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Analyzing Outliers Cautiously

Xiaohui Liu, Gongxian Cheng, and John X. Wu

Abstract—Outliers are difficult to handle because some of them can be
measurement errors, while others may represent phenomena of interest,
something “significant” from the viewpoint of the application domain. Statistical
and computational methods have been proposed to detect outliers, but further
analysis of outliers requires much relevant domain knowledge. In our previous
work, we suggested a knowledge-based method for distinguishing between the
measurement errors and phenomena of interest by modeling “real
measurements”—how measurements should be distributed in an application
domain. In this paper, we make this distinction by modeling measurement errors
instead. This is a cautious approach to outlier analysis, which has been
successfully applied to a medical problem and may find interesting applications in
other domains such as science, engineering, finance, and economics.

Index Terms—Outliers, domain knowledge, Al modeling, self-organizing maps.
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1 INTRODUCTION

A strange data value that stands out because it is not like the rest of
the data in some sense is called an outlier. Often, a mistake in the
data will result in an outlier being present. However, not all
outliers are mistakes and these “unrepresentative” data points may
represent phenomena of interest, something “significant” from the
viewpoint of the application domain.

There are two principal approaches to outlier management [2].
One is outlier accommodation, which is characterized by the
development of a variety of statistical estimation or testing
procedures which are robust against, or relatively unaffected by,
outliers [11]. In these procedures, the analysis of the main body of
data is the key objective and outliers themselves are not of prime
concern.

The other approach, characterized by identifying outliers and
deciding whether they should be retained or rejected, is the subject
of study in this paper. Many statistical techniques have been
proposed to detect outliers and comprehensive texts on this topic
are those by Hawkins [10] and Barnet and Lewis [2]. These
approaches range from informal methods such as the ordering of
multivariate data [1], the use of graphical and pictorial methods
[12], and the application of simple test statistics [7] to some more
formal approach in which a model for the data is provided and
tests of hypotheses that certain observations are outliers are set up
against the alternative that they are part of the main body of data
[10], [4]. The identification of outliers has also received much
attention from the computing community [3], [13], [17]. However,
there appears to be much less work on how to decide whether
outliers should be retained or rejected. In order to successfully
distinguish between noisy outlying data and noise free outliers,
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different kinds of information are normally needed. These should
not only include various data characteristics and the context in
which the outliers occur, but also relevant domain knowledge. The
procedure for analyzing outliers has been experimentally shown to
be subjective, depending on the above mentioned factors [6].

We have conducted some preliminary research on how to
analyze outliers using domain knowledge. In particular, a strategy
for distinguishing between phenomena of interest and measure-
ment noise was proposed and applied to the analysis of a set of
visual field test data collected from a group of glaucoma patients in
an eye hospital [16]. That strategy attempted to model “real”
measurements, namely, how measurements should be distributed
in a domain of interest (e.g., how glaucoma manifests itself on
visual field data) and rejected values that do not fall within the real
measurements. In this paper, however, we attempt to model noise
and error processes instead and accept data outside of the norms if
it is not accounted for by a noise model. We describe a program
that uses this method which does significantly better at a
diagnostic task than an equivalent approach that either utilizes
all data or attempts to reject all nonnormal values.

2 OUTLIER ANALYSIS BY MODELING NoISY DATA

Assuming that we have a model of how noisy data points are
distributed in an application, we could then use that model to help
distinguish between the noisy outlying data and the noise-free
outliers. In this section, the strategy for constructing the noisy
model is detailed, followed by the discussion of its application to a
medical problem in subsequent sections.

Definition. Let Q be a p-dimensional sample space. Let X =
{z1,29,...,2,} be a set of vectors drawn from Q and O be a set of
outliers in X, where O C X. Let C = {noisy,rest} represent two
general classes. Let F' = {f1, f2,..., fm} be a set of features extracted
from X.

Definition: Noise Model Construction. A noise model is constructed
which could account for much of recognized measurement noise in a
domain of interest. Here, we assume such a model is not readily
available (things would become much easier if it is), and it needs to be
constructed or learned. In particular, we assume that a group of data
sets Xs can be labeled into two general classes (noisy, rest), based on
relevant domain knowledge and close examination of data sets. This
group of labeled data sets, together with a set of features F' which may
be extracted from the data sets, is then used to build the classification
model (e.g., a set of classification rules) using an inductive learning
technique. Those classification rules corresponding to noisy then
become the noise model M.

Definition: Noise Elimination. Each new data set, say X', is tested
against the noise model M generated in the above step. If applicable,
then the outliers O' within the data set X' can be rejected (due to
known measurement noise).

We make the following observations regarding the proposed
method:

1. The construction of the noise model requires a set of
representative labeled instances on which the “noise
model” may be built. There are two mutually exclusive
classes that each data set can be assigned to in a domain of
interest. Class noisy indicates that the corresponding
outliers O in the data set X are noisy data points and can
therefore can be deleted; while class rest either says we are
not sure whether the outliers in the data set are due to
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Fig. 1. Data structure of each CCVP test.

measurement noise or some phenomena of interest, or
when there is no outlier in the data set.

2. Note that many classification models may be con-
structed from a set of labeled instances. The classifica-
tion model as mentioned in the Noise Model Construction
step refers to the “best” model in terms of its predictive
accuracy, its simplicity or interpretability, misclassifica-
tion costs, or other appropriate criteria for the problem
under investigation [5], [8], [19].

3. The success of the method very much depends on the
correctness and completeness of the noise model
constructed. The correctness of the model depends
largely on the quality of domain knowledge—a set of
labeled instances in the proposed method—although the
choice of inductive learning algorithm may also matter.
On the other hand, if the model does not sufficiently
cover all possible types of measurement noise, the data
set after cleaning would still contain much noise.

4.  The precondition for using the method regarding the
availability of relevant knowledge about the distribution of
noisy data points (labeled instances) is reasonable in many
applications. For example, in time series forecasting, the
understanding of “special irregular events” and their
effects on the forecasting results can be used to build the
corresponding “noise model” where using the data after
removing the effect of the special irregular effects may
often increase the forecasting accuracy. In the next two
sections, we will present a detailed case study of analyzing
medical test data and show how such noise model can be
developed to eliminate the measurement noise.

3 OUTLIERS IN VISUAL FIELD DATA

The Computer Controlled Video Perimetry (CCVP) [20] is a visual
function test method and has been shown to be an effective way of
overcoming difficulties in the early detection of visual impair-
ments caused by glaucoma. It examines six locations on the test
screen which correspond to crucial positions in the visual field. All
six locations are tested by one or more stimuli and this
measurement cycle is repeated 10 times.

The test screen consists of a number of objects of the same type
and, at any stage of the test, only one of them is moving. If the
stimulus is seen at any stage of the test, the subject presses a button
as a response. At the end of each CCVP test, 10 data vectors are
produced, each of which records the subject’s responses during a
single measurement cycle. The corresponding data structure for
each test consisting of 10 repeated measurements over six locations
using four stimuli can be seen in Fig. 1 where each element is either
1 which shows that the subject does see the stimulus or 0 which
shows the subject does not.
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One way of identifying outlier(s) is to use Kohonon's self-
organizing map (SOM) [14]. The SOM consists of two layers of
nodes: the input layer and the output layer. The input layer is a
vector of N nodes for presenting the input patterns to the network,
and the output layer is often a two-dimensional array of M output
nodes (output map). Each input node is fully connected to every
output node via a connection weight, so there is a weight vector
associated with each output node. When an input vector is
presented to the SOM, the distance between it and each of the
weight vectors is computed. The output node whose weight vector
is closest to the input vector is called the winner node.

An SOM is capable of mapping similar input patterns onto
geometrically close output nodes. If a majority of the winner nodes
can be located in a small neighborhood as a cluster on the output
map, then those data vectors that correspond to a few remaining
nodes that are far away from this neighborhood are exposed as
outliers. The following are the key steps involved in obtaining
SOM for the identification of outliers in visual field data [15]:

1. Definitions. Let V be the input data set such that each
v* € V, a vector of N dimensionality with values over the
set {0,1}, corresponds to the response pattern from one
measurement cycle such that v; is 1 if the subject can see
the kth stimulus within the cycle, and 0 otherwise.Let the
output space be A and the number of output nodes be M.

Let W be a set of connection weight vectors where
each output node j(1<j< M) is associated with a
connection weight vector of N dimensionality of the
form w; = (wji,...,w;n), where wj, represents the
connection weight between the input node k and the
output node j.

Let n be the gain value which affects the rate of
adjustment of the connection weight vectors, and let N, be
a round neighborhood of output node ¢ and r be the radius
of N.. For any output node j, j € N, if the distance between
c and j in the output map is not greater than r.

2. Initialize the topology and size of the output map. Set the value
for M.

3. Initialize weights. Initialize the connection weights to
random values over the interval [0.0, 1.0], and normalize
both the input vectors and the connection weight vectors.
Initialize the gain value 7 and the neighborhood radius r.

4.  Present new input. Setito i + 1 and present input vector v'.

5. Select minimum distance. The distance between the input
vector v and each output node j is computed by

N
d(v',wj) = Y (v, — wie)”.
k=1

Designate the winner node with minimum distance to be c.

6. Update weights and neighborhood. Adjust the connection
weight vectors of the winner node ¢ and its neighborhood

N,, i.e., for each node j € N, perform the following:

w(.n ew) _ w('nld)

(old)
J J wj ] ’

+nlvi —
Decrease both the neighborhood radius r and the gain
value 7.

7. Repeat by going to 4. This iteration process continues until a
stable network is obtained. In our experiments, several
thousand input vectors were used to construct the network
and they were iteratively submitted 100 times in random
orders to achieve convergence.

Fig. 2 illustrates the application of the SOM to the CCVP

test. The basic idea is that the data set corresponding to each
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Fig. 2. Apply the SOM to the test.

measurement cycle is used as an input vector and each input
vector produces a winner node, so the 10 data vectors for each
CCVP test would produce 10 winner nodes.

SOM has an important property that similar data vectors are
mapped onto identical or geometrically close winner nodes on the
output map, making the clustering and visual inspection of similar
data vectors possible. Fig. 3 demonstrates the results of a particular
test case on the SOM output map. The meanings of the map in the
context of visual field data is this: The top right region of the map
is most sensitive, i.e., the subject can see most of the time and the
sensitivity gradually fades toward the bottom left region (see [15]
for details). Therefore, it is not difficult to see that this subject could
see all the time except during the eighth measurement cycle, in
which case the subject may have a normal visual field, but was
distracted during that particular measurement cycle. The data
vector collected during the cycle is therefore an outlier, while those
vectors corresponding to the other nine cycles form the stable part
of the data.

Note that there is something arbitrary about any rule that
decides which data values are outliers and which are not. Take
credit authorization as an example. The rule for identifying
suspicious, possible fraud transactions, is not always easy to set.
If the rule is too strict, fewer outliers are detected, hence, some
important ones (fraudulent transactions) may be missed; if the rule
is too lenient, many more outliers (including a lot of legal
transactions) are detected, requiring attention to details that are
not important. To identify the main cluster of data using SOM,
thus exposing outliers is just one of the informal approaches to
outlier detection. One of the advantages of this approach is that it
can visualize the subject’s behavior during the test, e.g., whether
the subject has demonstrated the signs of fatigue, inattention, and
learning effects, etc. For example, Fig. 3 may have shown a case of
inattention by the subject during the eighth test cycle. This
visualization property is helpful in labeling the training cases for
building the noise models (see the next section).

4 ANALYZING VISUAL FIELD OUTLIERS

Fig. 4 illustrates how the strategy proposed in Section 2 based on
noise models works. Suppose that a set of training data, by using

output nodes

input nodes

4 stimuli
10 trials

6 locations

"~ winner node for each vector

relevant domain knowledge, can be labeled into two classes:”-
noisy” and “rest.” Class “noisy” indicates that the corresponding
outliers in this data set are noisy data points, while class “rest”
covers all other situations. Given sufficient amounts of training
data, one can use any supervised machine learning techniques to
build a “noise model” and this model, after validation, can then be
used to help distinguish between the two types of outliers.

Note that the labeling of training instances is not always easy,
especially with multidimensional data. To assist in this process, we
have used Self-Organizing Maps to visualize and compress data
into a two-dimensional map as discussed in Section 3. Data
clusters and outliers then become easy to spot, and data are then
relatively easily interpreted using the meaning of the map and
relevant domain knowledge. So given a data set, outliers may be
detected and can then be tested using the noise model. As a result,
noisy outliers can then be deleted, while the rest of outliers are
kept in the data set for further analysis.

4.1 Noise Model I: Noise Definition
In this application, noise in data are defined as those data points
typically associated with learning effects, fatigue, and inattention.

In this connection, we may define outlying data points due to
learning effects on the self-organizing maps as follows: If the
sensitivities of the initial few cycles do not show much regularity,
but the sensitivities of the remaining cycles gradually become

012345679

Fig. 3. Visualizing outlier/inattention on the SOM output map.
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Fig. 4. The process of outlier analysis.

similar, then the data points corresponding to the initial cycles are
outlying due to learning effects. In this case, the winner nodes of
the initial cycles perhaps are irregular, but are gradually gathered
around a small neighborhood on the map. One example of such
cases can be seen in Fig. 5.

On the other hand, if the sensitivities of several initial test cycles
are high and similar to each other, and the sensitivities of the
remaining cycles are decreasing over time, then the data points
corresponding to the remaining cycles are outlying due to fatigue.
In this case, the winner nodes of the initial cycles tend to be in a
small neighborhood and the winner nodes of the last few cycles
tend to move away from the small neighborhood to areas where
the sensitivities are lower. One example of such cases is given in
Fig. 6 where the subject could see most of the time during the first
six measurements, while the nodes of the next four cycles move
away from the first node to some nodes with lower sensitivity
values, which indicates that the subject cannot see as clearly as
early in the test.

A typical case of inattention was given early in Fig. 3 where
clearly the subject had a normal visual field, but was distracted
during the eighth measurement cycle. This results in poor
sensitivity values for this particular measurement cycle, leading
to fluctuation in the data. This type of fluctuation, however, should
not affect the overall results of the visual field. Therefore, the data
collected during this cycle can be dropped. In all the above cases,
decisions regarding whether to delete certain outlying data points
are relatively easy. For example, the data points corresponding to
measurements 6, 7, 8, and 9 may be deleted in Fig. 6, while those

23 456789
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Fig. 5. An example of learning.

-

corresponding to measurements 0, 1, 2, and 3 in Fig. 5 may be
cleared. However, things are not always this clear-cut.

Figs. 7 and 8 demonstrate two test results for the same subject
who had been confirmed by an ophthalmologist as a glaucoma
patient. Fig. 7 does seem to show there is a cluster in the top left
corner of the map. However, since none of the measurements has
shown any high sensitivities (in the top right corner area) and there
are six measurements scattered around on the map, there is good
reason to believe that these measurements might tell us something
about the pathological status of the subject. The elimination of any
of these measurements might lead to the loss of useful diagnostic
information, and worse still, could lead to an incorrect conclusion
about the patient’s pathological status. Meanwhile, Fig. 8 does not
seem to show any interesting clusters and none of the measure-
ments are very sensitive. In this case, there is no easy way of
finding out which measurements are noisy and which are not,
therefore all the measurements are kept for further analysis.

4.2 Noise Model II: Construction

The construction of the noise model in this application is as
follows:

1. A set of visual field test records (310 in total) were used for
the purpose of building the classification models. Using
the visualized data presented by SOMs and relevant
knowledge regarding the visual field test, a domain expert
labeled each of these records into either noisy: correspond-
ing outliers are measurement noise caused by one of the
three behavioral factors: learning, fatigue, and inattention;
or rest: all other situations. The labeling of these training

012345

Fig. 6. An example of fatigue.
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Fig. 7. A glaucoma case (with cluster).

cases into the two classes were made much easier with the
help of corresponding SOMs. For example, there is little
difficulty in labeling those outliers in Figs. 3, 5, and 6 into
noisy. When in doubt—when it is not sure whether the
outliers in a test record are due to measurement noise or
due to pathological factors or when there is no outlier in
the data set—put the record into the rest class, e.g., the
cases illustrated in Figs. 7 and 8.

2. Several features, including the average sensitivity (the
proportion of positive responses) and the test stability (a
measure of variations between repeated measurement
cycles in a test), were extracted from the data sets and
relevant domain knowledge. These features, together with
those labeled instances as discussed in the above step,
were used to develop the classification models. In
particular, we have used Quinlan’s C4.5 [18] to learn a
set of production rules. Experiments were performed to
find a set of rules which would minimize the errors on the
unseen cases. This includes the division of 310 cases into
training and testing cases of various sizes and the use of a
more robust method of 10-fold cross validation. It appears
that the 10-fold cross validation presents the most
promising results for our data set.

3. Those production rules within the noisy class now become
our “noise model” and can then be used to delete the
corresponding outliers for future test data. Since the noise
model is built using those test records with “obvious”
noisy outliers, this results in a cautious approach to outlier
analysis in that only those outliers most likely to be noisy
are deleted. Naturally, the confidence of the decisions
depends on the quality and coverage of the training
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Fig. 8. A glaucoma case (without cluster).

examples provided by the expert. Remarkably, with the
labeling of just over 300 cases, useful rules have been
learned for deleting “noisy” outliers and also for keeping
outliers when it is not sure whether they are noisy or not.

Here is one of the learned rules that has been found by the
domain expert particularly helpful in identifying the noisy outliers:

Given a test T,

If stability(T) > 0.60,
stability(T) < 0.90,
average-sensitivity(T) > 0.77
Then the corresponding outliers are noisy.

4.3 Evaluation

In this section, we present results of evaluating the noise model
constructed in the previous section using clinical test data. The
visual field test was conducted in a large urban general practice in
North London for a glaucoma case findings study. All patients
aged 40 years or older who routinely attended the practice for a
three-month period during the pilot study were offered the test. A
total of 925 patients were screened and 78 of them were later
assessed clinically in the practice by an ophthalmologist; this
sample included all the 33 people who failed the test and a
randomly sampled age matched control group. Among these, 22
eyes were later assessed as glaucoma, 81 were confirmed as normal
eyes without any disease, and the rest were diagnosed as other
types of ocular abnormalities.

Fig. 9 summarizes the results of examining the discriminating
power of the test in terms of its glaucoma detection rate versus false
alarms using three different data sets: the original 103 test records

100% & r r ) i * A
90% //- -
o
80%
o 70% L./ —e—raw data
&‘3 60% y 4
5 % / without
E 40% # outliers
8 30%
20% —A—with
? selected
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0% 1 | | | | ‘ 1 1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

False Alarm

Fig. 9. The results.
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corresponding to all the glaucoma and normal eyes, the data set
obtained after all outliers are deleted from those test records, and
the data set with selected outliers (after applying the noise model
to eliminate noisy outliers). The Receive Operator Characteristic
(ROC) curves [9] are used to assess the test’s diagnostic
performance by displaying pairs of false alarms and detection
rates throughout the whole range of the test’'s measurements.
While the curves shifted toward the upper left of the diagram,
performance of the test is improved in the sense of maximizing
detection rates and minimizing false alarms. The decision thresh-
old used for discriminating between normal and glaucoma eyes is
the average percentage of positive responses within the test. For
instance, the cut-off threshold value of 70 percent has been found
to enable the data with selected outliers to achieve a detection rate
of 90 percent and a false alarm of 20 percent.

From Fig. 9, it is clear that the data with selected outliers
perform better than the other two in terms of maximizing the
detection rate and minimizing false alarms. For example, this
group can achieve a 100 percent detection rate, while the
corresponding false alarm rate is 30 percent. This is equivalent to
saying that none of the subjects suffering from glaucoma would
have escaped notice and only 30 percent of those normal subjects
would have been unnecessarily referred for further examination.
To reach a 100 percent detection rate by using the raw data,
however, 60 percent of normal subjects would receive false alarms.
In comparison with the data with selected outliers, this doubles the
number of people who will be referred and further examined
unnecessarily.

5 CONCLUDING REMARKS

This paper represents a novel attempt in automating the use of
domain knowledge in helping distinguish between noisy out-
liers and noise-free outliers, an important issue in many
applications including fraud detection, medical tests, process
analysis, and scientific discovery. In particular, we have
presented a cautious approach to outlier analysis in that only
those outliers most likely to be noisy (judged by domain
knowledge) are eliminated. This approach to knowledge-based
outlier analysis is a useful extension to existing work in both
statistical and computing communities on outlier detection. Our
research on outlier analysis was initially motivated by a
challenging medical application. However, the proposed ap-
proach is sufficiently general enough that it may be applied to
other applications where the automation of outlier analysis
could lead to important benefits. In this note, we have found
that Al modeling techniques, when properly integrated, have
great potential in automating the challenging knowledge-based
outlier analysis process.
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