. A plot summarising the convergence points of GA, RMHC and SA.

The fitness function value produced from all three experiments is 221.895. The
minimum theoretical fitness is −399.839 and the maximum theoretic fitness is 288.823.
The fitness function value achieved is 90.2% of the way between the minimum and
maximum theoretical fitness, points close to the minimum and maximum are almost
certainly not achievable.

In addition, the three methods producing the exact same fitness function values does
not mean that the outputted string binary arrangements are similar. Thus, we defined a
simple metric based on Hamming Distance that cross-compares the similarity of each
binary string representation from all the repeats to each other. It counts the occurrence
of 1s and divides them by the number of possible 1 s. This was computed for all three
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heuristic search methods used in this study. Results show that the binary string repre‐
sentation produced from each of the 25 repeats of the three methods (75 in total) is
identical to each other, illustrating consistency of the results.

8 Post-analysis Results

From the previous section RMHC was found to be the most efficient heuristic method
for this particular combinatorial optimisation problem. As this technique outputs 60
datasets and 28 input clustering methods, a WK matrix of the 60 datasets versus the 28
inputs was constructed. The matrix is of the WK values of the output clustering arrange‐
ment versus the expected clustering arrangement of the 28 input methods, for the 60
datasets. The followings are post-analysis on the quality of the results.

A normality test was used to determine if the data under analysis was modelled by
a normal distribution. It computes the likelihood of a random variable from the data to
be of a normal distribution to find out how the averages of the inputs vary. Thus, to test
for normality we averaged each column in the 60 × 28 matrix; this provided us with 28
values of 60 in size. Before testing for normality, we applied the following transforma‐
tions to the data:

(a) Computed the absolute values of the results
(b) Removed any zero values
(c) Took the log (base e) of the results

Five normality tests were selected for this analysis, they are displayed in Table 4.
They are part of the R “nortest” package (30 July 2015). The average results from these
five normality tests are displayed in Table 4. By working out the average of the five
normality tests, results show that 22 of the 28 inputs pass the normality test at the 0.01
significance level. Results show that the individual averages of the test values are
normally distributed and so too the mean of the five tests. This indicates that it is possible
to generate the input distribution from another normal distribution based on that mean
i.e., by providing a distribution model to use based on WK values of the inputs.

Table 4. A summary of the normality test p-values and their mean for all inputs

Name Test type P-value
ad.test Anderson-Darling Test for Normality 0.08062
cvm.test Cramer-von Mises test of goodness-of-fit 0.07086
lillie.test Lilliefors (Kolmogorov-Smirnov) Test for Normality 0.04948
pearson.test Pearson Chi-Square Test for Normality 0.04352
sf.test Shapiro-Francia Test for Normality 0.13560
Average 0.07601

For the 60 datasets, we computed the average WK of the inputs’ clustering arrange‐
ments versus the expected clustering arrangements (we will refer to as inputs vs.
expected). Subsequently, we computed the average WK of the inputs’ clustering
arrangements against each other’s, again for the 60 datasets (we will refer to as inputs
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vs. inputs). This provided us with two datasets of size 60. Correlating these two datasets
produced 0.562 which shows a strong positive correlation above the 1% significance
level. This suggests that if the number of inputs keeps increasing, the mean of the inputs
vs. inputs will possibly start resembling the mean of the inputs vs. expected. From
looking at the WK pairs of values (inputs vs. inputs and inputs vs. expected) it can be
seen that in many of the cases they are close together. Thus, from the datasets selected,
results show that the inputs vs. inputs are similar to the inputs vs. expected results,
indicating a link between the intra-method agreement and the method versus the
expected. This is interesting as it implies if we would like to find out the average quality
of the inputs without having the expected clustering arrangements, we could evaluate
the performance based on the average performance of the inputs vs. inputs. This allows
us to have an approximate idea of the quality of the results (inputs) if there are no
expected clustering arrangements to compare it with. We would only need to compare
the input with every other input and compute the average. If it is very high we would
know that the clustering methods are reasonably accurate and if it is very low we would
know that the clustering methods are not appropriate. We look to further investigate this
relationship as part of future work.

Moreover, we have computed the standard deviation of the inputs vs. inputs and
inputs vs. expected. Correlating these together presents a correlation of 0.441, which
clearly passes the 1% significance level. Lastly, to find out if there is a relationship
between the average inputs vs. expected and the size of the datasets (number of instances
and attributes), we correlated them. The correlation was shown to be 0.093 for the
number attributes, and −0.165 for the number of instances. These two correlations are
weak and they do not pass the 10% significance level (0.211). This indicates that there
are no relationships between the average WK of the inputs and the changing dataset
sizes. This relationship is independent i.e., does not increase or reduce based on the size
of the dataset. The same was repeated for correlating the average inputs vs. inputs and
the dataset sizes (number of instances and attributes). Correlations are also shown to be
weak: 0.014 for the number of attributes and −0.187 for the number of instances. These
results show that there is no bias in the WK values produced or our proposed data selec‐
tion technique.

9 Conclusions and Future Work

Clustering inputs and datasets for consensus clustering can be poor. Moreover, it is not
straightforward to identify the inputs that are poor or the appropriate datasets. This
research work explores the behaviour of CC and looks at modelling a suitable distribu‐
tion for it by selecting the most suitable inputs and datasets. Instead of selecting them
at random, it proposed five sub-selection techniques (three heuristic and two manual
selection methods) to achieve the largest number of inputs and datasets. Results showed
that a normal distribution model, based on the WK values of the inputs, can be used to
generate the input distributions of CC. Using these techniques may improve the results
for CC. In addition, results have also presented a quick metric that can be used to estimate
the quality of the inputs (clustering methods), if there are no expected clustering
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arrangements to compare the outputted clustering arrangements with. For this work we
are not applying the results to CC; however, we look to extend this study towards a larger
issue of combinatorial optimisation and apply results to CC. For future work we would
also seek to expand on the datasets; a larger number of dataset values is needed to model
a more accurate distribution.
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