
 

SIMULTANEOUS MODELLING AND CLUSTERING OF 

VISUAL FIELD DATA 

A thesis submitted for the degree of Doctor of Philosophy 

 

by 

Mohd Zairul Mazwan Bin Jilani 

 

Department of Computer Science 

Brunel University London 

December 2017 



 

2 

 

 

Abstract 

In the health-informatics and bio-medical domains, clinicians produce an enormous 

amount of data which can be complex and high in dimensionality. This scenario includes 

visual field data, which are used for managing the second leading cause of blindness in 

the world: glaucoma. Visual field data are the most common type of data collected to 

diagnose glaucoma in patients, and usually the data consist of 54 or 76 variables (which 

are referred to as visual field locations). Due to the large number of variables, the six 

nerve fiber bundles (6NFB), which is a collection of visual field locations in groups, are 

the standard clusters used in visual field data to represent the physiological traits of the 

retina. However, with regard to classification accuracy of the data, this research proposes 

a technique to find other significant spatial clusters of visual field with higher 

classification accuracy than the 6NFB.  

 

This thesis presents a novel clustering technique, namely, Simultaneous Modelling and 

Clustering (SMC). SMC performs clustering on data based on classification accuracy 

using heuristic search techniques. The method searches a collection of significant clusters 

of visual field locations that indicate visual field loss progression. The aim of this research 

is two-fold. Firstly, SMC algorithms are developed and tested on data to investigate the 

effectiveness and efficiency of the method using optimisation and classification methods. 

Secondly, a significant clustering arrangement of visual field, which highly interrelated 

visual field locations to represent progression of visual field loss with high classification 

accuracy, is searched to complement the 6NFB in diagnosis of glaucoma. A new 

clustering arrangement of visual field locations can be used by medical practitioners 

together with the 6NFB to complement each other in diagnosis of glaucoma in patients.  

 

This research conducts extensive experiment work on both visual field and simulated data 

to evaluate the proposed method. The results obtained suggest the proposed method 

appears to be an effective and efficient method in clustering visual field data and 
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improving classification accuracy. The key contributions of this work are the novel 

model-based clustering of visual field data, effective and efficient algorithms for SMC, 

practical knowledge of visual field data in the diagnosis of glaucoma and the presentation 

a generic framework for modelling and clustering which is highly applicable to many 

other dataset/model combinations.   
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{…} A set 

[[…], [..], ..]  List of clusters 

  Summation 

  Product 
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A change in a variable 
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Introduction 

1.1 Overview 

 

This thesis presents research on a clustering technique (Simultaneous Modelling and 

Clustering - SMC) that is applied towards visual field data. The technique, which is also 

a model-based clustering technique, is devised to find a significant clustering arrangement 

of visual field locations that indicates visual field loss. The practicality of the clustering 

technique is investigated and tested on the data by implementing a number of optimisation 

and classification methods. Chapter 1 consists of eight sections. Section 1.1 provides an 

overview of the work presented in this thesis. Research background is discussed in section 

1.2. The problems being addressed and the motivation behind this work are discussed in 

section 1.3. Research aim is set out in section 1.4. Building from research aim, research 

objectives and questions are formulated in section 1.5. Section 1.6 describes the 

methodology and details out SMC experiments conducted within this research. Research 

novelty is demonstrated in section 1.7. Finally section 1.8 summarises the chapters 

presented in this thesis.   

 

1.2 Research Background 

 

According to a report from IBM Marketing Cloud, “10 Key Marketing Trends For 2017,” 

90% of the world’s data has been collected in the last two years (Loechner, 2016). With 

the advent of computerised technologies in the health-informatics and bio-informatics 

domain, there has been an explosion in the amount of data collected and they are rarely 

analysed (Herland, Khoshgoftaar and Wald, 2014). Visual field data, which are collected 

from patients to manage glaucoma, are a high volume dataset available on digital storage 

at clinics, and they need to be analysed to a satisfactory level in order to explain visual 

loss in patients. Due to the fact that limited knowledge can be obtained from a vast amount 
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of data by clinicians, analysing visual field data using machine learning techniques, 

therefore, could bridge the gap between clinicians and computer technology. 

Furthermore, prediction of glaucoma progression using machine learning could support 

medical practitioners in providing data-driven decision-making for a diagnosis of this 

irreversible disease in patients.  

 

Visual field data are high dimensionality in nature. In other words, the data comprise of 

numerous variables (more than 52) which represent sensitivity of visual field locations in 

patients. Early exploratory experiments (classifying visual field data) on these 52 

variables found that the predictive accuracies of the data were between 75.4% to 84.9%. 

Finding a collection of the variables on this dataset that could highly improve predictive 

accuracy using computer algorithm is an area to research. As such, clustering (Tran, Xue 

and Zhang, 2016), which is a machine learning technique, can be employed to reduce 

high dimensional data and in some cases, the goal of cluster analysis is a better 

understanding of the data. With clustering, some of the 52 visual field locations of visual 

field data can be grouped together to represent significant locations that indicate visual 

field loss. Finding latent groups of visual field locations within the data can provide useful 

information to medical practitioners and this is an open research opportunity.  

 

Garway Heath and colleagues (Garway-Heath et al., 2000) established the six nerve fiber 

bundles (6NFB) that map the visual field locations with the regions of the optic nerve 

head. Several studies (VanBuren et al., 2016; Morales et al., 2016) have used the 6NFB 

in analysing visual field data to diagnose glaucoma progression. However, this thesis 

presents a novel technique, namely, Simultaneous Modelling and Clustering (SMC), 

which searches other clustering arrangements of visual field that could better predict 

glaucoma progression.  
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1.3 Research Motivation and Problem 

 

It is known that glaucoma is the second leading cause of blindness in the world and it is 

an irreversible disease. To date, there is no gold standard (X. Zhang et al., 2017; 

Viswanathan, Fitzke and Hitchings, 1997) for analysing visual field data to provide 

identification and progression of visual field loss.  Furthermore, the high-dimensionality 

of visual field data are not easy to comprehend without suitable analysis tools in order to 

interpret glaucoma severity in patients. Therefore, the problems motivate this research to 

cater for new knowledge about glaucoma progression and support medical practitioners 

in providing treatment to patients. Moreover, with additional knowledge which is resulted 

from data analyses, appropriate treatments can be delivered to patients to avoid and slow 

the progression of glaucoma in patients for a quality of life (Otori et al., 2017; Sleath et 

al., 2017; De Keyser, De Belder and De Groot, 2017). This can be achieved by means of 

advanced analyses using machine learning on visual field data.  

 

With the data in hand, this research is motivated to propose a novel clustering and 

classification technique, as well as providing high prediction on glaucoma progression. 

Broadly speaking, there is no single method would be universally optimal across all 

classification problems as presented in the “no free lunch theorem” (Wolpert and 

Macready, 1997). As such, a new approach of clustering and classification is developed 

to provide prediction of visual loss.  

 

Currently, the 6NFB are commonly used in analysing visual field data. Obtaining other 

sets of bundles (or clusters which are the term used in this study) in visual field data with 

high predictive accuracy is one of the research motivations of this thesis.  

 

Visual field data used within this research consist of 52 variables (excluding the blind 

spot) and a short number of observations per patient. With these properties of the data, it 

is a challenge to model the data for predicting visual field loss. Modelling data using a 

high number of variables may result an inefficient classification and low accuracy (J. 
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Zhang et al., 2017). Therefore, searching subsets of highly correlated variables in the data 

is one of solutions in modelling the data.  This is similar to dimensionality reduction and 

feature selection. However, dimensionality reduction and feature selection is not a 

favourable approach for this research as they do not use all variables and might remove 

some significant variables of the data to infer glaucoma progression (Kriegel, Kröger and 

Zimek, 2009).  

 

1.4 Research Aim 

 

The main aim of this research is to investigate the effectiveness and efficiency of a novel 

clustering technique on visual field data. The focus of the research is to develop 

algorithms of SMC that cluster and classify the data with high accuracy towards the 

prediction of glaucoma deterioration. Additionally, the developed algorithms can be a 

generic approach of modelling and clustering for other datasets. To achieve this aim, 

several machine learning techniques are used in these algorithms.  

 

1.5 Research Objectives and Questions 

 

This research is conducted to provide solutions to the research problem and contribute 

knowledge for medical practitioners and machine learning community. The following 

objectives are established for this study:- 

 

a. To propose a model-based clustering technique (SMC) on visual field data using 

compatible algorithms that improves prediction accuracy of visual field loss. 

 

b. To predict and compare visual field loss of the 6NFB and other clusters of visual 

field locations that significantly represent visual field loss. 
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c. To describe and summarise the other clusters of visual field that improve 

predictive accuracy of visual field loss.  

 

Based on the research problems and objectives, research questions are constructed. The 

work in this research is investigated to the answer to the research questions. The research 

questions (RQ) are:- 

 

Research Question 1 (RQ1) 

What is the baseline accuracy for predicting visual field loss across all patients when the 

visual field points are aggregated to the 6NFB? 

 

Research Question 2 (RQ2) 

Can visual field data be clustered using model-based clustering to improve the baseline 

accuracy as in question 1 (RQ1)? 

 

Research Question 2-a (RQ2-a) 

 

Can model-based clustering techniques improve on the base line accuracy (c.f. 

RQ1)? 

 

 

Research Question 2-b (RQ2-b) 

 

Do visual field points arrangement from the model-based agrees with the clinical 

evidence of glaucoma deterioration? 
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Research Question 3 (RQ3) 

Does the choice of heuristic search techniques in the model-based clustering technique 

effectively improve prediction accuracy of visual field loss? 

 

Research Question 4 (RQ4) 

Can the SMC approach improves visual field loss prediction using a subset of the patients’ 

records? 

 

1.6 Methodology 

 

This research applied the exploratory experimental research (Franklin, 2005) method by 

conducting empirical experiments on data using the method proposed in this study: SMC. 

 

Simultaneous Modelling and Clustering 

SMC comprises of two techniques from the field of machine learning: clustering and 

modelling. The data are clustered and modelled using classification techniques. The 

clustering process is undertaken by performing a systematic search of significant groups 

of visual field locations (through optimisation/search) within a number of iterations, 

where initially clusters are formed in random. The range of initial clusters for visual field 

locations is between two and 52 inclusive. The data (visual field) are clustered based upon 

the groups of visual field locations by computing the average value of the data for the 

groups.  The clustered data are then modelled using several classification techniques. 

However, SMC presented in this work can be used in conjunction with any appropriated 

modelling technique. Classification of the data is measured by percentage accuracy (%). 

The proposed technique (SMC) is explored by implementing several optimisation 

methods, strategies of modelling, and fine-tuned procedures in order to cluster the data 

with high accuracy.  The final result of SMC is a cluster arrangement of the visual field 

locations. 
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The SMC Experiments 

SMC is designed to search an optimal solution (cluster) in the visual field dataset. Several 

algorithms are developed within this research using optimisation methods and classifiers. 

Algorithms of SMC are tested by executing experiments on visual field data. Additional 

experiments are carried out on synthetic data to validate the viability of SMC. Moreover 

beside 10 fold cross validation, additional two modelling strategies (two-fold and no-fold) 

are introduced in experiments to further explore SMC. Thereafter, a fine-tuned algorithm 

of SMC, which addresses the issues discovered in the preceding experiments, is 

developed and tested using an advanced optimisation method. The processes entailed in 

this research are depicted in Figure 1-1.  

 

 

 
 

Figure 1-1: Process Diagram for Methodology 
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1.7 Research Novelty 

 

This research contributes six key areas in analysing visual field data. 

 

1.7.1 A Novel Technique of Clustering 

 

A novel approach of clustering and classification is presented in this research. SMC is a 

model-based clustering technique and a discrete optimisation problem that searches 

clustering arrangement of visual field locations for prediction of glaucoma deterioration. 

Extensive research has been done in prediction using classification. Common techniques 

of clustering data use data point distance or proximity to cluster data. Meanwhile, this 

research uses model-based clustering technique where data points are clustered based on 

classification accuracy performance. The SMC clustering and classification technique 

implements an optimisation method to search a cluster arrangement in visual field data 

with high classification.  

 

1.7.2 Generalised Simulated Annealing (GSA) 

 

This research demonstrates a novel development of the GSA method in the discrete 

problem (SMC). GSA is an advanced annealing method which is proven effective in 

solving continuous problems (Menin and Bauch, 2017; Xiang, Gubian and Martin, 2017).  

However, very little work seems have been performed on applying GSA in discrete 

problems. The GSA method is tailored for SMC to search an optimum cluster 

arrangement in visual field data. The optimisation method appears to be compatible with 

the problem as the best prediction accuracy has shown an improvement (compared to the 

6NFB) by 2.07% with 10-fold cross validation. 
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1.7.3 Restricted Growth Functions Generalised Simulated Annealing 

(RGFGSA) 

 

This work produces a novel algorithm that incorporates the element of Restricted Growth 

Functions (RGFs) in the existing algorithm of SMC, namely, RGFGSA. RGFs have been 

used in other research for the purpose of removing redundancy (degeneracy) of solution 

in a search (Tucker, Crampton and Swift, 2005). Inspired from the literature, RGFGSA 

is invented and has appeared to be an efficient way (measured using Weighted Kappa) to 

remove degeneracy in the search of combinatorial problem.  

 

1.7.4 Noisy Fitness Reduction 

 

Noisy fitness is ubiquitous in data analysis especially involving real world problems. 

Noisy fitness was found in this study and SMC performance has appeared to be 

deteriorating when using probabilistic optimisation methods such as Simulated 

Annealing. This was due to tolerance in accepting worse solutions in an optimisation 

search system. This research contributes to noisy fitness reduction at algorithm level by 

fine-tuning the optimisation method used in SMC. Application of an RGF in SMC 

appears to have improvements in the search method to reduce noisy fitness. 

 

1.7.5 Cross Validation in SMC 

 

The study researches a compatible algorithm that can be used in SMC that applied in 

visual field data and synthetic data. Few optimisation methods and technique of 

modelling have been applied in order to find the best algorithms that compatible with 

SMC. The experiments results have shown that modelling strategy has shown slightly 

improvement to the SMC performance (high accuracy and good clusters). The modelling 

strategy 2-fold cross validation with 10 repeats has appeared to be an efficient and 

effective strategy in SMC to cluster and classify data.  
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1.7.6 Visual Field Datasets 

 

Another contribution of this piece of work that relates to the health-informatics perfective 

is that the SMC technique could highly improves prediction accuracy of visual field data 

using segmented data (visual field). Splitting the data into a few datasets is also to avoid 

bias in data sampling. Modelling the data using SMC on subset datasets has shown 

predictive accuracy can be predicted up to 90% accurate and this could improve confident 

to physicians in diagnosis patients.  

 

1.8 Thesis Structure 

 

This thesis is organised as follows:- 

 

Chapter 2 provides a literature review of the main concepts of glaucoma, visual field 

data, machine learning, methods and techniques that are used within this research. The 

subject areas: glaucoma and visual field data are first described. Then the topic of machine 

learning such as classification and clustering, which is suitable for analysing visual field 

data, is discussed. Next, the relevant techniques from machine learning are demonstrated. 

Finally, data exploration is presented.  

 

Chapter 3 details a set of baseline experiments that classify visual field data to obtain a 

baseline accuracy of visual loss. Then, SMC is introduced and tested on visual field data. 

A number of optimisation methods such as Random Mutation Hill Climbing, Random 

Restart Hill Climbing and Simulated Annealing are used in the experiments. The results 

of the SMC experiments are then compared with the baseline accuracy of visual loss. 

 

Chapter 4 demonstrates the use of simulated dataset (synthetic) to validate SMC.  

Additionally, two modelling strategies are introduced in these experiments to explore the 
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performance of predictive accuracy of SMC. Moreover, additional experiments using K-

means clustering technique is presented. The objective of the K-means experiments is to 

obtain the performance of a non-model-based clustering technique as a benchmark for 

SMC. 

 

Chapter 5 extends the works carried out in Chapter 3 and 4 using an advanced 

optimisation method: Generalised Simulated Annealing (GSA). GSA has shown 

promising results in continuous problems, therefore, an algorithm is designed using the 

optimisation method for the discrete problem (SMC). GSA, which is also a highly 

parameter-based optimisation method, is advantaged by a few adjustable parameters and 

additional feature compared to the other methods used in this research in order to 

extensively search solutions in data. GSA is applied in SMC and experiments are run on 

both datasets (visual field and synthetic data). The three modelling strategies, which were 

proven effective in SMC, are remained to be used in these experiments.  

 

Chapter 6 continues the work carried out in Chapter 5. Chapter 6 introduces a Restricted 

Growth Function based Generalised Simulated Annealing method to solve the degeneracy 

issues and noisy fitness found in Chapter 5. The new algorithm, RGFGSA, uses a different 

way of grouping technique (in clustering data) for representing a solution during a search. 

Additionally within Chapter 6, supplementary experiments are presented to further 

explore the algorithm and visual field dataset. These extended experiments are aimed at 

investigating the performance of SMC and RGFGSA method as well as improving 

classification accuracy (predictive accuracy).  

The supplementary experiments manipulate the size of number of moves (small change) 

within the RGFGSA algorithm. Whilst, the three subsets of the visual field data 

investigates the performance of SMC and RGFGSA on certain criteria of the visual field 

data such as early, middle and latest dataset. 

 

Chapter 7 summarises the whole thesis. This chapter recaps outcomes and findings 

within this research and presents improvements can be made for future work. 
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Literature Review 

2.1 Overview 

 

Chapter 2 provides a review of research areas including the problem domain and 

techniques which are used within this research. The chapter is presented in five sections. 

Section 2.2 discusses visual fields and glaucoma. Vision is one of the main senses in 

humans that can be deteriorated without systemic symptoms. In this section, the 

mechanism of glaucoma is discussed. In managing glaucoma, visual field tests are 

commonly carried out on patients. Section 2.3 discusses the analysis of visual field data. 

Machine learning is one of techniques that can be applied to analyse visual field data 

towards discovering new and hidden knowledge. Section 2.4 looks at relevant techniques 

of machine learning, which are suitable for this study. The emergence of overwhelming 

volumes of data makes the importance of machine learning in analysing big data such as 

visual field data. Finally, Chapter 2 is summarised in section 2.5.  

 

2.2 Visual Fields and Glaucoma 

 

The eye is one of the primary human sensory organs and has connections to the visual 

cortex of the brain. The function of this organ is called vision. The entire scope of vision 

that can be seen by human eyes is referred to as the visual field.  The term visual field 

refers to a portion of a subject’s surroundings that is visible at any one time. It is the area 

of a scene that can be seen when the eyes focused on a certain object (Jennifer Skillen, 

2007). Visual field impairment may happen due to a number of factors such as age, blood 

pressure, strokes, physical accidents and eye disease (Ananya Mandal, 2012; Klaver et 

al., 1998). However, there have been reported that visual field loss may due to surgery 
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such as macular hole surgery (Pendergast and McCuen, 1996). Amongst other diseases 

that have major impact the visual field of eye are cataracts and glaucoma (Resnikoff et 

al., 2004).  

 

Visual field loss due to glaucoma cannot be noticed by patients until the damage has 

become severe. For this reason, glaucoma is often called the “silent blinder” because it is 

usually a painless process that mostly affects the periphery of vision first (Glaucoma 

Research Foundation, 2014). According to (Tielsch et al., 1991) 50% of people with 

glaucoma were not aware of the disease they have. There is also evidence that patients 

with less than a college education are more likely to be unfamiliar with the disease 

(Gasch, Wang and Pasquale, 2000).   

 

Glaucoma is a group of eye disorders that have few symptoms or almost none in their 

early stages, but eventually leads to damage of the optic nerve (the bundles of nerve fibres 

that carries information from the eye to the brain), which then leads to vision loss or 

complete blindness (Weinreb and Khaw, 2004). Visual field damage due to glaucoma is 

irreparable, however the disease can be prevented with early detection and in some cases 

the progression can be slowed (Weinreb and Khaw, 2004). Therefore, early diagnosis, 

detection and follow-up are the best ways to manage the disease. There are also series of 

surgery treatments can be carried out in glaucoma patient such as Trabeculectomy 

(Weinreb and Khaw, 2004; Khaw, Wells and Lim, 2003). A Trabeculectomy is surgical 

procedure carried out in patients to reduce the pressure in the eye that causes damage to 

the optic nerve.  

 

Glaucoma is one of the major causes of blindness in the world after cataracts. Globally, 

it was estimated that 285 million people across all ages have visual impairment in 2010, 

of which 39 million were blind (Pascolini and Mariotti, 2012). Meanwhile, it is estimated 

that 79.6 million people aged over 40 years old will be suffering glaucoma by 2020 with 
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most of them being Asian and or female (Quigley and Broman, 2006). According to the 

World Health Organisation, globally up to 75% of blindness (of many causes such as 

cataracts and trachoma) could be prevented (World Health Organization, 2007). The same 

report presents that out of 37 million people who sufferings from blindness, 12% were 

blind due to glaucoma (World Health Organization, 2007).   

 

Visual impairment can seriously impact a person’s quality of life. A recent study has 

found that severity of visual field loss impacts patient quality of life among adult people 

aged 40 and above in Los Angeles, California, United State  (McKean-Cowdin et al., 

2007). The quality of life in the study is related to difficulties in driving, distance and 

peripheral vision activities, and a sense of dependency. Furthermore, this study (ibid.) 

supports a study in community-dwelling elderly people that visual field loss due to 

glaucoma was associated with disability, diminished enjoyment of reading and watching 

television, and a higher risk of falling incidents (Ramrattan et al., 2001).  

 

Glaucoma can occur for a number of reasons. Many cases are caused by a build-up of 

pressure in the eye (NHS Choices, 2016). Pressure in the eye is termed as intraocular 

pressure (IOP). This pressure in the eye can damage the optic nerve thus effecting vision. 

The most common forms of glaucoma are primary open-angle glaucoma (POAG) (Dada, 

Dave and Mithal, 2009) and primary angle-closure glaucoma (PACG) (Quigley, 2011) 

which both occur due to the IOP. It was found that PACG was responsible for the vast 

majority (91%) of bilateral glaucoma blindness in China (P. J. Foster and Johnson, 2001). 

There were a few studies presented that presence of glaucoma correlated significantly 

with exfoliation syndrome (Ritch, Schlötzer-Schrehardt and Konstas, 2003). Exfoliation 

syndrome (XFS) is an age-related disease characterized by the production and progressive 

accumulation of a fibrillar extracellular material in many ocular tissues (Ritch and 

Schlötzer-Schrehardt, 2001). The syndrome can lead to both open-angle glaucoma and 

angle-closure glaucoma. Even though there are kinds of glaucoma diseases have been 
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classified based on the disease mechanism, there is still limited information available on 

the exact magnitude of the problem (Thylefors and Negrel, 1994).  

 

2.2.1 The Disease Mechanism 

 

Visual loss due to glaucoma commonly relates to elevation pressure in the eyes resulting 

from extra fluid (aqueous humour) building up in the front part of the eye. Aqueous 

humour is the clear watery fluid that fills the space between the cornea and lens of the 

eye. The fluid is produced by the ciliary body behind the iris and drains from the anterior 

chamber of the eye through the trabecular meshwork. Failure of the aqueous humour to 

drain properly from the eye increases intraocular pressure (IOP) and can lead to 

glaucoma. Eye pressure is measured in mm of Hg (mercury) where normal pressure is 

between 10 - 21 mm Hg (James C. Tsai, 2016). High IOP is more than 21mmHg 

(>21mmHg) (Thylefors and Negrel, 1994). IOP damages the optic nerve where the visual 

information is sent to the brain. This type of glaucoma disease mechanism is called POAG 

which a progressive optic neuropathy (Weinreb and Khaw, 2004). POAG, which is also 

known as chronic open-angle glaucoma, is formed by the cornea and iris remains open, 

but the trabecular meshwork is partially blocked. This causes pressure in the eye to 

gradually increase. While PACG which is called primary closed-angle glaucoma, occurs 

when the iris bulges forward to narrow or block the drainage angle formed by the cornea 

and iris. As a result, fluid unable to circulate through the eye and pressure increases. 

Angle-closure glaucoma may occur suddenly (acute angle-closure glaucoma) or 

gradually (chronic angle-closure glaucoma). There are a number of studies that indicate 

a favorable result on glaucoma patients by reducing IOP, e.g. (Heijl et al., 2002; 

Anderson, Drance and Schulzer, 1998). 
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Figure 2-1 (source: (NHS Choices, 2016)) shows the flow of aqueous humour where the 

blockage of the trabecular meshwork causes IOP and Figure 2-2 (source: (John Berdahl, 

2016)) shows the elevation of IOP that damages the optic nerve. 

 

 

Figure 2-1: Flow of Extra Fluid in the Eye that Causes IOP 

 

 

Figure 2-2: Elevated Intraocular Pressure that Damages the Optic Nerve 
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The optic nerve, which is also referred to as the optic disc, is the whole or a part of the 

anterior-most part of the optic nerve head or the entire optic nerve head. It is the part of 

the eye where damage happen due to IOP (Hayreh, 2011) and the damage in the optic 

nerve is known as optic neuropathy. Progressive optic neuropathy refers to slow 

degeneration of the vision (Hutchinson, 2012). However the aetiology of POAG is 

multifactorial which there is no single mechanism could adequately explain the great 

impact that leads to optic nerve damage (Fechtner and Weinreb, 1994). Occasionally, a 

patient with glaucoma may have a sudden onset of decreased or blurred vision, eye pain 

and reddening of the eye, seeing halos around lights, headaches, and sometimes 

experiencing nausea and vomiting (D. A. Lee and Higginbotham, 2005). Patients with 

glaucoma see the world differently compared to those with healthy eyes. Figure 2-3 

(source : (Christian Nordqvist, 2016)) shows the comparison between the normal vision 

and glaucomatous vision.  

 

 

Figure 2-3: Vision Comparison between Healthy Eyes and Glaucoma Eyes 

 

2.2.2 Visual Field System 

 

The visual field is the area from which humans are able to perceive visual signals, when 

the eyes are in a stationary position and looking straight ahead. In the human brain system, 

visual field seen by the eyes is mapped to human cortex (Tovée, 2008; Wandell, 

Dumoulin and Brewer, 2007). Figure 2-4 (source:(Kristie Draskovic, John J. McSoley, 
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2016)) shows the organisation of visual field system including the connections from the 

retina to the cerebral hemispheres.  

 

 

Figure 2-4: The Connections from the Retina to the Cerebral Hemispheres 

 

The normal field vision that can be seen by the human eye extends more than 90 degrees 

temporally, 60 degrees both nasally and superiorly, and about 70 degrees inferiorly (Heijl 

and Patella, 2002). These areas of fields are shown in Figure 2-5. 
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Figure 2-5: Normal Eyes Visual Field Areas 

 

2.2.3 Examination of Glaucoma 

 

Glaucoma deterioration is irreversible, therefore early detection of the disease and early 

treatment are the best ways to managing the disease from further damages. There are 

several common tests of glaucoma. According to Glaucoma Research Foundation 

(Glaucoma Research Foundation, 2013) the following are the common tests conducted to 

diagnose glaucoma:- 

 

Name of Test Test Description 

Tonometry Measure pressure of the inner eye. 

Ophthalmoscopy Examine the shape and colour of optic nerve to 

diagnose glaucoma. 
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Name of Test Test Description 

Perimetry Visual field test to discern eye vision condition which 

has been affected by glaucoma. 

Gonioscopy Examine the condition of the iris and cornea angle 

whether open and wide or narrow or close.  

Pachymetry Measure thickness of the cornea.  

Table 2-1: List of Glaucoma Tests  

 

Visual field data are obtained by means of a perimetry test. Perimetry tests capture patient 

visual sensitivity in the central and peripheral vision (Flammer et al., 1985). Visual field 

data are commonly used in managing glaucoma (Jay and Murdoch, 1993). With the 

presence of high technology embedded in the perimetry test system such as Humphrey 

Field Analyser, visual field data are massively produced by clinicians to diagnose 

patients. The overwhelming volume and under analysed nature of visual field data 

available at clinics can be exploited to discover new knowledge by using advanced 

predictive techniques such as machine learning.  This research used a visual field dataset 

which have been granted the access with permission from the Moorefield Eye Hospital, 

London for research and development in managing glaucoma.  

 

2.3 Visual Field Analysis 

 

In managing glaucoma disease, a visual field test and its corresponding data are 

commonly used to diagnose visual impairment in patient. Analysis of visual field data 

helps physicians to understand the condition and progression of the disease in patients 

from the complex data. There are few analysis methods can be used towards analysing 
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visual field data such as statistical methods (for example: pointwise linear regression) and 

data mining (Turpin et al., 2001). One of visual field data analyses is probability analysis 

(Spry and Johnson, 2002) which is mostly available in commercial perimetry equipment 

to perform the analysis automatically. In probability analysis, each individual’s pointwise 

threshold sensitivity estimates or global indices is compared with the available threshold 

estimates which found among a population of ages matched normal individuals. The 

analysis allows simple quantification of the likelihood that any test location or index falls 

outside the distribution found in normal individuals. Another method as presented by 

Fitzke et al. is using linear regression of the luminance sensitivity at each stimulus 

location, which the method was proven efficient to detect true progression in 

glaucomatous field loss (Fitzke et al., 1996). Whilst Heijl et al. (Heijl, Lindgren and 

Olsson, 1987) performed statistical analysis on visual field data which the design of the 

analyses have been based on empirical results obtained from a large number of normal 

subjects. Since noise in visual field data is inevitable, Liu et al. (Liu, Cheng and Wu, 

1994) and Henson et al. (Henson, Spenceley and Bull, 1997) carried out significant 

analyses on visual field data to enhance the representation of visual field data to the 

glaucoma disease and enabling the quantification of the disease condition. For prediction 

studies on glaucoma, Nouri Mahdavi et al. (Nouri-Mahdavi et al., 2007) and Caprili 

Joseph and his colleagues (Caprioli et al., 2011) carried out prediction of glaucoma 

deterioration using linear regression and a number of statistical methods. Recently, 

advanced techniques from artificial life and evolutionary computation have been applied. 

Pavlidis and colleagues (Pavlidis et al., 2013) modelled the progression of glaucoma 

using cellular automata modelling of visual field data to understand the mechanism 

underlying the onset of glaucoma. More research examples of retrospective analyses of 

visual field data in the research of glaucoma management are:-  
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Research Description and Finding Reference 

Predicting glaucomatous 

visual field deterioration 

through short multivariate 

time series modelling 

Development of a novel computational 

method based on genetic algorithm that 

bypasses the size restrictions of 

traditional statistical multivariate time 

series methods. 

The method was used to predict and 

model glaucomatous visual field 

deterioration. The method provided an 

effective prediction of glaucoma 

compared to other conventional statistical 

methods.  

(Swift and 

Liu, 2002) 

Number of ganglion cells in 

glaucoma eyes compared 

with threshold visual field 

tests in the same persons 

At least 25% to 35% retinal ganglion cells 

loss is associated with statistical 

abnormalities in automated visual field 

testing. 

(Kerrigan-

Baumrind 

et al., 

2000) 

Predictive factors for 

glaucomatous visual field 

progression in the advanced 

glaucoma intervention study 

Both increasing age and greater IOP 

fluctuation increase the odds of VF 

progression by 30% 

(For each 5-year increment in age and 1-

mmHg increase in IOP fluctuation). The 

higher risk conferred by IOP fluctuation 

was consistently observed in eyes with 

and without a history of cataract 

extraction. 

(Nouri-

Mahdavi, 

Hoffman, 

Coleman et 

al., 2004) 
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Research Description and Finding Reference 

Visual field progression in 

glaucoma: total versus 

pattern deviation analyses 

Pattern deviation analyses classified 

approximately 15% fewer eyes as having 

progressed than did the total deviation 

analyses. In eyes classified as progressing 

by both the total and pattern deviation 

methods, total deviation analyses tended 

to detect progression earlier than the 

pattern deviation analyses. 

(Artes et 

al., 2005) 

Exploring early glaucoma 

and the visual field test: 

classification and clustering 

using Bayesian Networks 

A set of Bayesian Network classifiers was 

tested on an independent glaucoma 

dataset, obtaining good results both on 

pre- (50% sensitivity at 90% specificity) 

and post- (85% sensitivity at 90% 

specificity) diagnosis data. 

(Ceccon et 

al., 2014) 

 

Estimating progression of 

visual field loss in glaucoma 

Less than one in three eyes of patients 

with glaucoma had any progressive field 

loss. Average changes in threshold 

sensitivities of less than 1 dB/year could 

not be detected with seven fields done 

over 6 years. Larger changes or increased 

frequency of visual field testing would 

need to occur before smaller changes 

could be detected statistically. 

(Katz et 

al., 1997) 

Table 2-2: Examples of Research in Analysing Visual Field Data for Glaucoma 
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Analysing visual field data especially predicting the deterioration of glaucoma is integral 

in managing this irreversible disease. Sufficient and reliable information about glaucoma 

deterioration in patients could help medical practitioners to provide appropriate 

treatments for prevention or slow the disease from deteriorating. For instance, if the 

progression of the disease is predicted to worsen, increasing the medication or necessary 

surgery could be taken to avoid the irreversible defect. However, to date, there is no ideal 

method of analysing visual field data for identifying of glaucoma progression. Therefore, 

analysing the high dimensional visual field data available from clinical using advanced 

analytical tools would benefit medical practitioners and help towards providing the best 

treatments in patients.  

 

2.3.1 Perimetry   

 

Perimetry, which is non-invasive clinical procedure, is the most common type of visual 

field test performed to capture patients’ eyes sensitivity in diagnosing and managing 

glaucoma (Mikelberg, 1986).  The Octopus Perimeter and the Humphrey VF Analyzer 

(HFA) are the most widespread instruments used by clinicians for assessing patient’s 

visual field. Visual field tests assess the potential presence of visual impairment which 

could be caused by glaucoma. The purpose of visual field test is threefold (Spry and 

Johnson, 2002). Detection of early sensitivity deficit of sight is the focal of the test. 

Secondly, it is used for determination of characteristic spatial pattern of sensitivity loss 

for differential diagnosis. Thirdly, it works to monitor patient for evidence of progression, 

stability or improvement of visual field deficits. Discerning visual field sensitivity in 

patients using the perimetry test is a complex task due to the test variability and sensitivity 

to the subtle changes in visual field. Distinguishing progressive glaucomatous visual field 

loss from test variability therefore represents a complex task (Spry and Johnson, 2002). 

Estimation of threshold sensitivity made using algorithms available in commercial 

instrumentation is not perfectly repeatable (Bebie, Fankhauser and Spahr, 1976). The 
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sensitivity of each test location can vary physiologically and become more or less 

sensitive over time. Due to these issues, there were studies on reducing variability in 

visual field data using image processing techniques (Fitzke et al., 1995; Crabb et al., 

1995).   

 

Data produced by the perimetry tests at clinical are overwhelming. Interpretation of visual 

field test results by clinician often tricky and a decision to be made based on the result is 

difficult even though there are cases clear-cut changes in the visual field can be seen 

easily (Mikelberg, 1986). Therefore, analysing a big data of visual field available at 

clinicians using machine learning technique is essential to support the clinicians’ 

interpretation of visual field data about the disease (Ceccon et al., 2014; Sacchi et al., 

2014). There are three main kinds of perimetry tests namely, Kinetic Perimetry, Static 

Perimetry and Automated Perimetry (Heijl and Patella, 2002; Haley, 1986).  

 

 Kinetic Perimetry 

Kinetic perimetry test captures patient vision sensitivity with moving object stimulus 

from a non-visible of the visual field to a seeing area along a set meridian.  

 Static Perimetry 

In static perimetry test, a specific location of the visual field is presented with stimulus 

and remains constant. The retinal sensitivity is determined by varying the brightness 

of the specific test location.  
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 Automated Perimetry 

Automated perimetry test offers obvious advantages to the manual test such as the 

test is more rapid, provides more quantitative information, the stimulus to patients can 

be presented in random, unpredicted fashion. With the random and unpredictable 

fashion of stimulus, the patients do not know where the next stimulus is and this 

improves fixation and test reliability. 

 

The two most commonly used types of perimetry are Goldmann kinetic perimetry and 

threshold automated static perimetry. Automated static perimetry is the most important 

clinical tool for measuring visual function outside fovea. Threshold testing is performed 

to quantify precise visual sensitivity, while suprathreshold testing is used mainly to 

establish whether visual function is within the normal range (Heijl and Patella, 2002).  

 

In perimetry, eye sensitivity is measured in apostilbs and decibels. Apostilbs is the unit 

of light intensity while decibel (dB) is the unit of retinal sensitivity (Haley, 1986). 

Apostilbs and decibels are inversely proportional to each other. The high value in 

apostilbs is equivalence to the low value in decibels. Figure 2-6 (source : (Haley, 1986)) 

exhibits the scale of stimulus intensity comparison between decibels and apostilbs.  
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Figure 2-6: Stimulus Intensity Scale of Decibels and Apostibls 

 

2.3.2 Visual Field Test Procedures 

 

There are a variety of methods to measure the visual fields. Visual field testing is 

performed to one eye at a time, with the opposite eye completely covered to avoid errors. 

During the test, patient places chin in a type of bowl to support static position and one 

eye is covered. Lights of various intensity and size are randomly projected around. Patient 

pushes a button when light is seen. This process produces a computerised map of the 

visual field drawing the area where each eye can or cannot see. Concluding glaucomatous 

progression based on visual field results is a tricky task. The procedures of the test which 

cause patient fatigue, learning influence, and changes in the physiologic state of the eye, 

affect the visual field results (Boden et al., 2004; Iester et al., 2000; Birch, Wishart and 

O'Donnell, 1995).  
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2.3.3 Visual Field Data 

 

Visual field data are used in this research work to test the proposed technique of clustering 

and classification, which the technique is devised to discover a clustering arrangement 

and patterns of visual loss in the data. The data are numerical type characterise the 

sensitivity of the eye to light. A type of visual field data is also depending on the type of 

test carried out in patient. Typically it is 54 or 76 visual field locations (including the 

blind spot). Figure 2-7 exhibits the visual field data with the 54 visual field locations 

including the blind spots which designated are by grey boxes.  

 

 

 

 

 

 

 

 

 

Figure 2-7 : The 54 Locations of Visual Field of the Right Eye (Including the Blind 

Spots) 

 

The 54 locations of visual field data represent the rounding retina which contains the light 

sensitive tissue lining the back of the eye. The retina converts the light rays into impulses 

that transmit through the optic nerve to the brain where images are interpreted. Figure 2-

8 shows the 54 locations of the visual field data mapped to the retina for the right eye.  
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Figure 2-8: The 54 Locations of the Visual Field Data Mapped to the Retina 

 

In the retina there are millions of nerves that connect to the brain via optic nerve (Hayreh, 

2011; Bourne, 2006). The optic nerve is located in the back of the eye and also named as 

the second cranial nerve. The millions of nerves are formed in bundles which transfer 

visual information from the retina to the vision centers of the brain via electrical impulses. 

The visual field corresponds to the topographic arrangement of photoreceptors in the eye.  

In clinical analysis of visual field data, the 54 locations are sectored into six sections (also 

known as six nerve fiber bundles – 6NFB) to map with the optic nerve fiber bundles based 

upon physiological trait (Garway-Heath et al., 2000). Each sector is a collection of visual 

field locations that are grouped together. The sensitivity value of each sector is averaged 

according to the mapping visual field with the six sectors. Figure 2-9 exhibits the 54 

locations of visual field mapped to the 6NFB including the blind spots (location 26 and 

35). This 6NFB clustering arrangement is used as the benchmark for the experimental 

results throughout this study.  
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Figure 2-9: The 54 Visual Field Locations Mapped to the 6NFB for the Right Eye 

 

2.3.4 Visual Field Loss 

 

Visual field loss may occur due to glaucoma. Glaucoma affects the optic nerve, which 

can then cause to blindness if it remains undetected and no appropriate treatments are 

given (Drance, 1969). Glaucoma usually has few or no initial symptoms until it diagnosed 

with a suitable test (D. A. Lee and Higginbotham, 2005). Early visual field loss normally 

occurs predominantly in the inner 20 of the visual field and is referred to as paracentral 

scotomas. The other two visual field defects include peripheral and central nasal steps (as 

depicted in Figure 2-10) (Mikelberg, 1986).  
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Figure 2-10: Visual Field Record Illustrating Superior Arcuate Scotoma, Inferior 

Paracentral Scotoma, Central, and Peripheral Nasal Steps 

 

Characteristic of visual field deficit due to glaucoma presents dark areas in the grid of 

visual field in Humphrey visual field 24-2 test (Figure 2-11 - source:(Pradeep Ramulu, 

2017)).  
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A 

 

B 

Figure 2-11: Comparison of Health Eye and Glaucoma Eye 

(A: Health Eye, B: Glaucoma Eye) 

 

2.3.5 Advanced Glaucoma Intervention Study 

 

There are many ways of quantifying numerical visual field data to diagnose glaucoma. 

The Advanced Glaucoma Intervention Study or with its convention name AGIS is created 

to quantify visual field data in diagnosing the severity of glaucoma. For example Nouri-

Mahdavi and his colleagues (Nouri-Mahdavi, Hoffman, Gaasterland et al., 2004) 

performed a prediction study on glaucomatous progression using AGIS score using 

pointwise linear regression analysis. In AGIS, a quantitative method is developed to 

assess the test reliability and measure the severity of glaucomatous visual field defects 

with the 24-2 threshold program of the Humprey Visual Field Analyzer (Advanced 

Glaucoma Intervention Study Investigators, 1994). The AGIS defect score is derived 

from the number and depth of clusters of adjacent depressed (measure in decibels) test 

sites in the upper and lower hemifields and in the nasal area of the total deviation. Figure 
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2-12 exhibits the printout of visual field that represents the area of defects taken into 

account in AGIS scoring. Scoring of visual field defect to derive an AGIS severity on a 

patient is based on the following six precepts:- 

a. Defects may occur in the upper or lower hemifield or in the nasal. Defects in one 

or more subdivision may also occur. 

b. Visual field locations above and below of the center of the physiologic blind spot 

are not taken into account in AGIS scoring. The visual field locations with label 

1 and 2 as shown in Figure 2-6. 

c. The number of depression and the depth of depression contribute to AGIS scoring.  

d. Defect in hemifield is considered when three or more adjacent test sites are 

affected.  

e. The visual field is to be considered defective when the depression of a patient’s 

threshold at a site is sufficiently large.  

f. The AGIS score only takes account defects cause by glaucoma. 

 

 

Figure 2-12: Visual Field Layout of AGIS Scoring Area 
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The AGIS score ranges from 0 to 20 to represent visual loss condition. In the AGIS metric, 

the score is categories into several categories of the eye condition. The categories are 

defined as ‘none’, ‘mild’, ‘moderate’, ‘severe’ and ‘end stage’ as shown in Table 2-3. 

Agis Score AGIS Category 

0 None 

1-5 Mild 

6-11 Moderate 

12-17 Severe 

18-20 End-Stage 

Table 2-3: AGIS Metric with Category Label 

 

In this study however applies reclassified AGIS categories (Table 2-4).  Sacchi (Sacchi 

et al., 2014) used the reclassified AGIS category in modelling and predicted visual field 

data up to 85% accurate with additional variables, which are normally discarded in 

clinical analysis. While other study done by Sullivan Mee et al. (Sullivan-Mee et al., 

2005) used four AGIS category of glaucoma severity by combining the severe and end-

stage category into one group. This makes the prediction of AGIS more efficient 

compared to the five AGIS category. 

AGIS Score AGIS Category Reclassified Category 

0 None 
Mild defect 

1-5 Mild 

6-11 Moderate Moderate defect 

12-17 Severe 
Severe defect 

18-20 End-Stage 

Table 2-4: Reclassified AGIS Category 
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2.4 Machine Learning 

 

Recent years have seen a tremendous growth in the volume of data generated in life 

sciences and health-informatics due to the emergence of automation and computation 

tools. This scenario results from the field of big data and machine learning are much 

discussed on its practicality to the real world (Athey, 2017; Barocas et al., 2017; 

Landhuis, 2017). The enormous volume of health informatics and biomedical data 

available at clinics is a research advantage to data scientists to make use the data for 

pattern recognition analysis and discover new knowledge. Many studies have been carried 

out on big data analytics especially in health and medical fields recently (Xie, Draizen 

and Bourne, 2017; Stylianou and Talias, 2017; Park, Chang and Nam, 2017; Finkelstein, 

2017). However, there are challenges to data scientists when dealing with high volume, 

velocity, variety and veracity of data even though the opportunities for making use of this 

data are vast (R. Fang et al., 2016). Often health informatics and biomedical data are too 

complex to comprehend the patterns such as gene expression data (Signor, Arbeitman and 

Nuzhdin, 2016). Therefore, the application of machine learning techniques using a high-

performance computing platform would help domain experts to make use of data beyond 

just recording numbers on digital storage. For example this research applies machine 

learning on the multidimensional data of visual field which comprises of 54 variables. 

Machine learning is a branch of artificial intelligence (AI) that gives computers the ability 

to learn using computational statistics without being explicitly programmed. Machine 

learning focuses on the development of computer programs (or algorithms) that self-

adaptable when exposed to new data (Alpaydin, 2014). Computer programs or algorithms 

are developed to solve problems such as supervised learning and unsupervised learning 

(also known as tasks) which is used in this research. Supervised learning, which involves 

classification analysis, is a task of inferring a function from data based on inputs 

(independent variables) and output (dependent variable) of the data. The output of 

supervised learning is a function that classifies data to its label with a certain degree of 

accuracy of the classification.  On the other hand, unsupervised learning performs data 



 

 

56 

 

 

clustering where the label and/or category of each data item is unknown. Similar to 

classification, clustering (Jain, Murty and Flynn, 1999) infers a function that maps the 

data into sensible groups based on structures and patters available in the data using a 

certain approach. A common data clustering technique is K-means which finds groups of 

data based on the distance of data points (Jain et al., 1999). There was a large volume of 

research have used clustering and classification techniques in biomedical and health-

informatics to diagnosis diseases (K. R. Foster, Koprowski and Skufca, 2014; Almeida et 

al., 2014; Chan et al., 2002; Dreiseitl et al., 2001). Burgansky-Eliash et al. (Burgansky-

Eliash et al., 2005) have used machine learning techniques such as linear discriminant 

analysis, support vector machine, recursive partitioning and regression tree on optical 

coherence tomography (OCT) data for glaucoma detection. As for this research, both 

clustering and classification are used simultaneously to search the best clusters and 

improve classification accuracy of the datasets, as well as predicting glaucoma 

progression. The technique of simultaneous clustering and classification of visual field 

data is presented in chapter three of this thesis.    

 

2.4.1 Clustering 

 

Cluster analysis is a task of grouping data, where objects in the same group share the 

common attributes (homogeneity) and dissimilar attributes to other objects in other groups 

(Rokach and Maimon, 2005). Formally, the clustering structure is represented as a set of 

subsets  kCCCC ,...,, 21 of  nS ,...,2,1 , such that 
k

i iCS
1

 and  ji CC   for

ji  , nji  ,1 . 

 

Cluster analysis is broadly applied on health-informatics and bio-medical data for 

dimensionality reduction and subset selection in order to explore the complex data and 

understanding the structure of data. For example in healthcare, cluster analysis is used to 
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identify types of depression and to detect pattern in spatial or temporal distribution of 

disease. Tasoulis et al. (Tasoulis, Plagianakos and Vrahatis, 2004) investigated the 

application of unsupervised clustering on gene expression microarray data using k-

windows clustering algorithm due to the challenge of the tremendous data to analyse.  

Similar to this study, a study on identification of glaucoma in ophthalmology has 

improved the accuracy of classification for supporting diagnosis of glaucoma using 

clustering technique in feature selection (ST APOR, 2006). 

 

There are many clustering techniques available in the literatures that may confound 

practitioners to select suitable technique to solve a problem at hand. However, the 

selection of clustering technique can be made based on (1) the manner in which clusters 

are formed, (2) the structure of the data, and (3) sensitivity of the clustering technique to 

changes that do not affect the structure of the data (Jain et al., 1999). The most common 

techniques are easy to apply include Hierarchical Clustering and K-means clustering 

(Ronan, Qi and Naegle, 2016; Wu et al., 2008).  

 

Another method of clustering is model-based clustering (Rokach and Maimon, 2005) 

which has inspired the focal subject of this research. Model-based clustering is an 

alternative way of clustering techniques besides the distance clustering technique such 

as K-mean and hierarchical clustering.  These two types of clustering techniques are 

largely heuristic and not based on formal models (Fraley and Raftery, 2002). Therefore, 

instead of using the distance clustering technique, the model-based clustering technique 

in this study uses data modelling performance as the key indicator of good clusters (this 

topic is discussed further in chapter 3). SMC is a model-based clustering technique 

proposed in this research that finds significant objects (variables) to form a cluster in 

data by using classification performance as an indicator of the quality of the clusters. 
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Model-based clustering was employed by Yeung et al. (Yeung et al., 2001) towards 

gene expression data and produced clusters of quality comparable to a leading heuristic 

clustering algorithm.  Additionally, the method was found superior performance on 

synthetic data, which the model selected the right number of clusters (ibid.). Another 

model-based clustering method studied by Zhang et al. (W. Zhang et al., 2017) on the 

Cancer Genome Atlas data demonstrated an improvement in results compared to existing 

methods in their simulation studies. Meanwhile, Bose and his colleague (Bose and Chen, 

2009) demonstrated their study, which slightly similar to this study, in predicting 

customer churn using clustering and classification. However, the attributes (or variables) 

which have been used in classification were obtained from distance-based clustering 

techniques.   

 

K-Means Clustering 

K-means clustering algorithm, which is also used in this research, is a partitioning 

clustering method by moving data objects from one cluster to another based upon a 

measurement (commonly measured by data object distance) to determine the similarity 

of data objects, starting from an initial partitioning. This technique requires a pre-set 

number of clusters by user. The fundamental of this technique is to compute the distance 

(the commonly used is Euclidean distance) between data objects and the clusters’ centroid 

and minimising the average distance of the data objects in the cluster. The data objects 

are randomly assigned to the cluster that has minimum distance from the centroid of the 

cluster. The best clustering arrangement is formed when each data object is in close 

proximity to a cluster centroid (Appendix 2D).  
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2.4.2 Classification 

 

Classification is one of the common analyses carried out in research. With classification, 

the inferred function is produced based on supervised learning that enables a new 

observation to be classified to which class it belongs. For instance in classifying visual 

field data, a record of visual field at the time t is labelled with the AGIS at the time t+1. 

This means that classifying the previous record of visual field test with the next test’s 

AGIS category is a form of prediction of glaucoma progression. With the classification 

function learned from this visual field data, a test (visual field test) result in a patient 

obtained today could predict the AGIS for the next test. Furthermore, the pattern of 

glaucoma progression in patients can be studied. This example is comprehensively 

discussed in Chapter 3. There is a large volume of research in disease classification. 

Asaoka et al (Asaoka et al., 2014) demonstrated good results using random forest 

classifiers for distinguishing visual field of preperimetric open angle glaucoma patient 

and visual field of healthy eyes. Tucker et al. (Tucker et al., 2005) studied the spatial and 

temporal relationship on glaucomatous visual field deterioration data. Within this study, 

the structure of visual field characteristics on the onset of glaucoma could be understood. 

In imaging data analysis, Yang et al. employed neural network classifier on imaging data 

of retina to differentiate the cataract severity (M. Yang et al., 2013). There are numerous 

classification methods can be employed towards big data for pattern recognition, 

discovering new knowledge and prediction. However, a choice of classifiers is crucial in 

order to provide a meaningful solution to a problem because each method can be best for 

certain problems but not all. One of the approaches of selecting classification method is 

by performing empirical experiment, which is carried out in this study. The performances 

of the methods are compared and the best classifier performance is selected (Woods and 

Laederach, 2017; Shavlik, Mooney and Towell, 1991). Fairly similar to this study, Wan 

and Freitas (Wan and Freitas, 2017) have employed four classifiers, which are Naïve 

Bayes, Tree Augmented Naïve Bayes, Bayesian Network Augmented Naïve Bayes and 

K-Nearest Neighbour classifier, to evaluate the performance of features selection in 
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bioinformatics datasets. However one must be conscious of the misclassification issue if 

one method dominates all the other methods (Kiang, 2003). The followings are the 

classification methods used in this work:- 

 

 Decision Tree 

The decision tree algorithm has been successfully used in expert systems for capturing 

hidden knowledge in data. The decision tree classifier is a non-parametric classifier, 

which can handle both categorical and numerical data. The decision tree classifier 

offers many benefits such as simple and easy to understand. The classifier can handle 

a variety of input data that is nominal, numeric and textual, able to process erroneous 

datasets or missing values and it is a high performance classifier with small number 

of efforts (Bhargava et al., 2013). Kim and colleagues (Kim, Cho and Oh, 2017) have 

used decision tree (C.5.0) algorithm to model glaucoma data (based on retinal nerve 

fiber layer thickness and visual field). The decision tree algorithm J48, which is a 

simple binary tree C4.5 decision tree for both discrete and continuous attributes (Y. 

Yang and Chen, 2016; Peng, Chen and Zhou, 2009), was used within this research 

work and  (Fageeri et al., 2017; Patil and Sherekar, 2013) demonstrated that the 

method has shown better accuracy and more efficiency than Naïve Bayes classifier. 

In other domain of problem, (Alam and Pachauri, 2017) have devised the J48 tree 

classifier on credit card fraud detection with 85.5% accurate. A decision tree is 

developed in two steps that is learn a model using training dataset and test the model 

using testing dataset to assess the model.  In a training dataset, decision tree is 

constructed by getting significant attributes (variable) to be the root and nodes of the 

tree. The significant attributes are computed using entropy and information gain (for 

C4.5 type of tree) as in Equation 2-1 and 2-3.  

i
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Where C in Equation 2-1 denotes the computation of entropy of a target variable. 

Meanwhile, Equation 2-2 is used to compute the entropy of a target variable (C) with 

a condition of an attribute (X). While in Equation 2-3 is to obtain gain information 

which indicates the significant attribute to be a node of the tree. 

 





Xc

cEcPXCE )()(),(    Equation 2-2 

),()(),( XCECEXCGain    Equation 2-3 

 

Selection of an attribute to be a node in the tree is based upon the highest value of 

gain information (Equation 2-3). A branch with entropy of 0 will be a leaf node while 

a branch with entropy more than 0 needs further splitting. Appendix 2A shows the 

example of entropy computation for constructing a decision tree.  

 

 Naïve Bayes 

Probabilistic approaches to classification are a common machine learning task, 

examples include Bayesian based classifiers (Q. Wang et al., 2007; Androutsopoulos 

et al., 2000; John and Langley, 1995), the performance of which is good in terms of 

accuracy. In the recent work, the classifier’s predictive performance (accuracy 90.3%) 

has shown the best in predicting the chemical Ames mutagenicity with 5-fold cross 

validation (H. Zhang et al., 2017). The Naïve Bayes (NB) classifier is particularly 

appropriate when the dimensionality of the inputs (variables) is high (Krichene and 

Krichene, 2017). The choice of NB classifier advantages this work as classification 

of the real dataset (visual field) can be up to 52 variables (synthetic data 45 variables). 

NB is a classification algorithm for binary (two-class) and multi-class classification 

problems. The NB algorithm is a simple probabilistic classifier that calculates a set of 

probabilities by counting the frequency and combinations of values in a given data set 
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based on the Bayes’s Theorem with the conditional independence assumptions. 

Bayes’ Theorem is formulated as (Leung, 2007): 

 

)(

)|()(
)|(

i

i
i

tP

ctPcP
tcP      Equation 2-4 

Where c is a class of the target variable (C) ( Cc ) 

P(c|ti) is the posterior probability of class (target) given predictor (attribute). P(c) is 

the prior probability of class. P(ti|c) is the likelihood which is the probability of 

predictor given class. P(ti) is the prior probability of predictor. An example of the 

Naïve Bayes is discussed in Appendix 2B. 

 Multinomial Naïve Bayes  

Multinomial Naïve Bayes (MNB) implements the naive Bayes algorithm for 

multinomial distributed data. Unlike NB, MNB takes into account a specific instance 

of a NB classifier which uses a multinomial distribution for each of the features 

(attributes). The MNB model is typically used for discrete counts and widely used in 

text categorisation problems (Frank and Bouckaert, 2006). The main reasons this 

classifier is so common in research is that fast, easy to implement and relatively 

effective. The method was found good performance in terms of prediction accuracy 

in text mining research (Al-Jefri et al., 2017; Diab and El Hindi, 2017; Kale et al., 

2017). This classifier was used in this research owing to its efficiency in terms of run 

time (Matwin and Sazonova, 2012; Rennie et al., 2003), and the visual field data 

seems compatible with this classifier. Pilot experiments were conducted on visual 

field data prior to the formal experiments to test the efficiency of MNB and its 

prediction accuracy. The results were slightly good (74.70% accurate – using the six 

nerve fiber bundle with 25 samples) and the method was the fastest among the existing 

methods. The following discusses the computation of the MNB probability for 

classifying a document (test document) (Kibriya et al., 2004):- 
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The basic Bayes’ Theorem as in Equation 2-4 applies.  

 

Let C denotes the class. Then it is the assigned document to the class. The )(cP is 

estimated by dividing the number of documents belong to class c by the total numbers 

of documents. While )|( ctP i is the probability of obtaining a document like  it  in class 

c and calculated as:- 

 

                                                   
n

f

ni
nicwPctP )|()|(               Equation 2-5 

 

Where  is a constant that drops out because of the normalisation step. The nif  

denotes the count of word n in the test document it  and )|( cwP n  is the probability of 

word n given class C. 
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Let ncF denotes the number of the n word in class C. The N denotes the size of 

vocabulary or unique words available in the training documents. Where xcF is the 

count word x in all the training documents belonging to class c. The normalisation 

factor )( itP in Equation 2-7 can be computed using:- 



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k

ii ktPkPtP    Equation 2-7 

Where 𝑃(𝑡𝑖) is probability of a document 𝑡𝑖, 𝑃(𝑘) is the probability of the class and 

𝑃(𝑡𝑖|𝑘) is the probability of document 𝑡𝑖 given class 𝑘. 

The MNB computation example is explained in Appendix 2C. 
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 Multinomial Naïve Bayes Updateable  

Multinomial Naïve Bayes Updateable (MNBU) is another classifier under the 

Bayesian theorem family that available in the WEKA machine learning toolbox. 

MNBU works similar to MNB, however this classifier extends the updateable 

classifier function (George-Nektarios, 2013) in the WEKA tools. The classifier 

applies incremental classification model that can learn using one instance at a time. 

Many studies have applied updateable classifiers with promising results (Ajaz and 

Hussain, 2015; Balachandran and ANITHA, 2014; Balachandran and Anitha, 2012). 

Thus, it is worthwhile to employ this classifier for the sake of testing the proposed 

approach of clustering and modelling at very cost-efficient of algorithm’s runtime.  

 

2.4.3 Cross Validation 

 

Cross validation (Browne, 2000) is a technique of evaluation of predictive model by 

partitioning data into training and testing sets. A training set of data is used to build a 

model while testing set of data is used to test the model. Predictive models in this research 

is evaluated using K-fold cross validation. K-fold cross validation randomly partitions K 

subsets of the original dataset equally. K-1 subsets of the dataset (training dataset) are 

used for building a model. Meanwhile, the remaining single subset (testing dataset) is 

used to test a model. This process of training and testing predictive model is repeated K 

times, where each individual fold is used as the testing dataset. Then the total estimation 

of predictive model of K times is averaged to produce a single estimation. The advantage 

of K-fold cross validation is that it provides unbiased estimate of models (Bengio and 

Grandvalet, 2004).  Additionally, this approach of modelling allows all data points to 

have an equal chance of being used in the training and testing datasets in constructing a 

model. 
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2.4.4 Heuristic Search 

 

Heuristic search is one of the branches of computer science that solves problems 

(optimisation problem) by finding an approximate solution. The method generates a 

possible solution from a search space (Definition 2.1) for a certain problem, and a possible 

solution is assessed based on the defined goal (commonly termed a fitness function). In 

the context of computer science and mathematics, a solution to a problem is translated 

into a fitness function (Definition 2.1 and Definition 2.2). An application of heuristic 

search can be a quick way for problem solving and guarantees to find a good solution in 

reasonable time. However, the solution produced is might not be the best solution as there 

is an element of stochastic in the search. This research applies heuristic search techniques 

in classification and clustering of visual field data finding the possible clusters of visual 

field location that represent the significant vision deterioration in patient due to glaucoma. 

Moreover, instead of using synthetic data, some of the paradigm problems in computer 

science that can be used to test a heuristic search algorithm are the Travelling Salesman 

Problem (TSP) (Hoffman, Padberg and Rinaldi, 2013) and Bin Packing Problem (Lodi, 

Martello and Vigo, 2002).  

 

Definition 2-1 Search Space 

The search space is the feasible region of a problem space that has all sets of possible 

solutions. 

 

Definition 2-2 Fitness Function 

A fitness function is a single objective function that summarises the aim of certain 

solution to a problem by means of a merit of measurement.  
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Definition 2-3 Fitness Value 

A fitness value is the value generated from a fitness function. 

 

The performance of a heuristic algorithm is determined by the efficiency and 

effectiveness of an algorithm. The effectiveness of an algorithm refers to the quality of 

solutions found by the algorithm in terms of the practicality of the solution to a problem. 

In optimisation problem solving, a search may have potential to obtain local optima 

solutions (Definition 2.4) which this affects the efficiency of a heuristic search. Moreover, 

efficiency in a heuristic search also refers to runtime of the search algorithm to obtain a 

global optimum (Definition 2.5). This is termed as convergence in this research (further 

discussed in Chapter 3). 

 

Definition 2-4 Local Optima 

Local optima are defined as the relative best solutions within a neighbour solution set. 

𝑥 is a local optimum of 𝑓(𝑋) → ℝ, where 𝑥 ∈ ∀𝑋 when 𝑓(𝑥) is least better than 𝑓(𝑥′) as 

𝑥′ is the best solution and 𝑥′ ∈ ∀𝑋. 

 

Definition 2-5 Global Optimum 

Global optimum is the best solution among all local optima solutions. 

𝑥′ is a global optimum of 𝑓(𝑋) → ℝ, where 𝑥′ ∈ ∀𝑋, when 𝑓(𝑥′) is the best among 

𝑓(∀𝑋). 

 

Another property that heuristic search has is a fitness function. A fitness function is used 

in heuristic search to evaluate every solution being search in the search space. It is a 

function that measures the solution either to maximise or minimise the fitness value. A 

simple example of a fitness function for a maximisation optimisation problem is the 
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function to obtain the shortest route that a salesperson could travel among the cities in the 

TSP problem (a sum of distance of the TSP route). Meanwhile, this research work is a 

maximisation problem which the fitness function is the model accuracy for classifying 

the visual field data (further discussed in chapter 3 of this thesis). Four optimisation 

methods are used in this work: Hill Climbing, Simulated Annealing, and Generalised 

Simulated Annealing. 

 

 Hill Climbing 

Hill Climbing is a simple greedy search method that iteratively searches (iteratively 

improves a solution (Kirkpatrick, Gelatt and Vecchi, 1983)). The analogy of hill 

climbing methods is when one walks upward to a highest point in the thick fog. The 

walk stops when the highest point is reached. However, there could be possibly other 

points that higher than the point has been reached. Similar to this process in hill 

climbing method, possible solutions are searched starting from a random point in a 

search space and only an improvement to a solution is accepted. Similar to climbing 

a hill, any downward from the current solution in the exploration is unacceptable. 

Once the search point reaches the highest state of solutions (peak of the hill), the 

search may stop. The inability of the method to accept worse solution during the 

search consequences the method results a local optimum solution (Selman and 

Gomes, 2006; Tovey, 1985). Nevertheless, there were numerous of research has 

devised this optimisation method due to its advantages such as faster in terms of time 

(Lang, 2016; Hoffmann, 2001). Two types of Hill Climbing methods used in this 

research are Random Mutation Hill Climbing (RMHC) and Random Restart Hill 

Climbing (RRHC). They are used in this research work due to simple and fast 

algorithms to implement. RRHC is an improvement on the RMHC algorithms which 

is simple and easy. However, RRHC generates few random points in the search space 

for the start of the search in order to avoid local optima. Owing to this capability of 

the search method, the RRHC method was chosen in this research (O'Neil and 
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Burtscher, 2015). A study performed by (Charnay, Lachiche and Braud, 2015) on the 

integration of complex aggregates in the construction of logical decision tree to 

address relational data mining tasks using RRHC has resulted a promising result on 

both real and artificial data. An empirical study (Jacobson and Yücesan, 2004) has 

proven that random restart local (RRHC) search can outperform Simulated Annealing 

method, which is also used in this research work, given a sufficiently large number of 

restarts executed. Algorithm 2.1 and 2.2 delineates the steps of RMHC and RRHC 

algorithms which designed in the context of this research.  

 

Algorithm 2-1 : Random Mutation Hill Climbing Algorithm 

Input:  
 

A random initial solution 
Number of iterations 

1 For i=0 to iteration-1  
2   Evaluate the current solution 
3   Obtain a random new solution (small perturbation to  

  the current solution) 
4   Evaluate the new solution 
5      If new solution > current solution 
6         Keep the new solution configuration as the  

        current solution 
7      End if 
8 End for 
Output: Return current solution 

 

Algorithm 2-2: Random Restart Hill Climbing Algorithm 

Input:  
 

A random initial solution 
Number of restarts  
Number of iterations 

1 For i=0 to restart-1 
2 Perform Algorithm 2.1 (RMHC) for a number of iterations 
3 Obtain result for each restart 
4 End for 
Output: Return current solutions of each restart  
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 Simulated Annealing 

 

Simulated Annealing (SA), which was invented in 1983 (Busetti, 2003), is another 

optimiser appears to be the most common method used in complex optimisation 

problems to overcome local optima in search (Romeijn and Smith, 1994; Goffe, 

Ferrier and Rogers, 1994; Dekkers and Aarts, 1991). It is the third most popular 

metaheuristic technique by number of publications on Google Scholar (Varty, 2017) 

and commonly used to solve continuous problems. This research however applies SA 

in a discrete problem where the best clustering arrangements (combinatorial of 

elements in clusters) of visual field are searched.  

 

This statistical mechanics method approach inspired by the process of metallurgy 

which annealing is referred to as tempering certain alloys of metal, glass, or crystal 

by heating above its melting point, holding its temperature, and then cooling it 

adequately slow until it solidifies into a perfect crystalline structure. Many other 

algorithms including SA were commonly tested their effectiveness and efficiency in 

the paradigm problem such as TSP (Kirkpatrick et al., 1983). Meer K. (Meer, 2007) 

in a study has shown that SA outperformed the Metropolis Algorithm for solving a 

TSP problem. Another study (L. Fang, Chen and Liu, 2007) tested on TSP has 

improved the shortcoming of the Particle Swarm Optimisation (PSO) algorithm which 

suffers from local optima by combining SA approach with the algorithm. In this study, 

this hybrid algorithm (PSO-SA) solved the TSP problem very well as compared to 

other existing methods such as genetic algorithm. Meanwhile, a study on real data (K. 

Bryan, Cunningham and Bolshakova, 2005), which is bi-clustering gene expression 

data, has shown that SA algorithm performed better than the method used by Cheng 

et al. (Cheng and Church, 2000) on bi-clustering gene expression. A recent study (Z. 

Yang, Huo and Fang, 2017) has devoted SA to finding a number of clusters 

automatically in data with a consistent performance in experimental results.  
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SA behaves slightly similar to RMHC and RRHC which is always looking for a better 

solution to a problem in a search. However based on the assumption that accepting a 

worse solution at a certain tolerance level would help avoid local optima, SA 

algorithm computes probability for accepting the worse solution. Moreover, the 

algorithm has artificial temperature that used to control the acceptance probability. 

Acceptance probability and artificial temperature in SA are translated in Equation 2-

8 and Equation 2-10 respectively (Swift et al., 2004; S. P. Brooks and Morgan, 1995). 

 










 
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i

i
T

E
eTff ),,Pr(    Equation 2-8 

In Equation 2-8, e  corresponds to exponential constant with value approximately 

2.718. iT is the temperature at iteration i and E is the different value of the new 

fitness and the current fitness in the search. Suppose f is defined as the fitness value 

for the current solution and f  is the fitness value for the new solution. Therefore, 

Equation 2-9 is the different of fitness value.  

 

ffE      Equation 2-9 

 

ii TT 1     Equation 2-10 

 

The cooling rate )(  is a constant that decreases the temperature gradually each 

iteration towards a very small value (0.001). If cooling is sufficiently slow, the global 

minimum will be reached (Brünger, Krukowski and Erickson, 1990). Algorithm 2.3 

sketches the SA algorithms which specifically applied in the context of this research.  
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Algorithm 2-3: Simulated Annealing Algorithm 

Input:  
 

A random initial solution 
Number of iteration 
Initial temperature 
Constant cooling rate 

1 For i=0 to iteration-1  
2   Evaluate the current solution 
3   Obtain a random new solution (perturbation in the  

  current solution) 
4   Evaluate the new solution 
5     If new solution > current solution 
6       Keep the new solution configuration as the   

      current solution 
7     else 
8       Compute probability 
9       If probability > random number 
10           Keep the new solution configuration as the  

          current solution 
11      End if 
12 Compute new temperature (with cooling rate) 
13 End for 
Output: Return current solution 

 

 Generalised Simulated Annealing 

 

Generalised Simulated Annealing (GSA) is another algorithm under the family of 

annealing methods. The algorithm is enhanced from the SA method, which is the 

improved version of Classical Simulated Annealing (CSA) and Fast Simulated 

Annealing (FSA) (Tsallis and Stariolo, 1996). The SA algorithm, which has been 

described in the previous section, is the CSA algorithm. The CSA algorithm is fairly 

slow in terms of convergence (Definition 2.5) (Xiang et al., 1997). Slow convergence 

in CSA is attributed to the nature of visiting distribution, which uses Gaussian 

distribution (local search distribution). Therefore, another version of SA was 

invented: Fast Simulated Annealing (FSA). Szu and Hartley (Szu and Hartley, 1987) 

proposed FSA, which used Cauchy Lorentz visiting distribution (semi-local search 

distribution). The FSA method is quicker at finding an optimum solution compared 

to the CSA method (ibid.). This is because of the long jumps (high size of change in 
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perturbation of a current solution). However, the long jumps can occasionally be quite 

long. Moreover, cooling of the temperature in the method is much faster, which makes 

the search more efficient. Although both algorithms perform well in complex data in 

finding the global optimum, it is imperative to have a very efficient algorithm in terms 

of early convergence (Definition 2-6) in a search. Many studies on convergence of 

algorithms have been conducted to solve complex data (Nakamura and Hong, 2016; 

H. Lee et al., 2016; Bonyadi and Michalewicz, 2016; Rudolph, 1994).  One of the 

studies examines GSA algorithms, which are able to overcome the shortcoming of the 

aforementioned methods of annealing. 

 

Definition 2-6 Convergence Point 

 

The convergence point of an algorithm is the point (time or iteration number) 

where the fitness of the current solution no longer improves. 

 

The convergence point is used in this research to measure the efficiency of an 

optimisation method applied in SMC. Reasonably early convergence point in a 

search of optimising visual field data indicates the efficiency of the method where 

the search is run with a very large number of iteration (100,000 iterations). 

 

GSA is a successful continuous optimisation method in solving problems with 

multiple local optima (also known as non-convex) (Xiang et al., 2017; Vizarim et al., 

2017; Taylor and Mildenberger, 2017; Menin, Martinez and Costa, 2016). A recent 

study (Fukui, Sato and Takahashi, 2016) has devised GSA to find an optimum value 

of the model they used in estimating style weights of mutual funds. Bagheri and 

colleagues (Bagheri et al., 2017) applied a GSA algorithm in their study to find an 

optimum value (maximisation problem) for a function.  
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However, to date, there has not been much investigation of the GSA optimisation 

method in combinatorial or discrete problems especially in health-informatics and 

biomedical data. The high-dimensional data of visual field in this work present a 

challenge to any existing heuristic search methods to solve this combinatorial 

problem. The positive findings from the previous studies on continuous problems 

using GSA inspire this research to adopt the method in Simultaneous Modelling and 

Clustering (SMC). 

 

The GSA method has the same properties as the SA method for acceptance probability 

and artificial temperature (Equation 2-11 and Equation 2-12 (Tsallis and Stariolo, 

1996)). However, unlike SA, GSA takes into account a certain degree of change to 

the current solution in order to derive a new solution. This is called the visiting 

distribution (Equation 2-13 (Tsallis and Stariolo, 1996)). The visiting distribution 

allows a certain large scale of perturbation to the current solution in the early search, 

and the scale of perturbation reduces towards the end of the search. This behaviour in 

GSA supports an extensive exploration in a search space. Furthermore, GSA 

introduces two parameters which calibrate the GSA search.  The parameter of 

acceptance index and visiting index are denoted by Aq and Vq  respectively where the 

value of Aq and Vq  are calibrated depending upon the nature of the problem. Similar 

to SA, the acceptance probability is a rule used to ascertain that a new worse solution 

in a search is acceptable as a stepping-stone to a global optimum solution. 
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E  denotes the different of fitness and A

q A
T is the acceptance temperature which is 

computed using Equation 2-12. The temperature is also used in visiting distribution 

in Equation 2-14.  
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The detailed procedure of the GSA method is described in Algorithm 2-4. 
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Algorithm 2-4: Generalised Simulated Annealing Algorithm 

Input:  
 

A random initial solution 
Number of iteration 
Initial temperature 
Parameter qa, qv 

1 For i=0 to iteration-1  
2   Evaluate the current solution 
   Compute visiting distribution for degree of change 
3   Obtain a random new solution as Equation 2-15  

  (perturbation in the current solution by the degree  
  of change computed)  

4   Evaluate the new solution 
5     If new solution > current solution 
6       Keep the new solution configuration as the  

      current solution 
7     else 
8       Compute probability 
9       If probability > random number 
10           Keep the new solution configuration as the  

          current solution 
11      End if 
12 Compute new temperature 
13 End for 
Output: Return current solution 

 

2.4.5 Weighted Kappa Statistics 

 

The Weighted Kappa Statistic (WK) is widely used in research to measure a level of 

agreement or disagreement between two opinions especially in medical studies (Cao et 

al., 2016; Hill et al., 2016; Viera and Garrett, 2005). This measurement is important in 

research to see whether opinions suggested by experts are within a standard or 

benchmark. In relation to this research, WK is devised to compute an agreement between 

two cluster arrangements, which is the solution found by the approach proposed in this 

study (SMC). Each of the visual field location numbered 1 to 52 are paired. Then the 

agreement and disagreement between the two clustering arrangements are checked for 

each pair of visual field locations. A number of agreements and disagreements from the 
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two clustering arrangements are counted, and WK is computed according to Equation 2-

14 (Viera and Garrett, 2005). The WK agreement level is ranged from -1.0 to 1.0 as 

depicted in Table 2-5.  

 

Kappa (k) Agreement Strength 

-1.0 ≤ k ≤ 0.0 Very Poor 

0.0 < k ≤ 0.2 Poor 

0.2 < k ≤ 0.4 Fair 

0.4 < k ≤ 0.6 Moderate 

0.6 < k ≤ 0.8 Good 

0.8 < k ≤ 1.0 Very Good 

Table 2-5: Weighted Kappa Statistic Metrix 

 

ected
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WK
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
     Equation 2-14 

 

Table 2-6 shows the contingency table for observation and expected where agreement 

and disagreement of two opinions or decisions (in this study is algorithms and the 6NFB) 

are counted. 
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Decision Yesex Noex 

obYes  𝑌𝑒𝑠𝑜𝑏𝑌𝑒𝑠𝑒𝑥 𝑌𝑒𝑠𝑜𝑏𝑁𝑜𝑒𝑥 

obNo  𝑁𝑜𝑜𝑏𝑌𝑒𝑠𝑒𝑥 𝑁𝑜𝑜𝑏𝑁𝑜𝑒𝑥 

Table 2-6: Contingency Table for Observation and Expected  

 

Where observedP   is the proportion of similar decision of two clusters. While ectedPexp  is 

the proportion of expected that counts the dissimilarity decision between two clusters.   

N

NoNoYesYes
P exobexob

observed


 , where N is number of pairs. While 

2exp
N

ba
P ected


  

where, 

)()( exobexobexobexob YesNoYesYesNoYesYesYesa   

)()( exobexobexobexob NoNoNoYesNoNoYesNob  . 

 

The example of computing WK is demonstrated as follows. Suppose five (5) objects are 

to be clustered by two algorithms. In order to find similarity between the two algorithms, 

WK is computed. The clusters formed by the two algorithms in this example are as 

follows:- 

Clusters of Algorithm A: {1,2,5}{3,4} Clusters of Algorithm B: {1,2}{3}{4,5} 

Each of the objects is paired and the decisions of the algorithm A and B are checked 

whether they agree the paired objects are in the same cluster. 
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Pair Algorithm A Algorithm B 

1 and 2 Yes Yes 

1 and 3 No No 

1 and 4 No No 

1 and 5 Yes No 

2 and 3 No No 

2 and 4 No No 

2 and 5 Yes No 

3 and 4 Yes No 

3 and 5 No No 

4 and 5 No Yes 

Table 2-7: Count of Similarity and Dissimilarity of Algorithms Clusters 

 

From the count of similarity and dissimilarity, the table is simplified as follows, 
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Decision Yesex Noex 

obYes  1 3 

obNo  1 5 

Table 2-8: Contingency Table for the Decision of Algorithm A and B  

 

From Table 2-8, values for proportion observed and proportion expected are computed. 

   

10

51
observedP  

6.0observedP  

)()( exobexobexobexob YesNoYesYesNoYesYesYesa   

)31()11( a  

)()( exobexobexobexob NoNoNoYesNoNoYesNob   

)53()51( b  

2exp
N

ba
P ected


  

100

488
exp


ectedP  

100

56
exp ectedP  

56.0exp ectedP  

According to Equation 2-15, WK is computed as follows:- 
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56.01

56.06.0




WK      091.0WK . Therefore, in this example, algorithm A and 

algorithm B have poor agreement of clustering arrangement. 

 

 

2.5 Summary 

 

Chapter 2 provides a literature review of the domain of glaucoma, the second leading 

cause of blindness globally. Even though the cause of glaucoma is multifactorial, elevated 

intraocular pressure in the eyes is one of the common roots. Elevated intraocular pressure 

damages the optic nerve, which is the point where visual information is transmitted to the 

brain. Glaucoma is an irreversible disease and there is no cure established as confirmed 

by many clinical experts (Rizzo et al., 2017; Sivapriya and Latha, 2017; Nayak et al., 

2009). Hence, early detection and prevention is the only way to avoid total loss of vision 

due to glaucoma. Therefore, research on this area is important to detect and predict the 

disease in patients in order to eradicate the disease at an early stage. 

 

In clinical practices, visual field tests are commonly used to manage glaucoma. The data 

are collected by means of perimetry. With the advent of high digital technology, there is 

an abundance of visual field data available in clinics. However, to date, there is no 

recognised gold standard for analysing visual field data to manage glaucoma. A standard 

pattern of visual field locations that corresponds to the visual field deterioration has yet 

to be found. Therefore, finding hidden patterns in the data makes this research significant 

for clinical experts. In the current practice, the six nerve fiber bundles are used in 

managing glaucoma using visual field data. However, further research on finding the 

other possible significant bundles (clusters) is needed as there is no gold standard to 

predict glaucoma deterioration using visual field data. This research proposes a novel 

approach of finding significant clusters that might be available in the data. With other 

possible clusters to better predict the AGIS score, this research would benefit the experts 
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to comprehend the progression of glaucoma based on the patterns of visual field 

deterioration. This research can be materialised by devising machine learning techniques 

on the data to predict the progression of glaucoma in patients using the AGIS score.  

 

The exponential growth of visual field data available on digital storage has resulted in the 

development of big data analysis and algorithms. Leveraging the benefits of big data 

analysis in health-informatics and biomedical changes a way of discovering new 

knowledge, diagnose a disease, and a new way of decision making (Zhao et al., 2017; Y. 

Wang and Hajli, 2017; Gagneur et al., 2017; McAfee and Brynjolfsson, 2012). With the 

visual field data in hand, the importance of applying machine learning on the data was 

discussed based on the literatures. The existing machine learning techniques available in 

the literatures such as clustering and classification, which are to be used in the proposed 

approach of this research, have shown promising results. Furthermore, the widely used 

optimisation techniques in research such as Hill Climbing, Simulated Annealing and 

Generalised Simulated Annealing which are the focal part of this research are to be 

explored in this work. Optimisation is one of the main processes entailed in the proposed 

approach. Developing efficient algorithms using the proposed novel approach in this 

study that find solution and patterns on big data is a contribution to the data science 

community  
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Data Exploration 

3.1 Overview 

 

Data exploration is the first step in data analysis and typically involves summarising the 

main characteristics of a dataset. This process helps data analysts to comprehend the 

nature of dataset by getting statistical values and visualising the dataset. Two datasets are 

used in this research: real data (visual field) and synthetic data. The visual data are 

obtained with permission from Moorefield Eye Hospital London. There is no patients’ 

information available in the data, and the data (patient identification number) are 

anonymised in line with the NHS and Brunel University research code of conduct. 

Meanwhile the synthetic data, which is multivariate normal generated, is used to validate 

the proposed approach (will be further discussed in Chapter 4).  

 

3.2 Visual Field Data Exploration 

 

Visual field data which are used in this research work were collected by means of 

computerised automated perimetry (24-2 test) and consist of 52 visual field locations. The 

data have 13,739 records of visual field test (the right eye) from 1,580 patients. Every 

patient has a few records of visual field test. Figure 3-1 shows a histogram of the number 

of visual field versus the number of patients (with the corresponding number of tests). 

The AGIS score, which indicates the severity of glaucoma progression, was provided 

with the data for each test record.  As discussed in section 2.2, the AGIS score is classified 

into three categories: mild (coded as ‘0’), moderate (coded as ‘1’) and severe (coded as 

‘2’).  
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There is one patient with maximum 42 records and 296 patients with a minimum of two 

records of visual field test. The patient with 42 records was classified as moderate defect 

of glaucoma in the last three recent tests. The patient has 34 (80.95%) tests with mild 

defects and 8 (19.05%) tests with moderate defects.  

 

Meanwhile those 296 patients with only two records of visual field test accumulate 592 

records. From these records, 376 (63.51%) records are with mild defect, 102 (17.23%) 

records with moderate defect, and 114 (19.26%) records with severe defect. Based on the 

percentage of AGIS score records from the highest and lowest number of tests in the data, 

the experiments in the next proceeding chapters use all data and sampled data. All data 

experiments include all the records from the data. Whilst, sampled dataset consists of one 

record from every patient in the data (totalling 1580 records). The reason being (sample 

datasets) is that to avoid bias that may exist in all data. Moreover, another approach of 

sampling is presented by splitting the data into three datasets which include early record, 

middle record and latest record. This approach of sampling is another way used in this 

study to avoid bias in simple sampled data. These split datasets are experimented in 

Chapter 7. 
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Figure 3-1: Distribution of Number of Visual Field Record 

 

As tabulated in Table 3-1, nearly half of the data (41.4%) contains the AGIS score ‘0. 

Whereas in reclassified AGIS, which is used in this study, there is quite high 

proportionate of the data (69.1%) scored with ‘none’ and ‘mild defect’ of AGIS. This 

figure seems to suggest that the data suffer from the class imbalance problem, which is a 

problem particularly when there simply too few instances of a certain class, in the data 

(Chawla, Japkowicz and Kotcz, 2004). Imbalanced data is ubiquitous and is one of 

challenges faced by the big data community. The class imbalance problem is the problem 

in machine learning where the total number of a class of data (positive) is far less than 

the total number of another class of data (negative). In this research context, the number 

of instances of each class (‘mild, ‘moderate’, and ‘severe’) are not equal. A number of 

solutions to this kind of problem can be proposed such as pre-processing techniques (re-

sampling) aiming at rebalance data, and algorithmic techniques, which is allow an 

algorithm to learn from the imbalanced data (Fernández et al., 2017). In this study, an 

initial experiment was conducted where the data were prepared in the 6NFB, and the 

performance of data classification was observed from the confusion matrix (H. He and 
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Garcia, 2009). A confusion matrix is a statistical tool used to measure the performance of 

classifiers. It is a table that tabulates the count of true positive, true negative, false positive 

and false negative (Fawcett, 2006).  The confusion matrix also measures classifier 

performance by accuracy. Table 3-1 and Figure 3-2 exhibit the number of records by the 

AGIS score.  

 

AGIS 
AGIS 

Category 

Number of 

Records 

Percentage 

of Records 

Reclassified 

AGIS 

Percentage 

0 None 5692 41.43% 
69.10% 

1-5 Mild 3802 27.67% 

6-11 Moderate 2497 18.18% 18.18% 

12-17 Severe 1382 10.06% 
12.72% 

18-20 End-Stage 366 2.66% 

Total 13,739 100% 100% 

Table 3-1: Number of Visual Field Test Records by AGIS Category 
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Figure 3-2: Number of Visual Field Test Records by AGIS Score 

 

Table 3-2 to 3-6 tabulate the distribution of visual field records by the reclassified AGIS 

score. A random sampled dataset consists of 1,580 records where one visual field test 

from each patient is obtained randomly. Meanwhile, early, middle and latest datasets are 

sampled by getting one record from each patient with conditions. The early record dataset 

takes the first visual field test record and paired with the second record for the AGIS 

(considering t+1). Since the minimum number of visual field tests available in the raw 

data is two, all patients have early records. However, the middle record dataset accounts 

1,083 records by excluding patients with two and three number of visual field tests 

(totalling 497). The assumption made in this study for middle record dataset is that 

patients with two and three records do not have middle record. They are only eligible for 

the early and latest datasets. In latest dataset, 1,284 records are used in this research by 

excluding those patients with two record of visual field test (totalling 296). From the 

tables (Table 3-3 to 3-6) the proportion of data with AGIS ‘0’is high (more than 63%) in 

all sampled datasets. 
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Class No. % 

0 9494 69.1% 

1 2497 18.2% 

2 1748 12.7% 

Total 13,739 100% 

Table 3-2: Target Variable Class 

Proportion for Raw Data  

 

Class No. % 

0 1048 66.3% 

1 291 18.4% 

2 241 15.3% 

Total 1,580 100% 

Table 3-3:Target Variable Class 

Proportion for Random Sampled 

Dataset 

 

Class No. % 

0 1086 68.7% 

1 274 17.3% 

2 220 13.9% 

Total 1,580 100% 

Table 3-4: Target Variable Class 

Proportion for Early Records Dataset 

 

Class No. % 

0 744 68.7% 

1 201 18.6% 

2 138 12.7% 

Total 1,083 100% 

Table 3-5: Target Variable Class 

Proportion for Middle Records Dataset 
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Class No. % 

0 818 63.7% 

1 271 21.1% 

2 195 15.2% 

Total 1,284 100% 

Table 3-6: Target Variable Class Proportion for Latest Records Dataset 

 

In the data exploration process, the sampled datasets as discussed above were modelled 

using the Naïve Bayes classifier. Prior to modelling, the data with 52 visual field locations 

were prepared with the 6NFB. The sampled datasets consist of 1,580 records of visual 

field test (one record each patient). Whilst the ‘all data’ dataset consist of 12,159 records 

as the latest records from each patient are omitted due to pairing the visual field test with 

t+1 of the AGIS (as discussed in section 2.3.1). The confusion matrix for classification 

of the datasets is retrieved to measure the classification performance. Tables 3-7 to 2-18 

are the confusion matrix, which are the highlighted boxes indicate the true positive of the 

classes, for visual field data classification using the 6NFB. Although the data have 

disproportionate number of class instances, the performances of classification are good 

(with lower error rates and higher accuracy in each class) in all datasets. For ‘all data’ 

classification, the error rates of the classes are 6.5%, 5.6% and 2.5% for class ‘0’, ‘1’, and 

‘2’ respectively. Even though class ‘2’ has least instances in the data, the true positive 

rate (10.2% - Table 3-7) is fairly good at a reasonable error rate (2.5%). Additionally, G-

mean is computed to see the classifier performance.  G-mean measures the balanced 

performance of a learning algorithm between the classes (Phung, Bouzerdoum and 

Nguyen, 2009; Sun et al., 2007) that considers true negative rate and true positive rate. It 

is computed using true positive rate (TP) and true negative rate (TN) as follows:- 
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raterate TNTPmeanG     Equation 3-1 

Where 
FNTP

TP
TPrate


  and 

FPTN

TN
TN rate


 . With 85.5% accurate, the G-mean 

value for the classifier in all data classification are impressive with 0.89, 0.79, 0.88 (near 

to 1.0) for class ‘0’, ‘1’ and ‘2’ respectively (Akosa, 2017). Therefore, this research work 

does not perform re-sampling dataset, which are over-sampling and under-sampling, 

before modelling the data (Yoon and Kwek, 2007).  

Legend: Highlighted boxes indicate the true positive of the class.  
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Predicted 

Classes 0 1 2 

0 7649 62.9% 750 6.2% 31 0.3% 

1 387 3.2% 1507 12.4% 295 2.4% 

2 16 0.1% 286 2.4% 1238 10.2% 

Accuracy 85.5% 

Table 3-7: Confusion Matrix for All Data 
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Predicted 

Classes 0 1 2 

0 944 59.7% 97 6.1% 4 0.3% 

1 63 4.0% 195 12.3% 42 2.7% 

2 3 0.2% 36 2.3% 196 12.4% 

Accuracy 84.5% 

Table 3-8: Confusion Matrix for Random Sampled Dataset 
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Predicted 

Classes 0 1 2 

0 968 61.3% 113 7.2% 5 0.3% 

1 59 3.7% 171 10.8% 44 2.8% 

2 3 0.2% 39 2.5% 178 11.3% 

Accuracy 83.4% 

Table 3-9: Confusion Matrix for Early Dataset 
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Predicted 

Classes 0 1 2 

0 681 62.9% 60 5.5% 3 0.3% 

1 44 4.1% 120 11.1% 37 3.4% 

2 2 0.2% 23 2.1% 113 10.4% 

Accuracy 84.4% 

Table 3-10: Confusion Matrix for Middle Dataset 

 

O
b
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ed
 

Predicted 

Classes 0 1 2 

0 730 56.9% 86 6.7% 2 0.2% 

1 46 3.6% 191 14.9% 34 2.6% 

2 3 0.2% 34 2.6% 158 12.3% 

Accuracy 84.0% 

Table 3-11: Confusion Matrix for Latest Dataset 
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3.2.1 Synthetic Data 

 

The use of synthetic data in experiments can be seen as a ‘reverse engineering’ technique 

to validate a new method. Yeung et al. (Yeung et al., 2001) conducted a study on model-

based clustering towards bioinformatics data and benchmarked the performance of 

model-based clustering on several synthetic data, which each class in the synthetic data 

was generated according to a multivariate normal distribution. Another study presented 

by He Yi and colleagues (Y. He, Pan and Lin, 2006) on model-based clustering used 

multivariate normal mixture models to create two synthetic datasets that mimic gene 

expression data. Much research has used synthetic data to evaluate algorithms such as 

(Bolón-Canedo, Sánchez-Maroño and Alonso-Betanzos, 2013; Metwally, Agrawal and 

El Abbadi, 2005; Ester et al., 1996). The synthetic dataset used within this research is 

from a multivariate normal (MVN) data. The dataset length is 2500 (records) with 45 

variables. The target variable (ordinal type) of the data is classed into the following three 

classes: ‘1’, ‘2’, and ‘3’. These classes indicate which cluster that has the highest average 

value over a set of variables. If the cluster 1 has the highest average value of the variables, 

the class of the target variable for the record is ‘1’, so on and so forth. The proportion of 

the synthetic data by the target variable is balanced as shown in Figure 2-15. The details 

of the synthetic data are further discussed in Chapter 4 of this thesis.  
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Figure 3-3: Number of Synthetic Record by Target Variable Classes 

 

3.3 Summary 

 

Data exploration (Jebb, Parrigon and Woo, 2017) is a precursor step of machine learning 

performed on the visual field data in this study. The data used in this study are good for 

empirical experiments to be carried out in the next chapters even though the data has 

imbalanced classes. In addition to the real data, a synthetic dataset is used in this research 

to validate the proposed approach of clustering and modelling as in many other studies 

(D. Zhang et al., 2017; Enshaeifar et al., 2017; Han and Abdelrahman, 2017; Brinkman 

et al., 2006). 

 

The main principle of the following chapter (Chapter 4) is to propose a model-based 

clustering technique namely, SMC. The practicability of the approach is examined by 

performing empirical experiments on the visual field data using the identified 

classification and optimisation methods discussed in this chapter. They are used to 

explore and validate the practicality of the approach on the real data.    
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Simultaneous Modelling and Clustering 

4.1 Overview 

 

Chapter 4 presents the novel approach of modelling and clustering namely, Simultaneous 

Modelling and Clustering (SMC), which is based on the work presented at the Computer 

Based Medical System conference (M. Z. M. B. Jilani, A. Tucker and S. Swift, 2016). 

The goal of this chapter is to validate the proposed approach so that a better understanding 

of the relationship between visual field locations can be made, as well as the generation 

of models that can better predict glaucoma progression. The SMC method is tested on 

visual field data to cluster the 52 visual field locations. As discussed in the previous 

chapter, clustering and classification are common techniques used in big data analysis 

especially high-dimensional data such as visual field data. Applying these techniques 

enables the exploration of patterns and discovers some latent knowledge that available in 

data. In SMC, the spatial clusters over the visual field are determined by using heuristic 

search techniques which are scored based upon the prediction accuracy of glaucoma 

deterioration. The end result (resultant clusters) is compared to methods using the 

standard clusters that are based upon physiological traits (the six optic nerve fiber bundles 

– 6NFB). This chapter is structured into seven sections. Section 4.2 briefly presents 

introduction and background of Chapter 4, section 4.3 introduces the SMC method. The 

experimental method and results are presented in section 4.4 and 4.5 respectively. Section 

4.6 discusses further detail about the results and section 4.7 concludes the chapter.  
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4.2 Introduction and Background 

 

Visual field (VF) data is used to manage the condition of glaucoma. Analysis of visual 

field data has been widely undertaken in predicting glaucoma deterioration using a variety 

of techniques including data classification, clustering (Ceccon et al., 2014) and statistical 

methods (S. R. Bryan et al., 2013; Swift and Liu, 2002; Fitzke et al., 1996). Additionally, 

machine learning techniques such as Bayesian Networks are commonly used in a number 

of studies (Ceccon et al., 2014; Bowd and Goldbaum, 2008; Bizios, Heijl and Bengtsson, 

2007). Discovering glaucoma deterioration patterns in visual field data helps with the 

early detection of glaucoma. Moreover, it helps physicians in providing appropriate 

treatments to patients who are suffering glaucoma, which is the second leading cause of 

blindness in the world (Quigley and Broman, 2006). The classification and clustering of 

visual field data can aid in the understanding of the multi-dimensional nature of the data 

which can be exploited in distinguishing healthy and diseased eyes. Applying a classifier 

to this time series data aids in discerning glaucoma deterioration progression in patients 

(Brusini and Johnson, 2007). Improving glaucoma deterioration prediction helps 

physicians to provide a more accurate early diagnosis of glaucoma thus better treatments 

for patients. Moreover, finding a cluster arrangement of visual field that have significant 

mapping to optic nerve head by means of evolutionary computation techniques is a major 

contribution to medical practitioners.  The optic nerve head is a collection of fiber bundles 

(Bourne, 2006) which are connected to the brain. A number of visual field studies have 

used these 6NFB as the basis for their analysis. As presented in Chapter 2, (Garway-Heath 

et al., 2000) proposed the mapping of visual field to the optic disc, which has motivated 

many clustering and classification studies based on these mappings (6NFB). (Ceccon et 

al., 2012) have clustered the 52 visual field locations into the 6NFB. A recent study, 

(Sacchi et al., 2014) which is grouped the 52 locations into six sectors and incorporated 

additional variables in the data, obtained up to 85% classification accuracy using the 

Naïve Bayesian classifier. Likewise, statistical methods have been used in predicting 

glaucoma deterioration, Swift et al. (Swift and Liu, 2002)  in their study they used the 
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6NFB with short multivariate time series for prediction. This approach however fixes the 

number of visual field locations into six significant sectors to be used in modelling the 

visual field data. Even though the fixed significant sectors have been used as a standard 

approach in modelling, none of studies have had recorded a large prediction improvement 

in modelling. Thus, finding a new way in predicting glaucoma deterioration using the 

visual field data is an open opportunity for further research. Furthermore, improving 

prediction accuracy in modelling using a new method is a substantial contribution in this 

field. The hypothesis underpinning these experiments is that there exists a clustering 

arrangement, different (but possibly with some similarity) to the known 6NFB, that will 

result in a high classification/prediction accuracy (than the known bundles). This 

clustering arrangement can be determined by using an appropriate heuristic search 

technique. Therefore, this study proposes a novel approach of predicting glaucoma 

progression. In the novel approach, visual field data are simultaneously modelled and 

clustered to predict the stage of glaucoma. Unlike other classification and prediction 

studies, significant clusters of visual field are searched for based on the data and then 

these clusters are used to predict the level of glaucoma deterioration.  

 

Optimisation methods are used as the basis for this search and a number of classification 

results are compared. The data are modelled based on the new clustering arrangement of 

visual field with the highest accuracy prediction. 

 

4.3 Simultaneous Modelling and Clustering 

 

As discussed in the previous chapter, clustering comprises a few techniques include 

model-based clustering. The SMC is a model-based clustering technique where clusters 

are identified based on objects shape and structure rather than on proximity between data 

points. Model-based clustering technique is extensively used both for continuous and 

discrete domain (Meilă and Heckerman, 2001). This research applies SMC in a discrete 
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problem where clustering arrangements of visual field locations are searched based on 

the classification accuracy (measure in percentage). As the name applies, the SMC 

comprises of these two main analysis techniques that is clustering and modelling. The 

diagram below shows the process of validating SMC using visual field data.   

 

 

Figure 4-1: High Level Process of Simultaneous Modelling and Clustering 
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As depicted in the diagram, in process 2, the initial clusters of the visual field locations 

are created randomly. Based on the clustering arrangement of 52 visual field locations, 

the data are prepared (process 3). Data preparation is a process of obtaining the average 

values of VF locations in clusters as illustrated in Figure 4-2 (example of 15 variables). 

From this illustrated example, cluster 1 gets the average value of visual locations 1, 3, 5, 

and 9 (divided by 4). 

 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 AGIS 

(T+1) 

{1,3,5,9} {2,6,14} {4,7,10} {8,15} {11,12,13} AGIS 

score 

Figure 4-2 : Illustration of Data Preparation in the SMC 

 

Following the data preparation stage, the looping process starting from process 4 to 9 is 

iteratively undertaken until the number of iterations is reached. From process 4 to 9, an 

optimisation method is applied to search for the best clustering arrangement of visual 

field locations. This heuristic process iterates for a large number of iterations where the 

clustering arrangement is improved in the search. Within the looping process, a new 

clustering arrangement is identified (process 4) by making a small change from the initial 

clustering arrangement (also referred to as current clustering arrangement). Continuing to 

process 5, data are prepared based on the new clustering arrangement. Next, the prepared 

data with the new clustering arrangement are modelled using classification in process 6. 

After classification, the model is measured by taking an accuracy value (predictive 

accuracy), which is measured in percentage (%). In this process, there are two solutions 

(clustering arrangements) with accuracy values: current accuracy and new accuracy for 

initial and new clustering arrangement respectively. Thereafter, the two solutions are 

compared in process 8. Whichever is the best solution based on certain conditions (such 
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as high accuracy, high acceptance probability), the clustering arrangement is retained as 

the current solution in the iteration (process 9).  The hypothesis underpinning this 

approach is that the higher the accuracy, the better the quality of the associated clustering 

arrangement. The whole process of SMC is terminated in process 10 when the condition 

is met. Then, the latest clustering arrangement and corresponding accuracy value are 

captured for further analysis using Weighted Kappa statistics. The Weighted Kappa 

statistic between the clusters found by the method and the 6NFB is computed to measure 

the similarity of clustering arrangement between them. In other words, this work involves 

dimensionality reduction, which is the process of reducing the number of variables.   

 

4.4 Method 

 

The method of these empirical experiments entails data pre-processing, which is the 

preliminary task involved in machine learning, classifiers and optimisation methods, and 

experiment strategy.  

 

4.4.1 Data Pre-Processing 

 

Anonymised visual field data provided by Moorefield Eye Hospital London were used in 

these experiments. In the SMC process, data are prepared into a time series record before 

the experiments are executed. Each patient’s test record is paired with the AGIS score of 

next visit test (t+1) as illustrated in Figure 4-3. As such, the most recent test record of 

every patient was excluded in the experiments. Therefore, the data used in the 

experiments after data cleaning consisted of 12,159 of visual field test records. The AGIS 

scores are classified into five categories that indicate the severity of the glaucoma 

condition, however in this study, the stages were reclassified into three stages for an 

efficient prediction following the same procedure detailed in Sacchi’s work (Sacchi et al., 
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2014). The results presented in Sacchi’s work showed that prediction of visual field data 

(AGIS score) was as high as 85% accurate utilising additional variables which are not 

used in this study. 

 

 

 

 

Figure 4-3 : Preparation of VF record with AGIS 

 

4.4.2 Classifiers and Optimisation Methods 

 

There are three classifiers and three optimisation methods used in this work. The 

classifiers are Decision Tree (J48), Naïve Bayes (NB) and Multinomial Naïve Bayes 

(MNB). Selection of the classifiers was made due to their efficiency and track record in 

data classification (N. Friedman, Geiger and Goldszmidt, 1997; J. H. Friedman, 1997). 

Meanwhile Multinomial Naïve Bayes is an efficient classifier (in terms of runtime), 

although the prediction performance may not be as good as NB (Tao and Wei-hua, 2010; 



 

 

100 

 

 

Rennie et al., 2003). In SMC, the data are modelled using 10-fold cross validation 

(10FCV). Cross validation is the commonest way in data mining and data modelling 

(Fushiki, 2011; Kohavi, 1995; P. Zhang, 1993), and in this research context it is used to 

measure the predictive performance (predictive accuracy percentage value). Predictive 

accuracy of visual field data is obtained in the SCM process where it works as a fitness 

value to measure the clustering arrangements of visual field locations. 

 

The optimisation methods used in the experiments are Random Mutation Hill Climbing 

(RMHC), Random Restart Hill Climbing (RRHC) and Simulated Annealing (SA). 

RMHC is the simplest and most straight forward optimisation method that searches for a 

solution in the data space based on improvement of a fitness value. Due to this simplicity, 

the method tends to get stuck in a locally optimal solution in the search space (Basseur 

and Goëffon, 2013; Tovey, 1985). For that reason, RRHC is also employed which is 

believed to be able to avoid local optimum solutions (Lim, Rodrigues and Zhang, 2006). 

Additionally, SA is also employed to avoid local optimum in the search due to the 

possible acceptance of worse fitness values under certain conditions (Rutenbar, 1989). 

Empirical experiments are carried out using these methods and the performance of the 

classifiers is captured.   

 

Hill Climbing 

 

Random Mutation Hill Climbing (RMHC) is a simple and straightforward optimisation 

method and is easy to implement and understand. As such it is often used as a benchmark 

technique when testing search methods (Mitchell, Holland and Forrest, 1994). However 

due to this simplicity, the method tends to get stuck in a locally optimal solution in the 

search space (Basseur and Goëffon, 2013; Tovey, 1985). The SMC algorithm of RMHC 

and RRHC are detailed in Algorithm 4-1 and 4-2. 
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Algorithm 4-1 : Simultaneous Modelling and Clustering of Random Mutation 

Hill Climbing Algorithm 

Input:  
 

D = visual field data  
iterations = Number of iterations 
fd = 10-fold cross validation 
Model{J48, NB, MNB} 

1 Let Ccurrent = random clusters of visual field points 
2 Let Dcurrent = visual field data of the Ccurrent 
3 Let fitnesscurrent = prediction accuracy of the Ccurrent with fd  
4 For i=0 to iterations-1 
6    Cnew = re-arrange elements in Ccurrent for small_change 
7    Dnew = D of the Cnew 
8    Fitnessnew = prediction accuracy of Dnew with fd              
9    if fitnessnew > fitnesscurrent 
10       fitnesscurrent = fitnessnew 
11       Ccurrent = Cnew 
12    end if 
13 end for 
Output: Ccurrent, prediction accuracy = fitnesscurrent 

 

Algorithm 4-2 : Random Restart Hill Climbing Algorithm 

Input:  
 

D = visual field data  
iterations = Number of iterations 
fd {10-fold, 2-fold, no-fold cross validation} 
Model{J48, NB, MNB} 
Restart = 10 

1 For i=0 to restart-1 
2    Perform an RRHC algorithm as Algorithm 3-1 
3    Crestart_i = Current clusters of restart of i 
4 End for 
Output: C = The best cluster from restarts 

Best prediction accuracy of D of Crestart_i 

 

In the RMHC and RRHC search, two options small change (Definition 4.1) is used to 

obtain a new solution. Clusters are shuffled by moving two variables from its own cluster 

to another cluster. With this perturbation to the current solution, it would give a little 

change to the current fitness value.  
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Definition 4-1 Small Change 

A small change in this work is defined as a number of moves that changes variable (visual 

field locations) position from one cluster to another cluster. It is a perturbation made to 

the current solution for a new solution. 

 

Simulated Annealing 

 

The SA method was used to advance the search from the HC methods. The heuristic 

search based on metallurgy process enables to avoid from local optima. From the 

literature, the SA method has two properties such as acceptance probability and artificial 

temperature that make the method becomes efficient in searching a solution. In the SA 

method the artificial temperature is cooled using a constant cooling rate ( ) and the final 

temperature in SA system is set to as small as possible ( 001.0nT ). With a guess value 

for the initial temperature and the known value of nT , the rate of   can be computed 

(Equation 4-3) as the following explanation:- 

 

Computation of temperature for iteration 1 is denoted 01 TT  . Subsequently for 

iteration 2, the temperature is 12 TT   with a note that 01 TT   then the equation is 

further expanded to )( 02 TT  . Similar to the preceding temperature equation, with 

23 TT   the equation is further expanded to  ])[( 03 TT  . 

 

Therefore from these equations, in order to obtain the final temperature nT  (n is a number 

of iterations), the equation is defined as:- 

n

n TT 0     Equation 4-1 
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From Equation 4-1, the equation is expressed to get an equation for   as the following 

steps:- 

 

      )ln()ln( 0

n

n TT   

)ln()ln()ln( 0

n

n TT   

)ln()ln()ln( 0 nTTn   

)ln()ln()ln( 0 nTTn   

)ln()ln()ln( 0TTn n   

 

n

TTn )ln()ln(
)ln( 0
    Equation 4-2 

With the assumption
n

TT
x n )ln()ln( 0
 , Equation 4-2 is simplified as:- 

 

xe     Equation 4-3 

 

However the initial temperature ( 0T ) in this work is derived from another simulation as 

successfully applied by Swift et al. (Swift et al., 2004) in clustering gene expression data. 

The simulation is run to get the accumulation of small change of fitness value and to be 

divided by the number of iteration. In the simulation five percent (5%) from the total 

iterations of the SA experiment is allotted to compute the initial temperature. In this work, 

500 (5% of 10,000) was used in the simulation experiment to determine the initial 

temperature. This resulted the SA experiments were run for 9500 (95% of 10,000). 

Algorithm 4-3 delineates the simulation of getting an initial temperature for SA. 
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Algorithm 4-3 : Initial Temperature Simulation Algorithm 

Input:  
 

D = visual field data  
iterations = Number of iterations 
temperature = 0 
fd {10-fold, 2-fold, no-fold cross validation} 
Model{J48, NB, MNB} 

1 For i=0 to iterations-1 
2    Let Ccurrent = a random cluster of visual field points 
3    Dcurrent = D of Ccurrent 
4    Let fitnesscurrent = prediction accuracy of Dcurrent   

                      classification with fd 
5    Cnew = re-arrange Ccurrent for small_change 
6    Dnew = D of the Cnew 
7    Fitnessnew = prediction accuracy of Dnew classification 

with  
   fd              

8    fitness = |new fitness – current fitness| 
9    temperature = temperature + different fitness 
10    fitnesscurrent = fitnessnew 
11    Ccurrent = Cnew 
12 end for 
15 temperature =  temperature /iterations 
Output: Initial temperature 

 

Figure 4-4 illustrates the example of temperature is cooled in a SA method experiment.  

 

Figure 4-4 : Cooling of Temperature in SA Method Experiment 
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The SMC algorithm of SA is described in Algorithm 4-4.  

 

Algorithm 4-4 : Simultaneous Modelling and Clustering of Simulated Annealing 

Algorithm 

Input:  
 

D = visual field data  
iterations = Number of iterations 
initial temperature = Algorithm 3.3 
temp = initial temperature 
fd = 10-fold cross validation 
Model{J48, NB, MNB} 

1 Let Ccurrent = a random cluster of visual field points 
2 Let Dcurrent = D of Ccurrent 
3 Let fitnesscurrent = prediction accuracy of Dcurrent with fd  
4 For i=0 to iterations-1 
6    Cnew = re-arrange Ccurrent for small_change 
7    Dnew = D of Cnew 
8    fitnessnew = prediction accuracy of Dnew with fd              
9    if fitnessnew > fitnesscurrent 
10       fitnesscurrent = fitnessnew 
11       Ccurrent = Cnew 
13    else 
14       fitness = fitnesscurrent – fitnessnew 
15       Let Pr = Compute acceptance probability (Equation 2- 

               9) 
16       Let random = UR(0,1) 
17       If Pr > random  
18          fitnesscurrent = fitnessnew 
19          Ccurrent = Cnew 
20       end if 
21    end if 
22 temp = compute temperature (Equation 3-1) 
23 end for 
Output: Ccurrent, prediction accuracy = fitnesscurrent 

 

4.4.3 Experiment Strategy 

 

In an initial data exploration, there exists a high negative correlation (-0.725) between 

number of tests and the corresponding AGIS score (Appendix 4A). The high negative 

correlation indicates that the more tests that patients have, the lower the AGIS. The 



 

 

106 

 

 

negative correlation between the number of tests and the AGIS score makes sense since 

the more tests undertaken by the patients, immediate clinical intervention can be 

undertaken and thus the deterioration could be avoided. 

 

Some patients have very few records and some patients with severe glaucoma have many 

records. To avoid this inherent bias in the dataset, experiments were run using two 

strategies: one using all of the data and the second using sampled data. The “all data” 

experiments consists of all of the 12,159 records whilst sampled data strategy consists of 

1,580 visual field test records.  A random test record is sampled from each patient for 

experiments. However, the latest test record from each patient will not be selected due to 

pairing with the test record with t+1 of AGIS. Each experimental strategy was run using 

the three optimisation methods where each method employed the three classifiers. 

Experiments were run for 10 times with 10,000 iterations each. For RRHC method, 10 

restarts were used in the experiment and each of the restart has 1,000 iterations (equivalent 

10,000 iterations in all repeats). The choice of 10,000 iterations was decided upon due to 

an initial exploration of the data. Few experiments were run with 100,000 iterations using 

RMHC method with MNB classifier to observe the optimum solution and iteration. It was 

found that the algorithm has reached to the optimum solution at 3,785th. Therefore, 

choosing 10,000 as the iterations in formal experiments is adequate to reach the optimum 

solution. There are nine experiments are carried out for this work, which each of the 

optimisation method (RMHC, RRHC, and SA) is run for three individual experiments 

using the J48, NB and MNB classifiers. The nine experiment strategies are summarised 

as in Table 4-1. 
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Method Classifier Iteration 
Experiment 

Repeat 

RMHC J48 

NB 

MNB 

10,000 10 

RRHC 1,000 (10 restarts) 10 

SA 10,000 10 

Table 4-1 : Summary of the Nine Experiment Strategies 

 

4.5 Results 

 

The results are presented as three individual experiments: initial experiments, all data 

experiments and sampled data experiments. 

 

4.5.1 Initial Experiments 

 

In the initial experiments, data were classified (with 10FCV) to predict the AGIS score at 

test (t+1) using the 6NFB. The full dataset was used for the classification without finding 

the best clusters and optimising the accuracy. As shown in Table 4-2, the results found 

that J48 is the best classifier with a prediction accuracy of 86.11%. Meanwhile NB and 

MNB have an accuracy of 85.17% and 76.29% respectively. The results above are 

consistent with (Sacchi et al., 2014) for NB. Thus, these accuracies are used as the 

benchmark in this study. The experimental results in all data and sampled data were 

analysed and discussed on the prediction accuracy and Weighted Kappa statistic to 

determine the overall improvement over these benchmark accuracies. 
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Classifier Accuracy (%) 

J48 86.11 

NB 85.17 

MNB 76.29 

Table 4-2 : Initial Experiments Prediction Accuracy using the 6NFB 

 

4.5.2 All Data Experiments 

 

Predictive Accuracy 

 

Out of the 10 runs of the experiments, the best results of the models for each method 

were tabulated. Table 4-3 to 4-5 present the best results of prediction and the 

resulting clusters (with 10FCV). An average of the accuracy is over all of the 10 

runs of the methods. Overall, the models improved the prediction from the initial 

experiments where the best accuracy recorded was 86.99% by J48 using SA (Table 

4-5). The model also proposed the same size of clusters with the 6NFB. With NB, 

the results appear to have larger cluster sizes for the optimum solution (high 

accuracy) in all of the methods, these being 15, 17 and 10 clusters respectively. 

Meanwhile, the NB model results are consistent in all methods (86.16% - 5 clusters, 

86.39 – 4 clusters, 86.45 - 7 clusters).  
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Model Best Accuracy (%) VF Clusters Mean (%) 

J48 86.84 5 85.74 

NB 86.16 5 85.83 

MNB 83.24 15 82.94 

Table 4-3 : Model Prediction Accuracy of RMHC 

 

Model Best Accuracy (%) VF Clusters Mean (%) 

J48 86.94 4 86.38 

NB 86.39 4 85.95 

MNB 83.27 17 83.15 

Table 4-4 : Model Prediction Accuracy of RRHC 

 

Model Best Accuracy (%) VF Clusters Mean (%) 

J48 86.99 6 86.59 

NB 86.45 7 86.26 

MNB 83.33 10 83.09 

Table 4-5 : Model Prediction Accuracy of SA 
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Figure 4-5 and 4-6 exhibit the convergence graph of the experiments for the 

RMHC and the SA method respectively. The RMHC search has a smooth 

convergence graph as the method does not accept worse solutions in the search.  

However, the convergence graph for SA (Figure 4-6) clearly has fluctuations 

during the early iterations of the search. The explanation for this is that the method 

is accepting worse solutions in the search by computing the acceptance probability 

as discussed in Chapter 2. It can be seen that the fluctuations become less extreme 

as the iterations increase, due to the temperature cooling. This behaviour is exactly 

as expected and allows SA to avoid becoming stuck in local optima. 

 

 

Figure 4-5 : Convergence Graph for RMHC with NB Classifier 
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Figure 4-6 : Convergence Graph for SA with NB Classifier 

 
 

Weighted Kappa Statistics 

 

The clusters of the best experiments results based on the highest accuracy were used 

in the Weighted Kappa calculation. Weighted Kappa is calculated to see the 

agreement between the resulting clusters and the 6NFB. The Weighted Kappa 

results for the best accuracies of the HC, RRHC and SA methods are presented in 

Table 4-6. 

 

 

 

 

 

 

Table 4-6 : Weighted Kappa of Resulting Clusters 

 

Method/Model J48 (#cluster) NB (#cluster) MNB (#cluster) 

RMHC 0.018 (5) 0.080 (5) 0.013 (15) 

RRHC -0.001 (4) 0.009 (4) 0.001 (17) 

SA -0.007 (6) 0.002 (7) -0.054 (10) 
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The results found that the resulting clusters using the SMC method with a random 

initial solution in the search has weak agreement with the 6NFB. Weighted Kappa 

in the experiment recorded between -0.054 to 0.080. This shows that the resulting 

clusters have very poor agreement with the 6NFB. Both the J48 and NB classifiers 

proposed smaller clusters (less than 8 clusters) in all methods compared to MNB 

(10, 15 and 17 clusters). Figure 4-7 shows the number of clusters in the search from 

the SA method experiment using the NB classifier. The number of clusters is 

decreasing during the search, where the clusters corresponding to high predictive 

accuracy in modelling. 

 

 

Figure 4-7 : Number of Cluster in the SA Method (NB)  

 

4.5.3 Sampled Data Experiments 

 

As discussed in the previous section, sampled data experiments use a single random 

visual field record from every patient. Therefore, the sampled dataset consists of 

1,580 records. Each run of the experiments used a different sampled dataset. 

However, the RRHC method, which has 10 restarts in each run experiment, uses 

the same datasets within each restart.  
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Predictive Accuracy 

 

Predictive accuracy results for sampled dataset are presented in Table 4-7 to 4-9. 

The sampled data experiments have slightly improvement compared to the all data 

experiments. In these experiments, the NB classifier was the best model at 

predicting the AGIS score (t+1). The model accuracies were 88.49% in SA, 

88.35%, in RMHC and 87.38% in RRHC. The J48 classifier also has a significant 

accuracy improvement where the results were more than 87%. However, this is 

different to the performance of the MNB classifier. The classifier seems to perform 

better in the all data experiments when compared with the sampled data. As for the 

resulting clusters, it was found that the resulting clusters in the sampled data 

experiments are larger than the clusters in the all data experiments.  

 

Model Best Accuracy (%) VF Cluster Mean (%) 

J48 87.27 17 85.99 

NB 88.35 16 86.28 

MNB 82.67 19 80.85 

Table 4-7 : Model Prediction Accuracy of RMHC 

 

Model Best Accuracy (%) VF Cluster Mean (%) 

J48 87.18 5 86.36 

NB 87.38 8 85.96 

MNB 82.45 12 81.68 

Table 4-8 : Model Prediction Accuracy of RRHC 
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Model Best Accuracy (%) VF Cluster Mean (%) 

J48 87.15 7 86.35 

NB 88.49 12 86.73 

MNB 82.48 12 81.06 

Table 4-9 : Model Prediction Accuracy of SA 

 

Figure 4-8 and 4-9 exhibit the convergence graph for the HC and SA methods (NB 

classifier) respectively. From the sampled data experiments, it can be clearly seen 

that the convergence graphs are slightly earlier than the all data experiments. 

 

 

Figure 4-8 : Convergence Graph for RMHC with NB Classifier 
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Figure 4-9 : Convergence Graph for SA with NB Classifier 

 

Weighted Kappa Statistics 

 

The Weighted Kappa results for the RMHC, RRHC and SA methods are shown in 

Table 4-10. 

 

Method/Model J48 (#clusters) NB (#clusters) MNB (#clusters) 

RMHC 0.025 (17) 0.080 (5) -0.029 (19) 

RRHC 0.013 (5) 0.006 (8) -0.019 (12) 

SA 0.013 (7) 0.022 (12) -0.021 (12) 

Table 4-10 : Weighted Kappa of Resulting Clusters 

 

There is no significant difference between the all data and sampled data as far as 

the Weighted Kappa score is concerned. Weighted Kappa in the sampled data 

experiments are very poor with the range of value being between -0.029 to 0.025. 

In these experiments, it appears that the larger the resulting clusters size the poorer 
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the Weighted Kappa value. Figure 4-10 shows number of clusters in the SA search 

method using the NB classifier. 

 

 

Figure 4-10: Number of Cluster in the SA Method (NB) 

 

4.6 Discussion  

 

Based on observation of the experimental results, SMC has proven an effective way in 

improving predictive accuracy for visual field data. The best accuracy recorded in the 

experiments was 88.49% by the SA method, with the NB classifier in sampled dataset. 

The accuracy was improved by 3.89% from the initial experiment result (using the 

6NFB). The sampled data strategy was found to be more effective than using all of the 

data due to afore mentioned bias with the data. The strategy is also a more efficient 

strategy being significantly computationally quicker. On average, predictive accuracy of 

the sampled data experiments is better than the ‘all data’ experiments. Although the 

sampled data experiments have higher accuracy than the ‘all data’ experiments, the 

resulting clusters are variables and have low Weighted Kappa. This is likely to be due the 

nature of the sample data. Overall, based on the predictive accuracy result, SMC on the 
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sampled dataset experiments (best with 89.49%) outperformed the all data experiments 

(best with 86.99%). 

 

The MNB classifier largely improves (9.23%) the prediction in all data experiment 

compared to other classifier. However, the best accuracy recorded by MNB was far less 

accurate (83.33%) compared to other models. The best model was NB (88.49%) with 

3.89% prediction improvement in sampled dataset using the SA method. However, for all 

data experiment, J48 recorded the best accuracy (86.99%) in the SA method.  

 

The resulting clusters appear to have larger size of cluster in sampled data experiments. 

The HC method proposed more than 15 clusters with all of the classifiers in the sampled 

data. Even though SMC has appeared to have an improved predictive accuracy, the 

resulting clusters have shown a disagreement in clustering arrangement with the 6NFB 

(best WK recorded 0.080) in both experiments (all data and sampled data). 

 

Analysis in Chapter 4 is extended to see the mapping of the resulting clusters to the 54 

locations of visual field. To visualise the best clusters result, “The Normal Approximation 

for the Binomial Approximation of the Hypergeometric distribution” (NBH) metric was 

used to locate the best resulting clusters of the experiments. This metric, proposed by 

(Swift et al., 2004) (used in gene-expression data analysis), identifies the significance of 

the overlap between an individual cluster and a known set or function grouping of genes. 

This metric can be used to determine the overlap between any two individual collections 

of objects, or in this work case visual field points and the benchmark clustering 

arrangement (6NFB). The NHB analysis found that the resulting clusters from sampled 

data, RRHC, model J48, run 6 was the highest.  Thus, the best clusters (with 19 clusters) 

restart 8 of the experiments was chosen to visualise the clusters on the 54 visual field 

locations. The NBH ranking analysis shows that RRHC, model J48, run number 6, had 

the most agreement (overlap) with the 6NFB, which is shown in Figure 4-11. From the 
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visualisation of the clusters, noted that the method found many small clusters size rather 

than larger clusters size. The larger clusters appear on the periphery of vision, which 

agrees with medical evidence that glaucoma first start in the periphery near the blind spot, 

corresponding to cluster numbers 15, 14 and 4. Cluster number 10 appears to be the only 

central set of points of a significant size. 

 

 

Figure 4-11 : Visual Field Map for Resulting Clusters RRHC, J48 

 

4.7 Summary 

 

The empirical experiments carried out in this work explore the new clustering and 

classification technique (SMC) to find the optimal visual field clusters for predicting the 

AGIS score for patient’s suffering from glaucoma. The motivation of exploring this new 

method of visual field classification is to improve glaucomatous deterioration prediction 

and indirectly this could provide clinicians with accurate diagnosis of glaucoma towards 

the end of providing better treatment to patients. Additionally, model-based clustering is 

a significant contribution in analysing medical data that can widely be applied to other 

medical data and other domains.  
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The experiments results support the hypothesis that there exists a clustering arrangement 

of visual field, which is different (or can be slightly similar) to the known 6NFB, as well 

as improving the prediction accuracy of AGIS.  The work in Chapter 4 concludes that 

SMC can be applied to visual field data to predict glaucomatous progression as all 

methods and models improve prediction accuracy.   

 

From the positive results in this work, it opens more research opportunity to explore the 

technique especially involving other optimisation methods and synthetic data. Ideally, 

developing an algorithm that searches clusters efficiently and effectively in terms of 

convergence is a research opportunity to be addressed. Furthermore, since the result on 

the real data cannot guarantees the effectiveness of SMC (obtaining the right clusters), 

devising the technique on synthetic data could validate the effectiveness of the technique 

to search the optimum solution. Additionally, it is also believed that the SA method is not 

providing as efficient a search as would be expected. Therefore, extending the number of 

iterations could possibly improve prediction accuracy.  

 

The gaps found in Chapter 4 will be bridged in the next chapters. Chapter 5 will be 

focusing on applying SMC on synthetic data to validate SMC.   
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Simultaneous Modelling and Clustering on Synthetic Data 

5.1 Overview 

 

The work in the previous chapter successfully demonstrated that SMC improves 

prediction accuracy applied to the real world data. However, the resultant clusters are still 

uncertain since the Weighted Kappa results against the six nerve fiber bundles (6NFB) 

were very poor. The poor Weighted Kappa between the resultants clusters and the 6NFB 

in the previous work does not mean that SMC is not a viable clustering technique even 

though accuracy is improved. Therefore, Chapter 5 presents the application of SMC on 

synthetic data. Synthetic data is generated to have the same nature and properties with the 

real data (visual field). Devising synthetic data is a ‘reversed engineering’ approach to 

validate SMC.  In addition to this, Chapter 5 extends the work by conducting an analysis 

on both datasets using another clustering technique: K-means. The objective of this 

extension analysis is to see performance of K-means clustering technique as a benchmark 

for this study. This chapter consists of six sections: Overview, Introduction, Synthetic 

Data, Experiments and Results, Discussion, and Summary.  

 

5.2 Introduction 

 

It has been widely accepted that efficient modelling in classification requires a large 

amount of training dataset. A recent study (Özgür and Erdem, 2017) on the impact of 

using a large training dataset on classification accuracies has shown performance benefits 

even though it is high computation cost to algorithms. However, this is impossible to 

obtain due to expensive and many other reasons such as class imbalance (Nonnemaker 

and Baird, 2009). Additionally, the use of synthetic data is an acceptable approach to 
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validate and simulate algorithms. Tsai and a colleague (Tsai and Chatterjee, 2017) in their 

recent study have devised synthetic data to evaluate the performance of an algorithm. 

Similarly in this work, the novel model-based clustering technique SMC is tested on a 

synthetic dataset. This was motivated by the experiments results from the real data 

conducted in Chapter 4 are still uncertain to justify the effectiveness of the technique in 

terms of WK. The WK metric for the resultant clusters against the 6NFB in the previous 

chapter were found very poor. However, the poor results of WK cannot conclude that 

SMC is not viable. Moreover, the 6NFB is commonly used in clinical practices and is not 

a gold standard for representing the collection of visual locations on the optic disc. 

Therefore this chapter is essential to validate SMC, which is expected to find the known 

clustering arrangement from a multi-dimension synthetic dataset. Synthetic dataset is 

generated to have similar data properties with the real data, visual field. The resultants 

clusters are measured using the WK metric with the known clusters arrangement of the 

dataset.  

 

5.3 Synthetic Data 

 

A synthetic dataset was constructed as a verification tool for the SMC technique. This 

dataset was constructed to have similar properties to that of the visual field data, namely, 

number of variables, length, and number of classes. The synthetic dataset used in this 

work is based on a number of multivariate normal (MVN). The multivariate normal 

distribution is a generalisation of the one-dimensional (univariate) normal distribution to 

higher dimensions. The distribution of MVN is demonstrated in Appendix 5-A 

(Casabianca and Junker, 2016). The synthetic dataset was generated from three 

multivariate normal distributions (15 variables each) with 2,500 records. Each 

distribution has a different mean vector and different positive semi definite covariance 

matrix. The samples are then concatenated to form a single 45 variable dataset of 2,500 

samples in length. Each row in the dataset is given a class label defined by which 15 

variables (from the original datasets) have the highest average. Figure 5-1 exhibits 
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labelling the target variable class for the synthetic dataset. For example in record 1, the 

target variable is labelled as ‘2’ as the highest average of 15 variables is from cluster two 

or variable 16 to 30. In record 2, the highest average is from variable 1 to 15 (cluster 1), 

thus the class label is ‘1’. The expectation of using this synthetic dataset is that the SMC 

approach will be able to garner the original structure of the underlying data generation 

process, i.e. three clusters of 15 variables each.  

 

 

Figure 5-1 : Visualisation of Synthetic Dataset and its Target Variable  

 

It can be summarised that the synthetic dataset has three clusters for the 45 variables as 

follows:- 

N = 15       S 1500 

NSX 1  

NSX 2  

NSX 3  
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],,[ 321 XXXD     Equation 5-1 

 

Where N is number of variables, S is sample size and D is the synthetic dataset. Algorithm 

5-1 shows the generation of the synthetic dataset. 

 

Algorithm 5-1 : Generation of Synthetic Data 

Input:  N = a vector of sizes 
 M = the length of each sample 

1  Repeat 
2  D = NULL (an empty matrix) 
3  For i = 1 to |N| 
4   n = Ni 
5   S = RPSD(n) 
6   T = MVN(0,S,m) 
7   D = [D T] 
8  End For 
9  Add a blank column to the end of D 
10  For each row of D (excluding the last column), 

 compute the average of the columns grouped 
 according to N, set the last column value 
 of each row to whichever group (index of N)  
 which has the highest average 

11  Until the class variable (last column) is approximately 
 balanced (equal counts) 

Output:  D, a synthetic dataset 

 

Where RPSD(n) is a function that generates a random positive semi-definite (covariance) 

matrix of size n by n.  

 

MVN(,,m) generates an m length (rows) multivariate normal sample with mean , and 

covariance . The number of variables (columns) is implicit from the dimensionality of 

 and . 

The operator [..] concatenates matrices and/or vectors by column. 
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5.4 Experiments and Results 

 

Experiments carried out in this chapter include the SMC experiments on the synthetic 

dataset. The assumption in the SMC experiments is that higher WK in the synthetic 

dataset experiments indicates the effectiveness of SMC (getting the right clusters in the 

synthetic dataset with WK = 1.0) since the clustering arrangements of the data are known. 

However, getting higher classification accuracy remains the main objective of SMC in 

this experiment, which is the underlying assumption that higher accuracy represents the 

best solution (clustering arrangement). The optimisation methods used in SMC are SA 

and RRHC owing to the high accuracy results in the work carried out in Chapter 4.  

 

In addition, supplementary experiments were performed in this work using K-means 

clustering on both datasets. The choice of K-means as the benchmark to SMC is that the 

technique is widely used in research (Khanmohammadi, Adibeig and Shanehbandy, 2017; 

Capó, Pérez and Lozano, 2017) for clustering problems where data are clustered based 

on the proximity of data points.  Also, comparison between a clustering technique that 

uses data point distance and model-based clustering technique can substantiate the 

efficiency and effectiveness of SMC. The K-means clustering experiments were 

conducted to see the performance of the common technique of clustering as a benchmark 

for the SMC. The K-means algorithm is outlined in Appendix 5-B.  

 

5.4.1 The SMC Experiments 

 

Preliminary experiments on the synthetic data were conducted using the RRHC and SA 

algorithms as these two optimisation methods have good track records with high 

predictive accuracy in the previous experiments. Also, the NB classifier (best classifier 

with high accuracy in Chapter 4) is used in this work to model the datasets with 10-fold 
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cross validation. As shown in the previous chapter, to run a larger iteration could probably 

give a better result (high accuracy). As such, the experiments were run 50,000 iterations. 

These experiments were run 10 times and statistical values such as average, minimum 

and maximum are presented. The level of agreement (WK) between the resultant clusters 

and the known clusters are also presented. 

 

Interesting results with high classification accuracy were obtained from the experiments 

on the synthetic data as shown in Table 5-1. The SMC technique appears to have good 

improvements in classifying the synthetic data with 96.85% accuracy (best result) in the 

SA method. There is not much difference in the RRHC method (94.86%). The average 

accuracies of 10 runs of the experiments are 92.51% and 95.77% for RRHC and SA 

respectively.  

 

Method 

Average 

Accuracy (%) 

Maximum 

Accuracy (%) 

Minimum 

Accuracy (%) 

RRHC 92.51 94.86 88.64 

SA 95.77 96.85 94.81 

Table 5-1 : Prediction Accuracy for Synthetic Data 

 

As for the agreement level (WK) between the resultants clusters and the known clusters 

of the synthetic data, the average results are fair and good strength for RRHC (0.34) and 

SA (0.77) respectively (Table 5-2). Surprisingly, the SA method found the expected 

clusters of the synthetic data with WK 1.00 (best result recorded) in one of the 

experiments.  
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Method Average WK Maximum WK Minimum WK 

RRHC 0.34 0.46 0.26 

SA 0.77 1.00 0.63 

Table 5-2 : Weighted Kappa Statistics for Synthetic Data 

 

5.4.2 K-Means Clustering 

 

Experiments using K-means clustering technique were conducted on both datasets and 

run for 25 times. Since the K-means clustering technique requires for practitioners to 

specify a number of clusters (K) (Kodinariya and Makwana, 2013), in these experiments 

therefore the K is set to six and three for VF and the synthetic data respectively. The 

reason being is that the 6NFB for the VF data and the known three clusters for the 

synthetic data. The 25 resultants clusters from K-means clustering were then used for 

modelling and classification accuracies are obtained. In these experiments, three 

modelling strategies were used to classify the datasets. The three modelling strategies are 

10-fold, 2-fold with 10 repeats and no-fold cross validation (P. Zhang, 1993). These 

modelling strategies are to experiment the effect of the number of partitions (N-fold) in 

cross validation towards the SMC’s performance which is measured in classification 

accuracy as well as WK. A smaller K-fold in cross validation would result in a larger test 

dataset.  

 

The visual field data were modelled using all data and sampled dataset whilst the synthetic 

data were experimented using all data. Modelling the VF data in the all dataset has slightly 

better results (high accuracy) as compared to the sampled dataset (Table 5-3 and Table 5-

4). Both datasets results have high prediction in the no-cross validation modelling strategy 

(84.85% and 83.89% for all data and sampled data respectively) as shown in Table 5-3 
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and 5-4. On average, the resultant clusters of the visual field data experiments have fair 

agreement WK (0.362) with the 6NFB (Table 5-5).  

 

Modelling 

Strategy/Result 

10FCV 2FCV NoFCV 

Accuracy - % Accuracy - % Accuracy - % 

Minimum 82.65 83.01 83.07 

Maximum 85.80 85.77 85.75 

Average  84.77 84.80 84.85 

Table 5-3 : Prediction Accuracy of Visual Field Data using K-Means Resultants 

Bundles (All Data) 

 

Modelling 

Strategy/Result 

10FCV 2FCV  NoFCV 

Accuracy - % Accuracy - % Accuracy - %  

Minimum 81.76 82.63 83.89 

Maximum 86.38 85.45 85.00 

Average  83.82 83.70 83.89 

Table 5-4 : Prediction Accuracy of Visual Field Data using K-Means Resultants 

Clusters (Sampled Data) 

 

 

Table 5-5 : K-Means Resultants Clusters Weighted Kappa Statistic for Visual Field 

Data (With the 6NFB) 

 

Average 0.362 

Max 0.432 

Min 0.265 
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On the contrary, the resultant clusters of the synthetic dataset experiments have very poor 

agreement (WK) with the known clusters (average of 0.055 - Table 5-6). The synthetic 

dataset experiments are found poor accuracy using the K-means resultant clusters with an 

average 61.41% accurate (Table 5-7) in the no-cross validation modelling strategy.  

 

 

 

 

Table 5-6: K-Means Resultants Clusters Weighted Kappa Statistic for the 

Synthetic Data (With the known 3 clusters) 

 

Modelling 

Strategy/Result 

10 FCV 2 FCV  No FCV 

Accuracy - % Accuracy - % Accuracy - % 

Minimum 53.90 52.90 53.88 

Maximum 65.58 64.64 65.80 

Average  60.91 60.72 61.41 

Table 5-7: Prediction Accuracy of the Synthetic Data using K-Means Resultants 

Clusters 

 

5.5 Discussion 

 

SMC on the Synthetic Dataset 

 

On average, over the 10 run experiments, the performance of SMC on the synthetic 

dataset is more than 90% accurate in both methods using the NB classifier. The best result 

Average 0.055 

Max 0.185 

Min -0.022 
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of the RRHC method was from experiment 1, in repeat 3 (94.86% accurate) with 0.46 

WK. Figure 5-2 shows the convergence graph for the RRHC method in the synthetic 

dataset (iteration 0 to 5000). As RRHC search does not accept worse solutions in the 

search, thus the graph has no fluctuation.  

 

 

Figure 5-2 : Convergence Graph for RRHC Method on Synthetic Dataset 

 

Meanwhile SA has shown interesting results with high classification accuracy and WK. 

Figure 5-3 shows the convergence graph for the best result in SA, which obtained from 

experiment 10. The SA search from the graph looks extremely fluctuate in the beginning 

of the search due to the nature accepting worse solution. Then, it becomes stable toward 

the end of the search as the temperature and the acceptance probability are decreasing.  
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Figure 5-3 : Convergence Graph for SA Method on Synthetic Dataset 

 

From the results, it was found that the highest accuracy in SA does not correspond to the 

highest WK. The WK value for the highest accuracy (96.85%) in the SA experiment is 

0.88, with four clustering arrangement. The resultant clusters for experiment 10 of SA 

were retrieved and the arrangement of clusters is as follows:- 

Cluster 1: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} 

 

Cluster 2: {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30} 

 

Cluster 3: {31, 32, 33, 38, 41, 42, 43, 44} 

 

Cluster 4: {34, 35, 36, 37, 39, 40} 

Based on this observation, cluster one and two are the prefect clustering arrangement as 

per the known clusters. However, cluster three and four are the third expected clustering 

arrangement split in half (approximately). It can be concluded that high accuracy does 

not guarantee to produce the best clustering arrangement. This might be due to noisy 
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fitness convergence (Definition 5.1) and a random dataset in cross validation. Unlike a 

non-probabilistic optimisation method such as HC (presented in Chapter 4 and Figure 5-

2 ) this is not affected by noisy fitness convergence.  

 

Definition 5-1 : Noisy Fitness 

A noisy fitness function is defined as one where when given two solutions that have the 

same genotype (Kojima, 1971), the fitness evaluation is not the same. More formally there 

exists solutions: S1 and S2 where S1 = S2 and 𝐹(𝑆1) ≠ 𝐹(𝑆2). This phenomenon in 

optimisation problem relates to the notion of fitness landscape which originated from 

theoretical biology. It requires analysis on the problem and data to draw an analogy with 

the real landscape to gain a better understanding of how and where an algorithm operate 

for a problem (M. Wang et al., 2017).  

 

The experiment with the best WK value was retrieved and plotted. The best WK (1.00) 

recorded by the SA experiment was from experiment 6 with accuracy 95.59%. Figure 5-4 

shows the convergence graph of WK for the SA method (from experiment 6). From Figure 

5-4, it indicates that the search has found the known cluster in the synthetic data (with 1.00 

WK) slightly early in the search before it converged (as circled in Figure 5-4). Discovery 

of clusters with 1.00 WK in the synthetic data in the search before its convergent indicates 

the inherence of noisy fitness. This means that high fitness values (classification 

accuracy) in the search do not guarantee the best solution (clustering arrangement).  
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Figure 5-4 : WK Convergence Graph for SA Method on Synthetic Dataset 

 

K-means Experiment 

 

K-means clustering was performed as a benchmark for SMC. The results were found that 

the K-mean clustering technique did not improve the accuracy in both VF data and 

synthetic data. In this technique the best accuracy for the VF data was from the ‘all data’ 

experiments with the no-fold cross validation modelling strategy (84.85%). Meanwhile 

the best accuracy recorded by SMC in the previous chapter was 88.49% which is 

improved by 4.29%. However, surprising results were found that WKs in K-means are 

much higher (the best 0.432) than SMC in the VF data experiments. On average, the K-

means clustering technique has fair WK (0.362) with the 6NFB.  

 

The K-means experiments results on the synthetic data were found very poor in accuracy 

with less than 66% as compared to SMC (best accuracy: 96.85%). The K-means results 

were found not to improve the classification accuracy when applied to the synthetic data. 

The best average accuracy was 61.41% from the no-fold cross validation modelling 

strategy. SMC largely improves the accuracy in the synthetic dataset by 55.95% (best 
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average 95.77% from the SA method). Corresponding to the lower accuracy in the K-

means experiments, the WK results of K-means in the synthetic data experiments are 

somewhat counterintuitive. On average, the resultant clusters’ agreement level with the 

known cluster is very poor (WK = 0.055). SMC appears to have much higher WK values 

than K-means as the method is advantaged from a heuristics search finding the right 

clusters based on accuracy.  

 

5.6 Summary 

 

The results from the synthetic dataset experiments have ascertained that SMC effectively 

clusters high-dimension data as well as improving classification accuracy in both datasets 

(visual field and synthetic). The SA method in SMC has shown promising results 

searching clusters (with maximum WK 1.00) in the synthetic data. Henceforth, the search 

method will be used in the next chapter’s experiments.  Meanwhile K-means clustering, 

which is set as a benchmark for SMC, appears to be a viable clustering technique for 

visual field data having a higher WK (average 0.362 - against the 6NFB) than SMC.  

However, using the K-means’ clustering arrangement as a basis for predicting 

deterioration of glaucoma/modelling the synthetic dataset results in poor 

predictive/classification accuracy. 

 

Even though SMC has shown promising results toward the synthetic data, there is a need 

to explore the technique further on the real data. There is still lack of evidence in terms 

of efficiency in SMC (this related to convergence). In the next chapter, a set of 

experiments are presented which looks at search method convergence as a measure of 

algorithmic efficiency. Noted in this work that both datasets suffer from noisy fitness 

which is high accuracy of modelling does not guarantee to produce the best clustering 

arrangement and there potentially to get a different fitness value with the same solution. 
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Therefore, noisy fitness tolerance analysis will be introduced in the next chapter as a part 

of convergence point analysis.  

 

Given the computational overheads of the search methods, there is a need to look into 

more advanced and faster heuristic search techniques such as Generalised Simulated 

Annealing (Tsallis and Stariolo, 1996) and other faster classifier such as Multinomial 

Naïve Updateable. As the increased number of iterations in the experiments in this chapter 

was really significant to improve accuracy, a larger iteration of search (Chang et al., 2016) 

in Chapter 6 is to be considered.  
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Generalised Simulated Annealing in Simultaneous Modelling and 

Clustering 

6.1 Overview 

 

The SMC technique was proven effective in searching the known clusters in the synthetic 

data with high WK as demonstrated in Chapter 5. Building on the findings from the 

synthetic data experiments in the previous chapter, there is a need to further explore the 

effectiveness of SMC on the real data by employing an advanced optimisation method. 

Chapter 6 presents a novel application of an algorithm namely, Generalised Simulated 

Annealing (GSA) tailored to solve the discrete optimisation problem (SMC). The 

expectation of applying this method within SMC is to find clusters arrangement of visual 

field in more efficient way than SA and RRHC. The focus of this chapter is testing and 

observing the GSA method which is believed to have better performance in terms of 

accuracy, quality of cluster arrangements (high WK) and efficacy than other heuristic 

search techniques as reported in literature. As such, convergence point analysis is 

performed in this work to capture the efficiency of the method. Chapter 6 is divided into 

six sections. Section 6.2 gives a short brief on GSA algorithm. Section 6.3 outlines the 

experiments setup where the experiments are carried out on both datasets. Section 6.4 

presents the results of the experiments. Section 6.5 discusses the results. Finally, section 

6.6 provides the summary of the chapter.  

 

6.2 Generalised Simulated Annealing 

 

Broadly speaking, there is “no free lunch” in optimisation problems where one could 

apply a generic method to solve many problems. However, much in the literature (Menin 
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and Bauch, 2017) has shown that the GSA search method is effective and efficient when 

applied to continuous problems. Generalised Simulated Annealing (GSA) is an improved 

version of the Simulated Annealing (SA) algorithm, proposed by Tsallis (Tsallis and 

Stariolo, 1996). The algorithm generalises both types of SA, i.e. Classical Simulated 

Annealing (CSA) and Fast Simulated Annealing (FSA). This family of stochastic 

algorithms was inspired by the metallurgy process for making a molten metal reach its 

crystalline state by employing an artificial temperature (Xiang et al., 1997). Unlike Hill 

Climbing (HC) (Selman and Gomes, 2006; Tovey, 1985), SA and GSA methods are able 

to avoid local optimum in the search due to the inherent statistical nature of the method 

(Bohachevsky, Johnson and Myron L. Stein, 1986). Worse solutions found in the search 

are accepted when certain probabilistic criteria are met, thus enabling the methods to 

escape local optima.  

 

CSA is likely to find a global optimum solution in the search. However, the convergence 

is fairly slow (Xiang et al., 1997). This is attributed to the nature of the visiting 

distribution which uses a Gaussian distribution (local search distribution). Thus in 1987, 

Szu and Hartley (Szu and Hartley, 1987) proposed FSA which uses a Cauchy Lorentz 

visiting distribution (semi-local search distribution). The FSA method is quicker at 

finding the optimum solution compared to CSA since the jumps are frequently local, but 

can occasionally be quite long. The cooling of the temperature in this method is much 

higher than in CSA which can make the search more efficient. 

 

Later in 1988, a generalisation of the Boltzmann-Gibb statistics was introduced (Tsallis, 

1988). GSA was invented for generalising both CSA and FSA methods according to the 

Tsallis statistics. GSA uses a distorted Cauchy Lorentz visiting distribution where the 

distribution is controlled by the visiting index parameter ( vq ). This method (GSA) was 

believed to be more efficient in terms of convergence and global optimum in nonconvex 

problems (multiple extrema) compared to the precedence methods of annealing. Because 
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of these advantages, there are many studies have applied the method in many fields. 

Application of GSA in the field of biology, chemistry, physic and mathematics (dos R 

Correia et al., 2005; Andricioaei and Straub, 1996; Sutter, Dixon and Jurs, 1995; D. G. 

Brooks and Verdini, 1988) are commonly involved in the determination of the global 

optimum of multidimensional continuous functions (Xiang et al., 2013). The GSA 

approach was proven faster than the other simulated annealing algorithms (CSA and FSA) 

in the study of mapping minima points of molecular conformational energy surfaces 

(Moret et al., 1998). Xiang and Gong (Xiang and Gong, 2000) have shown that the GSA 

algorithms are relatively efficient in Thomson’s model and nickel clusters compared to 

CSA and FSA. It was also claimed that the more complex the system, the more efficient 

the GSA method. A recent study (Mojica and Bassrei, 2015) on the simulation of 2D 

gravity inversion of basement relief with synthetic data has found that the GSA method 

produces better results with the calibrated parameters. 

 

The positive findings from the previous studies on GSA have inspired this study to 

investigate the method in SMC of glaucomatous progression using visual field (VF) data 

(M. Z. M. B. Jilani et al., 2016). Note that most of the studies have applied GSA towards 

solving continuous problems; hence within this chapter presents a GSA algorithm for 

discrete optimisation. The hypothesis underpinning this work is that the GSA method 

finds the optimum solution more efficient compared to the SA. This is determined by 

observing the prediction accuracy (with high accuracy) and the convergence (early 

convergence) of the search.  

 

In GSA, two parameters are introduced: acceptance index ( aq ) and visiting index ( vq ). 

These parameters regulate the methods behaviour such as acceptance probability, search 

convergence and cooling rate. As discussed in Chapter 2, the GSA equations for 

acceptance probability, acceptance temperature and visiting distribution are as follows:- 
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Algorithm 6-1 shows the application of the GSA search method in SMC where visiting 

distribution and the artificial temperature are computed in line 5 and 22 respectively. 

 

 

 

 

 

 



 

 

139 

 

 

Algorithm 6-1 : Simultaneous Modelling and Clustering of Generalised Simulated 

Annealing 

Input:  
 

D = visual field data  
iterations = Number of iterations 
fd {10-fold, 2-fold, no-fold cross validation} 
temp = initial temperature 
qa = acceptance index 
qv = visiting index 
Model= MultinomialNaïveBayesUpdatable  

1 Let Ccurrent = a random clusters of visual field points 
2 Let Dcurrent = visual field data of the Ccurrent 
3 Let fitnesscurrent = prediction accuracy of the Ccurrent with fd 
4 For i=0 to iterations-1 
5    Calculate newvisit (c.f Equation 2-13) 
6    Calculate small_change = newvisit × number of variable 
7    Cnew = re-arrange Ccurrent for small_change 
8    Dnew = D of the Cnew 
9    fitnessnew = prediction accuracy of Dnew with fd                       

10    if fitnessnew > fitnesscurrent 
11       fitnesscurrent = fitnessnew 
12       Ccurrent = Cnew 
13    Else 
14        fitness = fitnesscurrent - fitnessnew 
15       Calculate Pr (c.f Equation 2-11)  
16       Let random = UR(0,1) 
17       if  Pr > random 
18          fitnesscurrent = fitnessnew 
19          Ccurrent = Cnew 
20       end if 
21    end if 
22    Calculate temp (c.f Equation 2-12) 
23 end for 
Output: Ccurrent, prediction accuracy = fitnesscurrent 

 

Unlike the hill climbing and SA methods, the GSA algorithm may have more than two 

moves (perturbation to a current solution), which is derived from visiting distribution as 

the small change. Helsgaun (Helsgaun, 2009) demonstrated in his study on TSP (10,000 
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to 10,000,000 cities) problem using k-opt has shown both effective and scalable to solve 

the problem even though it was evidence time consuming if k is larger than 4. 

The small change for GSA which is used in this study has a range between 2 and 52 as 

shown in the example below (Figure 6-1):- 

 

The new_visit value (from c.f Equation 2-14) for visual field data 

in iteration 550 is 0.625.  

 

Visual field data consists of 52 variables. 

 

The small change which also known as a number of moves is 

computed as:- 

 

small_change = new_visit × number of variables 

                       = 0.625 × 52 

                       = 32.5 ≈ 33 

 

Therefore, in iteration 550, the current clusters will have 

perturbation with random 33 moves to produce a new solution.  

Figure 6-1 : Example of Small Change Computation in GSA Algorithm 

 

The GSA method is distinct from SA in determining the temperature, the acceptance 

probability value, and the selection of a next neighbouring point in the search space. The 
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acceptance probability (c.f Equation 2-12) and artificial temperature (c.f Equation 2-13) 

use an acceptance index )( aq and visiting index )( vq parameters (Tsallis and Stariolo, 

1996). Furthermore, it is used in the visiting distribution equation (c.f Equation 2-14) 

(Tsallis and Stariolo, 1996) to determine the size of change (in this study this is a number 

of visual field locations to be re-arranged between clusters) for the next potential solution 

in the GSA search. Figure 6-2 shows the graph of number of moves in a GSA algorithm. 

The algorithm applies a large number of moves at early iterations for extensive search of 

solutions and it decreases towards the end of the search. Having a decreasing number of 

moves in the search allows a good current solution to have a tiny perturbation in order to 

improve the solution. This process in GSA supports to search a quality solution (clusters) 

in an efficient way where a good solution obtained at later iterations is unlikely to have a 

large magnitude of change. 

 

 

Figure 6-2 : Example of Number of Moves in the GSA Algorithm 

        

Similar to the SA and HC method, each new better (in terms of fitness function) solution 

found in the GSA search is accepted. However, if the new solution is worse, a criterion 

of accepting the new worse solution is derived by computing the acceptance probability 

according to Equation 6-1. Then the acceptance probability )( p  value is compared with 
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a random number )(r  which obtained from a uniform distribution (0,1). The new worse 

solution is accepted if p > r . This process continues until the specified number of 

iterations is complete.  

 

6.3 Experiment Setup 

 

The experimental setup defines the properties of the experiments and the GSA algorithm 

used in this work such datasets, modelling strategies and parameter values. Two datasets 

are used in this work: visual field data and synthetic data. In order to avoid bias in visual 

field data experiment, the data are re-sampled every iteration resulting in 1,580 records. 

Additionally, the results obtained in Chapter 4 found that the sampled experiments of 

visual field data produced higher prediction accuracy in visual field data. Meanwhile all 

records of the synthetic data (2,500 records) are used in the experiments. As larger 

iteration experiments have shown positive results from the previous chapter, the GSA 

experiments are run for 100,000 iterations with the three modelling strategies: 10-fold 

(10FCV), 2-fold with 10 repeats (2FCV), and no-fold cross validation (NoFCV). Whilst 

the Naïve Bayes Multinomial Updateable (NBU) classifier is used to model the data 

owing to the most efficient method in terms of runtime (M. Z. M. B. Jilani et al., 2016; 

Sundar, 2013; Tao and Wei-hua, 2010; Rennie et al., 2003). 

 

Since the GSA algorithm is more complex than the SA algorithm, setting the parameters 

values in the GSA algorithm needs careful investigation. Otherwise the method may not 

work well. Additional simulations are needed in order to ensure the values for the 

parameters are suitable for the problem by running preliminary small scale experiments 

on the data. Once these values are assured appropriate by the simulation experiments, 

formal experiments are run on both datasets.  
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Additionally, a separate set of experiments are conducted using K-means clustering 

method (both datasets) and the 6NFB clustering arrangement (visual field) as the 

benchmark for the methods used in this chapter. The K-means and 6NFB experiments use 

the same modelling strategies, classifier and number of iterations as the formal 

experiments.    

 

6.3.1 GSA Parameter Exploration 

 

Many studies have devised GSA algorithms and calibrate the parameters in GSA to suit 

the nature of problems. Determination of the best parameters value ( aq  and vq ) is the 

crucial part in developing the GSA algorithm. A study applied GSA to protein folding 

(Agostini et al., 2006) has explored the best parameters values range and discovered the 

best values ranges are between 1.10 to 2.60 and 1.50 to 2.60 for aq and vq respectively. 

The study also introduced a new parameter )( tq for the cooling function to better control 

the temperature decreasing in the GSA system.  

 

Obtaining the right values for aq  and vq  is a challenge. Inappropriate values for the 

parameters may get the GSA method becomes inefficient or may not work. Correct 

parameters values are depending on the nature of problems. Therefore, a mathematical 

approach is introduced within this work to obtain the right parameters values. This work 

uses the Newton Raphson mathematical technique to compute the suitable parameters 

values ( vq and 0T ). The equations, which have three parameters values to be determined, 

are simplified to a single parameter. With the knowledge of the aq  value and a few 

assumptions, the fitness value being between 0 to 1, equations are manipulated using the 



 

 

144 

 

 

Newton Raphson method to get vq . As such, Equation 5-1 and 5-2 are simplified to derive

0T , and thus vq is obtained. 

 

6.3.2 Newton Raphson 

 

The Newton Raphson technique (Akram and ul Ann, 2015; Kelley, 2003) is a powerful 

mathematical technique to solve numeric equations. It involves finding a value for the 

root of a function. Finding a root in an equation is an iterative process by guessing the 

initial value of x  from the function ( )(xf ) and the derivative of the function (tangent line 

- )(xf ) is used to obtain the intercept of the tangent line. The x-intercept will be the 

enhanced approximation to the functions root. This iterates until 0)(: xfx . The 

Newton Raphson method is as follows:- 

 

Let )(xf be a continuous function. 

)(

)(

0

0

01
xf

xf
xx


  geometrically )0,( 1x is the intersection with the x-axis of the tangent 

to the )(xf  of ))(,( 00 xfx . This process iteratively repeats as 
)(

)(
1

n

n

nn
xf

xf
xx




until a 

sufficient accurate value )0)(( xf is reached. Further illustration with graphs is detailed 

in Appendix 6-A. 

 

This method is used to solve the GSA equations in order to get the appropriate value of 

parameter vq  and 0T . This study manipulates the acceptance probability equation (c.f 

Equation 2-12) and temperature equation (c.f Equation 2-12) to derive the parameters 

values. From Equation 2-12, the acceptance probability is simplified as:- 
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In order to get the initial temperature ( 0T ) from this equation, some assumptions have 

been made. The acceptance probability is assumed to have value 0.4 at iteration 1 in the 

search.  

 

This is possible when the worst random solution which is obtained at iteration 1 would 

have different of fitness 0.5 (50% deviates from the initial fitness value). This means that 

when 0P  is set to 0.4, there is a 40% chance of accepting a worse solution when the 

prediction accuracy is 0.5 (50%) worse than the current accuracy. Thus the Equation for 

the initial temperature is derived as follows (Equation 6-2):- 
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Then the temperature equation is simplified as follows:- 
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Within Equation 6-3, the 0T  value is obtained from Equation 6-2 by selecting aq  (values 

ranged between -0.5 to 1.6). With 0T and N  (number of iterations, 100,000) in hand, 

Equation 6-3 is used to derive the correspondent value of vq where NT  is the final 

temperature set as 0.001. Equation 6-3 is solved by means the Newton Raphson method. 

 

It is known that 1 xx cdab is non-linear. Therefore, Equation 6-3 is written as

12)1(  ss cNa , where 
0TT

T
a

N

n


 and

0

0

TT

T
c

N 


 . Thus, the non-linear function of 

Equation 6-3 is established as:- 
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And the derivative of function )(xf is 
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)ln()ln()(' dcdbabxf xx     Equation 6-6 

 

Thus with 
)('

)(

0

0
01

xf

xf
xx   iteratively repeats until 0)( xf  the value of x is obtained to 

derived the value of vq . 

 

Figure 6-3 shows the convergence graph of the GSA temperature. The GSA temperature 

has drastic convergence as compared to the SA (Chapter 4, Figure 4-4).  

 

 

Figure 6-3 : Convergence Graph of the GSA Temperature 

 

6.3.3 Simulation Experiments 

 

From the literature, the value range for the parameter aq  is known. Therefore, preliminary 

experiments were conducted to find the suitable value for aq  and corresponding vq . The 

preliminary experiments were run for three levels of the parameter range: level 1 between 

0.001 to 0.009 (incremental by 0.001), level 2 between 0.01 to 0.09 (incremental by 0.01) 

and level 3 between 0.1 to 0.5 (Tsallis and Stariolo, 1996) (incremental by 0.1). The 
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experiments were run for 10,000 iterations (10 experiments) on both visual field and 

synthetic data with 10-fold cross validation. Table 6-1 and Table 6-2 show the 

corresponding fitness value (predictive accuracy) and convergence point of the search to 

the aq  for visual field and synthetic data respectively. The tables show the list of aq  

values and its corresponding fitness values and convergence points, which is ranked by 

convergence point. Full results are tabulated in Appendix 6-B 
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aq  Fitness 
Convergence 

Point 

0.010 87.25 3934.0 

0.300 87.27 4609.4 

0.050 87.52 4716.9 

0.200 87.29 4731.8 

0.040 87.48 4747.6 

0.003 87.55 5064.8 

0.080 87.46 5208.1 

0.004 87.39 5221.4 

0.100 87.43 5233.4 

0.090 87.46 5411.0 

0.009 87.38 5463.2 

0.006 87.37 5551.9 

0.020 87.32 5621.9 

0.400 87.38 5744.1 

0.030 87.44 5808.2 

0.005 87.37 6243.0 

0.008 87.58 6300.2 

0.001 87.32 6507.3 

0.002 87.25 6729.4 

0.060 87.36 6881.6 

0.070 87.31 7136.7 

0.007 87.38 7230.4 

0.500 83.45 10000.9 

Table 6-1 : Visual Field Data Parameter 

Fitness Value 

 

aq  Fitness 
Convergence 

Point 

0.009 97.69 7416.1 

0.100 97.52 7452.4 

0.040 97.78 7906.0 

0.005 97.78 8018.7 

0.080 97.42 8032.8 

0.008 97.17 8075.6 

0.003 97.66 8178.7 

0.007 97.79 8269.1 

0.020 95.75 8365.5 

0.001 96.37 8389.5 

0.004 97.07 8448.5 

0.200 97.80 8693.5 

0.030 95.94 8697.6 

0.050 96.38 8720.3 

0.060 97.23 8807.7 

0.006 96.79 8874.5 

0.070 97.71 8980.4 

0.090 97.47 9028.0 

0.300 97.78 9054.8 

0.400 96.70 9267.5 

0.010 97.21 9292.8 

0.002 97.65 9344.9 

0.500 49.81 10000.7 

Table 6-2 : Synthetic Data 

Parameter Fitness Value 
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6.4 Results 

 

Experiment results present the model prediction accuracy, Weighted Kappa statistic 

(WK), convergence point, algorithm runtime, and resultant clusters for both datasets 

experiments. Statistical values of the results for each modelling strategy are tabulated for 

comparison. 

 

6.4.1 K-means Results 

 

Table 6-3 and 6-4 tabulate the results for K-means experiments for both datasets visual 

field and synthetic data respectively. The results show that classification accuracy using 

K-means clustering in the synthetic data experiment are less than 50% accurate. Whilst 

in visual field data experiment, the best average prediction accuracy is 84.47% with 

NoFCV. 

 

Modelling 

Strategy/Result 

10FCV 2FCV  NoFCV 

Accuracy% 

(WK) 

Accuracy% 

(WK) 

Accuracy% 

(WK) 

Minimum 82.49 82.91 83.17 

Maximum 85.89 85.45 86.27 

Average  84.30 84.22 84.47 

Table 6-3 : Predictive Accuracy of K-means for Visual Field Data 
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Modelling 

Strategy/Result 

10FCV 2FCV  NoFCV 

Accuracy% 

(WK) 

Accuracy% 

(WK) 

Accuracy% 

(WK) 

Minimum 39.90 41.19 42.08 

Maximum 57.19 57.14 57.52 

Average  48.21 48.01 48.61 

Table 6-4 : Classification Accuracy of K-means for Synthetic Data 

 

6.4.2 The 6NFB Results 

 

There are slightly lower accuracies found in the 6NFB experiment on visual field data 

compared to the K-means experiment. On average, the predictive performance using 

6NFB are 83.27%, 83.90%, and 83.65% with 10FCV, 2FCV and NoFCV respectively.  

Modelling 

Strategy/Result 

10FCV 2FCV  NoFCV 

Accuracy% Accuracy% Accuracy% 

Minimum 80.65 82.98 82.41 

Maximum 85.31 84.67 85.00 

Average  83.27 83.90 83.65 

Table 6-5 : Predictive Accuracy of the 6NFB (Visual Field Data) 

 

6.4.3 Predictive Accuracy: Visual Field Data 

 

Both methods predict the visual field data better using the 10-fold cross validation 

strategy than the other modelling strategies with 88.48% accurate (Table 6-6 - SA) and 

88.54% accurate (Table 6-7 - GSA). The results of visual field experiments show that the 
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GSA method improves the prediction accuracy better than the SA method with all 

modelling strategies where the highest accuracy is 87.89% (average) in 10FCV (Table 6-

7). From the result, it is noted that the average accuracy of 2FCV strategy is slightly lower 

than 10FCV and NoFCV. The WK values (average) in all experiments present poor 

agreement with the 6NFB that is less than 0.005. The best average WK value is recorded 

by the GSA method in 2FCV (0.004 - Table 6-7).  

 

Modelling 

Strategy/Result 

10FCV 2FCV  NoFCV 

Accuracy% 

(WK) 

Accuracy% 

(WK) 

Accuracy% 

(WK) 

Minimum 86.32 85.94 86.27 

Maximum 88.48 87.09 87.47 

Average  87.76 (0.002) 86.45 (0.002) 86.63 (0.001) 

Table 6-6 : Prediction Accuracy of SA for Visual Field Data 

 

 

Modelling 

Strategy/Result 

10FCV 2FCV NoFCV 

Accuracy% 

(WK) 

Accuracy% 

(WK) 

Accuracy% 

(WK) 

Minimum 87.40 86.23 85.89 

Maximum 88.54 87.17 87.28 

Average  87.89 (0.001) 86.63 (0.004) 86.65 (-0.005) 

Table 6-7 : Prediction Accuracy of GSA for Visual Field Data 

 

Confidence intervals (95%) of the accuracy were computed for these 25 experiments. 

Tables 6-8 and Table 6-9 show the confidence intervals for SA and GSA respectively. 
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The 10FCV strategy has a higher accuracy range (upper and lower limits) in both 

methods. With the 10FCV modelling strategy, the GSA experiments show with a 95% 

confidence that prediction accuracy is between 88.00% and 87.77%. Computation of 

confidence interval is discussed in Appendix 6-C. 

 

Confidence Interval 
Modelling Strategy 

10FCV 2FCV NoCV 

Upper Limit 87.92 86.56 86.74 

Lower Limit 87.59 86.34 86.52 

Table 6-8 : Confidence Interval of SA for Visual Field Data 

 

Confidence Interval 
Modelling Strategy 

10FCV 2FCV NoCV 

Upper Limit 88.00 86.74 86.79 

Lower Limit 87.77 86.53 86.52 

Table 6-9 : Confidence Interval of GSA for Visual Field Data 

 

6.4.4 Predictive Accuracy: Synthetic Data 

 

Table 6-10 and 6-11 show the prediction accuracy of the synthetic data by modelling 

strategy for the SA and GSA method respectively. As opposed to the visual field data 

experiments, classification accuracy on the synthetic data is highly accurate in the NoFCV 

modelling strategy for both methods (98.55% - SA and 98.59% - GSA). The synthetic 

results do not show any pattern in classification accuracy in both methods and modelling 

strategies. However, the SA method with 10FCV outperforms the GSA method with 

10FCV. Whilst with 2FCV and NoFCV, the GSA method accuracies are higher than the 

SA method. The significant difference between these two methods on synthetic data can 
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be seen in the WK values. It can be concluded that GSA recorded almost perfect WK 

(near 1.0) which agrees with the expected synthetic clusters of the 45 variables.  

 

Modelling 

Strategy/Result 

10FCV 2FCV  NoFCV 

Accuracy% 

(WK) 

Accuracy%(WK) Accuracy% 

(WK) 

Minimum 98.04 96.76 98.24 

Maximum 98.46 97.04 98.60 

Average  98.36 (0.868) 97.02 (0.987) 98.55 (0.940) 

Table 6-10 : Prediction Accuracy of SA for Synthetic Data 

 

Modelling 

Strategy/Result 

10FCV 2FCV NoFCV 

Accuracy% 

(WK) 

Accuracy 

%(WK) 

Accuracy% 

(WK) 

Minimum 97.93 96.87 98.36 

Maximum 98.56 97.04 98.60 

Average  98.33 (0.884) 97.04 (0.999) 98.59 (0.965) 

Table 6-11 : Prediction Accuracy of GSA for Synthetic Data 

 

Table 6-12 (SA) and Table 6-13 (GSA) show the 95% confidence intervals of the 

accuracy for the synthetic dataset. The confidence interval (CI) in the synthetic 

experiments was found to have a higher range in NoCV strategy in both methods (SA and 

GSA). The higher CI in the accuracy of modelling is potentially due to overfitting, and 

this can be prevented with a number of fold cross validation (Hsu, Chang and Lin, 2003).  
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Confidence Interval 
Modelling Strategy 

10FCV 2FCV NoCV 

Upper Limit 98.40 97.05 98.59 

Lower Limit 98.31 97.00 98.51 

Table 6-12 : Confidence Interval of SA for Synthetic Data 

 

Confidence Interval 
Modelling Strategy 

10FCV 2FCV NoCV 

Upper Limit 98.39 97.05 98.61 

Lower Limit 98.26 97.02 98.57 

Table 6-13 : Confidence Interval of GSA for Synthetic Data 

Full results of the prediction accuracy are presented in Appendix 6-D. 

 

6.4.5 Convergence Point 

 

GSA algorithms are often described as having very fast convergence in the literature 

(Tsallis and Stariolo, 1996; Penna, 1995; Bohachevsky et al., 1986). Thus, the iteration 

point at which the search has converged was captured. Since the fitness function of both 

datasets is noisy (as depicted in Figure 5-4), a rule was established to determine the 

convergence point by calculating a noisy fitness tolerance. Here a noisy fitness function 

(Definition 5-1) is defined as one that returns different fitness values each time it is 

evaluated on the same solution. Noisy fitness is occurred in this work due to both cross 

validation (different cross validation folds) and to sampling (a random pair of visual field 

records is selected for each patient for each fitness evaluation). This is not uncommon 

and other noisy fitness functions can arise due to measurement limitations or the nature 

of training datasets used in modelling (Varma and Simon, 2006). From the graph shown 
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in Figure 6-4 (with 10FCV), it clearly shows that the search has converged before 

reaching the 20,000th iteration, however within the convergence line, the fitness value 

(classification accuracy) varies. 

 

 

Figure 6-4 : Convergence Graph of the Synthetic Data with the GSA Method 

 

This shows that the GSA rule (acceptance probability), which is applied in the search, has 

resulted poorer solutions with a certain degree of change are still being accepted. 

Meanwhile a sample (from experiment number 10) convergence graph for visual field 

data of the GSA method (with 10FCV) as shown in Figure 6-5 is rather stable from noisy 

fitness. From the graph (Figure 6-5) it can be understood that an extensive search was 

happening during the early iterations since the graph has extreme fitness fluctuations. 

Figure 6-6 shows the close-up of Figure 6-5 in the fluctuation region (iteration 1 to 

10,000), which indicates the search converged before reaching iteration 4,000.  
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Figure 6-5 : Convergence Graph of Visual Field Data with the GSA Method 

 

 

Figure 6-6: The Close-Up of Convergence Graph for Figure 5-5 

 

In order to deal with the inherent noisy nature of the fitness function, an investigation into 

tolerance limits was conducted. The fitness values in both datasets were found be to 

normally distributed. To demonstrate this, a simulation was run on both data using the 

two modelling strategies (10FCV and 2FCV). The simulation experiments were run using 

the SA and GSA method with 10,000 iterations. Each iteration calls 100 fitness values 

using the same solution (clusters) to capture the distribution of the fitness. The NoFCV 

modelling strategy was excluded in this simulation due the same dataset used in training 

and testing process of data modelling which results the same fitness values in 100 samples 

of fitness. Algorithm 6-2 shows the simulation steps for the GSA algorithm.  
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From a simulation in both datasets, it was shown that the fitness values are normal 

distributed (with p-value 0.49 using Lilliefors test (Lilliefors, 1967)) and Table 6-14 

shows the standard deviation of the data by methods and strategies. It is found that 

standard deviation of fitness within 10FCV experiment is higher than 2FCV. This 

strongly indicates that the fitness for this strategy is highly noisy. Using these standard 

deviation values, standard score (z-score) for each of the modelling strategy were 

calculated in order to derive a noisy fitness tolerance limit.  

 

Method/Modelling 

Strategy 

10 FCV 2 FCV 

VF Syn. VF Syn. 

SA 0.77 0.59 0.18 0.23 

GSA 0.79 0.54 0.23 0.20 

Table 6-14: Standard Deviation of the Data 
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 Algorithm 6-2: Simulation for Fitness Distribution (GSA) 

Input:  
 

D = {Visual Field Data, Synthetic Data} 
iterations = Number of iterations 
fd {10-fold, 2-fold} 
temp = initial temperature 
qa = acceptance index 
qv = visiting index 
Model= MultinomialNaïveBayesUpdatable 

1 Let Ccurrent = a random cluster of visual field points 
2 Let Dcurrent = D of Ccurrent 
3 Let fitnesscurrent = prediction accuracy of Dcurrent      

                   classification with fd 
4 For i=0 to iterations-1 
5    Calculate newvisit (Equation 6-3) 
6    Calculate small_change = newvisit × number of variable 
7    Cnew = re-arrange Ccurrent for small_change 
8    Dnew = D of the Cnew 
9    fitnessnew = prediction accuracy of Dnew classification  

   with fd              
10    if fitnessnew > fitnesscurrent 
11       fitnesscurrent = fitnessnew 
12       Ccurrent = Cnew 
13    else 
14        fitness = fitnesscurrent - fitnessnew 
15       Calculate Pr (Equation 5-1)  
16       Let random = UR(0,1) 
17       if  Pr > random 
18          fitnesscurrent = fitnessnew 
19          Ccurrent = Cnew 
20       end if 
21    end if 
22    For i=0 to 99 
23       Dnew = D of the Ccurrent 
24       fitness = prediction accuracy of Dnew classification 

      with fd   
25    end for 
26    Calculate temp (Equation 5-2) 
27 end for 
Output: Ccurrent, prediction accuracy = fitnesscurrent 
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The noisy fitness tolerance limits were calculated with z-score value 1.98 which 

equivalent to 97.61% of the data lies under the defined limits (Table 6-12). Appendix 6-

E shows the calculation of the noisy fitness tolerance. The noisy fitness tolerance limits 

tabulated in Table 6-15 are used to determine whether the change of fitness value is 

significant change or not. At any point of the search that has change in the fitness value  

( F ) within the limit are considered has no significant change. The different of fitness 

value is calculated using Equation 6-7.  

tt FFF  1    Equation 6-7 

 

 

Method/Modelling 

Strategy 

10 FCV 2 FCV 10 Repeats 

VF Synthetic VF Synthetic 

SA 1.539 1.182 0.347 0.464 

GSA 1.569 1.065 0.453 0.392 

Table 6-15 : Noisy Fitness Tolerance 

 

Table 6-16 tabulates the average of convergence point of the individual experiments 

(visual field data). It shows that the GSA method has converged fastest with 10FCV that 

is in average at iteration 2,839. This also can be seen in Figure 6-7 for the 25 experiment 

repeats convergence point (GSA) in comparison with the SA method. However, with the 

2FCV modelling strategy in the visual field data, the SA method is far outperformed the 

GSA method with average 19,938 (GSA: 34,889). The synthetic data convergence point 

results (Table 6-17) are found consistent with the visual field data. The best convergence 

point for the synthetic data was the GSA method with 10FCV (7,328). 
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Modelling 

Strategy/Method 

10 FCV 2 FCV No FCV 

SA 11,643.16 19,938.04 47,304.00 

GSA 2,839.88 34,889.04 73,928.08 

Table 6-16 : Average Convergence Point of Visual Field Data 

 

Modelling 

Strategy/Method 

10 FCV 2 FCV No FCV 

SA 19,582.4 30,365.04 44,843.68 

GSA 7,328.00 45,244.56 71,007 

Table 6-17 : Average Convergence Point of Synthetic Data 

 

 

(A) 
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(B) 

Figure 6-7 : Convergence Point of Visual Field Data for 10FCV (A: Histogram, B : 

Line Graph) 

 

6.4.6 Algorithm Runtime 

 

The algorithms’ runtimes for the SA and GSA experiments are computed to support the 

convergence point results. The runtimes of the algorithms are captured in second which 

are the total effort of the experiment and the effort of classification. Classification effort, 

which is measure in second, includes data preparation within the iteration loops of the 

experiment. The algorithm effort (SA and GSA) in terms of runtime is obtained by 

subtracting the total runtime and classification runtime. The reason being is that based on 

experimental observation, classification effort in SMC is not part of the algorithms (SA 

and GSA) process and classification effort (also includes data preparation) is dependent 

with number of moves which is more complex with high number of moves. Table 6-18 
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shows GSA algorithm effort is 1.66% out of the entire SMC runtime. This indicate that a 

vast amount of the algorithmic computation time is taken up by the fitness function and 

thus the overheads of the specific search technique have little impact. 

 

Method 

Total Experiment 

Runtime 

Classification 

Runtime 

Algorithm 

Effort (%) 

SA 41,860.86 39,180.37 6.40% 

GSA 128,120.47 125,985.66 1.66% 

Table 6-18 : Algorithm Runtime 

 

6.4.7 Resultant Clusters 

 

The clusters size of each experiment was captured to see the range of clusters size searched 

by the algorithms. It can be seen that the visual field data experiments with the SA method 

has a tendency to get lower clusters size when the number of fold cross validation is 

decreasing. There are 12-18 (minimum-maximum), 7-17, and 6-15 clusters sizes with the 

mode 15, 12 and 10 for 10FCV, 2FCV and NoFCV respectively. However, smaller cluster 

size ranges are found in GSA than SA between 3-12 (minimum-maximum) for both 

10FCV and 2FCV, and 3-14 for NoFCV. All modelling strategies of the GSA method 

have the same mode value of clusters size that is 7 clusters.  

 

For the synthetic data, the ranges of cluster size are 4-6 (minimum-maximum), 3-4, and 

4-7 in SA method for 10FCV, 2FCV, and NoFCV respectively. Knowing that the correct 

cluster size for the synthetic data is 3 clusters, it can be claimed that the GSA method 

searches the clusters better than the SA method with the ranges of cluster size: 4-5, 
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(minimum-maximum), 3-4, and 4-4 for 10FCV, 2FCV, and NoFCV respectively (with 

mode: 4, 3, and 4). Also, 2FCV strategy is the efficient strategy finding the right cluster 

in the synthetic data when the WK value is very near to 1.0.  

 

6.5 Discussion 

 

The GSA algorithm accuracy results (average accuracy) appear to be the highest accuracy 

even though there are tiny differences between GSA and SA (Table 6-19). Based on Table 

6-19, it can be seen that SMC with SA and GSA optimisation method improves predictive 

accuracy from the benchmark methods.  

 

Modelling 

Strategy/Method 

10FCV 2FCV  NoFCV 

Accuracy%  

K-means  84.30 84.22 84.47 

6NFB 83.27 83.90 83.65 

SA 87.76 86.45 86.63 

GSA 87.89 86.63 86.65 

Table 6-19 : Average Predictive Accuracy Comparison  

 

Empirical observation on the three modelling strategies found that 2FCV appears to be 

the most efficient modelling strategy compared to the others in both methods (SA and 

GSA). Even though the average prediction accuracies of the strategy are not as best as 

10FCV and NoFCV, the WK value in the synthetic data is substantial evidence. Due to 

the noisy fitness in the data, the 10FCV may have a bias element whereas NoFCV may 

have overfitting in modelling (Varma and Simon, 2006). 
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However the best method to produce high accuracy in the real data is 10FCV and this 

corresponds to (Kohavi, 1995). Also in the synthetic data, with the knowledge about the 

correct elements of 3 clusters in hand, the accuracy value is 97.04% with WK value 1.0. 

Therefore, accuracy values that are more than 97.04% are potentially overfitting and have 

an element of noisy fitness. However there is a slight inconsistency in the results for the 

convergence point of the search in both methods and data. The GSA method appeared to 

converge very fast with 10FCV in both datasets. In the visual field data experiment, the 

GSA method was 8.80% faster than the SA, and 12.25% faster in the synthetic data. In 

contrast, the SA method is faster than the GSA in 2FCV in both data (14.95% and 14.88% 

visual field and synthetic respectively). Additionally, a positive result of GSA was found 

in the runtime analysis on the algorithms that GSA is 4.74% more efficient than SA.  

 

Figure 6-8 and 6-9 show the convergence graph for the SA and GSA search in 10FCV 

experiment respectively. From the graphs, it clearly shows that GSA has a smooth graph 

and converges earlier than SA. The convergence graph for SA has very high fluctuation 

compared to GSA. However, the GSA search is affected by noisy fitness as there is tiny 

fluctuation in the graph toward the end of the search.  

 

 

Figure 6-8 : Convergence Graph for SA Method in Synthetic Data (10FCV) 
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Figure 6-9 : Convergence Graph for GSA Method in Synthetic Data (10FCV) 

 

 

Another concern in this work is that of degeneracy (Definition 6-1). From the results it 

was found that the GSA method suffered from degeneracy (Table 6.20). In biology 

systems, degeneracy occurs when distinct structure of a solution can perform similar 

functions. The GSA method search is found less efficient due to getting the same clusters 

quality in the search. Observations to the experiments outputs also found that the method 

tends to get the same solutions in the search.  

 

Definition 6-1 : Degeneracy 

Degeneracy is defined as a mechanism of different characteristic or the ability of elements 

that structurally different to perform the same function or yield the same output (Edelman 

and Gally, 2001).  

 

From the table below (Table 6-20), it shows that with 5 clusters which have 88.888% 

accurate been searched two times in early and middle iteration of the search (8,171 and 

33,067). Other records with 5 clusters which have 97.677% accurate been searched three 

times at iteration 8,501, 8,525, and 8,532. Interesting result was found that with the GSA 

method, high accuracy (97.765%) was searched in early iteration (7,817), but due to 
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acceptance probability was high in the early search, the new worse solution been 

accepted. Then the other solution with different configuration (4 clusters) was found at 

iteration 54,820 with the same value of accuracy as iteration 7,817. 

 

Iteration # New Fitness (Accuracy %) No. of Clusters 

8,171 88.888 5 

33,067 88.888 5 

8,501 97.677 5 

8,525 97.677 5 

8,532 97.677 5 

7,817 97.765 6 

54,820 97.765 4 

Table 6-20: Excerpt of the Experiments Output of Synthetic Data Affected by 

Degeneracy 

 

In addition to the analysis of the experiments results on prediction, convergence and 

resultant clusters size, extended analysis was performed to visualise the resultant clusters 

by mapping the visual field locations on the visual field grid map. Mapping the visual 

field locations on the grid is to comprehend the pattern of visual loss suggested by the 

algorithms. The resultant clusters with the highest prediction accuracy of the GSA were 

selected for this analysis. Therefore, the resultant clusters from the GSA method with 

10FCV (88.54% accurate with 8 clusters) is visualised in the 54 locations visual field grid 

map (Figure 6-10). From the visualisation of the clusters, the larger clusters size appears 

on the periphery of vision. This can be seen from Figure 6-10 that clusters 2 and 4 are on 

the periphery of the visual field grid. Also, it exhibits that cluster 2 locations are near to 

the blind spot as well as cluster 5 which only in the center of the grid. These findings 

positively correspond to the clinical evidence that glaucoma first starts at the periphery 

and near to the blind spot. 
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Figure 6-10 : Visual Field Map For Resulting Clusters GSA 10 FCV 

 

6.6 Summary 

 

Chapter 6 presented the application of GSA method on the discrete optimisation 

problems, SMC. The aim of this work was to further explore SMC on the real data by 

investigating the arguably efficient search method, the GSA. With the GSA algorithm, 

SMC has appeared more efficient than the SA method. This was attributed to the 

extensive search which allowing the method to have a large number of moves in early 

iterations of the search. Other than that, the parameters used in GSA calibrate the 

acceptance probability and artificial temperature which makes the method becomes more 

efficient. These properties in the GSA method make the method distinct from the other 

annealing methods to produce good results. The GSA method has shown great search 

results on the synthetic dataset with high WK. As for accuracy, the method was found 

significantly improves the prediction accuracy in the real data compared to SA and the 

benchmarks methods (K-means and the 6NFB). In terms of efficiency, the GSA method 

has proven more efficient compared to the SA method with early convergence in the 

search. Besides the convergence analysis, the GSA algorithm runtime was found more 

efficient than SA. 



 

 

169 

 

 

Interesting results were found with the three modelling strategies implemented in this 

work. The 2FCV strategy has shown outstanding results with high WK. Therefore, these 

modelling strategies will be used in the next chapter of this study. Moreover, the visual 

field locations mapping of the SMC result was found coincides with the clinical evidence 

on glaucoma deterioration.  

 

This work was successfully implemented the GSA method in SMC with notable 

improvement results. However, besides noisy fitness, SMC is still deficient in 

performance when applying the GSA search method in the discrete problem. Optimising 

discrete problems such as SMC involves a combinatorial elements arrangement which 

this task can be affected by degeneracy. There is sufficient evidence shown in this work 

that the method has suffered from the degeneracy. Degeneracy can lead to inefficient 

exploration of a search space as the same clustering arrangements are repeatedly revisited. 

To overcome this problem, a certain representation of getting a new solution in a search 

is to be used in the algorithm as a vehicle for removing degeneracy. Therefore, Chapter 7 

will present a fine-tuned algorithm where an improvement is to be made on the selection 

of a new solution in the search.  
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Restricted Growth Function based Generalised Simulated Annealing 

to Predict Glaucoma using Simultaneous Modelling and Clustering 

7.1 Overview 

 

Since the application of the GSA method towards the SMC problem was found less 

efficient in the previous chapter due to degeneracy, enhancing the algorithm is thus 

essential. Chapter 7 introduces an algorithm that incorporates Restricted Growth 

Functions (RGFs), which are capable of vastly reducing degeneracy (Swift et al., 2007), 

in the search procedure. An RGF can be used to represent a clustering arrangement such 

that there is a one to one mapping between the clustering arrangement and representation, 

hence no degeneracy. The main expectation is that, SMC would be able to find the known 

clusters in the synthetic data much faster using the RGFGSA method than the existing 

methods as well as improving prediction accuracy in the real data. Moreover, RGFGSA 

is expected to have a less noisy fitness than the existing methods in the search. 

The algorithms used in the preceding chapters obtain a new solution (cluster arrangement) 

by implementing random moves exchanging variables among clusters based on a small 

change value (a number of moves). However, this process may lead to the repetition of 

the same solutions in the search (degeneracy) due to the representation being used. 

Therefore, this work adopts RGFs in the GSA search procedure for selecting a new 

solution.  

This work is a continuation from the previous chapter where the same datasets and 

experiment’s setup are used to test the enhanced algorithm. Moreover, additional 

experiments are carried out such as manipulating the RGFs procedure (namely, kN 

experiment) and testing SMC (using RGFs) on subsets of visual field data: early record, 

middle record and latest record. These supplementary experiments and analyses are aimed 
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at discovering any other latent knowledge within the data and carrying out more 

exploration on the SMC technique.  

The chapter is presented into six sections. Section 7.2 demonstrates combinatorial 

optimisation and highlights the need of this work. Section 7.3 introduces a novel 

algorithm namely, RGFGSA, which is the improved version of GSA, with the adaption 

of RGFs. This section also presents results of experiments using the RGFGSA algorithm. 

Additional experiments on the algorithm are presented in section 7.4 and 7.5. Finally, 

Chapter 7 summarises the work in section 7.6. 

 

7.2 Combinatorial Optimisation 

 

The application of SMC in visual field data presented in the earlier chapters involves a 

process where visual field locations are re-arranged to form a good combination of the 

variables (in clusters) that accurately predict the AGIS score. In relation to this process, 

it refers to combinatorial optimisation   (Papadimitriou and Steiglitz, 1982) which 

searches for the best elements arrangement of some finite sets of discrete items such as a 

travel salesman problem (TSP). Solving these problems is typically NP-hard (Klein and 

Young, 2010). Hence, many researchers focus on inventing a heuristic algorithm that 

efficiently garners a good solution to problems. An efficient and effective algorithm 

requires a good representation of solution in a search. To solve the Bin Packing problem 

(Garey and Johnson, 1979) for instance, a group of objects are used to represent the 

partitions of objects (Falkenauer and Delchambre, 1992). Meanwhile for the TSP 

problem, a list of permutations of distinct objects is used to represent the sequence of 

cities (Skiścim and Golden, 1983; Lin, 1965). 

 

In developing an algorithm for solving combinatorial optimisation problems, one must be 

aware of possible solutions that suffer from degeneracy. In the genetic algorithm, multiple 

chromosomes that have the same solution are termed as degeneracy (Radcliffe and Surry, 
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1994). This issue consequences an algorithm becoming less efficient as the same 

configurations of solutions are repeatedly obtained in the search due to the inherent 

stochastic nature of an algorithm. Avoidance of degeneracy in a search might help to 

improve algorithm’s search performance with early convergence. This can be attributed 

to quality solutions with high accuracies being searched for by an algorithm as well as 

removing repeated solutions. A few studies, particularly on the genetic algorithm method 

and combinatorial optimisation such as (Jiao and Wang, 2000), (Yau et al., 2003) and 

(Tucker et al., 2005), have been done to alleviate the degenerative issue. Tucker et al. 

specifically have used the RGF technique effectively removed degeneracy in a search 

with promising results. 

 

The motivation of this work is to develop an efficient algorithm for solving a discrete 

combinatorial problem by removing degeneracy in a search. This is possible to achieve 

by employing RGF in SMC (M. Z. M. B. Jilani et al., 2016) to find the best cluster 

arrangement of visual field (VF) points. The RGF representation (Falkenauer, 1998) is a 

grouping technique used towards the high dimension of VF points clustered in order to 

classify the glaucoma progression. With this approach, classification accuracy is observed 

and an early convergence point is captured to determine the effectiveness and the efficacy 

of the algorithm. Obtaining faster convergence as well as higher classification accuracy 

of the search is the essential contribution of the RGFGSA algorithm in SMC.  

 

7.3 Restricted Growth Function Generalised Simulated Annealing  

 

Restricted Growth Function 

 

Unlike the approach of representing a solution (clustering arrangement) in the previous 

algorithms (Chapter 4, 5 and 6), the algorithm used in this work applies Restricted growth 

functions to represent a clustering arrangement of visual field in a list of cluster indices 
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in a search. RGF is a procedure used in the GSA algorithm where a new clustering 

arrangement is obtained.  

 

An RGF is a function nn IIf : , where nI  is a list of cluster indices such that:- 

,1)1( f  

1)}(),...,1(max{)1(  iffif . 

 

For example, 1 11213224v  is an RGF, but 2 11214322v  is not an RGF since 

}1,2,1,1max{14   (Campbell et al., 2016). 

 

RGFs can be used in heuristic search techniques to vastly reduce the degeneracy inherent 

in other representations (Tucker et al., 2005). Adopting RGFs in the GSA algorithm 

advantages a search to obtain quality clusters (non-degeneracy clusters) from granularity 

solutions. An RGF represents clusters in a list of integers that the elements in the list 

indicate the cluster of its index belong to. The length of the list is the number of objects 

in clusters and the maximum integer value in the list indicates the number of clusters. 

Figure 7-1 exhibits the example of RGFs representation for clusters. 

Function 

Number 

of 

Clusters Clusters 

 

Index 0 1 2 3 4 5 6 7 8 9 

RGF 1 1 2 3 1 4 4 3 5 5 

           
 

5 

[[0,1,4],[2],[3,7],[5,6],[8,9]] 

 

Index 0 1 2 3 4 5 6 7 8 9 

RGF 1 1 1 1 2 1 2 2 1 3 

           
 

3 

[[0,1,2,3,5,8],[4,6,7],[9]] 

Figure 7-1 : RGFs Representation of Clusters for 10 Elements 
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In this work RGFs are used to represent a candidate of solution in the search. As 

delineated in Algorithm 6-1 (in Chapter 6), the current solution is perturbed (small 

change) to get a new solution based on the GSA new visit (denoted by qvg ) value. Then 

the current clusters which is denote by f and the new clusters ( g ) are represented in the 

RGF format. Henceforth, hamming distance (Tucker et al., 2005; Hamming, 1950) is 

used to get the distance between the two RGFs ( f and g ). The hamming distance 

between the two RGFs is also termed as a path ( gf  ). If the hamming distance 

between the two RGF points is 5, this means that there are 5 different solutions in the 

RGF format in the gf  . Each of the points in the gf  has a possibility to be 

selected based on the qvg  value as the next solution. The schematic diagram of potential 

new solutions in the gf   is well explained in Figure 7-2. 

 

 

 

Figure 7-2 : The RGF Path of the New Solution 

 

With the figure above, a new solution which is derived from RGF ( )(ifg ), is obtained by 

the following simple mathematical calculation:- 

 

Suppose the GSA new visit (from Equation 2-13) is 75.0qvg  and the RGF path length 

is 5 gf . Then the selected RGF point is computed as, 575.0)( ifg . In this 

example, 0.475.3)( ifg  therefore, the RGF number 3 ( )3(fg ) is chosen as the new 
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solution. In case of 0 value is obtained for qvg , hence RGF solution g is chosen. In 

Figure 7-3, which is clearly can be seen that the RGF point becomes smaller towards the 

end of iteration, shows the distribution of selection points in the RGF path for the new 

solution. This pattern is caused by the new visit ( qvg ) of the GSA algorithm. This process 

is defined in Algorithm 7-2. 

 

 

 

Figure 7-3 : Distribution of Selection Point in RGF Path (VF Data Experiment) 

 

Restricted Growth Function Generalised Simulated Annealing 

 

The RGFGSA algorithm incorporates RGFs in the procedure for obtaining a new 

solution. As discussed in Chapter 6, the GSA method may have the minimum 2 number 

of moves and maximum 52 (for visual field data) and 45 (for synthetic data) number of 

moves in order to generate a new solution. This procedure is remained applied in the 

RGFGSA method. However, in this procedure, a new solution is obtained from the list of 

solutions which are generated from the RGF operator as presented in example Figure 7-

2. The selection of a new solution from the list of solutions in the RGF path is based upon 
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the new visit value of GSA (Equation 2-13). Algorithm 7-1 exhibits the RGFGSA method 

which the procedure of RGFs in illustrated in Algorithm 7-2.  

 

Algorithm 7-1 : Simultaneous Modelling and Clustering of Restricted 

Growth Function Generalised Simulated Annealing 

Input:  
 

D = visual field data  
iterations = Number of iterations 

fd {10-fold, 2-fold, no-fold cross validation} 
temp = initial temperature 
qa = acceptance index 
qv = visiting index 
Model= MultinomialNaïveBayesUpdatable 

1 Let Ccurrent = a random clusters of visual field points 
2 Let Dcurrent = visual field data of the Ccurrent 
3 Let fitnesscurrent = prediction accuracy of the Ccurrent 

with fd 
4 For i=0 to iterations-1 
5    Cnew = get Cnew using the RGF operator 

                (Algorithm 6-2) 
6    Dnew = D of the Cnew 
7    fitnessnew = prediction accuracy of data  

               classification with fd              
8    if fitnessnew > fitnesscurrent 
9       fitnesscurrent = fitnessnew 
10       Ccurrent = Cnew 
11    else 
12        fitness = fitnesscurrent - fitnessnew 
13       Calculate Pr (Equation 5-1)  
14       Let random = UR(0,1) 
15       if  Pr > random 
16          fitness = fitnessnew 
17          Ccurrent = Cnew 
18       end if 
19    end if 
20    Calculate temp (Equation 5-2) 
21 end for 
Output: Ccurrent, prediction accuracy = fitnesscurrent 
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Algorithm 7-2 : RGF Representation in Small Change of GSA Algorithm 

Input:  
 

Ccurrent  
V = No of variables of visual field data 
qv 
temp 

1 Let Cnew = clone of Ccurrent  
2 newvisit = Compute GSA small change (Equation 6-3) 
3 Let no. of moves = newvisit × V 
4 clustersnew = re-arrange clustersnew for no. of moves 
5 Let Ccurrent and Cnew in RGF format 
6 Let f = Ccurrent in RGF format 
7 Let g = Cnew in RGF format 
8 Generate RGF path from f to g 
9 Let RGF length = get the fg length 
10 Let RGF Point = newvisit × fg length 
11   If RGF Point = RGF length or Solution Point = 0 
12      RGF solution = g 
13   else  
14      Let RGF solution = get RGF at RGF Point  
15   end if 
16 Cnew = Convert the RGF solution in clusters format 
Output: Cnew of visual field locations 

 

7.3.1 Experiments 

 

The datasets (real data and synthetic data) and experiment’s setup in Chapter 6 are used 

in this work. As such, the same aq and vq values for the GSA method from Chapter 6 are 

used. Also, the three modelling strategies: 10FCV, 2FCV and NoFCV are implemented 

in this work. The K-means and 6NFB results are also presented in this chapter for 

comparison. This is an “apples to apples” comparison between the results from Chapter 

6 and Chapter 7. 
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7.3.2 Results  

 

Result section presents the predictive accuracy (in percentage), Weighted Kappa (WK), 

convergence point, algorithm runtime and resultant clusters of the experiments for both 

VF and synthetic data. The average accuracy and average WK are derived from the 25 

set experiments in each method and modelling strategy. The results are tabulated for 

comparing the three optimisation methods (SA, GSA and RGFGSA) using three 

modelling strategies. 

 

Predictive Accuracy: Visual Field Data 

 
Table 7-1 shows the results for the 10-fold cross validation (10FCV) modelling 

strategy. In the average accuracy, the three methods do not have a significant 

difference. The GSA average accuracy (87.89%) is slightly higher than RGFGSA and 

SA. However, it was recorded that the best accuracy was from RGFGSA with 88.83% 

accurate. Note that WK values, which is less than 0.005, for the resultant clusters have 

very poor agreement with the 6NFB for the three methods in all modelling strategies 

(Table 7-1-Table 7-3). 

 

Result 

Modelling Strategy 

SA GSA RGFGSA 

Accuracy% (WK) Accuracy% (WK) Accuracy% (WK) 

Minimum 86.32 87.40 86.01 

Maximum 88.48 88.54 88.83 

Average  87.76 (0.002) 87.89 (0.001) 87.84 (-0.003) 

Table 7-1 : 10-fold Cross Validation Experiment Results 
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With the 2-fold cross validation (2FCV) modelling strategy (Table 6-2), the results 

are consistent with 10FCV where the average accuracy of the GSA (86.63%) is 

slightly higher than RGFGSA and SA methods (0.04 and 0.18 respectively). 

However, the best accuracy was recorded by the RGFGSA with 87.19% accurate. 

 

Result 

Modelling Strategy 

SA GSA RGFGSA 

Accuracy% (WK) Accuracy% (WK) Accuracy% (WK) 

Minimum 85.94 86.23 85.74 

Maximum 87.09 87.17 87.19 

Average  86.45 (0.002) 86.63 (0.004) 86.59 (-0.008) 

Table 7-2 : 2-fold Cross Validation Experiment Results 

 

Meanwhile with the no cross validation strategy (NoFCV) as shown in Table 7-3, the 

RGFGSA method is slightly better in predictive accuracy with 86.80% accurate than 

the other two methods. The best accuracy was found by the SA method with 87.47% 

accurate.    

 

Result 

Modelling Strategy 

SA GSA RGFGSA 

Accuracy% (WK) Accuracy% (WK) Accuracy% (WK) 

Minimum 86.27 85.89 86.33 

Maximum 87.47 87.28 87.22 

Average  86.63 (0.001) 86.65 (-0.005) 86.80 (-0.0136) 

Table 7-3 : No Cross Validation Experiment Results 
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Predictive Accuracy: Synthetic Data 

 

Classification accuracies in the synthetic data experiments are higher (above 90%) as 

compared to the visual field data. Table 7-4 shows the 10FCV modelling strategy 

results for the synthetic data experiments. Within this strategy, the highest accuracy 

was recorded by the RGFGSA method with 99.16% accurate. Also note that in 

average accuracy, RGFGSA is the best method in improving the classification 

accuracy with 98.62% accurate as compared to the other two methods. 

 

Result 

Modelling Strategy 

SA GSA RGFGSA 

Accuracy% (WK) Accuracy% (WK) Accuracy% (WK) 

Minimum 98.04 97.93 93.27 

Maximum 98.46 98.56 99.16 

Average  98.36 (0.868) 98.33 (0.884) 98.62 (0.915) 

Table 7-4 : 10-fold Cross Validation Experiment Results 

 

Likewise with the 2FCV modelling strategy, RGFGSA obtained higher accuracy than 

the other methods as exhibits in Table 7-5. The RGFGSA method outperformed the 

other two methods with the best accuracy value 98.04% and the average accuracy 

97.87%.   

 

 

 

 

 



 

 

181 

 

 

Result 

Modelling Strategy 

SA GSA RGFGSA 

Accuracy% (WK) Accuracy% (WK) Accuracy% (WK) 

Minimum 96.76 96.87 97.68 

Maximum 97.04 97.04 98.04 

Average  97.02 (0.987) 97.04 (0.999) 97.87 (1.000) 

Table 7-5 : 2-fold Cross Validation Experiment Results 

 

 

Meanwhile results from the experiments with NoFCV, there are inconclusive results 

as GSA and RGFGSA have the same average accuracy with 98.59% (Table 7-6). The 

best accuracy was 98.60% for all three methods.  

 

Result 

Modelling Strategy 

SA GSA RGFGSA 

Accuracy% (WK) Accuracy% (WK) Accuracy% (WK) 

Minimum 98.24 98.36 98.48 

Maximum 98.60 98.60 98.60 

Average  98.55 (0.940) 98.59 (0.965) 98.59 (0.961) 

Table 7-6 : No Cross Validation Experiment Results 

 

As opposed to the visual field data results, the resultant clusters in the synthetic data 

have high agreement of WK (near 1.0) with the known clusters that is three clusters 

of the 45 variables. The RGFGSA method outperformed the other method with the 

10FCV and 2FCV modelling strategies where 2FCV perfectly obtained WK 1.0 in all 

25 experiments. However with NoFCV, the GSA method slightly surpassed the 

RGFGSA method by 0.004 with WK=0.965 (Table 7-6).  
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Convergence Point  

 

The convergence point is defined as the iteration point at which there are no further 

fitness improvements. This means that after the convergence point, the search could 

not found any better improvement solution (maximising prediction accuracy). The 

earlier iteration the convergence point is, the more efficient the method. In this work, 

100,000 iterations are used and the smallest iteration point indicates the best 

convergence point. Similar to the work carried out in Chapter 6, due to noisy fitness, 

fitness tolerances were computed for every experiment.  Thus, the convergence points 

for the search are the fitness tolerance convergence points. 

 

 Visual Field Data 

 

 

Table 7-7 tabulates the average (of 25 experiments) convergence point for the 

visual field data experiments. The results indicate that the RGFGSA method does 

not have the best convergence points with the three modelling strategies compared 

to GSA and SA. GSA recorded the best average convergence with 10FCV 

(2,839.88) and whilst SA with 2FCV (19,938.04) and NoFCV (46,304.00). 

However, in this comparison, RGFGSA is the second best method to converge in 

the experiments. 

Method 
Modelling Strategy 

10FCV 2FCV NoFCV 

SA  11,643.16 19,938.04  47,304.00 

GSA  2,839.88  34,889.04  73,928.08 

RGFGSA  3,590.52  30,859.68  68,446.84 

Table 7-7 : Average Fitness Tolerance Convergence Point for Visual Field Data 
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 Synthetic Data 

 

 

Meanwhile in the synthetic data experiments, the RGFGSA method was found 

very efficient with 10FCV and 2FCV modelling strategies (Table 7-8).  However, 

the SA method has better convergence with the NoFCV modelling strategy than 

GSA and RGFGSA.  

 

Method 
Modelling Strategy 

SA GSA RGFGSA 

10FCV 19582.40 7328.00 4551.64 

2FCV 30365.04 45244.56 20924.08 

NoFCV 44843.68 71007.00 54554.08 

Table 7-8 : Average Fitness Tolerance Convergence Point for Synthetic Data 

 

Figure 7-4 exhibits the plot of convergence points for the three methods (with 

10FCV) in 25 experiments. From the graph it clearly points out that the RGFGSA 

method is the fastest algorithm (early convergence) as the plots’ line is lower than 

the other two methods as exhibit in the line graph. The SA method convergence 

plots are far separated from the GSA and RGFGSA methods.  
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(A) 

 

 
 

(B) 

Figure 7-4 : Convergence Point of Synthetic Data for 10FCV  

(A: Histogram, B: Line Graph) 
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 Algorithm Runtime 

 

As presented in Chapter 6, the algorithm runtime for RGFGSA is captured for 

analysis. Table 7-9 shows that the total runtime (average) of RGFGSA 

experiments is higher than SA and GSA. As discussed in Chapter 6, classification 

effort in the experiments took so much time due to the classification process in 

SMC that dependent on number of moves and data preparation. However, the 

RGFGSA algorithm’s effort in the experiments is only 0.38% from the total 

runtime.  

 

Method 

Total Experiment 

Runtime 

Classification 

Runtime 

Algorithm 

Effort (%) 

SA 41,860.86 39,180.37 6.40% 

GSA 128,120.47 125,985.66 1.66% 

RGFGSA 584,188.19 581,956.10 0.38% 

Table 7-9 : Algorithm Runtime 

 

Resultant Clusters 

 

 

Resultant clusters of the search were captured to see the significant compound 

variables of the visual field locations besides the 6NFB. The resultant clusters from 

the 25 set experiments note that the maximum clusters proposed by SMC were 18 

clusters which from SA with 10FCV, and the minimum clusters (2 clusters) were from 

RGFGSA with 10FCV (Table 7-10). These results show that GSA and RGFGSA have 

tendency to get smaller clusters in the search in all modelling strategies.  
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Modelling 

Strategy/Method 

SA GSA RGFGSA 

Min Max Min Max Min Max 

10-FCV 12 18 3 12 2 10 

2-FCV 7 17 3 12 4 11 

No FCV 6 15 3 14 4 11 

Table 7-10 : Range of Resultant Clusters for Visual Field Data 

 

For the synthetic data (Table 7-11), as the known clusters size of the data is three, the 

experiments on the synthetic data was seemed to be more effective to search the 

expected clusters. Note that with all methods and modelling strategies, the resultant 

clusters obtained by the methods and strategies were less than 8 clusters.  The 2FCV 

modelling results stand out from the other strategies in all three methods, where the 

minimum clusters were three and the maximum clusters were four. The 2FCV 

modelling strategy with the RGFGSA method was the most effective method as the 

known clusters (three clusters) were found in all 25 set of experiments. 

 

 

Modelling 

Strategy/Method 

SA GSA RGFGSA 

Min Max Min Max Min Max 

10-FCV 4 6 4 5 3 7 

2-FCV 3 4 3 4 3 3 

No FCV 4 7 4 4 4 5 

Table 7-11 : Range of Resultant Clusters for Synthetic Data 
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7.3.3 Discussion  

 

Visual Field  

 

In the visual field data experiments, it can clearly be seen that the 10FCV modelling 

strategy is the most suitable approach (with higher average accuracy) for improving 

prediction accuracy. This coincides with (Kohavi, 1995) that 10FCV is a good 

modelling strategy to produce high accuracy of real data. The average GSA accuracy 

(from 25 experiments) is higher than RGFGSA with 10FCV and 2FCV as presented 

in Table 7-12. However, the accuracy variance between GSA and RGFGSA is very 

small (0.05 and 0.04) and RGFGSA results are better than the benchmarks (K-means 

and the 6NFB). Also it can be noted that the RGFGSA method recorded the best 

accuracy (88.83%) in experiments with 10FCV.  

 

 

Modelling 

Strategy/Method 

10FCV 2FCV  NoFCV 

Accuracy%  

K-means  84.30 84.22 84.47 

6NFB 83.27 83.90 83.65 

SA 87.76 86.45 86.63 

GSA 87.89 86.63 86.65 

RGFGSA 87.84 86.59 86.80 

Table 7-12 : Average Predictive Accuracy Comparison  

 

The agreement level of the resultant clusters with the 6NFB was found to be very poor 

in the experiments with all methods and modelling strategies. As for the method’s 

efficiency, RGFGSA did not record the best convergence (average) in visual field 
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experiments. However, algorithm runtime analysis found that the method was 1.28% 

and 6.02% more efficient than GSA and SA respectively. 

 

WKs among the resultant clusters were computed, in order to see similarity and 

consistency among the resultant clusters that have been suggested by SMC within the 

25 set experiments. With the 25 set of the experiment results, there are 300 pairs (nCr: 

n = 25, r = 2 Appendix 7-A) of the resultant clusters for computing WK. This means 

that WK is computed for resultant clusters 1 and 2, resultant clusters 1 and 3, and so 

on and so forth. Then the average value is obtained from those 300 WKs.  

 

The WK (average) results among clusters were appeared to very poor in visual field 

data experiments. This poor WK confirms that there are inconsistency resultant 

clusters in the 25 set experiments.   

 

However, the RGFGSA’s resultant clusters have slightly higher WK than the other 

methods with 0.00561 and 0.01138 for 2FCV and NoFCV respectively (Table 7-13).  

 

Method/Modelling 

Strategy SA GSA RGFGSA 

10FCV 0.00149 0.00298 0.00126 

2FCV 0.00273 0.00205 0.00561 

NoFCV 0.00415 0.00497 0.01138 

Table 7-13 : Average of WK among the Resultant Bundles for VF Data 
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Synthetic Data  

 

Meanwhile in the synthetic data experiments, SMC performed very well with the 

RGFGSA method. RGFGSA has appeared to be the best method with high average 

accuracy in all modelling strategies. As opposed to the visual field data (with 10FCV), 

the best modelling strategy to improve classification accuracy in the synthetic data is 

2FCV.  

 

The WK results in the synthetic data have shown promising results with high average 

WK with all methods and modelling strategies. The 2FCV modelling strategy was 

found the most efficient strategy. This was supported by the results that RGFGSA has 

found the known clusters in all 25 set experiments. As all methods were effective to 

search the known cluster in the synthetic data, the average WK results among the 

resultant clusters are very good as shown in Table 7-14. The RGFGSA method has 

produced high consistent resultant clusters with the 2FCV within the 25 set 

experiments (WK= 1.0). 

 

Method/Modelling 

Strategy SA GSA RGFGSA 

10FCV 0.8354 0.8540 0.8530 

2FCV 0.9735 0.9974 1.0000 

NoFCV 0.9275 0.9903 0.9893 

Table 7-14 : Average of WK among the Resultant Bundles for Synthetic Data 

 

In terms of efficiency, it can be concluded that the RGFGSA method is more efficient 

than the other methods with 10FCV and 2FCV (as shown in Table 7-8). However 

with NoFCV, RGFGSA was found the second best in convergence point results after 
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SA. Note that the RGFGSA method was 7.33% and 24.32% more efficient than the 

GSA method in the synthetic data with 10FCV and 2FCV modelling strategy 

respectively. Whilst in the comparison with the SA method, RGFGSA was 15.03% 

and 9.44% more efficient in 10FCV and 2FCV respectively.  

 

From the NoFCV experiments’ results, it can be seen that the average accuracy in the 

synthetic data are high (all methods). This may due to overfitting in modelling (Varma 

and Simon, 2006). Moreover, it was noticed that the search have suffered from noisy 

fitness in all modelling strategies. Noisy fitness is illustrated in Figure 7-5 and Figure 

7-6 for RGFGSA and GSA respectively. However, the fitness of the RGFGSA method 

was found very less noisy as compared to the GSA method. Noisy fitness happens when 

a worse solution (with a worse fitness value) is still being accepted in the search even 

though the search has converged. This phenomenon affects the search performance. As 

RGFGSA was found less noisy in fitness, the method is thus able to obtain higher WKs 

in the experiments.  

 

 

  

Figure 7-5 : Convergence Graph 

Synthetic Data in RGFGSA Method 

(10FCV) 

Figure 7-6 : Convergence Graph 

Synthetic Data in GSA Method (10FCV) 
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Besides the analyses on the algorithm performance, resultant clusters visualisation on 

the visual field grid is observed and comprehended according to the clinical practices. 

One of the resultant clusters from the experiments was chosen for visualisation on the 

visual field grid map. The best accuracy of 10FCV (88.83%) was chosen and 

illustrated on the visual field grid map as shown in Figure 7-7. The resultant clusters 

have four clusters which most of the visual field locations are in the same group in 

cluster one. The biggest cluster of visual field locations is mainly positioned at the 

peripheral of the grid. It is the same with cluster four which three of the locations are 

situated at the peripheral. This pattern of visual field location is corresponding to the 

clinical evidence that the onset of glaucoma are in the periphery of vision and near to 

the blind spot  (Broadway, 2012; Heijl and Patella, 2002). 

 

 

Figure 7-7 : Visualisation of Resultant Clusters on VF Grid Map 

 

7.4 kN Experiments  

 

The kN experiments present a new strategy in the RGF procedure by manipulating the 

small change value, where k is a constant and N is the length of dataset variables. Small 
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change in the RGFGSA algorithm is obtained as a result of multiplying the new visit 

value with the length of variables in the data (synthetic: 45 variables). However, this piece 

of work manipulates the length of the dataset variables by applying a range of constants 

starting from 0.5 to 5.0 to be multiplied with the length of variables. Small value of the 

constant (k) would result less number of moves in small change and vice versa. 

Implementing kN in experiments is to observe the effect of RGFGSA algorithm which 

lesser or larger number of moves might be influencing the efficacy of the algorithm in 

exploring the search for clustering. The motivation of having this strategy in the RGF 

procedure is that, to see whether a larger or lesser number of moves potentially improves 

the search performance with high WK and predictive accuracy as far as reverse-engineer 

is concerned. This experiment is tested on the synthetic data owing to the known clusters 

that enables to measure the efficacy of the experiment strategy with higher WK as well 

as improving predictive accuracy. The hypothesis behind this experiment is larger 

exploration (high number of moves) in the search at early iteration would potentially more 

efficient for the algorithm to find the best clusters in data.  

 

As explained in Algorithm 7-2 (line 3), the small change (a number of moves) is derived 

from the multiplication of newvisit (the GSA new visit distribution from Equation 2-13) 

and the size of variables (N). For the synthetic data, the small change is to be factored 

with 45 (45 variables). These experiments manipulate a constant (k) to produce either a 

larger length of the variables or lesser. The range of the constant k is shown in Figure 7-

8. 
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Figure 7-8: The Length of Variables for Small Change in kN Experiments  

 

Each of the kN value, as shown in Figure 7-8 above, are experimented using the NBU 

classifier with 10FCV. As learned from the previous experiment results (10FCV strategy) 

that the average convergence point is less than 10,000 iterations, therefore these 

experiments are run for 10,000 iterations with 10 repeats.  However, in order to get the 

same efficiency of the RGFGSA method, the same parameter values from the previous 

experiment ( aq and vq ) are used.  

 

7.4.1 Results  

 

Each of the kN experiments final results is obtained and tabulated for comparison as 

shown in Table 7-15. The full complete 10 experiments results are presented in Appendix 

7-B.  

 



 

 

194 

 

 

k Average Accuracy 

Average 

WK 

0.5 97.749 0.851 

1.0 97.724 0.872 

1.5 97.686 0.817 

2.0 98.063 0.896 

2.5 97.389 0.806 

3.0 97.758 0.864 

3.5 97.629 0.807 

4.0 97.828 0.898 

4.5 97.771 0.841 

5.0 97.793 0.857 

Table 7-15 : The kN Experiments Results for Synthetic Data 

 

Figure 7-9 shows the results ranked by average accuracy which the highest average 

accuracy was obtained from experiment with k=2.0.  

 



 

 

195 

 

 

 

Figure 7-9: The kN Experiment Results Ranked by Accuracy for Synthetic Data 

 

Meanwhile, the experiment with k=4.0 has the highest WK (0.898) as shown in Figure 7-

10. It clearly can be seen from the figure that the top 3 in the rank are from the experiments 

with k positive integer value.  As far as reverse engineering is concerned, this result 

concludes that the positive integer values for variable k in RGFGSA algorithms could 

find a better solution for data clustering arrangements (measure in WK).   
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Figure 7-10 : The kN Experiments Results Ranked by WK for Synthetic Data 

 

Figure 7-11 and 7-12 exhibit the convergence graph for the experiments with k=2.0 and 

k=1.0 respectively. From the graphs, it can be seen that the search with RFGFSA 

experienced too much noise in the search. This might be due to the inappropriate aq and 

vq (obtained with 100,000 iterations) values for 10,000 iterations. 
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Figure 7-11 : Convergence Graph for kN Experiment (k=2.0) 

 

 

Figure 7-12 : Convergence Graph for kN Experiment (k=1.0) 

 

7.4.2 Discussion  

 

The results from the kN experiments are indecisive to infer meaningful information. There 

are inconsistent results between the accuracy and WK by ranking. However WKs have 
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shown better results with the positive interger k value (k:1,2,3,4,5). The accuracies within 

the kN experiments have not much different between each other. The different between 

the highest accuracy and the lowest accuracy in these experiments is 0.674% (Accuracy 

for k=2.0 and Accuracy for k=2.5).  There are also very little different between WKs 

within the k values experiments. The different between the highest and the lowest WK is 

0.092 (WK for k=4.0 and WK for k=2.5).  

 

7.5 Subsets of Visual Field Data  

 

Another supplementary experiment was carried out on visual field data based on three 

subsets of visual field data. The goal of this experiment is to see the significance of visual 

field records in predicting visual field loss. Furthermore, with these datasets, the 

performance of the SMC can be further measured on the real data based on predictive 

accuracy and WK. 

 

As discussed earlier in Chapter 3, the data exploration has demonstrated the three subsets 

of visual field data: early record datasets, middle record dataset, and latest record dataset. 

These datasets consist of different number of records due to some patients have limited 

visual field test records (explained in Chapter 3, section 3.1.1). Early record dataset has 

1,580 records, middle record dataset has 1,083 records and latest record dataset has 1,284 

records.  

 

The three optimisation methods (SA, GSA, and RGFGSA) are tested on the three datasets 

using the three modelling strategies (10FCV, 2FCV, and NoFCV). The classifier used in 

the experiments is NBU and is run for 100,000 iterations (25 repeats). The experimental 

setups are briefly shown in Table 7-16.  
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Method 

Dataset 

Record Repeat Iteration Classifier 

Modelling 

Strategy 

SA 

Early  

25 100,000 NBU 

10FCV 

2FCV 

NoFCV 

Middle 

Latest 

GSA 

Early 

Middle 

Latest 

RGFGSA 

Early 

Middle 

Latest 

Table 7-16 : Experimental Setup for the 3 Dataset Categories 

 

7.5.1 Results 

 

Predictive Accuracy 

 

Table 7-17 presents the predictive accuracy results for the early dataset’s experiments. 

All three methods predict better with 10FCV modelling strategy experiment with the 

average accuracy 87.649%, 87.729% and 87.698%, for SA, GSA and RGFGSA 

respectively.  
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Modelling 

Strategy/Method 

Predictive Accuracy (%) Early 

Dataset 

10FCV 2FCV NoFCV 

SA 

Min 86.995 86.108 86.646 

Max 88.431 87.225 87.468 

Average 87.649 86.651 87.066 

GSA 

Min 87.229 86.272 86.519 

Max 88.568 87.070 87.405 

Average 87.729 86.786 87.019 

RGFGSA 

Min 87.105 86.354 86.329 

Max 88.435 87.253 87.405 

Average 87.698 86.745 86.954 

Table 7-17 : Predictive Accuracy for Early Dataset Experiments 

 

Likewise in the middle dataset’s experiments (Table 7-18), the best average accuracy is 

recorded by the experiments with the 10FCV modelling strategy: SA 88.938%, GSA 

88.752%, and RGFGSA 89.034%. Interesting result was found in the middle dataset’s 

experiment (10FCV) with highest accuracy 90.225% by the SA method. Meanwhile, the 

RGFGSA average accuracy is the highest amongst others with 10FCV and 2FCV in the 

middle dataset’s experiment.  
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Modelling 

Strategy/Method 

Predictive Accuracy (%) Middle Dataset 

10FCV 2FCV NoFCV 

SA 

Min 87.976 86.714 87.073 

Max 90.225 87.291 87.627 

Average 88.938 86.979 87.309 

GSA 

Min 86.848 86.843 86.704 

Max 89.788 87.323 87.535 

Average 88.752 87.042 87.206 

RGFGSA 

Min 88.578 86.631 86.888 

Max 89.606 87.309 87.535 

Average 89.034 87.004 87.228 

Table 7-18 : Predictive Accuracy for Middle Dataset Experiments 

 

The latest dataset’s experiments results shown in Table 7-19 reveal that 10FCV modelling 

strategy is better to improve prediction accuracy than the other methods. The average 

accuracy results with 10FCV are 87.659%, 87.672%, and 87.709% for SA, GSA and 

RGFGSA respectively.  
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Modelling 

Strategy/Method 

Predictive Accuracy (%) Latest Dataset 

10FCV 2FCV NoFCV 

SA 

Min 86.997 85.728 86.371 

Max 88.439 86.386 87.305 

Average 87.659 86.029 86.816 

GSA 

Min 86.838 85.798 86.293 

Max 88.248 86.636 87.350 

Average 87.672 86.178 86.800 

RGFGSA 

Min 87.080 85.623 86.137 

Max 88.652 86.620 87.150 

Average 87.709 86.093 86.701 

Table 7-19 : Predictive Accuracy for Latest Dataset Experiments 

 

Based on the observation of the predictive accuracy results in all datasets experiments, 

the middle dataset is better (with higher accuracy) to predict glaucoma deterioration using 

visual field data than the early dataset and latest dataset experiments. Obviously from the 

results, the 10FCV modelling strategy is the best approach to model the data with high 

average accuracy. RGFGSA has higher average accuracy with 10FCV modelling strategy 

in the middle and latest dataset than the other methods.  

 

Weighted Kappa Statistic 

 

WKs of the resultant clusters against the 6NFB are inconclusive. Table 7-20 shows the 

WK results (in average) for the experiments by dataset categories, methods and modelling 

strategies. The highest WK in these experiments is 0.0063 (very poor agreement with the 

6NFB).  
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Dataset/Modelling 

Strategy/Method 10FCV 2FCV NoFCV 

Early 

SA -0.0073 -0.0038 -0.0119 

GSA 0.0012 -0.0100 -0.0106 

RGFGSA -0.0016 -0.0069 -0.0109 

Middle 

SA -0.0016 -0.0009 -0.0027 

GSA 0.0022 -0.0064 0.0039 

RGFGSA 0.0040 0.0052 0.0020 

Latest 

SA 0.0048 -0.0048 -0.0098 

GSA 0.0063 -0.0050 -0.0047 

RGFGSA 0.0024 -0.0059 -0.0019 

Table 7-20 : Weighted Kappa of Resultant Clusters against 6NFB 

 

As the WK results are found very poor in these experiments, consistency of the resultant 

clusters is measured by computing WK among the resultant clusters. From Table 7-21, 

the highest average WK among the resultant clusters is obtained from the early dataset’s 

experiment using the GSA method with NoFCV (0.354 – fair agreement). With the 2FCV 

modelling strategy, the best average WK (0.196) among the resultant clusters is from the 

early dataset using the RGFGSA method. With this evidence of cross comparing the 

resultant clusters, it shows that the algorithm produces more consistent clustering 

arrangement in the early dataset than the others. Meanwhile WKs are found very poor in 

experiments with the 10FCV modelling (all datasets and methods).  

 

 

 

 

 



 

 

204 

 

 

Method Dataset 

Weighted Kappa 

10FCV 2FCV NoCV 

SA 

Early Dataset 0.003 0.100 0.231 

Middle Dataset 0.005 0.041 0.098 

Latest Dataset 0.007 0.044 0.100 

GSA 

Early Dataset 0.009 0.162 0.354 

Middle Dataset 0.002 0.050 0.097 

Latest Dataset 0.004 0.072 0.107 

RGFGSA 

Early Dataset 0.004 0.196 0.264 

Middle Dataset 0.011 0.040 0.105 

Latest Dataset 0.002 0.092 0.097 

Table 7-21 : Average Weighted Kappa among the Resultant Clusters 

 

Convergence Point 

 

Table 7-22 to 7-24 show the average convergence point (fitness tolerance) for the 

experiments. The GSA method was found more efficient than the other methods in the 

early and latest dataset with the 10FCV modelling strategy (1,350.20 and 1,065.12 

respectively). Meanwhile in the middle dataset’s experiment, RGFGSA outperformed 

GSA with the best average convergence point 1,680.80 (with the 10FCV). As for the SA 

method, the average convergence points in all datasets experiments are too high. The best 

average convergence point recorded by SA is 18,751.60 in the middle dataset’s 

experiment with 10FCV. On the other hand, RGFGSA was found consistent to be the 

most efficient method in all dataset experiments with 2FCV modelling strategy.  
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Method/Modelling 

Strategy 

Early Dataset 

10FCV 2FCV 

SA 

               

21,313.24  

               

37,182.44  

GSA 

                 

1,350.20  

               

38,182.08  

RGFGSA 

                 

2,385.56  

               

35,215.76  

Table 7-22 : Average Fitness Tolerance Convergence Point for Early Dataset 

 

Method/Modelling 

Strategy 

Middle Dataset 

10FCV 2FCV 

SA 

               

18,751.60  

               

33,986.96  

GSA 

                 

7,577.32  

               

25,439.12  

RGFGSA 

                 

1,680.80  

               

24,510.28  

Table 7-23 : Average Fitness Tolerance Convergence Point for Middle Dataset 

 

Method/Modelling 

Strategy 

Latest Dataset 

10FCV 2FCV 

SA 

               

19,029.72  

               

36,996.12  

GSA 

                 

1,065.12  

               

35,351.68  

RGFGSA 

                 

1,623.92  

               

32,788.96  

Table 7-24 : Average Fitness Tolerance Convergence Point for Latest Dataset 
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7.5.2 Discussion 

 

The experiments’ results from the three subsets of visual field data reveal that SMC with 

the RGFGSA method produces more quality results in terms of predictive accuracy, WK 

and convergence point than the other methods. Prediction of AGIS using the SMC 

clustering technique is better in the middle dataset than the early and latest datasets. It 

also can be concluded that 10FCV is the best modelling strategy as this strategy highly 

improved the accuracy in all datasets. In average accuracy, RGFGSA was found the best 

method to predict AGIS in the middle dataset with the 10FCV and 2FCV modelling 

strategy and in the latest dataset with 10FCV. However the best result (highest accuracy) 

was from the SA method in the middle dataset experiment with the 10FCV modelling 

strategy.  

 

Despite the fact that 10FCV was the best (high accuracy) strategy for modelling the three 

datasets of visual field, the WK results have shown that the resultant clusters are more 

consistent with NoFCV modelling strategy (all datasets and methods) than the 10FCV 

and 2FCV with high WK. The experiments with the 10FCV and 2FCV modelling 

strategies have very poor WK results among the resultant clusters even though the 

predictive accuracy values are very close (among the three modelling strategies and 

datasets). This indicates that the 10FCV and 2FCV modelling strategies have produced 

different clustering arrangements in the 25 set experiments compared to NoFCV. With 

respect to the phenomenon of close predictive accuracy values and different clustering 

arrangements in the experiments, this might be due to cross validation. To overcome and 

comprehend this situation, further experiments can be done using other strategies of cross 

validation and other methods of sampling the visual field datasets.   

 

The convergence point analyses have found that there is no significant pattern can be seen 

to identify which method is the most efficient in the three dataset experiments with the 
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10FCV modelling strategy. However, GSA and RGFGSA have shown promising results 

in the 10FCV in the three datasets experiments compared to SA. Additionally, in these 

experiments, it is noticed that RGFGSA consistently has become the fastest method to 

converge in the search with the 2FCV modelling strategy. Nevertheless, the average 

convergence points in the 2FCV experiments are rather higher than 10FCV (best: 

24,510.28). The SA method has been clearly shown to be the most inefficient method in 

these experiments.  

 

7.6 Summary 

 

Chapter 7 demonstrated the use of RGFs representation in the GSA algorithm’s search 

procedure in SMC to garner quality solutions.  The aim of this work was to improve the 

efficiency of SMC by removing the inherence of degeneracy in the combinatorial 

problems. To prove the method’s efficiency, the novel algorithm, which is namely, 

RGFGSA, was examined on the real data (visual field) and synthetic data. The three 

measurements for the method performance: predictive accuracy, WK and convergence 

point, have shown positive results. RGFGSA appears to be an effective approach to 

reduce degeneracy problem in SMC as the method was found suffer less from the effects 

of a noisy fitness function compared to GSA. This was shown by the comparison of 

convergence graph between RGFGSA and GSA (Figure 7-5 and Figure 7-6).  

 

Although the average accuracy results (of 25 experiments) of RGFGSA were found 

inconsistent to be the highest in the real data, the method has appeared to be consistent 

with highest average accuracy results in the synthetic data compared to the other methods. 

The RGFGSA method also has recorded the best result (highest accuracy) in the visual 

field data with the 10FCV modelling strategy. In comparison with the benchmark of this 

study, RGFGSA’ predictive accuracies were still found higher than K-means and the 

6NFB.  
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The WK results for the visual field data were very poor in all methods and modelling 

strategies. However, exceptional results obtained in the synthetic experiments have 

shown that the RGFGSA method has found the perfect clusters (the known clusters) in 

all 25 experiments (with 2FCV). This is another evidence that the method is capable to 

remove the inherence of degeneracy in SMC. As for method’s efficiency, RGFGSA has 

appeared to be the most efficient algorithm in terms of runtime (visual field data), and 

had faster convergence with lower average convergence point than SA and GSA in the 

synthetic data (10FCV and 2FCV).  

 

Two supplementary experiments were carried out to further explore the RGFGSA 

algorithm in this work. First experiment was testing the algorithm with a range of small 

change size, namely, kN experiments. Second experiment was testing the method on the 

three datasets of visual field data: early, middle and latest record dataset. The kN 

experiments have discovered that the WK value is higher in a positive integer value of k. 

The discovery of this rule in kN experiment (k = 2.0, 4.0 and 5.0) for RGFGSA’s small 

change is worth to be applied in real data. However, the significant difference between 

the WK values in this experiment is extremely tiny.  

 

The experiments’ results from the three datasets of visual field have shown consistent 

clustering arrangements. In the experiments, 10FCV appears to be the best modelling 

strategy to improve predictive accuracy. The middle dataset of visual field was found the 

best dataset to predict the AGIS score using the three methods and modelling strategies 

as the average accuracies are higher than other datasets. There is no conclusion can be 

made from the WK results of the three dataset of visual field experiments in 10FCV. 

However, within these experiments, the resultant clusters are more consistent in the 

NoFCV modelling strategy than others with fair agreement WK (among the resultant 

clusters). Also, early dataset was found to be much more consistent in resultant clusters. 

An interesting finding on the convergence point results is that, the search has (with GSA 
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and RGFGSA) converged earlier in the three visual field dataset categories than the 

sampled dataset. 

 

To summarise, with the RGFGSA method, SMC has shown a significant improvement 

on accuracy in the real data compared to the benchmark methods as well as the synthetic 

data. It can also be concluded that the RGFGSA method reduces degeneracy in SMC, 

more consistent (WK) clusters with the 6NFB than the other method with subset dataset 

of visual field, and works very efficient and effective with 2FCV. Based on this remark, 

it is viable to employ the RGFGSA algorithm in SMC.  
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Conclusions 

8.1 Overview 

 

Chapter 8 summarises the entire works have been carried out in this research. The aim of 

this chapter is to highlight the research outcomes and findings. Building on the findings, 

research limitations and proposals for future work are presented. Chapter 8 comprises of 

five sections. Section 8.2 summarises all chapters of the thesis. This section also recaps 

the findings of each work presented in this research. Section 8.3 presents the contributions 

of the research, which will be of benefit to clinical practitioners (8.3.1) and the machine 

learning community (8.3.2). Limitations of the study are discussed in section 8.4. Finally, 

based on the limitation and findings, this thesis proposes future work in section 8.5.   

 

8.2 Summary of the Dissertation 

 

This dissertation started with introducing the subject, defining the problem statement and 

establishing the research questions in the domain problem: Glaucoma. Managing 

glaucoma in patients using visual field data is the common practice. Visual field data are 

multi-dimensional data in nature with 52 variables (visual field locations). The problem 

with analysing the data is that modelling the visual field data with a large number of 

variables will cause overfitting and inefficient modelling (Clements and Hendry, 2002). 

This problem arises from the need to find visual field locations that are highly related. 

The current practice of analysing the data uses the six nerve fiber bundles (6NFB) to 

predict the deterioration of glaucoma.  However, as high predictive accuracy of visual 

field data is concerned, obtaining other groups of visual field locations with higher 

prediction accuracy than the 6NFB is a contribution. Since there is no gold standard 
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method in analysing the data, a novel clustering technique namely, Simultaneous 

Modelling and Clustering (SMC) was proposed in this research to model the data with 

high predictive accuracy. Within this research, a few of the SMC’s algorithms have been 

developed using notable machine learning techniques in order to obtain the best clusters 

of visual field locations as well as improving prediction accuracy. As stated in Chapter 1, 

the research questions for this study are defined as follows:- 

 

Research 

Question (RQ) Question 

RQ1 What is the baseline accuracy for predicting visual field loss 

across all patients when the visual field points are aggregated to 

the six nerve fiber bundles (6NFB)? 

RQ2 Can visual field data being clustered using model-based 

clustering to improve the baseline accuracy as in question RQ1? 

 

a. Can model based clustering techniques improve on the base 

line accuracy (c.f. RQ1)? 

 

b. Does visual field points arrangement from the model-based 

agrees with the clinical evidence of glaucoma deterioration? 
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Research 

Question (RQ) Question 

RQ3 Does the choice of heuristic search techniques in the model-

based clustering technique (SMC) effectively improve 

prediction accuracy of visual field loss?  

RQ4 Can the SMC approach improves visual field loss prediction 

using a subset of the patients’ records? 

Table 8-1 : Research Questions 

 

Chapter 2 has provided the literature review on the research areas. The domain problem, 

the concept of machine learning, the techniques and methods have been discussed therein. 

The methods used in this research were identified beforehand based on the review from 

the literature.  

 

Data exploration has been carried out on the visual field data in Chapter 3 and discovered 

that the data suffer from the class imbalance problem. Due to imbalanced data, a simple 

analysis has been carried out to validate the evaluation metric (classification accuracy) of 

the imbalanced data. From the overall classification accuracy the analysis results 

indicated that the classifier performance was good even on imbalanced data. Chapter 3 

has also highlighted this research has applied re-classified data class for efficient 

classification as adopted in the literature.  

 

Chapter 4 has introduced a novel clustering technique, SMC which has been applied to 

the visual field data. This chapter comprised of a set of initial experiments and then some 

further experiments using SMC. The initial experiments were carried out to obtain the 
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baseline predictive accuracy for the data using the 6NFB. The initial experiments have 

discovered the range of accuracy for predicting visual field loss (AGIS): between 76.29% 

and 86.11%. The accuracy range was obtained by performing classification experiments 

on all record of visual field data (totalling 12,159) using the J48, NB and MNB classifiers. 

This range of accuracy is used as the baseline in this research. Revelation of the accuracy 

baseline has answered RQ1. Meanwhile, the SMC experiments carried out in Chapter 4 

tested SMC on the real data (visual field) to improve predictive accuracy of visual field 

loss from the baseline accuracy. These experiments have found that the model-based 

clustering technique (SMC) improves prediction accuracy in the real data. The SMC 

results have proven that the technique can improve visual field loss prediction from the 

baseline accuracy. The best accuracy (88.49%) was recorded using the NB classifier. 

With this record, SMC improved prediction accuracy by 2.66% from the upper limit 

(86.11%) of baseline accuracy. Moreover, there was a significant improvement in 

accuracy (by 9.23%) using the MNB. This finding answered in part RQ2.   

 

Another conclusion can be made from the work in Chapter 4 is the agreement level of the 

resultant clusters of SMC with the 6NFB. The resultant clusters of the SMC experiments 

were retrieved for WK analysis to measure the agreement level between the resultant 

clusters and the 6NFB. The WK results were found to be very poor (near to 0.0) and these 

results revealed that the SMC clusters of visual field locations have very different 

clustering arrangement with the 6NFB even though predictive accuracy is improved. This 

finding answered RQ2-a that the resultant clusters do not resemble the 6NFB. 

 

Additionally, the resultant clusters were analysed with visualisation of the SMC’s clusters 

on the visual field grid. The visualisation was the mapping of the 52 visual field locations 

(the SMC’s clusters) on the visual field grid. From the visualisation of the clusters 

arrangement discovered by SMC, the result was in accordance with clinical evidence. The 

clinical evidence indicates that glaucoma first starts at the periphery of the visual field 



 

 

214 

 

 

grid and near to the blind spot. The larger clusters of the SMC’s result appeared on the 

periphery of the visual field grid. Also, some of the visual field locations from are located 

near to the blind spot and the periphery of the grid. This finding on the visualisation of 

clustering arrangement corresponds to RQ2-b. 

 

Chapter 5 has validated SMC on a synthetic dataset. As the WK results in Chapter 4 were 

poor, therefore, devising a synthetic data to validate SMC was necessary. Even though 

the clustering arrangement in the synthetic data is very simplistic: the first 15 variables 

are in cluster one, the next 15 variables are in cluster two, and so on, however, the data 

have been randomised in the SMC process. This requires efficient heuristic effort from 

the optimization methods used in this study to search the known clustering arrangement. 

Additionally, the 6NFB clustering arrangement also has fairly simple arrangement: visual 

field point 1 to 5 are grouped in the same cluster. Furthermore, the data has the same 

nature and properties such as data distribution, number of variables and records. 

 

With regards to modelling strategies, the work in Chapter 5 has been introduced with the 

three modelling strategies in the experiments. The experiments from the synthetic data 

have shown promising results in classification accuracy and WK. The resultant clusters 

of SMC have high agreement (measured using WK) with the known clusters. With the 

high WK results in the synthetic data, SMC was proven workable clustering technique. 

The results also supported the hypothesis underpinning this work that the higher 

prediction accuracy, the better quality clustering arrangement. This is because SMC is 

designed in such a way to only retain solutions (clustering arrangements) with high 

classification/prediction accuracy (the fitness value) during the heuristics search. 

Moreover, the perturbation (small change), which is carried out to produce a new solution 

during the search, is based on a clustering arrangement with high classification/prediction 

accuracy. Therefore, the assumption in this study is made that higher accuracy represents 

a good solution.    
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Moreover, the 2FCV modelling strategy has shown higher results in accuracy and WK 

than other strategies. Thus, the three modelling strategies have been used in the 

subsequent works in Chapter 6 and 7.  

 

Additionally, clustering using K-means technique was carried out on both datasets (visual 

field and synthetic) in Chapter 5. These experiments were conducted to see the 

performance of the common clustering technique as a comparison with the SMC 

technique. The K-means results were found lower than SMC in prediction accuracy of 

visual field data. Meanwhile for the synthetic data, the K-means results were poor with 

average only 60.91% accurate (with 10FCV) as compared to SMC. As a conclusion, K-

means has appeared to be less effective to improve accuracy in both datasets. 

 

Chapter 6 introduced the advanced optimisation method in SMC in order to improve the 

work carried out in Chapter 4 and 5. The GSA method used in this chapter is the advanced 

annealing version of SA. Chapter 6 revealed a finding on the performance of SMC with 

the application of GSA. The GSA method has appeared to be more efficient (faster 

convergence point) in searching the best clusters in the real data than the existing methods 

with 10FCV. The GSA optimisation method has been proven to better improve predictive 

accuracy using the clusters obtained by the method in the real and synthetic data than SA. 

The method is also outperformed the benchmark accuracies (K-means and the 6NFB) for 

this study. SMC with the GSA optimisation method has shown huge improvements in 

WK results in the synthetic data’s experiments. The application of GSA in SMC has 

appeared to be more efficient (faster obtaining solution in the search) in the experiments 

with lower average convergence points. Other key findings of Chapter 6 are modelling 

strategy and number of iterations in the experiments. The 2FCV modelling strategy was 

the best modelling strategy in the work of Chapter 6. Also, as proven in the results, a 

larger number of iterations in a search advantage the GSA method to obtain a quality 

solution (high accuracy in the real data and high WK in the synthetic data). This finding 
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contributes towards answering RQ3. An additional finding in Chapter 6 was the 

visualisation of the visual field locations clustered by SMC. Larger clusters are located in 

the peripheral and the blind spot on the visual field grid. This result is consistent with 

Chapter 4, which corresponds to the clinical evidence and provides solution to RQ2.  

 

Chapter 7 comprised of an additional set of SMC experiments. The main focus of the 

chapter was on the degeneracy issue where the GSA method was employed with 

Restricted Growth Functions in the search. The RGFGSA method has shown effective to 

remove the degeneracy problem in the search. RGFGSA was found to be the most 

efficient method than SA and GSA with the lowest average convergence point within the 

25 set experiments using 10FCV and 2FCV in synthetic data. An anticipated side effect 

of removing degeneracy was that the fitness function became less noisy. The method also 

has been proven very effective with the 2FCV modelling strategy in obtaining the known 

clusters in the synthetic data in all 25 set experiments. These results contributed to WK = 

1.0. Again, these findings provide the answer for RQ3, where heuristics search methods 

are the key contribution in improving the performance of SMC. In terms of predictive 

accuracy, SMC with the RGFGSA method is also found predicts better than the 

benchmark accuracies (K-means and the 6NFB). 

  

The other supporting experiments carried out in Chapter 7 were the kN and the three 

subsets of visual field data experiments. These experiments were carried out to identify 

some useful properties regarding the SMC method as well as the data (visual field). The 

results in the kN experiments have shown that the classification accuracy on the synthetic 

with the RGFGSA method was higher with a positive integer value of k. The experiment 

results with k values 2, 4 and 5 were ranked the top three in classification accuracy. This 

finding indirectly contributes an answer to RQ3.  
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Meanwhile the three subsets of visual field data experiments have found that middle 

record dataset was the best dataset to be used for predicting visual field loss with high 

predictive accuracy records. The highest accuracy was from SA with 90.23% accurate 

and in an average accuracy, RGFGSA was the best with 89.03% accurate. These results 

were found within the 10FCV experiments. In terms of WK result, NoFCV was found to 

be the best modelling strategy to produce consistent resultant clusters within the 25 set 

experiments. The best WK (average) among resultant clusters was 0.354 from the early 

record dataset with the GSA method. This indicates that the experiments on the early 

record dataset of visual field resulted in more consistent resultant clusters. Findings from 

the three visual field data categories clearly have answered RQ4. 

 

8.3 Contributions 

 

The contribution of this research is two-fold. Firstly, this research contributes knowledge 

to medical practitioners in managing glaucoma using visual field data. Secondly, it offers 

practical recommendations in the field of machine learning. 

 

8.3.1 Clinical Contributions 

 

Discovery of visual field location arrangements with high predication accuracy (AGIS 

score) that different than the 6NFB could draw an interest from medical perspective in 

diagnosis glaucoma. From the clustering arrangement of visual field locations suggested 

by the SMC method, the pattern of the deteriorated visual field locations can be studied 

by medical practitioners to predict glaucoma in patients. The main objective of this 

research was to search for compound variables which are highly related subsets in 

predicting visual field loss instead of the 52 variables and the 6NFB. The compound 

variables of the visual field data were searched using the SMC technique in order to have 
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high predictive accuracy. The end result of SMC was in the form of clusters of the visual 

field locations. The clusters were studied for the significance of the visual field locations 

to see the association among them, which indicates visual deterioration. The resultant 

clusters found by SMC have the same agreement with the clinical evidence as shown in 

the visualisation on the visual field grid analysis. Larger clusters are located in the 

periphery and near to the blind spot of the visual field grid. Thus, these patterns of visual 

deterioration mapped on the visual field grid could equip medical practitioners with a 

prediction of glaucoma progression. With the information of visual deterioration, an 

advance appropriate treatment could be delivered in patients in order to prevent the 

disease from further damage. 

 

Although the resultant clusters have poor WK results with the 6NFB, the visualisation of 

resultant clusters supports the resultant clusters that the size of clusters found by SMC 

can be considered by medical practitioners in predicting glaucoma loss using visual field 

data. Chapter 4 and Chapter 7 presented the range of cluster sizes can be used on visual 

field data to predict visual field loss. In Chapter 4, it was discovered that the minimum 

clusters’ size is 4 and the maximum is 17 in all data experiments. The sampled 

experiments however discovered 5 and 19 for the minimum and maximum clusters’ size 

respectively.  

 

The best accuracy predicting AGIS using visual field data was with 12 clusters. This was 

doubled size from the 6NFB. However in Chapter 7, with the advanced optimisation 

method used in SMC, smaller clusters sizes were suggested. The advanced methods 

suggested clusters sizes between 2 to 11 and 3 to 14 by RGFGSA and GSA respectively.  

 

Another contribution of this study to medical practitioners is prediction of AGIS using 

the three datasets of visual field data. This work was presented in Chapter 7 where 

experiments were conducted on the subsets of visual field data: early records, middle 
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records and latest records. Middle records dataset was found the best dataset to have high 

prediction accuracy of visual field loss in patient with 90% accurate.  

 

8.3.2 Contribution in Machine Learning 

 

The outcomes of this research have contributed some practical knowledge of machine 

learning in terms of the methods and strategies used in this research. This study proposed 

a novel clustering and classification technique, namely, SMC, which was applied to 

modelling visual field and synthetic data. The first notable contribution in this field is 

that, SMC has been proven to be effective and efficient with data clustering and 

classification in this study, which presented in visual field data and synthetic data 

experiments using certain modelling strategies and optimisation techniques. With SMC, 

both datasets have appeared to have improvement in prediction accuracy. The results 

demonstrated in Chapter 4, which is the introduction of SMC on the visual field data, 

have shown improvements from the baseline accuracy. The advanced application of the 

optimisation methods in SMC presented in chapter 6 and 7 are also improved predictive 

accuracy from the benchmark accuracies (K-means and the 6NFB). Additionally in 

Chapter 5, SMC has improved classification accuracy of the synthetic data with high WK.  

These results indicated a substance contribution as the application of SMC on other 

datasets and problems has produced promising results. Moreover, the novel technique 

proposed in this study is a generic modelling and clustering technique, which can be 

applied to other domain problems and modelling techniques such as forecasting and 

regression.  

 

The optimisation methods (SA, GSA, and RGFGSA) that applied in SMC presented in 

experiments in Chapter 4, 5, 6  and 7 appear to have promising results. It can also be 

concluded that the use of the annealing methods in SMC were effective and efficient. In 
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Chapter 4, the SA optimisation method was found the best method amongst other methods 

(RMHC and RRHC) to improve predictive accuracy of visual field data.  

 

GSA is another annealing optimisation method, which was proven to produce good 

results in continuous problems in the literature (dos R Correia et al., 2005; Tsallis and 

Stariolo, 1996), has been employed in SMC. Inspired from positive results in the 

literature, the GSA has been adopted in the discrete optimisation problem (SMC) as 

presented in Chapter 6. The method has improved predictive accuracy in the real data and 

synthetic data. These results confirmed that GSA is compatible with discrete problems. 

 

The advanced method of annealing namely RGFGSA was designed to demonstrate that 

SMC could be more efficient than the preceding optimisation methods in terms of 

convergence point with RGFGSA. The RGFGSA method has obtained its name as the 

RGF procedure was adopted in the GSA method with the goal to remove degeneracy in 

the search. This novel algorithm was found effective to remove degeneracy in the search 

as reported in Chapter 7. With RGFGSA, the search has converged relatively faster than 

the other methods. As a result of removing degeneracy, RGFGSA is able to reduce noisy 

fitness in the search.   

 

Furthermore, this research has explored the three modelling strategies: 10FCV, 2FCV and 

NoFCV in the experiments. The introduction of these modelling strategies in this study 

with the objective to observe the cause and effect of number of partitions in cross 

validation towards the performance of SMC which is measure in classification accuracy. 

This study has introduced 2FCV with 10 repeats in the experiments and this modelling 

strategy has appeared effective in the experiments. This was proven by the results from 

Chapter 6 and Chapter 7, where the known clusters of the synthetic data were found by 

the modelling strategy with GSA and RGFGSA. Also, with 2FCV, the RGFGSA method 
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has shown a superior performance search compared to other methods in the synthetic 

data. 

 

Finally, this work has provided empirical evidence that a larger number of iterations have 

allowed an extensive search. There were studies in the literature on algorithms that 

effectiveness and efficacy performance of the algorithms are affected by the number of 

iterations (Mirjalili and Gandomi, 2017; Askarzadeh, 2016). Based on this knowledge 

from the literature, number of iterations was increased to 50,000 and 100,000 in the 

experiments carried out in Chapter 5 and 6 respectively. Annealing methods with a larger 

number of iterations has appeared to be very effective in the search as values of the 

variables used in the methods such as artificial temperature and visiting distribution were 

affected by the number of iterations.  

 

8.4 Limitations 

 

Limitations of research are constraints and conditions, which cannot be controlled by 

researchers, influence research findings and its interpretations. This research has 

experienced some limitations. However, the scope and objectives of the research are 

within acceptable tolerance limits. Assumptions within the limitations are helpful to 

support the achievement of the research goals and objectives. There are six limitations 

have been identified in this research.   

 

8.4.1 Data Quality 

 

This research used secondary data which were retrieved with permission from Moorefield 

Eye Hospital London. In secondary data, researchers do not have control on data 
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collection from subjects. Thus, imbalance class issue, which was discussed in Chapter 2, 

was found in this research and the limitation needs to be dealt with. The summary 

statistics has shown that the visual field data have high number of patients in two visual 

field test records. There is only one patient with 42 visual field test records. Also, there 

are more than 40% from the data were classified with no severity of visual field loss 

(AGIS = 0). Having class imbalance in data would potentially mislead the modelling. 

 

The implication of imbalance data and class affects the performance of classification as 

discussed in Chapter 2. Therefore, an analysis was carried out on the imbalance data to 

validate classifier performance on the data. This imbalance data and class issues were 

looked into another perspective by analysing the data using G-mean to measure the 

classifiers performance on the data. The G-mean analysis results indicate that the 

classifier performance on the data appears to be good. Therefore, this research takes the 

data as good and over-sampling and under-sampling were not adopted in this research. 

 

8.4.2 The Subsets Data 

 

The subsets of visual field data were presented in Chapter 2. This datasets were also 

presented in Chapter 6 where the datasets were experimented for the significant of visual 

field subsets to predict the AGIS score. As the visual field data are imbalanced, this issue 

also affect the subsets data: early records, middle records, and latest records. These 

subsets data were sampled with a few assumptions based on the number of visual field 

records in patients. The assumptions include patients with at least two records are eligible 

for the early records dataset. For the middle records dataset, patients with at least four 

visual field records are eligible. The latest dataset are sampled from all patients except 

the patients with two visual field records.  One visual field record was sampled from each 

eligible patient for the datasets. 
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The subsets data however can contain bias. Patients’ records which were sampled in the 

latest dataset can be in the middle dataset. This is because patients in the latest dataset 

with three records can also be considered in the middle dataset. These patients may have 

several visual field tests which are not included in this research data or the patients may 

need to have more visual field test to be eligible in the latest dataset.  

 

This research also took the assumption that all patients’ records are tested during the onset 

of glaucoma. However, the patient with only little visual field records can be in the severe 

stage of glaucoma and these patients were sampled in the early dataset.  

 

8.4.3 Classifiers 

 

The classifiers used in this research were J48, NB, MNB and NBU. The selection of these 

classifiers for the experiments was made due to the efficiency of the classifiers in terms 

of runtime as discussed in Chapter 3. However there are many other good classifiers with 

higher accuracy than these classifiers can be used. This limitation of research was 

considered in the experiments due to the aim of this research was to validate and verify 

the SMC technique. Besides finding the best clusters for modelling visual field data, the 

main focus of this research is to validate the SMC technique instead of finding the best 

classifiers. For this reason, other classifiers with high accuracy such as Neural Network 

and Multi-Layer Perceptron may not be appropriate in the experiment due to being highly 

computationally expensive.  
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8.4.4 Optimisation Technique 

 

Optimisation methods are the main component of SMC. Simple optimisers were 

employed in SMC such as hill climbing methods. This was justified by easy to implement 

and the effectiveness of the methods from the literature. The annealing optimisers were 

used in SMC owing to the methods are able to avoid local optima in a search. Even though 

the SA method has recorded the highest accuracy with 90%, the fine-tuned algorithm 

(RGFGSA), which was presented in Chapter 7, has not reach 90% accurate of prediction. 

Nevertheless, RGFGSA successfully solved degeneracy in the search and converged 

much quicker (on the synthetic data with 10FCV).  

 

8.4.5 Parameters for the Methods  

 

The annealing optimisation methods used in this research are well known as highly 

assumption-based methods. Variables and parameters such as artificial temperature, 

cooling rate, visiting distribution, acceptance index and visiting index require user 

calibration and assumptions. The assumptions to these values may affect the performance 

of the methods used in the experiment. Furthermore, a nature of problem also affects the 

method performance.    

 

Simulated Annealing 

 

Setting the value for initial temperature in SA plays a critical role in acceptance 

probability. The initial value should not be high enough that the algorithm simply 

conducts a random search causing excessive computation time. Therefore, a careful 

procedure for setting the value is essential. This research runs a separate simulation to 



 

 

225 

 

 

estimate the initial temperature in SA, and the approach of estimating the value was 

proven effective by Swift et al. (Swift et al., 2004). However, there are many other ways 

in obtaining initial temperature value for SA. Kirkpatrick et al (Kirkpatrick et al., 1983) 

suggested initial temperature value by obtaining the maximum different of two 

neighbouring solutions. One study (Jung, Jayakrishnan and Park, 2016) has a separate 

procedure to compute the initial temperature by obtaining the different between the best 

and the average solution values.   

 

Generalised Simulated Annealing 

 

The GSA method has more parameters which require user setup especially the acceptance 

index ( aq ) and visiting index ( vq ). The right acceptance index of GSA was searched by 

running a simulation using a range of acceptance index values. The best result for the 

simulation obtained the value for the acceptance index. However, exploration of the value 

in this research has limited the value to 3 decimal places.  

 

As for the visiting index, the value in this research was derived using mathematic tool 

with a few of assumptions.  The visiting index value is a corresponding value to the 

acceptance index. Similarly to the initial temperature for GSA, assumptions values for 

different fitness and acceptance probability were used in order to obtain the initial 

temperature value.  

 

8.4.6 Medical Endorsement  

 

The results presented in this thesis were analysed in view of algorithms effectiveness and 

efficiency utilised in the proposed method (SMC) on visual field data. Besides inventing 
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the best (compatible) algorithms using this clustering and classification approach, the 

study has set the objective to analyse and describe the significant clustering arrangements 

of visual field that highly predict AGIS. However, the discussions on the results were 

limited to non-medical opinions and only based on the literature which this study made. 

Medical endorsement on results can be meaningful to the study for future work. 

 

8.5 Future Work 

 

This future work section looks at improvement to the experiments can be carried out to 

further explore SMC. The improvement areas that can be made are methods and 

generalisation of SMC on other datasets.  

 

8.5.1 Methods 

 

Optimisation Technique 

 

There are plenty of methods available in literature with promising results can be used in 

solving optimisation problems. According to Fister Jr et al. (Fister Jr et al., 2013), the 

choice of a method is depending on a nature of problems. In this thesis, the main focus is 

on single population (Local Search) techniques. Population based methods such as 

Genetic Algorithms have operators which can result in offspring (in the case of GAs) that 

are invalid: result in a representation that is not a valid clustering arrangement. It is noted 

that there are complex representations and operators that can overcome this problem to 

some extent, however the focus on this thesis is the SMC process as a proof of concept, 

not the adaptation of the method towards population-based methods. This will be 

explored as future work. 
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As far as higher accuracy is concerned, other optimisation techniques as part of SMC 

would be worth considering. A nature-inspired optimiser namely, the Firefly Algorithm 

was proven outperformed GA and Particle Swarm Optimisationin a study (X. Yang, 

2009) could also be used to test SMC.  

 

Classifiers 

 

With regard to high classification in modelling, SMC is worth to employ other classifiers 

with high accuracy classification in the experiments although some of the other available 

classifiers have a high computational overhead. In preliminary experiments of this study, 

classifiers such as logistic regression, SMO (the Support Vector Machine classifier in 

WEKA) and neural network have been tested. Even though the performance of the 

classifiers in terms of runtime was fairly poor compared to others, the accuracy results 

from these methods were above the average baseline accuracy.  

 

Parameters Values 

 

As discussed in the limitation section, assumptions were made in the GSA method in 

order to obtain the values for the parameters. Also, the range of acceptance index was 

limited to a certain range. Therefore, further exploration on these parameters values is 

worth in order to improve the performance of SMC with the optimisation methods.  

 

Small Change 

 

Chapter 6 has presented the kN experiments which is a size of the small change was 

manipulated to have smaller or larger size of the small change. These experiments were 
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conducted on the synthetic data using the RGFGSA method. The results of the 

experiments have provided some good information that can be used to improve 

classification accuracy. Extending the same experiment to visual field data in the future 

work is worth. Furthermore, applying the same approach (the kN) with GSA and other 

methods is another area worth exploring.     

 

Noisy Fitness 

 

Noisy fitness is a common issue in optimisation problems especially in real datasets. SMC 

has been proven less susceptible to noisy fitness in the synthetic data with RGFGSA. 

However, the noisy fitness problem in the visual field data is still an area that warrants 

further investigation. Therefore there is a need for further investigation on the real data 

noisy fitness. From the literature, there are a number of studies on glaucoma (Henson et 

al., 1997; Liu et al., 1994) to fix this problem. Another way that potentially solves noisy 

fitness is elementary landscape analysis. Elementary landscape analysis, which is a 

mathematical formalism of the search space of a combinatorial optimisation problem, 

studies neighbourhood move operator to define adjacency between points in the search 

space (Whitley et al., 2014). An investigation of noisy fitness on the visual field using 

this technique is an open research opportunity. 

 

Seeded Search  

 

Seeded search (Gravina, Liapis and Yannakakis, 2017) in optimisation problems is 

commonly used as a guide to initialise the point of search in the search space. Seeded 

search can be used if one is provided with information to help the search becomes more 

efficient than just having a random point of search. Since the range of cluster sizes found 

by SMC is between 4 and 19, therefore this information can be used in a future work 
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experiment to seed the search. Also, the 6NFB can be seeded as the initial clusters in the 

search owing to the high baseline accuracy with the 6NFB (76% - 86%). With this 

strategy, SMC is expected to perform more efficient in terms of convergence than using 

random clusters as the initial clusters. 

 

Algorithm Runtime 

 

The three modelling strategies used in this research have shown various performance 

results in terms of runtime. This is due to the fact that a higher number of cross validation 

folds and number of repeats in modelling the data requires more computational efforts. 

Therefore, it is worth extending this research by conducting a formal analysis on the 

algorithms’ runtime. 

 

8.5.2 Dataset 

 

Application of SMC on other datasets with high accuracy of classification motivates 

further study on the method. This includes visual field datasets and other domain 

problems.  

 

Visual field data 

 

The experiments of the three subsets of the visual field data, which are early records, 

middle records and latest records, have shown promising results (predictive accuracy) on 

middle records dataset. However, the experiment results of the early records dataset are 

found to have consistent clustering arrangement results (with NoFCV) compared to the 

other datasets even though the predictive accuracy values are a little difference among 
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them (early, middle and latest datasets). For this reason, further experiments can be done 

by using other modelling strategies and other methods of sampling the three subsets of 

the data in order to further understand this situation.   

 

As discussed in the limitation section, the datasets were derived with a few assumptions. 

The assumption of obtaining the datasets may lead to bias due to some patients with few 

visual field records may be wrongly classified in the datasets. Therefore, standard criteria 

represent each dataset (early, middle and latest) should be established in order to avoid 

bias in classification. Refining the datasets would probably give a better exploration of 

the data using the SMC technique.  

 

Other future work opportunities in the domain of visual field data analysis are to extend 

the experiments to using data from both eyes. Visual field data with a combination of 

both eyes would result in a 104 variable dataset. Investigation on both eyes would be 

investigated the relationship and associated deterioration of vision between the right and 

left eyes, which is known to be related.   

 

Other datasets 

 

Besides the visual field data experiments, the good results presented in the synthetic data 

experiments inspire SMC to be generalised to other domain problems. SMC is a model-

based clustering technique for discrete problems, which the technique works for 

dimensionality reduction in data. Datasets of other domain problems with high 

dimensional data such as gene expression (Heimberg et al., 2016) and deep sequencing 

(Veneziano et al., 2016) can be used to test SMC in identifying relevant features in data 

for classification.  
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Appendix 2A Decision Tree 

Entropy of target variable:- 

i

c

i

i pPCEntropy 2

1

log)( 


  

Entropy of two attributes:- 





Xc

cEcPXCE )()(),(  

Information gain:- 

),()(),( XTETEXTGain   

Example from the following dataset:- 

No Variable-a Variable-b Variable-c 
Target 

Variable 

1 a1 b2 c2 Yes 

2 a2 b2 c1 No 

3 a1 b1 c2 No 

4 a1 b2 c3 Yes 

5 a2 b1 c2 No 

6 a1 b2 c2 Yes 

7 a3 b2 c1 Yes 

8 a1 b1 c2 Yes 

9 a3 b1 c3 Yes 

10 a3 b2 c2 No 

11 a1 b1 c1 Yes 

12 a2 b2 c3 No 

13 a1 b1 c3 Yes 

14 a2 b2 c1 Yes 
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Target Variable Frequency Probability 

Yes 9 0.64 

No 5 0.36 

Total 14 1.00 

 

Variable-a Yes No 
Total Prob-Class-a 

Probability-

Yes 

Probability

-No 
Entropy 

a1 6 1 7 0.50 0.86 0.14 0.59 

a2 1 3 4 0.29 0.25 0.75 0.81 

a3 2 1 3 0.21 0.67 0.33 0.92 

Total 9 5 14 1.00 0.64 0.36 0.94 

Information Gain = -0.059 

 

Variable-b Yes No 
Total Prob-Class-b 

Probability-

Yes 

Probability-

No 
Entropy 

b1 4 3 7 0.50 0.57 0.43 0.99 

b2 5 2 7 0.50 0.71 0.29 0.86 

Total 9 5 14 1.00 0.64 0.36 0.94 

Information Gain = 0.016 

 

Variable-c Yes No 
Total Prob-Class-c 

Probability-

Yes 

Probability

-No 
Entropy 

c1 3 1 4 0.29 0.75 0.25 0.81 

c2 3 3 6 0.43 0.5 0.5 1.00 

c3 3 1 4 0.29 0.75 0.25 0.81 

Total 9 5 14 1.00 0.64 0.36 0.94 

Information Gain = 0.048 

 

The decision node is chosen based on the highest information gain from the variables. 

For this example, the variable c is the decision note.  
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Then, entropy is compute again for every split branch. The branch with ‘0’ entropy will 

be a leaf node. Meanwhile, branches with entropy with more than ‘0’ need further 

splitting. Example of a decision tree diagram (Shih, 1999) is as follow:- 
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Appendix 2B Naïve Bayes Classifier 

Bayes Theorem is defined as:- 

)(

)()|(
)|(

xP

cPcxP
xcP   

Example from the following dataset:- 

No Variable-A Variable-B Variable-C Target Variable (c) 

1 a1 b2 c2 Yes 

2 a2 b2 c1 No 

3 a1 b1 c2 No 

4 a1 b2 c3 Yes 

5 a2 b1 c2 No 

6 a1 b2 c2 Yes 

7 a3 b2 c1 Yes 

8 a1 b1 c2 Yes 

9 a3 b1 c3 Yes 

10 a3 b2 c2 No 

11 a1 b1 c1 Yes 

12 a2 b2 c3 No 

13 a1 b1 c3 Yes 

14 a2 b2 c1 Yes 

 

Target 

Variable 
Frequency Probability 

Yes 9 0.64 

No 5 0.36 

Total 14 1.00 
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If one record is given such as a1, b2 and c3, the followings are computed. 

The record (a1, b2 and c3) probability to be classified as ‘Yes’ is computed using Bayes 

Theorem as below:-  

 

Variable-A Yes No Total P(A|Yes) P(A) 

a1 6 1 7 0.67 0.50 

a2 1 3 4 0.11 0.29 

a3 2 1 3 0.22 0.21 

Total 9 5 14 1.00 1.00 

 

Variable-B Yes No Total P(B|Yes) P(B) 

b1 4 3 7 0.44 0.50 

b2 5 2 7 0.56 0.50 

Total 9 5 14 1.00 1.00 

 

Variable-c Yes No Total P(C|Yes) P(C) 

c1 3 1 4 0.33 0.29 

c2 3 3 6 0.33 0.43 

c3 3 1 4 0.33 0.29 

Total 9 5 14 1.00 1.00 
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Variable Class Value P(Xi) P(Ai|Yes) P(Yes|Ai)× P(Yes) 

A a1 0.50 0.67 0.43 

B b2 0.50 0.56 0.36 

C c3 0.29 0.33 0.21 

P(c = ‘Yes’) is 0.64 

)3()2()1(

))()|3(())()|2(())()|1((
)3,2,1|(

cPbPaP

YesPYescPYesPYesbPYesPYesaP
cbaYescP




  

29.050.050.0

21.036.043.0
)3,2,1|''(




 cbaYescP  

0.0725

0.032508
)3,2,1|''(  cbaYescP  

0.450.448386)3,2,1|''(  cbaYescP  

 

The record (a1, b2 and c3) probability to be classified as ‘No is computed using Bayes 

Theorem as below:-  

 

Variable-A Yes No 
Total P(A|No) 

P(A) 

a1 6 1 7 0.20 0.50 

a2 1 3 4 0.60 0.29 

a3 2 1 3 0.20 0.21 

Total 9 5 14 1.00 1.00 
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Variable-B Yes No 
Total P(B|No) P(B) 

b1 4 3 7 0.60 0.50 

b2 5 2 7 0.40 0.50 

Total 9 5 14 1.00 1.00 

 

Variable-c Yes No 
Total P(C|No) 

P(C) 

c1 3 1 4 0.20 0.29 

c2 3 3 6 0.60 0.43 

c3 3 1 4 0.20 0.29 

Total 9 5 14 1.00 1.00 

 

P(c = ‘No’) is 0.36 

 

Variable Class Value P(Xi) P(Ai|No) P(No|Ai)× P(No) 

A a1 0.50 0.20 0.072 

B b2 0.50 0.40 0.144 

C c3 0.29 0.20 0.072 

 

)3()2()1(

))()|3(())()|2(())()|1((
)3,2,1|''(

cPbPaP

NoPNocPNoPNobPNoPNoaP
cbaNocP




  

29.050.050.0

)072.0()144.0()072.0(
)3,2,1|''(




 cbaNocP  

0.0725

0.000746
)3,2,1|''(  cbaNocP  
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0.010.010296)3,2,1|''(  cbaNocP  

 

From the computation of probability Yes and No using Naïve Bayes Theorem for the 

record a1, b2 and c3, the probability value of )3,2,1|''( cbaYescP   (0.45) appear to be 

greater than )3,2,1|''( cbaNocP   (0.01). Therefore, the new record is classified as Yes. 

Figure bellows shows the graphical model of the dependencies between the variables 

within this example. 
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Appendix 2C Multinomial Naïve Bayes 

The example of Multinomial Naïve Bayes is shown in the following example:- 

 

Training Documents 

Document Words 

Class 

(x) 

D1 China UK Japan  East 

D2 Malaysia UK Germany West 

D3 Germany UK Ireland China West 

D4 Japan Germany Malaysia East 

D5 Germany UK Malaysia West 

D6 Malaysia China Japan East 

D7 Germany UK West 
 

 

Vocabulary 

China 

UK 

Japan 

Germany 

Malaysia 

Ireland 

  

No. of vocabulary is 6 

 

The followings are test documents to be classified:- 

Test Document (TD) 

TD Words 

TD1 Germany Japan Malaysia 

TD2 Germany Germany UK 

 

From the training documents, the prior probability of the classes is computed:- 

0.428577/3)(  EastxP                    0.571437/3)( WestxP  

The probability of the class for Test document 1 (TD1) is computed as follows:- 
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In TD1, words ‘Germany’, ‘Japan and ‘Malaysia’ are presented. Thus, the probability of 

these words for the class ‘East’ and ‘West’ is computed. Firstly, all documents which are 

classified as ‘East’ are retrieved as the table below:- 

 

Training Documents 

Document Words Class 

D1 China UK Japan  East 

D4 Japan Germany Malaysia East 

D6 Malaysia China Japan East 

 

The equations for Multinomial Naïve Bayes as explained in Chapter 2 are as follows:- 

)(

)|()(
)|(

i

i
i

tP

ctPcP
tcP   (Equation 2c-1) 


n

f

ni
nicwPctP )|()|(   (Equation 2c-2) 









N

x
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nc

n

FN

F
cwP

1

1
)|(


       (Equation 2c-3) 





||

1

)|()()(
C

k

ii ktPkPtP  (Equation 2c-4) 

Equation 2c-3 is used to compute )|,,()|( EastMalaysiaJapanGermanyPctP i   

P(Germany|East) 1+1/(9+6) 0.1333 

P(Japan|East) 3+1/(9+6) 0.2666 

P(Malaysia|East) 2+1/(9+6) 0.2000 

 

Then, documents with class ‘West’ are retrieved.  
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Training Documents 

Document Words Class 

D2 Malaysia UK Germany West 

D3 Germany UK Ireland China West 

D5 Germany UK Malaysia West 

D7 Germany UK West 

 

P(Germany|West) 4+1/(12+6) 0.2777 

P(Japan|West) 0+1/(12+6) 0.0555 

P(Malaysia|West) 2+3/(12+6) 0.2777 

 

)1(TDP is computed as in Equation 2c-4 as follows:- 

)]|()|()|()([

)]|()|()|()([)1(

WestMalaysiaPWestJapanPWestGermanyPWestP

EastMalaysiaPEastJapanPEastGermanyPEastPTDP




 

0055.000245.000305.0)1( TDP  

)|()|()|()()1|( EastMalaysiaPEastJapanPEastGermanyPEastPTDEastP   

0.003052000.02666.01333.00.42857)1|( TDEastP  

0.5545
0.0055

0.00305
)1|( TDEastP  

)|()|()|()()1|( WestMalaysiaPWestJapanPWestGermanyPWestPTDWestP   

0.002452777.00555.02777.00.57143)1|( TDWestP  

0.4456
0.0055

0.00245
)1|( TDEastP  

As the probability of the document for class ‘East’ (0.5545) is higher than class ‘West’ 

(0.4456), TD1 is classified as class ‘East’.  

The other test documents are computed and the following is the result of classification:- 
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Document Words 

Probability 

East 

Probability 

West Class 

TD1 Germany Japan Malaysia 0.5545 0.4456 East 

TD2 Germany Germany UK 0.0766 0.9234 West 
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Appendix 2D K-Means Algorithm 

Algorithm 2D : KMeans (X, k) 

Input:  

 

X = Dataset 

1k  

},...,1{: kiCi   

1 

Assign the objects (rows) randomly to Ci ensuring no cluster is 

empty 

2 Calculate the centres of each cluster 

3 

Allocate each object to the new centres by minimising the sum 

of squares error, SS(X) 

4 Repeat steps 2 and 3 until the terminating condition is met 

Output: Set of clusters 

 

1k  

kic ..1  

i
c = centroid of cluster i. 

 
k

i

n

j

iij cxD || , distance between object and cluster’s centroid. 
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Appendix 4A Correlation of AGIS and Number of VF 

Test 

Correlation between the variables is computed as follows:- 

Firstly the number of tests for every patient is counted. There are 1,580 patients in the 

data with 2 and 42 for minimum and maximum number of tests respectively. An example 

is as follow:- 

PID Count 

4 6 

5 6 

6 3 

7 9 

8 6 

9 6 

10 4 

11 3 

 

PID denotes patient ID, which is an internal non-medical record based identifier. 

 

Next, number of patients for each number of tests is counted. Majority patients have 2 

number of tests (296 patients). There are 38 groups for number of tests. The table below 

shows the sample of the data for number of tests and number of patients.  
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Number of Tests No. of Patients 

2 296 

3 201 

4 162 

5 128 

6 91 

7 74 

10 52 

 

Then, the AGIS score (unclassified score) from each patient is sampled by taking the 

lowest AGIS score from the patients records.   

PID AGIS Number of Tests 

4 17 6 

5 8 6 

6 13 3 

7 11 9 

8 3 6 

9 12 6 

10 0 4 

11 14 3 

57 5 2 

 

Subsequently, the AGIS score for patients within the same group of number of test is 

summed. Meaning that, all patients with 2 number of tests are accumulated for the AGIS 

score.  
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Number of Tests No. of Patient Sum of AGIS  

2 296 1279 

3 201 753 

4 162 618 

5 128 351 

6 91 290 

7 74 169 

10 52 96 

8 47 121 

13 45 96 

 

Based on the observation of numbers of tests, there are 14 groups of number of tests that 

have less than 9 patients in the groups. Therefore, the correlation for the number of tests 

and the AGIS score is computed from the sampled for the group of number of test with 

number of patients more than 9 as follow (the table is sorted in No. of Patient order):- 
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Number of Tests No. of Patient Average Sum of AGIS 

2 296 4.3209 

3 201 3.7463 

4 162 3.8148 

5 128 2.7422 

6 91 3.1868 

7 74 2.2838 

10 52 1.8462 

8 47 2.5745 

13 45 2.1333 

12 42 2.0000 

15 40 2.6750 

9 39 1.9231 

11 38 3.1579 

16 35 2.0857 

14 30 2.5333 

21 29 1.1724 

17 28 2.0357 

20 28 0.5357 

18 26 1.3462 

19 24 1.0417 

22 23 1.3913 

23 20 0.1500 

24 20 0.7500 

27 10 3.1000 

 

The correlation for the two variables is -0.7247. This shows that the higher the number of 

test, the lower the AGIS score recorded by patients.  
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Appendix 6A Newton Raphson Method 

The Newton Raphson equation is as follow:- 

)('

)(
1

n

n
nn

xf

xf
xx 

   (Equation 5A-1) 

Pseudo code for the Newton Raphson method is as follow:- 

Algorithm 5A : Newton Raphson 

Input:  

 

X = 1 

Y = f(X) 

1 While |Y| > 0.001  

2   X = Equation 5A-1 

3   Y = f(X) 

4 End while 

Output: Get Y and X 

 

The graphical example of Newton Raphson is as follow:- 



 

 

249 

 

 

 

Iteration of obtaining an x value which equivalent to 0)( 4 xf starts best with 0.1x    

)('

)(

1

1
12

xf

xf
xx   

 

The value of 2x is obtained from the tangent function (the red line). 

 



 

 

250 

 

 

)('

)(

2

2
23

xf

xf
xx   

The value of 3x is obtained from the tangent function (the red line). 

 

 

)('

)(

3

3

34
xf

xf
xx   

Iteration stops when the value of 4x is equivalent to 0)( 4 xf  
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Appendix 6B Simulation Experiment Results 

Simulation Experiment for GSA Parameter (Visual Field) 

Visual Field Experiment for GSA Parameter Comparison

Re-sampling VF Data Every Iteration

Modelling Strategy : 10 Folds

Iterations : 10,000

Modelling Method : Naïve Bayes Updateable 

Fitness Fit_Conv Best_Result WK Fitness Fit_Conv Best_Result WK Fitness Fit_Conv Best_Result WK

1 87.069 2,328              87.136 -0.0110 87.529 9,068              87.529 1.47E-02 87.633 1,141              87.6329 -0.020

2 86.949 5,400              86.949 -0.0026 87.096 9,593              87.096 0.015 87.491 9,397              87.5063 -0.030

3 87.591 1,468              87.591 0.0395 87.561 3,063              87.561 0.001 87.234 4,060              87.2342 -0.036

4 87.011 1,833              87.011 0.0301 87.955 339                  87.955 0.014 87.715 5,126              87.7146 0.006

5 87.540 9,441              87.540 -0.0134 87.610 1,209              87.610 -0.023 87.337 7,836              87.3368 0.040

6 87.228 7,674              87.228 -0.0387 87.528 5,215              87.528 -0.034 87.781 9,346              87.7813 0.034

7 86.890 3,323              86.890 0.0104 87.116 7,552              87.116 -0.002 87.235 3,091              87.2349 0.047

8 87.463 3,061              87.463 -0.0644 86.888 9,875              86.888 -0.017 87.219 7,205              87.2191 0.031

9 87.512 3,459              87.512 -0.0103 86.935 1,520              86.935 -0.007 87.285 7,423              87.2845 -0.039

10 87.246 1,353              87.246 -0.0325 86.959 8,785              86.959 -0.006 87.471 3,457              87.4712 0.026

87.250 3,934              87.257 -0.0093 87.318 5,622              87.318 -0.004 87.440 5,808              87.4416 0.006

Fitness Fit_Conv Best_Result WK Fitness Fit_Conv Best_Result WK Fitness Fit_Conv Best_Result WK

1 87.284 4,135              87.284 0.008 87.499 7,436              87.499 -0.008 87.173 4,571              87.1725 0.006

2 87.058 2,110              87.058 0.022 87.758 5,242              87.758 -0.015 87.590 4,766              87.5901 0.015

3 86.843 5,124              86.843 0.051 88.008 4,229              88.008 -0.036 87.416 8,818              87.4163 -0.021

4 87.757 9,393              87.760 0.038 87.244 1,779              87.244 -0.030 87.645 9,481              87.6452 -0.040

5 87.752 9,703              87.752 -0.025 88.088 3,254              88.088 -0.022 87.154 8,580              87.2384 -0.037

6 87.659 692                  87.659 0.006 87.196 5,026              87.196 0.035 87.244 5,323              87.2856 -0.041

7 86.883 3,429              86.923 -0.001 87.377 5,359              87.377 -0.015 87.338 3,676              87.3380 -0.019

8 87.639 6,439              87.639 0.018 87.579 4,442              87.579 -0.003 87.265 4,721              87.2652 0.032

9 88.761 4,166              88.761 0.005 86.907 7,907              86.950 0.044 87.085 8,993              87.0848 0.086

10 87.177 2,285              87.177 -0.013 87.576 2,495              87.576 -0.028 87.727 9,887              87.7273 -0.037

87.481 4,748              87.486 0.011 87.523 4,717              87.528 -0.008 87.364 6,882              87.3763 -0.006

Fitness Fit_Conv Best_Result WK Fitness Fit_Conv Best_Result WK Fitness Fit_Conv Best_Result WK

1 87.394 5,688              87.394 2.92E-03 87.542 6,855              87.542 -0.007 87.481 2,086              87.4809 0.009

2 87.333 8,877              87.333 -0.041 87.788 1,982              87.788 1.01E-02 86.970 3,265              86.9704 0.018

3 87.227 4,410              87.227 0.037 86.844 2,104              86.844 -0.008 87.151 9,932              87.1515 -0.005

4 87.164 9,882              87.164 0.033 87.434 2,128              87.434 0.006 87.776 7,211              87.7764 0.024

5 87.154 9,211              87.154 -0.004 87.267 7,223              87.267 0.035 87.474 3,049              87.5482 -0.006

6 87.662 863                  87.662 0.028 87.650 6,984              87.650 -0.011 87.217 1,832              87.2166 0.046

7 87.267 7,103              87.267 -0.004 87.618 7,980              87.618 -0.017 87.425 6,394              87.5092 0.017

8 87.194 8,071              87.194 -0.030 87.605 4,959              87.605 -0.034 87.729 9,590              87.7287 0.031

9 87.229 8,845              87.229 -0.002 87.665 8,280              87.665 -0.001 87.760 9,214              87.7602 -0.033

10 87.471 8,417              87.511 -0.045 87.204 3,586              87.204 0.012 87.659 1,537              87.6589 -0.018

87.309 7,137              87.313 -0.003 87.462 5,208              87.462 -0.002 87.464 5,411              87.4801 0.008

Run

0.01 0.02 0.03

Run

0.07 0.08 0.09

0.04 0.05

Run

0.06
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Visual Field Experiment for GSA Parameter Comparison

Re-sampling VF Data Every Iteration

Modelling Strategy : 10 Folds

Iterations : 10,000

Modelling Method : Naïve Bayes Updateable 

Fitness Fit_Conv Best_Result WK Fitness Fit_Conv Best_ResultWK Fitness Fit_Conv Best_ResultWK

1 87.141 2,528                  87.141 -0.012 87.856 3,138          87.856 1.68E-04 87.381 9,885            87.381 -0.036

2 86.944 5,667                  86.944 -0.009 86.765 5,872          86.765 -0.033 87.593 4,694            87.593 -3.5E-05

3 87.392 5,726                  87.392 -0.005 87.355 9,892          87.355 0.016 87.296 7,321            87.296 -0.009

4 87.230 7,106                  87.230 0.004 87.348 6,339          87.348 -0.013 86.605 1,041            86.605 0.054

5 87.665 4,837                  87.665 -0.028 87.404 688              87.404 -0.038 87.175 1,624            87.175 -0.016

6 87.663 4,223                  87.663 0.009 87.333 1,030          87.333 -0.004 87.105 2,079            87.105 -0.020

7 87.523 8,346                  87.539 -0.035 87.230 2,068          87.230 -0.043 87.808 1,651            87.808 -0.009

8 87.546 8,015                  87.546 0.036 86.923 6,037          86.923 0.026 87.310 9,373            87.310 -0.024

9 87.745 1,165                  87.745 0.036 87.405 5,640          87.405 0.003 87.059 1,814            87.090 0.064

10 87.528 4,721                  87.528 -0.017 87.289 6,614          87.289 -0.044 87.329 6,612            87.329 0.037

87.438 5,233                  87.439 -0.002 87.291 4,732          87.439 -0.002 87.266 4,609            87.439 -0.002

Fitness Fit_Conv Best_Result WK Fitness Fit_Conv Best_Result WK

87.332 3,519            87.332 -0.007 83.209 10,001             87.433 -0.020

87.001 7,270            87.099 -0.026 84.591 10,001             87.059 0.021

87.158 5,668            87.244 -0.021 84.350 10,001             87.461 -0.015

87.646 6,757            87.646 -0.052 82.697 10,001             87.285 0.009

87.576 2,604            87.576 0.005 82.776 10,001             87.343 -0.037

87.647 5,994            87.647 -0.059 84.056 10,000             87.217 -0.027

87.567 7,666            87.567 -0.027 82.326 10,001             87.557 0.040

87.290 7,300            87.290 -0.003 83.335 10,001             87.987 -0.003

87.418 4,886            87.418 -0.023 83.486 10,001             87.325 0.016

87.134 5,777            87.278 -0.010 83.640 10,001             87.351 -0.019

0.3

0.4 0.5

Run

0.1 0.2
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Visual Field Experiment for GSA Parameter Comparison

Re-sampling VF Data Every Iteration

Modelling Strategy : 10 Folds

Iterations : 10,000

Modelling Method : Naïve Bayes Updateable 

Fitness Fit_Conv Best_ResultWK Fitness Fit_Conv Best_Result WK Fitness Fit_Conv Best_ResultWK

1 87.545 556              87.545 0.0336 87.381 8,774        87.409 -5.8E-03 87.367 781          87.367 -0.057

2 87.081 9,861          87.138 -0.0402 87.117 9,995        87.173 -0.005 87.315 4,400       87.315 -4.5E-02

3 87.098 8,977          87.098 -0.0012 87.227 9,203        87.227 0.026 88.241 2,355       88.241 0.020

4 87.457 7,652          87.457 -0.0412 87.752 9,639        87.752 0.047 87.770 4,268       87.770 -0.031

5 87.502 7,684          87.502 -0.0073 87.244 5,298        87.244 0.009 87.080 5,897       87.159 0.014

6 87.053 8,229          87.083 0.0492 87.166 4,193        87.347 -0.022 87.324 7,128       87.324 0.000

7 87.431 7,214          87.431 -0.0021 86.960 4,106        87.078 0.011 87.616 8,380       87.616 -0.031

8 87.132 9,397          87.132 0.0228 87.348 8,815        87.348 -0.001 87.336 7,606       87.336 0.014

9 87.256 2,009          87.256 -0.0231 87.432 6,735        87.432 -0.005 87.256 9,350       87.256 -0.010

10 87.676 3,494          87.676 -0.0185 86.837 536            86.837 0.052 88.168 483          88.168 -0.031

87.323 6,507          87.332 -0.0028 87.246 6,729        87.285 0.011 87.547 5,065       87.555 -0.016

Fitness Fit_Conv Best_ResultWK Fitness Fit_Conv Best_Result WK Fitness Fit_Conv Best_ResultWK

1 87.297 641              87.297 -0.014 87.563 6,025        87.563 -0.032 87.791 8,989       87.791 0.0458

2 87.686 6,149          87.686 0.001 86.930 9,869        86.937 -0.001 87.282 8,011       87.282 0.0161

3 87.686 1,069          87.686 0.045 87.250 7,778        87.250 -0.009 87.461 5,839       87.482 0.0038

4 87.728 7,794          87.728 0.041 87.128 774            87.128 -0.029 87.222 7,970       87.222 0.0304

5 87.141 8,625          87.141 -0.025 87.210 7,204        87.210 0.016 87.197 4,133       87.197 -0.0121

6 87.409 8,993          87.409 -0.009 87.023 5,147        87.023 -0.002 87.346 6,184       87.399 0.0309

7 87.221 1,022          87.221 -0.004 87.331 4,630        87.331 -0.023 87.241 2,100       87.241 -0.0114

8 86.938 7,515          86.991 -0.014 87.838 9,896        87.838 0.046 87.536 5,376       87.536 -0.0366

9 87.468 7,534          87.529 0.000 87.354 3,471        87.354 -0.016 87.207 3,593       87.207 -0.0004

10 87.338 2,872          87.338 0.081 88.044 7,636        88.044 0.011 87.400 3,324       87.400 -0.0357

87.391 5,221          87.403 0.010 87.367 6,243        87.368 -0.004 87.368 5,552       87.376 0.0031

Fitness Fit_Conv Best_ResultWK Fitness Fit_Conv Best_Result WK Fitness Fit_Conv Best_ResultWK

1 87.909 9,304          87.909 2.66E-02 86.959 9,431        86.959 -0.012 87.236 5,426       87.236 0.011

2 87.445 9,207          87.529 0.028 88.214 3,789        88.214 -9E-03 87.461 7,860       87.519 0.022

3 87.448 5,417          87.448 0.000 86.770 357            86.770 0.044 87.091 1,502       87.091 0.105

4 87.191 5,552          87.191 0.012 87.332 4,923        87.332 0.008 86.960 8,460       86.984 0.022

5 87.310 3,868          87.310 0.005 88.134 572            88.134 -0.017 87.401 6,346       87.401 0.071

6 87.688 7,538          87.688 -0.025 87.348 8,141        87.348 -0.042 87.054 2,630       87.054 -0.013

7 87.203 6,937          87.203 0.049 87.923 9,767        87.923 -0.008 87.597 3,440       87.597 -0.012

8 87.216 7,594          87.216 -0.006 87.193 8,848        87.224 0.061 87.903 4,331       87.903 -0.020

9 87.163 9,408          87.173 0.047 87.500 7,199        87.500 0.047 87.465 7,124       87.465 -0.013

10 87.184 7,479          87.184 -0.025 88.394 9,975        88.394 0.008 87.584 7,513       87.584 0.011

87.376 7,230          87.385 0.011 87.577 6,300        87.580 0.008 87.375 5,463       87.383 0.018

Run

0.001 0.002 0.003

Run

0.007 0.008 0.009

0.004 0.005

Run

0.006
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Simulation Experiment for GSA Parameter (Synthetic Data) 

Synthetic Data Experiment for GSA Parameter Comparison

Modelling Strategy : 10 Folds

Iterations : 10,000

Modelling Method : Naïve Bayes Updateable 

Fitness Fit_Conv Best_ResultWK Fitness Fit_Conv Best_ResultWK Fitness Fit_Conv Best_ResultWK

1 97.922 8,753             97.922 0.554 97.845 9,513             97.845 6.3E-01 97.851 9,296              97.851 0.672

2 97.940 6,733             97.940 0.525 97.503 9,883             97.503 0.594 97.490 9,798              97.551 4.9E-01

3 90.279 9,564             90.279 0.369 97.862 9,843             97.902 0.712 97.478 5,728              97.478 0.515

4 92.030 9,733             92.030 0.401 98.066 9,865             98.066 0.515 97.858 9,645              97.858 0.606

5 97.481 4,426             97.481 0.483 97.380 9,188             97.380 0.433 98.030 8,467              98.030 0.827

6 98.049 9,200             98.099 0.692 96.903 9,806             96.974 0.456 97.675 9,881              97.675 0.509

7 97.925 9,591             97.966 0.621 98.343 8,871             98.343 0.683 97.494 5,027              97.494 0.512

8 97.610 9,899             97.610 0.486 97.628 9,073             97.628 0.412 97.655 9,664              97.655 0.525

9 97.237 9,303             97.309 0.392 97.255 9,547             97.370 0.385 97.176 6,521              97.182 0.439

10 97.250 6,693             97.250 0.506 97.708 7,860             97.708 0.476 97.874 7,760              97.905 0.824

96.372 8,390             96.389 0.503 97.649 9,345             97.672 0.530 97.658 8,179              97.668 0.592

Fitness Fit_Conv Best_ResultWK Fitness Fit_Conv Best_ResultWK Fitness Fit_Conv Best_ResultWK

1 98.027 9,635             98.029 0.795 97.920 9,947             98.052 0.618 97.922 9,678              97.922 0.723

2 97.317 7,349             97.317 0.426 98.075 9,246             98.075 0.718 97.802 9,943              97.802 0.630

3 97.558 9,510             97.611 0.557 97.898 8,604             97.954 0.575 97.833 9,880              97.934 0.712

4 97.658 9,685             97.658 0.550 97.768 9,752             97.768 0.569 97.133 9,984              97.138 0.603

5 97.539 9,857             97.663 0.541 97.961 7,893             97.961 0.473 97.388 9,053              97.417 0.525

6 97.960 9,856             97.960 0.712 97.936 9,954             98.023 0.582 97.561 9,944              97.568 0.493

7 97.824 7,261             97.824 0.648 96.802 4,475             96.802 0.399 97.677 9,363              97.677 0.563

8 91.419 1,779             91.419 0.313 97.493 5,335             97.493 0.560 97.770 5,194              97.866 0.575

9 97.657 9,574             97.657 0.808 97.843 9,944             97.843 0.683 89.354 5,904              89.354 0.412

10 97.769 9,979             97.807 0.436 98.146 5,037             98.146 0.660 97.415 9,802              97.484 0.603

97.073 8,449             97.095 0.579 97.784 8,019             97.812 0.584 96.786 8,875              96.816 0.584

Fitness Fit_Conv Best_ResultWK Fitness Fit_Conv Best_ResultWK Fitness Fit_Conv Best_ResultWK

1 98.125 6,774             98.125 7E-01 97.856 8,871             97.876 0.878 97.517 6,145              97.517 0.463

2 98.427 9,559             98.427 0.827 98.287 8,070             98.287 8.1E-01 97.508 7,650              97.508 0.550

3 97.248 9,561             97.324 0.416 97.843 8,441             97.843 0.531 98.187 2,358              98.187 0.827

4 98.204 9,771             98.204 0.606 97.985 9,402             97.985 0.751 97.683 9,386              97.702 0.695

5 97.583 9,014             97.583 0.443 97.207 7,459             97.207 0.582 97.184 3,560              97.184 0.550

6 97.314 7,908             97.354 0.371 91.521 9,821             91.645 0.541 97.412 8,757              97.533 0.412

7 97.920 4,510             97.920 0.496 97.806 3,978             97.806 0.795 97.962 9,895              97.974 0.648

8 98.106 9,864             98.106 0.675 97.987 8,863             97.987 0.701 97.748 9,468              97.748 0.557

9 97.656 5,737             97.656 0.591 97.664 9,080             97.701 0.563 98.027 7,112              98.027 0.531

10 97.362 9,993             97.362 0.489 97.568 6,771             97.568 0.535 97.627 9,830              97.627 0.550

97.794 8,269             97.806 0.562 97.172 8,076             97.190 0.669 97.686 7,416              97.701 0.578

Run

0.001 0.002 0.003

Run

0.007 0.008 0.009

0.004 0.005

Run

0.006
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Synthetic Data Experiment for GSA Parameter Comparison

Modelling Strategy : 10 Folds

Iterations : 10,000

Modelling Method : Naïve Bayes Updateable 

Fitness Fit_Conv Best_ResultWK Fitness Fit_Conv Best_ResultWK Fitness Fit_Conv Best_ResultWK

1 97.976 9,845      98.117 0.672 97.370 9,838       97.370 4.7E-01 97.928 8,301        97.957 0.544

2 97.355 4,481      97.355 0.460 98.155 7,849       98.155 0.751 97.909 9,963        97.968 7.0E-01

3 97.923 2,720      98.008 0.784 98.327 7,681       98.327 0.557 97.839 9,859        98.109 0.677

4 97.556 9,254      97.613 0.557 97.521 9,721       97.650 0.483 97.569 9,673        97.569 0.426

5 97.589 7,525      97.589 0.502 97.729 9,740       97.834 0.746 98.045 8,414        98.045 0.512

6 96.911 8,836      96.975 0.388 97.415 9,990       97.439 0.757 97.319 9,807        97.319 0.506

7 97.882 9,856      98.075 0.735 98.169 9,782       98.169 0.800 97.612 9,891        97.628 0.446

8 97.880 9,343      98.141 0.642 98.083 9,281       98.083 0.618 97.638 9,783        97.675 0.473

9 96.298 4,541      96.298 0.392 97.120 9,365       97.174 0.554 98.175 9,456        98.175 0.827

10 97.803 8,123      97.803 0.525 98.110 3,688       98.110 0.845 97.783 5,401        97.783 0.531

97.517 7,452      87.439 -0.002 97.800 8,694       87.439 -0.002 97.782 9,055        87.439 -0.002

Fitness Fit_Conv Best_ResultWK Fitness Fit_Conv Best_ResultWK

1 97.776 9,809      98.098 0.894 62.695 10,001    67.367 -0.014

2 97.798 8,924      97.867 0.695 47.129 10,001    73.317 -0.006

3 97.752 7,557      97.752 0.499 47.983 10,000    68.587 -0.037

4 91.424 9,950      91.518 0.494 49.650 10,001    70.065 -0.020

5 97.408 9,993      97.497 0.502 48.030 10,000    69.905 -0.030

6 97.850 9,321      97.850 0.519 47.642 10,001    67.731 -0.011

7 93.220 9,099      93.220 0.512 50.196 10,001    66.539 -0.014

8 98.004 8,347      98.004 0.443 51.671 10,000    66.519 -0.006

9 97.687 9,931      98.105 0.878 41.807 10,001    69.362 0.005

10 98.124 9,744      98.124 0.566 51.321 10,001    67.118 -0.003

0.3

0.4 0.5

Run

Run

0.1 0.2
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Synthetic Data Experiment for GSA Parameter Comparison

Modelling Strategy : 10 Folds

Iterations : 10,000

Modelling Method : Naïve Bayes Updateable 

Fitness Fit_Conv

Best_Res

ult WK Fitness Fit_Conv

Best_Res

ult WK Fitness Fit_Conv

Best_Res

ult WK

1 97.536 9,080        97.555 0.483 98.131 7,121           98.199 6E-01 97.829 9,042             97.829 0.648

2 98.145 9,819        98.160 0.827 87.272 8,079           87.272 0.231 97.092 8,604             97.145 4.9E-01

3 97.344 9,526        97.397 0.423 97.474 9,700           97.518 0.686 98.082 9,808             98.108 0.642

4 98.065 7,681        98.065 0.512 98.503 5,497           98.503 0.582 97.632 6,573             97.632 0.512

5 97.905 8,773        97.905 0.712 97.574 8,147           97.574 0.460 92.039 9,524             92.268 0.450

6 97.012 9,529        97.012 0.499 93.283 9,060           93.292 0.659 91.456 8,633             91.456 0.334

7 97.317 9,153        97.401 0.443 97.930 9,463           98.003 0.550 98.201 5,602             98.201 0.784

8 97.615 9,884        97.615 0.642 98.123 9,991           98.123 0.660 97.342 9,728             97.345 0.423

9 93.249 9,731        93.249 0.498 91.371 8,981           91.371 0.298 91.624 9,962             91.641 0.383

10 97.873 9,752        97.922 0.499 97.790 7,616           97.790 0.557 98.104 9,500             98.104 0.811

97.206 9,293        97.228 0.554 95.745 8,366           95.764 0.527 95.940 8,698             95.973 0.548

Fitness Fit_Conv

Best_Res

ult WK Fitness Fit_Conv

Best_Res

ult WK Fitness Fit_Conv

Best_Res

ult WK

1 97.456 7,897        97.482 0.531 96.984 8,946           97.032 0.506 97.81 8,312             97.810 0.703

2 97.702 8,571        97.702 0.506 98.138 8,887           98.148 0.588 97.88 9,855             97.898 0.563

3 97.620 2,954        97.620 0.519 97.094 9,998           97.246 0.466 98.11 9,842             98.216 0.677

4 97.938 9,997        97.938 0.703 98.347 5,145           98.347 0.642 95.93 9,781             95.933 0.453

5 97.974 3,421        97.974 0.550 97.957 9,472           97.957 0.486 98.01 8,708             98.009 0.569

6 97.928 9,727        97.928 0.591 89.809 9,912           89.809 0.361 98.48 4,635             98.479 0.759

7 97.402 8,748        97.402 0.476 96.634 9,644           97.041 0.402 91.83 9,938             91.833 0.294

8 98.106 9,802        98.130 0.563 93.096 8,598           93.096 0.593 97.83 9,584             97.831 0.630

9 97.987 8,354        97.990 0.718 97.526 9,653           97.526 0.566 98.29 8,251             98.294 0.588

10 97.733 9,589        97.758 0.695 98.186 6,948           98.186 0.600 98.07 9,171             98.074 0.751

97.785 7,906        97.792 0.585 96.377 8,720           96.439 0.521 97.23 8,808             97.238 0.599

Fitness Fit_Conv

Best_Res

ult WK Fitness Fit_Conv

Best_Res

ult WK Fitness Fit_Conv

Best_Res

ult WK

1 98.331 9,796        98.331 7.9E-01 96.822 9,721           96.822 0.496 97.068 9,423             97.068 0.439

2 97.216 5,900        97.238 0.489 98.034 8,004           98.034 4.9E-01 97.829 8,168             97.829 0.677

3 97.843 9,772        97.843 0.832 97.682 9,333           97.747 0.483 97.267 7,682             97.267 0.563

4 97.233 9,490        97.233 0.433 96.004 9,765           96.004 0.399 98.149 8,408             98.149 0.563

5 97.646 8,257        97.646 0.550 96.978 3,825           96.978 0.446 97.235 9,138             97.235 0.483

6 97.856 9,803        97.913 0.878 97.842 8,263           97.842 0.557 97.467 9,289             97.508 0.486

7 97.537 9,223        97.537 0.666 97.677 9,950           97.677 0.486 96.711 9,865             96.934 0.476

8 97.686 7,772        97.686 0.531 97.134 6,578           97.134 0.419 98.180 9,045             98.180 0.735

9 97.947 9,998        97.947 0.563 97.965 8,190           98.006 0.483 97.246 9,518             97.371 0.499

10 97.804 9,793        97.880 0.618 98.048 6,699           98.048 0.651 97.533 9,744             97.552 0.544

97.710 8,980        97.725 0.635 97.419 8,033           97.429 0.491 97.468 9,028             97.509 0.547

Run

0.01 0.02 0.03

Run

0.07 0.08 0.09

0.04 0.05

Run

0.06
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Appendix 6C Computation of Confidence Interval 

A Confidence Interval (CI) is a range of values computed using sample statistics to 

estimate an unknown population parameter with a given confidence level.  

A confidence level is the proportion of all samples randomly drawn from the population 

whose confidence intervals contain the estimated population parameter. The common 

confidences level used are 90%, 95% and 99%.  

 

The equation for computing CI used to compute the accuracy interval limit is as follows:- 

s
CI x Z

N
   

Where  x = mean of the sample 

Z = a Z-score value 

 = standard deviation 

 2

1

1
( )

1

N

i

i

s x x
N 

 

  

N = sample size 

 

This work uses 95% CI which means that the data (accuracy values) are likely lies 

between the CI with 95% confidence.  

 

For 95% the Z value is 1.960. Experiment results for the RGFGSA method (synthetic 

data) with 10FCV modelling strategy are as follows:- 
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Experiment 

No. 
Final Accuracy Value 

1 99.1556 

2 98.9760 

3 98.9003 

4 98.3683 

5 98.8190 

6 98.5696 

7 98.7594 

8 98.5090 

9 98.7694 

10 99.0355 

11 98.9131 

12 93.2695 

13 98.9278 

14 98.9708 

15 99.0162 

16 98.5847 

17 98.8684 

18 98.9894 

19 98.8505 

20 99.0349 

21 98.9845 

22 98.7850 

23 98.9327 

24 98.7579 

25 98.8538 

Average 98.6241 
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x = 98.6241 

Z = 1.960 

s = standard deviation 

N = sample size 

2

1

1
( )

1

N

i

i

s x x
N 

 

  

 

x  = 98.6241 

 

2

1

( ) 30.6692
N

i

i

x x


   

 

)6692.30(
24

1
s  

 

1.1304s  

 

 

Therefore the CI is computed as follows:- 

s
CI x Z

N
   

Upper limit = 









25

1304.1
960.16241.98  

                   =  99.0672 

Lower limit = 









25

1304.1
960.16241.98  

                    =  98.1809 
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Appendix 6D Prediction Accuracy Results 

Prediction Accuracy Results – Visual Field  

Data : Visual Field Data (Sampled Every Iteration)

Method : Simulated Annealing

Classifier : Naïve Bayes Updateable

Iteration : 100,000

Fitness Tolerance 10 fold : 1.539244854

Fitness Tolerance 2 fold : 0.346508305

Final Fitness 

Value Bundles

Convergence 

Point

Fit.Tolerance 

Convergence Best Accuracy

Weighted 

Kappa

1 88.2229 16 26,422            1,767               88.2229 0.0055

2 87.8989 15 61,321            2,594               87.8989 -0.0205

3 88.1751 15 23,160            23,159            88.1751 -0.0065

4 87.8255 14 66,504            3,092               87.8255 0.0327

5 87.8682 15 30,286            13,827            87.8682 -0.0201

6 87.5575 15 24,092            24,091            87.5575 -0.0359

7 87.3693 15 16,390            16,389            87.3693 0.0020

8 87.8388 12 93,359            4,733               87.8388 0.0081

9 88.1541 15 48,347            5,691               88.1541 0.0371

10 86.3165 14 11,430            72,190            86.3165 -0.0203

11 88.0525 15 55,008            2,870               88.0525 0.0228

12 88.0114 13 41,251            5,995               88.0114 -0.0250

13 88.4824 12 34,555            34,554            88.4824 0.0011

14 87.7130 18 17,336            552                  87.7130 -0.0292

15 87.2492 12 63,688            8,898               87.7761 0.0176

16 87.8179 13 68,250            4,678               87.8179 0.0185

17 87.6310 13 41,751            4,670               87.6310 0.0149

18 87.6091 17 4,539               4,538               87.6091 -0.0061

19 87.2627 15 69,509            2,403               87.2627 -0.0098

20 87.5714 12 48,007            18,288            87.5714 -0.0271

21 87.7863 14 6,999               6,998               87.7863 0.0309

22 88.1325 14 17,742            17,741            88.1325 0.0165

23 87.7605 16 81,741            2,749               87.7605 0.0075

24 88.0132 16 74,968            6,290               88.0132 0.0165

25 87.6142 14 43,753            2,322               87.6142 0.0072

Average 87.7574 42816.32 11643.16 87.7784 0.0015

10 Folds CV

Experiment
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Data : Visual Field Data (Sampled Every Iteration)

Method : Simulated Annealing

Classifier : Naïve Bayes Updateable

Iteration : 100,000

Fitness Tolerance 10 fold : 1.539244854

Fitness Tolerance 2 fold : 0.346508305

Final Fitness 

Value Bundles

Convergence 

Point

Fit.Tolerance 

Convergence Best Accuracy

Weighted 

Kappa

1 86.2089 12 18,623            18,623            86.2089 0.0050

2 86.7437 11 51,703            51,703            86.7437 0.0025

3 86.5759 12 76,986            4,585               86.5759 -0.0005

4 86.1297 16 87,047            2,827               86.1297 0.0181

5 86.4557 9 89,419            7,750               86.4557 -0.0295

6 86.3639 13 68,228            19,411            86.3639 0.0161

7 86.3038 9 78,468            7,623               86.3070 -0.0242

8 86.1487 8 77,008            7,060               86.1487 0.0192

9 86.6139 11 61,834            4,627               86.6139 -0.0026

10 86.4399 11 94,370            17,533            86.4399 -0.0030

11 86.7215 7 87,916            87,915            86.7215 0.0040

12 87.0854 10 82,084            82,083            87.0854 0.0343

13 86.8797 9 84,686            30,338            86.8797 -0.0055

14 86.5854 7 48,243            10,697            86.5854 -0.0096

15 86.6709 13 59,014            13,094            86.6709 -0.0072

16 86.1709 14 5,085               5,085               86.1709 -0.0254

17 86.1108 12 92,073            5,374               86.1108 0.0065

18 86.6171 8 57,836            8,602               86.6171 -0.0046

19 86.5728 12 85,009            7,576               86.5728 0.0015

20 86.6297 12 79,325            79,325            86.6297 0.0293

21 86.1392 8 80,496            3,094               86.1392 -0.0086

22 86.4747 14 63,640            7,503               86.4747 0.0209

23 85.9430 17 707                  707                  85.9430 0.0469

24 86.2373 15 87,168            13,973            86.2373 -0.0033

25 86.3987 10 48,360            1,343               86.3987 -0.0194

Average 86.4489 66,613            19,938            86.4490 0.0024

Experiment

2 Folds CV with 10 Repeats

 

 

 

 

 

 



 

 

262 

 

 

Data : Visual Field Data (Sampled Every Iteration)

Method : Simulated Annealing

Classifier : Naïve Bayes Updateable

Iteration : 100,000

Fitness Tolerance 10 fold : 1.539244854

Fitness Tolerance 2 fold : 0.346508305

Final Fitness 

Value Bundles

Convergence 

Point

Fit.Tolerance 

Convergence Best Accuracy

Weighted 

Kappa

1 86.5823 10 23,130            23,130            86.5823 -0.0241

2 86.3924 13 52,521            52,521            86.3924 -0.0168

3 86.8354 7 75,818            75,818            86.8987 0.0192

4 86.6456 6 67,347            67,347            86.6456 0.0341

5 86.5823 9 49,703            49,703            86.5823 0.0049

6 86.5823 8 56,470            56,470            86.5823 -0.0422

7 86.2658 11 29,195            29,195            86.2658 0.0410

8 86.8354 9 84,053            84,053            86.8354 0.0049

9 86.3924 10 62,481            62,481            86.3924 0.0150

10 86.4557 10 15,357            15,357            86.4557 0.0086

11 86.6456 10 59,775            59,775            86.6456 0.0009

12 87.0253 6 31,151            31,151            87.0253 -0.0235

13 86.5190 10 43,387            43,387            86.5190 -0.0271

14 86.3291 15 34,978            34,978            86.3291 -0.0361

15 87.4684 8 27,132            27,132            87.4684 -0.0211

16 86.5823 14 31,877            31,877            86.5823 0.0013

17 87.2152 8 21,155            21,155            87.2152 0.0435

18 86.5823 12 28,441            28,441            86.5823 -0.0260

19 86.2658 12 47,267            47,267            86.2658 0.0638

20 86.7089 12 36,152            36,152            86.7089 -0.0019

21 86.6456 7 64,381            64,381            86.6456 -0.0401

22 86.6456 9 44,328            44,328            86.6456 0.0205

23 86.3924 15 66,914            66,914            86.3924 -0.0429

24 86.5823 12 42,332            42,332            86.5823 0.0379

25 86.6456 11 87,255            87,255            86.6456 0.0185

Average 86.6329 47,304            47,304            86.6354 0.0005

Experiment

No Cross Validation
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Data : Visual Field Data (Sampled Every Iteration)

Method : Generalised Simulated Annealing

Classifier : Naïve Bayes Updateable

Iteration : 100,000

QA : 0.01

Fitness Tolerance 10 fold : 1.568740349

Fitness Tolerance 2 fold : 0.4526

Final Fitness 

Value Bundles

Convergence 

Point

Fit.Tolerance 

Convergence Best Accuracy

Weighted 

Kappa

1 87.8408 7 71,671            4,078               87.8408 -0.0098

2 87.4891 7 67,076            1,294               87.7217 0.0189

3 87.9830 9 23,414            3,648               87.9830 0.0006

4 87.6354 7 56,596            2,799               87.6354 -0.0371

5 87.9576 5 37,415            6,178               87.9576 -0.0157

6 87.8045 7 93,792            1,515               87.8970 -0.0107

7 87.7277 7 79,107            4,092               87.8160 -0.0045

8 87.3958 11 61,669            1,983               87.4961 -0.0008

9 87.7379 9 1,765               1,539               87.7379 0.0590

10 87.6398 9 35,117            2,774               87.7336 -0.0263

11 87.7336 4 15,226            2,995               87.7336 -0.0109

12 88.0592 9 3,102               1,578               88.0592 0.0433

13 87.8415 8 8,253               2,933               87.8415 -0.0195

14 88.3841 7 14,190            4,623               88.3841 -0.0244

15 87.8873 12 90,428            2,772               87.8873 -0.0002

16 87.7615 9 68,839            3,172               87.8126 0.0616

17 88.3445 9 70,840            3,126               88.3445 -0.0270

18 87.4873 8 33,910            736                  87.8712 0.0220

19 87.8111 8 98,630            5,411               87.8111 0.0093

20 88.1670 7 92,702            2,131               88.1670 -0.0323

21 88.1363 7 76,685            1,968               88.1641 -0.0157

22 88.5357 8 40,761            3,352               88.5357 0.0404

23 88.2470 3 84,027            2,767               88.2470 0.0100

24 87.4572 9 83,961            1,999               87.4572 -0.0334

25 88.0219 12 33,200            1,534               88.0219 0.0170

Experiment

10 Folds CV
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Data : Visual Field Data (Sampled Every Iteration)

Method : Generalised Simulated Annealing

Classifier : Naïve Bayes Updateable

Iteration : 100,000

QA : 0.01

Fitness Tolerance 10 fold : 1.568740349

Fitness Tolerance 2 fold : 0.4526

Final Fitness 

Value Bundles

Convergence 

Point

Fit.Tolerance 

Convergence Best Accuracy

Weighted 

Kappa

1 86.2595 9 79,048            18,490            86.2816 -0.0135

2 86.4082 6 20,935            9,839               86.5285 -0.0055

3 86.7532 8 23,591            12,905            86.7532 -0.0223

4 86.5823 8 96,685            29,924            86.5823 0.0229

5 86.6329 6 29,099            29,098            86.6329 0.0065

6 86.3196 6 33,910            23,945            86.3956 0.0200

7 86.3354 5 81,284            12,344            86.4335 0.0619

8 86.9652 7 42,382            42,381            86.9652 -0.0057

9 86.5791 8 50,395            39,671            86.5791 0.0446

10 86.6582 7 60,520            24,502            86.6582 -0.0232

11 86.9209 3 33,257            16,827            86.9209 -0.0231

12 86.3418 9 86,303            34,217            86.5063 -0.0377

13 86.8924 8 97,472            97,471            86.8924 -0.0071

14 86.4146 7 57,463            23,031            86.4146 -0.0080

15 86.2342 8 99,164            18,783            86.6076 -0.0160

16 86.8228 7 55,049            55,048            86.8228 -0.0269

17 86.8766 7 90,488            13,828            86.8766 0.0266

18 86.5475 7 96,718            38,201            86.6171 0.0438

19 86.8165 9 82,384            82,383            86.8165 0.0104

20 86.3038 12 59,535            48,806            86.3038 -0.0134

21 87.1646 6 56,803            56,802            87.1646 0.0471

22 86.7310 5 95,410            38,590            86.8386 0.0077

23 86.8766 6 85,305            24,671            86.8924 -0.0012

24 86.9430 7 57,304            57,303            86.9430 -0.0169

25 86.4589 7 50,987            23,166            86.6108 0.0266

Experiment

2 Folds CV with 10 Repeats
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Data : Visual Field Data (Sampled Every Iteration)

Method : Generalised Simulated Annealing

Classifier : Naïve Bayes Updateable

Iteration : 100,000

QA : 0.01

Fitness Tolerance 10 fold : 1.568740349

Fitness Tolerance 2 fold : 0.4526

Final Fitness 

Value Bundles

Convergence 

Point

Fit.Tolerance 

Convergence Best Accuracy

Weighted 

Kappa

1 87.2152 4 73,469            73,469            87.2152 -0.0106

2 86.8354 6 73,684            73,684            86.8354 0.0217

3 86.4557 7 49,990            49,990            86.4557 -0.0013

4 86.6456 9 96,367            96,367            86.7722 -0.0177

5 86.9620 6 43,647            43,647            86.9620 -0.0233

6 86.2025 7 98,483            98,483            86.6456 -0.0286

7 87.0253 9 68,208            68,208            87.0253 -0.0071

8 86.8987 6 67,776            67,776            86.8987 -0.0155

9 86.7722 11 27,195            27,195            86.7722 0.0218

10 86.5190 9 94,594            94,594            86.7722 -0.0199

11 86.3291 9 89,840            89,840            86.3291 0.0377

12 86.2025 6 91,568            91,568            86.7722 -0.0026

13 86.3924 8 82,606            82,606            86.7722 -0.0372

14 87.2785 8 37,973            37,973            87.2785 -0.0159

15 86.2658 7 95,188            95,188            86.3924 -0.0143

16 86.7089 9 40,104            40,104            86.7089 -0.0073

17 86.7089 9 88,903            88,903            86.7089 -0.0173

18 86.9620 8 13,939            13,939            87.0253 0.0311

19 86.7089 14 96,128            96,128            86.7089 -0.0155

20 85.8861 8 97,279            97,279            86.3924 -0.0074

21 86.4557 7 97,167            97,167            86.5823 0.0161

22 86.7089 7 61,021            61,021            86.7089 -0.0242

23 86.5190 7 97,629            97,629            86.5190 -0.0077

24 87.1519 3 87,750            87,750            87.1519 0.0352

25 86.5190 8 77,694            77,694            86.8354 -0.0171

Experiment

No Cross Validation
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Prediction Accuracy Results – Synthetic Data  

Data : Synthetic Data

Method : Simulated Annealing

Classifier : Naïve Bayes Updateable

Iteration : 100,000

Fitness Tolerance Synthetic 10 fold : 1.181885086

Fitness Tolerance Synthetic 2fold : 0.464052274

Final Fitness 

Value Bundles

Convergence 

Point

Fit.Tolerance 

Convergence Best Accuracy

Weighted 

Kappa

1 98.3783 6 53,303            21,338            98.3783 0.7345

2 98.4322 5 50,803            19,598            98.4322 0.9086

3 98.4322 5 51,776            19,467            98.4322 0.9086

4 98.4322 5 54,216            20,381            98.4322 0.9086

5 98.4322 5 53,421            16,939            98.5479 0.9086

6 98.2960 4 56,780            16,655            98.3989 0.9136

7 98.4322 5 49,717            23,961            98.4322 0.9086

8 98.3989 4 87,567            19,829            98.4322 0.8785

9 98.4322 5 50,115            17,548            98.4632 0.9086

10 98.1630 6 61,088            19,119            98.4322 0.7401

11 98.4322 5 52,717            19,672            98.5623 0.9086

12 98.1926 4 38,227            20,128            98.1938 0.8631

13 98.4322 5 48,786            19,279            98.4322 0.9086

14 98.2894 5 77,696            23,299            98.3433 0.8268

15 98.4322 5 51,147            17,101            98.4322 0.9086

16 98.3846 6 51,438            18,025            98.3989 0.8294

17 98.4322 5 51,962            18,798            98.4322 0.9086

18 98.2557 5 50,777            18,491            98.2902 0.8215

19 98.0407 6 43,370            20,368            98.4322 0.7176

20 98.2400 5 42,821            18,863            98.4322 0.9086

21 98.4322 5 50,868            17,685            98.4322 0.9086

22 98.3183 5 41,555            23,143            98.4322 0.8136

23 98.4322 5 50,300            19,793            98.4322 0.9086

24 98.4632 4 42,417            19,906            98.4632 0.8785

25 98.3208 4 70,145            20,174            98.4322 0.8785

Average 98.3571 53,320            19,582            98.4209 0.8683

Experiment

10 Folds CV
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Data : Synthetic Data

Method : Simulated Annealing

Classifier : Naïve Bayes Updateable

Iteration : 100,000

Fitness Tolerance Synthetic 10 fold : 1.181885086

Fitness Tolerance Synthetic 2fold : 0.464052274

Final Fitness 

Value Bundles

Convergence 

Point

Fit.Tolerance 

Convergence Best Accuracy

Weighted 

Kappa

1 97.0440 3 41,354            30,980            97.0440 1.0000

2 97.0440 3 41,314            28,721            97.0440 1.0000

3 97.0440 3 38,966            33,070            97.0440 1.0000

4 97.0440 3 35,984            32,589            97.0440 1.0000

5 97.0440 3 36,853            29,214            97.0440 1.0000

6 97.0440 3 43,619            29,263            97.0440 1.0000

7 97.0440 3 44,028            28,418            97.0440 1.0000

8 97.0440 3 37,900            28,146            97.0440 1.0000

9 97.0440 3 37,422            33,716            97.0440 1.0000

10 97.0440 3 44,432            29,170            97.0440 1.0000

11 97.0440 3 46,927            30,524            97.0440 1.0000

12 97.0440 3 44,782            28,229            97.0440 1.0000

13 96.8960 4 68,585            26,905            97.0440 0.8785

14 97.0440 3 47,254            31,303            97.0440 1.0000

15 97.0440 3 47,224            27,872            97.0440 1.0000

16 97.0440 3 41,411            31,908            97.0440 1.0000

17 96.8980 4 44,166            30,136            97.0440 0.8936

18 97.0440 3 40,254            31,399            97.0440 1.0000

19 97.0440 3 43,144            28,650            97.0440 1.0000

20 97.0440 3 43,316            29,814            97.0440 1.0000

21 97.0440 3 38,490            32,316            97.0440 1.0000

22 96.7600 4 75,805            27,486            97.0440 0.8936

23 97.0440 3 45,490            30,379            97.0440 1.0000

24 97.0440 3 44,120            35,591            97.0440 1.0000

25 97.0440 3 40,166            33,327            97.0440 1.0000

Average 97.0209 44,520            30,365            97.0440 0.9866

Experiment

2 Folds CV with 10 Repeats
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Data : Synthetic Data

Method : Simulated Annealing

Classifier : Naïve Bayes Updateable

Iteration : 100,000

Fitness Tolerance Synthetic 10 fold : 1.181885086

Fitness Tolerance Synthetic 2fold : 0.464052274

Final Fitness 

Value Bundles

Convergence 

Point Best Accuracy

Weighted 

Kappa

1 98.6000 4 42,791            98.600 0.9670

2 98.2800 5 51,132            98.600 0.7949

3 98.4400 4 51,741            98.600 0.8631

4 98.6000 4 42,935            98.600 0.9670

5 98.6000 4 44,631            98.600 0.9670

6 98.6000 4 39,769            98.600 0.9670

7 98.6000 4 42,943            98.600 0.9670

8 98.6000 4 45,555            98.600 0.9670

9 98.6000 4 43,197            98.600 0.9670

10 98.6000 4 42,772            98.600 0.9670

11 98.6000 4 41,749            98.600 0.9670

12 98.6000 4 41,274            98.600 0.9670

13 98.2400 7 51,043            98.600 0.6746

14 98.6000 4 42,107            98.600 0.9670

15 98.6000 4 46,131            98.600 0.9670

16 98.6000 4 43,296            98.600 0.9670

17 98.4400 4 54,488            98.600 0.9136

18 98.6000 4 40,595            98.600 0.9670

19 98.6000 4 40,792            98.600 0.9670

20 98.4400 4 59,368            98.600 0.9136

21 98.6000 4 43,474            98.600 0.9670

22 98.6000 4 41,826            98.600 0.9670

23 98.6000 4 41,978            98.600 0.9670

24 98.6000 4 43,530            98.600 0.9670

25 98.6000 4 41,975            98.600 0.9670

Average 98.5536 44,844            98.600 0.9400

Experiment

No Cross Validation
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Data : Synthetic Data

Method : Generalised Simulated Annealing

Classifier : Naïve Bayes Updateable

Iteration : 100,000

QA : 0.009

Fitness Tolerance 10 fold : 1.064513159

Fitness Tolerance 2fold : 0.392248689

Final Fitness 

Value Bundles

Convergence 

Point

Fit.Tolerance 

Convergence Best Accuracy

Weighted 

Kappa

1 98.5623 5 51,995            5,135               98.5623 0.8683

2 98.2813 4 99,793            13,148            98.4632 0.8936

3 98.3098 4 99,927            5,553               98.4322 0.9381

4 98.4627 5 55,622            5,019               98.4632 0.8477

5 98.4322 5 99,993            4,572               98.5623 0.9086

6 98.4186 4 99,960            10,768            98.5623 0.8683

7 98.3098 4 99,949            2,613               98.4632 0.9381

8 98.5623 5 99,019            4,512               98.5623 0.8683

9 98.2993 4 99,437            11,002            98.5623 0.8785

10 97.9743 4 99,932            15,672            98.5623 0.8631

11 98.2960 4 99,954            4,619               98.4983 0.9136

12 98.2038 4 99,119            5,805               98.4322 0.8683

13 98.3098 4 99,707            3,006               98.4322 0.9381

14 98.3608 5 97,829            5,958               98.4269 0.8268

15 97.9339 5 89,966            10,081            98.3098 0.8268

16 98.5623 5 96,566            5,458               98.5623 0.8683

17 98.3098 4 98,685            5,790               98.4322 0.9381

18 98.5623 5 96,415            11,784            98.5623 0.8683

19 98.4627 5 83,755            10,383            98.4632 0.8477

20 98.3893 4 99,950            4,346               98.4632 0.8683

21 98.2400 5 89,775            12,522            98.5623 0.9086

22 98.1955 4 99,987            3,836               98.4322 0.9136

23 98.4627 5 71,640            5,234               98.4627 0.8477

24 98.1100 4 99,886            8,766               98.5623 0.9381

25 98.1415 4 99,989            7,618               98.5623 0.8631

Experiment

10 Folds CV
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Data : Synthetic Data

Method : Generalised Simulated Annealing

Classifier : Naïve Bayes Updateable

Iteration : 100,000

QA : 0.009

Fitness Tolerance 10 fold : 1.064513159

Fitness Tolerance 2fold : 0.392248689

Final Fitness 

Value Bundles

Convergence 

Point

Fit.Tolerance 

Convergence Best Accuracy

Weighted 

Kappa

1 97.0440 3 98,887            40,487            97.0440 1.0000

2 97.0440 3 92,600            49,316            97.0440 1.0000

3 96.8660 4 99,978            50,279            97.0440 0.9670

4 97.0440 3 98,398            32,793            97.0440 1.0000

5 97.0440 3 98,933            58,807            97.0440 1.0000

6 97.0440 3 98,685            46,787            97.0440 1.0000

7 97.0440 3 99,062            54,063            97.0440 1.0000

8 97.0440 3 92,059            45,542            97.0440 1.0000

9 97.0440 3 90,056            45,804            97.0440 1.0000

10 97.0440 3 95,483            36,971            97.0440 1.0000

11 97.0440 3 95,814            43,407            97.0440 1.0000

12 97.0440 3 98,278            62,507            97.0440 1.0000

13 97.0440 3 94,925            24,407            97.0440 1.0000

14 97.0440 3 98,449            35,491            97.0440 1.0000

15 97.0440 3 97,358            51,124            97.0440 1.0000

16 97.0440 3 99,287            27,252            97.0440 1.0000

17 97.0440 3 99,243            46,432            97.0440 1.0000

18 97.0440 3 95,902            26,885            97.0440 1.0000

19 97.0440 3 96,471            51,020            97.0440 1.0000

20 97.0440 3 98,714            70,774            97.0440 1.0000

21 97.0440 3 97,235            52,322            97.0440 1.0000

22 97.0440 3 96,953            34,078            97.0440 1.0000

23 97.0440 3 99,180            45,559            97.0440 1.0000

24 97.0440 3 97,370            44,552            97.0440 1.0000

25 97.0440 3 98,104            54,455            97.0440 1.0000

Average 97.0369 97,097            45,245            97.0440 0.9987

Experiment

2 Folds CV with 10 Repeats
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Data : Synthetic Data

Method : Generalised Simulated Annealing

Classifier : Naïve Bayes Updateable

Iteration : 100,000

QA : 0.009

Fitness Tolerance 10 fold : 1.064513159

Fitness Tolerance 2fold : 0.392248689

Final Fitness 

Value Bundles

Convergence 

Point Best Accuracy

Weighted 

Kappa

1 98.6000 4 62,038            98.6000 0.9670

2 98.6000 4 55,743            98.6000 0.9670

3 98.6000 4 64,127            98.6000 0.9670

4 98.3600 4 55,447            98.6000 0.9136

5 98.6000 4 66,661            98.6000 0.9670

6 98.6000 4 92,761            98.6000 0.9670

7 98.6000 4 72,152            98.6000 0.9670

8 98.6000 4 50,996            98.6000 0.9670

9 98.6000 4 55,515            98.6000 0.9670

10 98.6000 4 96,471            98.6000 0.9670

11 98.6000 4 90,164            98.6000 0.9670

12 98.6000 4 60,935            98.6000 0.9670

13 98.6000 4 62,130            98.6000 0.9670

14 98.6000 4 96,534            98.6000 0.9670

15 98.6000 4 80,442            98.6000 0.9670

16 98.6000 4 98,626            98.6000 0.9670

17 98.6000 4 55,462            98.6000 0.9670

18 98.6000 4 89,264            98.6000 0.9670

19 98.6000 4 59,229            98.6000 0.9670

20 98.6000 4 56,978            98.6000 0.9670

21 98.6000 4 56,728            98.6000 0.9670

22 98.6000 4 98,201            98.6000 0.9670

23 98.6000 4 54,541            98.6000 0.9670

24 98.6000 4 65,656            98.6000 0.9670

25 98.6000 4 78,374            98.6000 0.9670

Average 98.5904 71,007            98.6000 0.9649

Experiment

No Cross Validation
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Appendix 6E Noisy Fitness Tolerance  

Z-scores are expressed in terms of standard deviations from their means in normal 

distribution data. The Z-score value 1.98, which is equivalent to 97.61% data lie within 

the tolerance limit, is used in the computation of noisy fitness tolerance. 

To obtain the noisy fitness tolerance limit, the Z-score equation is used:- 






X
z     (Equation 6E-1) 

From Equation 6E-1, X is the upper limit which is unknown. The limit is defined as:- 

||  XL     (Equation 6E-2) 

To obtain the value of X:- 

  )(zX    (Equation 6E-3) 

In order to get the value of , a simulation was carried out on both data (visual field and 

synthetic). The simulation was run on the data (10,000 iterations) to get the distribution 

of fitness values (accuracy) for both 10FCV and 2FCV modelling strategy. The fitness 

value is called 100 times (using the same solution each iteration) for each iteration in the 

simulation.  Computation of noisy tolerance limit for the synthetic data 10FCV is as 

follows:- 

98.1z   7445.89   537633.0  

7445.89)537633.098.1( X  

X 90.80901 

|7445.8980901.90| L  

06451.1L  
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Appendix 7A Combination 

A combination is the number of ways to choose a sample of a number of elements from 

a set of distinct objects where order does not matter and replacements are not allowed. 

 

The number of combinations of k objects from a set with n objects is termed as
k

n C . 

])!(!/[! knknC k

n     (Equation 6A-1) 

For example, the combinations of {1,2,3,4} taken k=2 at a time are:- 

4! / [(2!)(4-2) !]  = 6 subsets 

{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}. 

Combinations for 2 objects from a set with 25 objects are:- 

25! / [(2!)(25-2)!]  = 300 subsets. 
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Appendix 7B kN Experiment Results 

RGFGSA xN Experiments (N : 45 variables) - Synthetic Data

x : 0.5 - 5.0

10,000 Iterations

10 Repeats

10-fold Cross Validation

QV : 1.4330930018498693 (for 100,000 iterations)

Fitness Fit_Conv Bundles WK Fitness Fit_Conv Bundles WK Fitness Fit_Conv Bundles WK

0 97.81 9,996               5 0.718 97.35102 9,994                6 0.787 97.37211 9,989               6 0.789

1 97.87 9,986               6 0.740 97.35708 9,990                7 0.765 98.1007 9,994               5 0.832

2 97.25 9,994               6 0.835 98.25837 9,967                3 1.000 97.91902 9,742               7 0.683

3 98.20 9,953               5 0.848 97.5307 9,938                6 0.845 98.49905 9,955               4 0.878

4 97.53 9,978               4 0.863 98.02776 9,996                4 0.967 97.56571 9,827               5 0.773

5 97.60 9,983               5 0.909 98.33835 9,990                5 0.936 96.67502 9,984               7 0.703

6 97.71 9,953               5 0.848 97.38394 9,961                6 0.819 97.3651 9,997               5 0.868

7 98.51 9,966               3 1.000 97.7384 9,982                5 0.800 97.55983 9,988               6 0.803

8 97.20 9,989               5 0.855 97.14676 9,999                6 0.798 97.27414 9,993               6 0.837

9 97.81 9,992               4 0.894 98.10487 9,993                3 1.000 98.53121 9,992               3 1.000

Avg 97.75 9,979               0.851 97.72372 9,981                0.872 97.68619 9,946               0.817

Fitness Fit_Conv Bundles WK Fitness Fit_Conv Bundles WK Fitness Fit_Conv Bundles WK

0 98.11 9,913               4 0.878 97.54649 9,984                4 0.894 97.90 9,987               3 1.000

1 98.08 9,991               3 1.000 97.26962 9,960                5 0.746 98.14 9,956               4 0.967

2 98.45 9,873               4 0.938 97.25279 9,867                7 0.657 97.24 9,997               5 0.933

3 98.39 9,983               3 1.000 97.4823 9,976                5 0.800 97.50 9,905               6 0.718

4 98.34 9,904               4 0.894 97.9716 9,975                4 0.938 97.90 9,999               5 0.886

5 97.45 9,996               5 0.800 96.79333 9,984                7 0.735 98.10 9,944               5 0.858

6 98.29 7,385               5 0.735 97.48397 9,994                6 0.789 97.43 10,000             6 0.806

7 97.76 10,000             4 0.938 97.88175 9,973                4 0.938 97.58 9,924               4 0.894

8 97.77 9,994               4 0.938 96.90287 9,995                6 0.723 97.73 9,966               4 0.868

9 97.99 9,966               6 0.842 97.30563 9,999                6 0.842 98.07 9,805               6 0.709

Avg 98.06 9,701               0.896 97.38904 9,971                0.806 97.76 9,948               0.864

Fitness Fit_Conv Bundles WK Fitness Fit_Conv Bundles WK Fitness Fit_Conv Bundles WK

0 97.98 9,929               5 0.858 97.13748 9,995                4 0.878 98.47283 9225 4 0.868

1 98.00 9,974               4 0.863 97.82702 9,384                6 0.776 98.41963 9,831               4 0.868

2 97.20 9,811               8 0.621 98.06427 9,782                5 0.909 97.33479 9,920               6 0.751

3 97.31 9,980               6 0.751 97.89013 9,984                4 0.967 97.84956 9,844               5 0.795

4 97.60 9,997               5 0.816 97.75402 9,950                5 0.827 97.80279 9,980               4 0.938

5 97.70 9,998               4 0.894 97.84138 9,998                4 0.894 98.41832 9,877               4 0.967

6 98.37 9,989               3 1.000 97.85573 9,887                4 0.868 97.034 9,978               7 0.740

7 98.01 9,965               4 0.878 97.99405 9,996                4 0.967 97.01854 9,988               6 0.850

8 96.81 9,964               6 0.689 97.86694 9,997                3 1.000 97.16567 10,000             6 0.718

9 97.31 9,915               6 0.695 98.04495 9,865                4 0.894 98.18954 9,984               4 0.914

Avg 97.63 9,952               0.807 97.8276 9,884                0.898 97.77057 9,863               0.841

Fitness Fit_Conv Bundles WK

0 97.22 9,957               6 0.683

1 97.32 10,000             5 0.832

2 97.88 9,998               5 0.768

3 98.11 9,780               4 0.878

4 97.39 9,997               6 0.824

5 98.63 9,470               3 1.000

6 98.12 9,951               4 0.967

7 96.41 9,972               8 0.615

8 98.44 9,888               3 1.000

9 98.41 9,984               3 1.000

Avg 97.79 9,900               0.857

5

Run

2 2.5

3.5 4 4.5

Run

Run

3

0.5 1 1.5

Run

 



 

 

275 

 

 

References 

Advanced Glaucoma Intervention Study Investigators (1994) 'Advanced Glaucoma 

Intervention Study: 2. Visual field test scoring and reliability', Ophthalmology, 

101(8), pp. 1445-1455. 

Agostini, F.P., Soares‐Pinto, D.D.O., Moret, M.A., Osthoff, C. and Pascutti, P.G. (2006) 

'Generalized simulated annealing applied to protein folding studies', Journal of 

computational chemistry, 27(11), pp. 1142-1155. 

Ajaz, R.H. and Hussain, L. (2015) 'Seed classification using machine learning 

techniques', Journal of Multidisciplinary Engineering Science and Technology, 

2(5). 

Akosa, J. (2017) 'Predictive Accuracy: A Misleading Performance Measure for Highly 

Imbalanced Data', Proceedings of the SAS Global Forum.  

Akram, S. and ul Ann, Q. (2015) 'Newton Raphson Method', International Journal of 

Scientific & Engineering Research, 6, pp. 7. 

Alam, F. and Pachauri, S. (2017) 'Detection using WEKA', Advances in Computational 

Sciences and Technology, 10(6), pp. 1731-1743. 

Al-Jefri, M.M., Evans, R., Ghezzi, P. and Uchyigit, G. (2017) 'Using machine learning 

for automatic identification of evidence-based health information on the web', 

Proceedings of the 2017 International Conference on Digital Health. ACM, 167-

174. 

Almeida, H., Meurs, M., Kosseim, L., Butler, G. and Tsang, A. (2014) 'Machine 

learning for biomedical literature triage', PloS one, 9(12), pp. e115892. 

Alpaydin, E. (2014) Introduction to machine learning. MIT press. 

Ananya Mandal (2012) Causes of visual impairment. Available at: http://www.news-

medical.net/health/Causes-of-visual-impairment.aspx (Accessed: December/22 

2016). 

Anderson, D., Drance, S. and Schulzer, M. (1998) 'The effectiveness of intraocular 

pressure reduction in the treatment of normal-tension glaucoma', American Journal 

of Ophthalmology, 126(4), pp. 498-505. 

Andricioaei, I. and Straub, J.E. (1996) 'Generalized simulated annealing algorithms 

using Tsallis statistics: Application to conformational optimization of a 

tetrapeptide', PHYSICAL REVIEW-SERIES E-, 53, pp. R3055-R3055. 

http://www.news-medical.net/health/Causes-of-visual-impairment.aspx
http://www.news-medical.net/health/Causes-of-visual-impairment.aspx


 

 

276 

 

 

Androutsopoulos, I., Koutsias, J., Chandrinos, K.V., Paliouras, G. and Spyropoulos, 

C.D. (2000) 'An evaluation of naive bayesian anti-spam filtering', arXiv preprint 

cs/0006013, . 

Artes, P.H., Nicolela, M.T., LeBlanc, R.P. and Chauhan, B.C. (2005) 'Visual field 

progression in glaucoma: total versus pattern deviation analyses', Investigative 

ophthalmology & visual science, 46(12), pp. 4600-4606. 

Asaoka, R., Iwase, A., Hirasawa, K., Murata, H. and Araie, M. (2014) 'Identifying 

“Preperimetric” Glaucoma in Standard Automated Perimetry Visual FieldsVisual 

Fields in Preperimetric Glaucoma', Investigative ophthalmology & visual science, 

55(12), pp. 7814-7820. 

Askarzadeh, A. (2016) 'A novel metaheuristic method for solving constrained 

engineering optimization problems: crow search algorithm', Computers & 

Structures, 169, pp. 1-12. 

Athey, S. (2017) 'Beyond prediction: Using big data for policy problems', Science (New 

York, N.Y.), 355(6324), pp. 483-485. 

Bagheri, S., Konen, W., Allmendinger, R., Branke, J., Deb, K., Fieldsend, J., 

Quagliarella, D. and Sindhya, K. (2017) 'Constraint handling in efficient global 

optimization', Proceedings of the Genetic and Evolutionary Computation 

Conference. ACM, 673-680. 

Balachandran, K. and ANITHA, D. (2014) 'Feature selection based on the classifier 

models: Performance issues in the pre-diagnosis of lung cancer', Journal of 

Theoretical and Applied Information Technology, 59(3). 

Balachandran, K. and Anitha, R. (2012) 'Dimensionality reduction based on the 

classifier models: Performance Issues in the prediction of Lung cancer', Software 

Engineering (CONSEG), 2012 CSI Sixth International Conference on. IEEE, 1-4. 

Barocas, S., Bradley, E., Honavar, V. and Provost, F. (2017) 'Big Data, Data Science, 

and Civil Rights', arXiv preprint arXiv:1706.03102, . 

Basseur, M. and Goëffon, A. (2013) 'Hill-climbing strategies on various landscapes: an 

empirical comparison', Proceeding of the fifteenth annual conference on Genetic 

and evolutionary computation conference. ACM, 479-486. 

Bebie, H., Fankhauser, F. and Spahr, J. (1976) 'Static perimetry: accuracy and 

fluctuations', Acta Ophthalmologica, 54(3), pp. 339-348. 



 

 

277 

 

 

Bengio, Y. and Grandvalet, Y. (2004) 'No unbiased estimator of the variance of k-fold 

cross-validation', Journal of machine learning research, 5(Sep), pp. 1089-1105. 

Bhargava, N., Sharma, G., Bhargava, R. and Mathuria, M. (2013) 'Decision tree 

analysis on j48 algorithm for data mining', Proceedings of International Journal of 

Advanced Research in Computer Science and Software Engineering, 3(6). 

Birch, M.K., Wishart, P.K. and O'Donnell, N.P. (1995) 'Determining progressive visual 

field loss in serial Humphrey visual fields', Ophthalmology, 102(8), pp. 1227-1235. 

Bizios, D., Heijl, A. and Bengtsson, B. (2007) 'Trained artificial neural network for 

glaucoma diagnosis using visual field data: a comparison with conventional 

algorithms', Journal of glaucoma, 16(1), pp. 20-28. 

Boden, C., Blumenthal, E.Z., Pascual, J., McEwan, G., Weinreb, R.N., Medeiros, F. and 

Sample, P.A. (2004) 'Patterns of glaucomatous visual field progression identified 

by three progression criteria', American Journal of Ophthalmology, 138(6), pp. 

1029-1036. 

Bohachevsky, I.O., Johnson, M.E. and Myron L. Stein (1986) 'Generalized Simulated 

Annealing for Function Optimization', Technometrics, 28(3), pp. 209-217. 

Bolón-Canedo, V., Sánchez-Maroño, N. and Alonso-Betanzos, A. (2013) 'A review of 

feature selection methods on synthetic data', Knowledge and information systems, 

34(3), pp. 483-519. 

Bonyadi, M.R. and Michalewicz, Z. (2016) 'Analysis of stability, local convergence, 

and transformation sensitivity of a variant of the particle swarm optimization 

algorithm', IEEE Transactions on Evolutionary Computation, 20(3), pp. 370-385. 

Bose, I. and Chen, X. (2009) 'Hybrid models using unsupervised clustering for 

prediction of customer churn', Journal of Organizational Computing and 

Electronic Commerce, 19(2), pp. 133-151. 

Bourne, R.R. (2006) 'The optic nerve head in glaucoma', Community eye health / 

International Centre for Eye Health, 19(59), pp. 44-45. 

Bowd, C. and Goldbaum, M.H. (2008) 'Machine learning classifiers in glaucoma', 

Optometry and vision science : official publication of the American Academy of 

Optometry, 85(6), pp. 396-405. 

Brinkman, G., Vance, G., Hannigan, M.P. and Milford, J.B. (2006) 'Use of synthetic 

data to evaluate positive matrix factorization as a source apportionment tool for 

PM2. 5 exposure data', Environmental science & technology, 40(6), pp. 1892-1901. 



 

 

278 

 

 

Broadway, D.C. (2012) 'Visual field testing for glaucoma - a practical guide', 

Community eye health, 25(79-80), pp. 66-70. 

Brooks, D.G. and Verdini, W.A. (1988) 'Computational experience with generalized 

simulated annealing over continuous variables', American Journal of Mathematical 

and Management Sciences, 8(3-4), pp. 425-449. 

Brooks, S.P. and Morgan, B.J. (1995) 'Optimization using simulated annealing', The 

Statistician, , pp. 241-257. 

Browne, M.W. (2000) 'Cross-validation methods', Journal of mathematical psychology, 

44(1), pp. 108-132. 

Brünger, A., Krukowski, A. and Erickson, J.W. (1990) 'Slow-cooling protocols for 

crystallographic refinement by simulated annealing', Acta Crystallographica 

Section A: Foundations of Crystallography, 46(7), pp. 585-593. 

Brusini, P. and Johnson, C.A. (2007) 'Staging functional damage in glaucoma: review of 

different classification methods', Survey of ophthalmology, 52(2), pp. 156-179. 

Bryan, K., Cunningham, P. and Bolshakova, N. (2005) 'Biclustering of expression data 

using simulated annealing', Computer-Based Medical Systems, 2005. Proceedings. 

18th IEEE Symposium on. IEEE, 383-388. 

Bryan, S.R., Vermeer, K.A., Eilers, P.H., Lemij, H.G. and Lesaffre, E.M. (2013) 

'Robust and censored modeling and prediction of progression in glaucomatous 

visual fields', Investigative ophthalmology & visual science, 54(10), pp. 6694-6700. 

Burgansky-Eliash, Z., Wollstein, G., Chu, T., Ramsey, J.D., Glymour, C., Noecker, 

R.J., Ishikawa, H. and Schuman, J.S. (2005) 'Optical coherence tomography 

machine learning classifiers for glaucoma detection: a preliminary study', 

Investigative ophthalmology & visual science, 46(11), pp. 4147-4152. 

Busetti, F. (2003) 'Simulated annealing overview', World Wide Web URL 

www.geocities.com/francorbusetti/saweb.pdf, . 

Campbell, L.R., Dahlberg, S., Dorward, R., Gerhard, J., Grubb, T., Purcell, C. and 

Sagan, B.E. (2016) 'Restricted growth function patterns and statistics', arXiv 

preprint arXiv:1605.04807, . 

Cao, H., Sen, P.K., Peery, A.F. and Dellon, E.S. (2016) 'Assessing agreement with 

multiple raters on correlated kappa statistics', Biometrical Journal, 58(4), pp. 935-

943. 

http://www.geocities.com/francorbusetti/saweb.pdf


 

 

279 

 

 

Capó, M., Pérez, A. and Lozano, J.A. (2017) 'An efficient approximation to the K-

means clustering for massive data', Knowledge-Based Systems, 117, pp. 56-69. 

Caprioli, J., Mock, D., Bitrian, E., Afifi, A.A., Yu, F., Nouri-Mahdavi, K. and Coleman, 

A.L. (2011) 'A method to measure and predict rates of regional visual field decay in 

glaucoma', Investigative ophthalmology & visual science, 52(7), pp. 4765-4773. 

Casabianca, J.M. and Junker, B.W. (2016) 'Multivariate normal distribution', Handbook 

of Item Response Theory, Volume Two: Statistical Tools, 21, pp. 35. 

Ceccon, S., Garway-Heath, D.F., Crabb, D.P. and Tucker, A. (2014) 'Exploring early 

glaucoma and the visual field test: Classification and clustering using bayesian 

networks', IEEE journal of biomedical and health informatics, 18(3), pp. 1008-

1014. 

Ceccon, S., Garway-Heath, D., Crabb, D. and Tucker, A. (2012) 'Non-stationary 

clustering bayesian networks for glaucoma', Proceedings of the Workshop on 

machine Learning for Clincial Data Analysis, ICML 2012.  

Chan, K., Lee, T., Sample, P.A., Goldbaum, M.H., Weinreb, R.N. and Sejnowski, T.J. 

(2002) 'Comparison of machine learning and traditional classifiers in glaucoma 

diagnosis', IEEE Transactions on Biomedical Engineering, 49(9), pp. 963-974. 

Chang, T., Hong, M., Liao, W. and Wang, X. (2016) 'Asynchronous distributed ADMM 

for large-scale optimization—part I: algorithm and convergence analysis', IEEE 

Transactions on Signal Processing, 64(12), pp. 3118-3130. 

Charnay, C., Lachiche, N. and Braud, A. (2015) 'Construction of complex aggregates 

with random restart hill-climbing', in Inductive Logic Programming. Springer, pp. 

49-61. 

Chawla, N.V., Japkowicz, N. and Kotcz, A. (2004) 'Special issue on learning from 

imbalanced data sets', ACM Sigkdd Explorations Newsletter, 6(1), pp. 1-6. 

Cheng, Y. and Church, G.M. (2000) 'Biclustering of expression data.', Ismb. , 93-103. 

Christian Nordqvist (2016) Glaucoma: Symptoms, Causes, Treatments. Available at: 

http://www.medicalnewstoday.com/articles/9710.php (Accessed: 29 December 

2016). 

Clements, M.P. and Hendry, D.F. (2002) 'Modelling methodology and forecast failure', 

The Econometrics Journal, 5(2), pp. 319-344. 

http://www.medicalnewstoday.com/articles/9710.php


 

 

280 

 

 

Crabb, D.P., Edgar, D.F., Fitzke, F.W., McNaught, A.I. and Wynn, H.P. (1995) 'New 

approach to estimating variability in visual field data using an image processing 

technique', The British journal of ophthalmology, 79(3), pp. 213-217. 

Dada, T., Dave, V. and Mithal, N. (2009) 'Medical Management of Glaucoma', Journal 

of Current Glaucoma Practice, 3(3), pp. 13-17. 

De Keyser, M., De Belder, M. and De Groot, V. (2017) 'Quality of life in glaucoma 

patients after selective laser trabeculoplasty', International journal of 

ophthalmology, 10(5), pp. 742. 

Dekkers, A. and Aarts, E. (1991) 'Global optimization and simulated annealing', 

Mathematical Programming, 50(1), pp. 367-393. 

Diab, D.M. and El Hindi, K.M. (2017) 'Using differential evolution for fine tuning naïve 

Bayesian classifiers and its application for text classification', Applied Soft 

Computing, 54, pp. 183-199. 

dos R Correia, E., Nascimento, V.B., de Castilho, C.M., Esperidiao, A.S., Soares, E.A. 

and de Carvalho, V.E. (2005) 'The generalized simulated annealing algorithm in the 

low energy electron diffraction search problem', Journal of Physics: Condensed 

Matter, 17(1), pp. 1. 

Drance, S.M. (1969) 'The early field defects in glaucoma', Investigative ophthalmology 

& visual science, 8(1), pp. 84-91. 

Dreiseitl, S., Ohno-Machado, L., Kittler, H., Vinterbo, S., Billhardt, H. and Binder, M. 

(2001) 'A comparison of machine learning methods for the diagnosis of pigmented 

skin lesions', Journal of Biomedical Informatics, 34(1), pp. 28-36. 

Edelman, G.M. and Gally, J.A. (2001) 'Degeneracy and complexity in biological 

systems', Proceedings of the National Academy of Sciences of the United States of 

America, 98(24), pp. 13763-13768. 

Enshaeifar, S., Hoseinitabatabaei, S., Ahrabian, A. and Barnaghi, P. (2017) 'Pattern 

Identification for State Prediction in Dynamic Data Streams', . 

Ester, M., Kriegel, H., Sander, J. and Xu, X. (1996) 'A density-based algorithm for 

discovering clusters in large spatial databases with noise.', Kdd. , 226-231. 

Fageeri, S.O., Ahmed, S.M.M., Almubarak, S.A. and Mu'azu, A.A. (2017) 'Eye 

refractive error classification using machine learning techniques', Communication, 

Control, Computing and Electronics Engineering (ICCCCEE), 2017 International 

Conference on. IEEE, 1-6. 



 

 

281 

 

 

Falkenauer, E. (1998) Genetic algorithms and grouping problems. John Wiley & Sons, 

Inc. 

Falkenauer, E. and Delchambre, A. (1992) 'A genetic algorithm for bin packing and line 

balancing', Robotics and Automation, 1992. Proceedings., 1992 IEEE International 

Conference on. IEEE, 1186-1192. 

Fang, L., Chen, P. and Liu, S. (2007) 'Particle swarm optimization with simulated 

annealing for TSP', Proceedings of the 6th Conference on 6th WSEAS Int. Conf. on 

Artificial Intelligence, Knowledge Engineering and Data Bases. , 206-210. 

Fang, R., Pouyanfar, S., Yang, Y., Chen, S. and Iyengar, S. (2016) 'Computational 

health informatics in the big data age: a survey', ACM Computing Surveys (CSUR), 

49(1), pp. 12. 

Fawcett, T. (2006) 'An introduction to ROC analysis', Pattern Recognition Letters, 

27(8), pp. 861-874. 

Fechtner, R.D. and Weinreb, R.N. (1994) 'Mechanisms of optic nerve damage in 

primary open angle glaucoma', Survey of ophthalmology, 39(1), pp. 23-42. 

Fernández, A., del Río, S., Chawla, N.V. and Herrera, F. (2017) 'An insight into 

imbalanced Big Data classification: outcomes and challenges', Complex & 

Intelligent Systems, , pp. 1-16. 

Finkelstein, J. (2017) 'Machine learning approaches to personalize early prediction of 

asthma exacerbations', Annals of the New York Academy of Sciences, 1387(1), pp. 

153-165. 

Fister Jr, I., Yang, X., Fister, I., Brest, J. and Fister, D. (2013) 'A brief review of nature-

inspired algorithms for optimization', arXiv preprint arXiv:1307.4186, . 

Fitzke, F.W., Crabb, D.P., McNaught, A.I., Edgar, D.F. and Hitchings, R.A. (1995) 

'Image processing of computerised visual field data', The British journal of 

ophthalmology, 79(3), pp. 207-212. 

Fitzke, F.W., Hitchings, R.A., Poinoosawmy, D., McNaught, A.I. and Crabb, D.P. 

(1996) 'Analysis of visual field progression in glaucoma', The British journal of 

ophthalmology, 80(1), pp. 40-48. 

Flammer, J., Drance, S., Augustiny, L. and Funkhouser, A. (1985) 'Quantification of 

glaucomatous visual field defects with automated perimetry.', Investigative 

ophthalmology & visual science, 26(2), pp. 176-181. 



 

 

282 

 

 

Foster, K.R., Koprowski, R. and Skufca, J.D. (2014) 'Machine learning, medical 

diagnosis, and biomedical engineering research-commentary', Biomedical 

engineering online, 13(1), pp. 94. 

Foster, P.J. and Johnson, G.J. (2001) 'Glaucoma in China: how big is the problem?', The 

British journal of ophthalmology, 85(11), pp. 1277-1282. 

Fraley, C. and Raftery, A.E. (2002) 'Model-based clustering, discriminant analysis, and 

density estimation', Journal of the American statistical Association, 97(458), pp. 

611-631. 

Frank, E. and Bouckaert, R. (2006) 'Naive bayes for text classification with unbalanced 

classes', Knowledge Discovery in Databases: PKDD 2006, , pp. 503-510. 

Franklin, L.R. (2005) 'Exploratory experiments', Philosophy of Science, 72(5), pp. 888-

899. 

Friedman, J.H. (1997) 'On bias, variance, 0/1—loss, and the curse-of-dimensionality', 

Data mining and knowledge discovery, 1(1), pp. 55-77. 

Friedman, N., Geiger, D. and Goldszmidt, M. (1997) 'Bayesian network classifiers', 

Machine Learning, 29(2-3), pp. 131-163. 

Fukui, T., Sato, S. and Takahashi, A. (2016) 'Estimating Style Weights of Mutual Funds 

by Monte Carlo Filter with Generalized Simulated Annealing', . 

Fushiki, T. (2011) 'Estimation of prediction error by using K-fold cross-validation', 

Statistics and Computing, 21(2), pp. 137-146. 

Gagneur, J., Friedel, C., Heun, V., Zimmer, R. and Rost, B. (2017) 'Bioinformatics 

advances biology and medicine by turning big data troves into knowledge', 

Informatik-Spektrum, 40(2), pp. 153-160. 

Garey, M.R. and Johnson, D.S. (1979) 'Computers and intractability: a guide to the 

theory of NP-completeness. 1979', San Francisco, LA: Freeman, 58. 

Garway-Heath, D.F., Poinoosawmy, D., Fitzke, F.W. and Hitchings, R.A. (2000) 

'Mapping the visual field to the optic disc in normal tension glaucoma eyes', 

Ophthalmology, 107(10), pp. 1809-1815. 

Gasch, A.T., Wang, P. and Pasquale, L.R. (2000) 'Determinants of glaucoma awareness 

in a general eye clinic', Ophthalmology, 107(2), pp. 303-308. 



 

 

283 

 

 

George-Nektarios, T. (2013) 'Weka classifiers summary', Athens University of 

Economics and Bussiness Intracom-Telecom, Athens, . 

Glaucoma Research Foundation (2014) Symptoms of Open-Angle Glaucoma. Available 

at: http://www.glaucoma.org/glaucoma/symptoms-of-primary-open-angle-

glaucoma.php (Accessed: December/22 2016). 

Glaucoma Research Foundation (2013) Five Common Glaucoma Tests. Available at: 

http://www.glaucoma.org/glaucoma/diagnostic-tests.php (Accessed: December/19 

2016). 

Goffe, W.L., Ferrier, G.D. and Rogers, J. (1994) 'Global optimization of statistical 

functions with simulated annealing', Journal of Econometrics, 60(1-2), pp. 65-99. 

Gravina, D., Liapis, A. and Yannakakis, G.N. (2017) 'Surprise Search for Evolutionary 

Divergence', arXiv preprint arXiv:1706.02556, . 

Haley, M.J. (1986) The field analyzer primer. Allergan Humphrey. 

Hamming, R.W. (1950) 'Error detecting and error correcting codes', Bell Labs Technical 

Journal, 29(2), pp. 147-160. 

Han, T.D. and Abdelrahman, T.S. (2017) 'Use of Synthetic Benchmarks for Machine-

Learning-Based Performance Auto-Tuning', Parallel and Distributed Processing 

Symposium Workshops (IPDPSW), 2017 IEEE International. IEEE, 1350-1361. 

Hayreh, S.S. (2011) 'Structure of the Optic Nerve', in Ischemic Optic Neuropathies. 

Springer, pp. 7-34. 

He, H. and Garcia, E.A. (2009) 'Learning from imbalanced data', IEEE Transactions on 

Knowledge and Data Engineering, 21(9), pp. 1263-1284. 

He, Y., Pan, W. and Lin, J. (2006) 'Cluster analysis using multivariate normal mixture 

models to detect differential gene expression with microarray data', Computational 

Statistics & Data Analysis, 51(2), pp. 641-658. 

Heijl, A., Leske, M.C., Bengtsson, B., Hyman, L., Bengtsson, B. and Hussein, M. 

(2002) 'Reduction of intraocular pressure and glaucoma progression: results from 

the Early Manifest Glaucoma Trial', Archives of Ophthalmology, 120(10), pp. 

1268-1279. 

Heijl, A., Lindgren, G. and Olsson, J. (1987) 'A package for the statistical analysis of 

visual fields', Seventh International Visual Field Symposium, Amsterdam, 

September 1986. Springer, 153-168. 

http://www.glaucoma.org/glaucoma/symptoms-of-primary-open-angle-glaucoma.php
http://www.glaucoma.org/glaucoma/symptoms-of-primary-open-angle-glaucoma.php
http://www.glaucoma.org/glaucoma/diagnostic-tests.php


 

 

284 

 

 

Heijl, A. and Patella, V.M. (2002) Essential perimetry: The field analyzer primer. Carl 

Zeiss Meditec. 

Heimberg, G., Bhatnagar, R., El-Samad, H. and Thomson, M. (2016) 'Low 

dimensionality in gene expression data enables the accurate extraction of 

transcriptional programs from shallow sequencing', Cell systems, 2(4), pp. 239-250. 

Helsgaun, K. (2009) 'General k-opt submoves for the Lin–Kernighan TSP heuristic', 

Mathematical Programming Computation, 1(2-3), pp. 119-163. 

Henson, D., Spenceley, S.E. and Bull, D. (1997) 'Artificial neural network analysis of 

noisy visual field data in glaucoma', Artificial Intelligence in Medicine, 10(2), pp. 

99-113. 

Herland, M., Khoshgoftaar, T.M. and Wald, R. (2014) 'A review of data mining using 

big data in health informatics', Journal of Big Data, 1(1), pp. 2. 

Hill, E.J., Roberts, C., Franklin, J.M., Enescu, M., West, N., MacGregor, T.P., Chu, 

K.Y., Boyle, L., Blesing, C., Wang, L.M., Mukherjee, S., Anderson, E.M., Brown, 

G., Dutton, S., Love, S.B., Schnabel, J.A., Quirke, P., Muschel, R., McKenna, 

W.G., Partridge, M. and Sharma, R.A. (2016) 'Clinical Trial of Oral Nelfinavir 

before and during Radiation Therapy for Advanced Rectal Cancer', Clinical cancer 

research : an official journal of the American Association for Cancer Research, 

22(8), pp. 1922-1931. 

Hoffman, K.L., Padberg, M. and Rinaldi, G. (2013) 'Traveling salesman problem', in 

Encyclopedia of operations research and management science. Springer, pp. 1573-

1578. 

Hoffmann, J. (2001) 'FF: The fast-forward planning system', AI magazine, 22(3), pp. 57. 

Hsu, C., Chang, C. and Lin, C. (2003) 'A practical guide to support vector 

classification', . 

Hutchinson, J.K. (2012) 'Optic neuropathies: glaucomatous vs. non-glaucomatous', 18th 

annual glaucoma report.Rev Optom, 149, pp. 58. 

Iester, M., Capris, P., Pandolfo, A., Zingirian, M. and Traverso, C.E. (2000) 'Learning 

effect, short-term fluctuation, and long-term fluctuation in frequency doubling 

technique', American Journal of Ophthalmology, 130(2), pp. 160-164. 

Jacobson, S.H. and Yücesan, E. (2004) 'Analyzing the performance of generalized hill 

climbing algorithms', Journal of Heuristics, 10(4), pp. 387-405. 



 

 

285 

 

 

Jain, A.K., Murty, M.N. and Flynn, P.J. (1999) 'Data clustering: a review', ACM 

computing surveys (CSUR), 31(3), pp. 264-323. 

James C. Tsai (2016) High Eye Pressure and Glaucoma. Available at: 

http://www.glaucoma.org/gleams/high-eye-pressure-and-glaucoma.php (Accessed: 

10 January 2017). 

Jay, J.L. and Murdoch, J.R. (1993) 'The rate of visual field loss in untreated primary 

open angle glaucoma', The British journal of ophthalmology, 77(3), pp. 176-178. 

Jebb, A.T., Parrigon, S. and Woo, S.E. (2017) 'Exploratory data analysis as a foundation 

of inductive research', Human Resource Management Review, 27(2), pp. 265-276. 

Jennifer Skillen (2007) Understanding Visual Fields. Available at: 

http://www.ssc.education.ed.ac.uk/courses/VI&multi/vnov072i.html (Accessed: 

December/19 2016). 

Jiao, L. and Wang, L. (2000) 'A novel genetic algorithm based on immunity', IEEE 

Transactions on Systems, Man, and Cybernetics-part A: systems and humans, 

30(5), pp. 552-561. 

John Berdahl (2016) Glaucoma: Types, Symptoms, Diagnosis And Treatment. Available 

at: http://www.allaboutvision.com/conditions/glaucoma.htm (Accessed: 

December/29 2016). 

John, G.H. and Langley, P. (1995) 'Estimating continuous distributions in Bayesian 

classifiers', Proceedings of the Eleventh conference on Uncertainty in artificial 

intelligence. Morgan Kaufmann Publishers Inc., 338-345. 

Jung, J., Jayakrishnan, R. and Park, J.Y. (2016) 'Dynamic Shared‐Taxi Dispatch 

Algorithm with Hybrid‐Simulated Annealing', Computer‐Aided Civil and 

Infrastructure Engineering, 31(4), pp. 275-291. 

Kale, B., Siravuri, H.V., Alhoori, H. and Papka, M.E. (2017) 'Predicting Research that 

will be Cited in Policy Documents', arXiv preprint arXiv:1706.04140, . 

Katz, J., Gilbert, D., Quigley, H.A. and Sommer, A. (1997) 'Estimating progression of 

visual field loss in glaucoma', Ophthalmology, 104(6), pp. 1017-1025. 

Kelley, C.T. (2003) Solving nonlinear equations with Newton's method. Siam. 

 

http://www.glaucoma.org/gleams/high-eye-pressure-and-glaucoma.php
http://www.ssc.education.ed.ac.uk/courses/VI&multi/vnov072i.html
http://www.allaboutvision.com/conditions/glaucoma.htm


 

 

286 

 

 

Kerrigan-Baumrind, L.A., Quigley, H.A., Pease, M.E., Kerrigan, D.F. and Mitchell, 

R.S. (2000) 'Number of ganglion cells in glaucoma eyes compared with threshold 

visual field tests in the same persons', Investigative ophthalmology & visual 

science, 41(3), pp. 741-748. 

Khanmohammadi, S., Adibeig, N. and Shanehbandy, S. (2017) 'An improved 

overlapping k-means clustering method for medical applications', Expert Systems 

with Applications, 67, pp. 12-18. 

Khaw, P.T., Wells, A.P. and Lim, K.S. (2003) 'Surgery for glaucoma', The British 

journal of ophthalmology, 87(4), pp. 517. 

Kiang, M.Y. (2003) 'A comparative assessment of classification methods', Decision 

Support Systems, 35(4), pp. 441-454. 

Kibriya, A.M., Frank, E., Pfahringer, B. and Holmes, G. (2004) 'Multinomial Naive 

Bayes for Text Categorization Revisited.', Australian Conference on Artificial 

Intelligence. Springer, 488-499. 

Kim, S.J., Cho, K.J. and Oh, S. (2017) 'Development of machine learning models for 

diagnosis of glaucoma', PloS one, 12(5), pp. e0177726. 

Kirkpatrick, S., Gelatt, C.D.,Jr and Vecchi, M.P. (1983) 'Optimization by simulated 

annealing', Science (New York, N.Y.), 220(4598), pp. 671-680. 

Klaver, C.C., Wolfs, R.C., Vingerling, J.R., Hofman, A. and de Jong, P.T. (1998) 'Age-

specific prevalence and causes of blindness and visual impairment in an older 

population: the Rotterdam Study', Archives of Ophthalmology, 116(5), pp. 653-658. 

Klein, P.N. and Young, N.E. (2010) 'Approximation algorithms for NP-hard 

optimization problems', Algorithms and theory of computation handbook. Chapman 

& Hall/CRC, 34-34. 

Kodinariya, T.M. and Makwana, P.R. (2013) 'Review on determining number of Cluster 

in K-Means Clustering', International Journal, 1(6), pp. 90-95. 

Kohavi, R. (1995) 'A study of cross-validation and bootstrap for accuracy estimation 

and model selection', Ijcai. , 1137-1145. 

Kojima, K. (1971) 'Is there a constant fitness value for a given genotype? NO!', 

Evolution, 25(2), pp. 281-285. 



 

 

287 

 

 

Krichene, A. and Krichene, A. (2017) 'Using a naive Bayesian classifier methodology 

for loan risk assessment: Evidence from a Tunisian commercial bank', Journal of 

Economics, Finance and Administrative Science, 22(42), pp. 3-24. 

Kriegel, H., Kröger, P. and Zimek, A. (2009) 'Clustering high-dimensional data: A 

survey on subspace clustering, pattern-based clustering, and correlation clustering', 

ACM Transactions on Knowledge Discovery from Data (TKDD), 3(1), pp. 1. 

Kristie Draskovic, John J. McSoley (2016) Automated Perimetry: Visual Field Deficits 

in Glaucoma and Beyond. Available at: 

https://www.reviewofoptometry.com/ce/automated-perimetry-visual-field-deficits-

in-glaucoma-and-beyond (Accessed: 17 January 2016). 

Landhuis, E. (2017) 'Neuroscience: big brain, big data', Nature, 541(7638), pp. 559-561. 

Lang, K.J. (2016) 'Hill climbing beats genetic search on a boolean circuit synthesis 

problem of koza's', Proceedings of the Twelfth International Conference on 

Machine Learning. , 340-343. 

Lee, D.A. and Higginbotham, E.J. (2005) 'Glaucoma and its treatment: a review.', 

American journal of health-system pharmacy, 62(7). 

Lee, H., Kim, H., Kim, M. and Kim, J. (2016) 'A fast convergence LLL algorithm with 

fixed-complexity for SIC-based MIMO detection', Information Networking 

(ICOIN), 2016 International Conference on. IEEE, 439-441. 

Leung, K.M. (2007) 'Naive bayesian classifier', Polytechnic University Department of 

Computer Science/Finance and Risk Engineering, . 

Lilliefors, H.W. (1967) 'On the Kolmogorov-Smirnov test for normality with mean and 

variance unknown', Journal of the American statistical Association, 62(318), pp. 

399-402. 

Lim, A., Rodrigues, B. and Zhang, X. (2006) 'A simulated annealing and hill-climbing 

algorithm for the traveling tournament problem', European Journal of Operational 

Research, 174(3), pp. 1459-1478. 

Lin, S. (1965) 'Computer solutions of the traveling salesman problem', Bell System 

Technical Journal, 44(10), pp. 2245-2269. 

Liu, X., Cheng, G. and Wu, J.X. (1994) 'Identifying the measurement noise in 

glaucomatous testing: an artificial neural network approach', Artificial Intelligence 

in Medicine, 6(5), pp. 401-416. 

https://www.reviewofoptometry.com/ce/automated-perimetry-visual-field-deficits-in-glaucoma-and-beyond
https://www.reviewofoptometry.com/ce/automated-perimetry-visual-field-deficits-in-glaucoma-and-beyond


 

 

288 

 

 

Lodi, A., Martello, S. and Vigo, D. (2002) 'Heuristic algorithms for the three-

dimensional bin packing problem', European Journal of Operational Research, 

141(2), pp. 410-420. 

Loechner, J. (2016) 90% Of Today's Data Created In Two Years. Available at: 

https://www.mediapost.com/publications/article/291358/90-of-todays-data-created-

in-two-years.html (Accessed: 22 December 2017). 

M. Z. M. B. Jilani, A. Tucker and S. Swift (2016) 'Simultaneous Modelling and 

Clustering of Visual Field Data', 2016 IEEE 29th International Symposium on 

Computer-Based Medical Systems (CBMS). , 213-218. 

Matwin, S. and Sazonova, V. (2012) 'Direct comparison between support vector 

machine and multinomial naive Bayes algorithms for medical abstract 

classification', Journal of the American Medical Informatics Association, 19(5), pp. 

917-917. 

McAfee, A. and Brynjolfsson, E. (2012) 'Big data: the management revolution', 

Harvard business review, 90(10), pp. 60-68. 

McKean-Cowdin, R., Varma, R., Wu, J., Hays, R.D., Azen, S.P. and Los Angeles 

Latino Eye Study Group (2007) 'Severity of visual field loss and health-related 

quality of life', American Journal of Ophthalmology, 143(6), pp. 1013-1023. 

Meer, K. (2007) 'Simulated annealing versus metropolis for a TSP instance', 

Information Processing Letters, 104(6), pp. 216-219. 

Meilă, M. and Heckerman, D. (2001) 'An experimental comparison of model-based 

clustering methods', Machine Learning, 42(1-2), pp. 9-29. 

Menin, O.H. and Bauch, C.T. (2017) 'Solving the patient zero inverse problem by using 

generalized simulated annealing', Physica A: Statistical Mechanics and its 

Applications, . 

Menin, O.H., Martinez, A.S. and Costa, A. (2016) 'Reconstruction of bremsstrahlung 

spectra from attenuation data using generalized simulated annealing', Applied 

Radiation and Isotopes, 111, pp. 80-85. 

Metwally, A., Agrawal, D. and El Abbadi, A. (2005) 'Efficient computation of frequent 

and top-k elements in data streams', International Conference on Database Theory. 

Springer, 398-412. 

Mikelberg, F.S. (1986) 'Visual field examination in glaucoma.', Optometry & Vision 

Science, 63(6), pp. 477-482. 

https://www.mediapost.com/publications/article/291358/90-of-todays-data-created-in-two-years.html
https://www.mediapost.com/publications/article/291358/90-of-todays-data-created-in-two-years.html


 

 

289 

 

 

Mirjalili, S. and Gandomi, A.H. (2017) 'Chaotic gravitational constants for the 

gravitational search algorithm', Applied Soft Computing, 53, pp. 407-419. 

Mitchell, M., Holland, J.H. and Forrest, S. (1994) 'When will a genetic algorithm 

outperform hill climbing', Advances in neural information processing systems. , 51-

58. 

Mojica, O. and Bassrei, A. (2015) 'Application of the Generalized Simulated Annealing 

Algorithm to the Solution of 2D Gravity Inversion of Basement Relief', 3rd Latin 

American Geosciences Student Conference.  

Morales, E., de Leon, John Mark S, Abdollahi, N., Yu, F., Nouri-Mahdavi, K. and 

Caprioli, J. (2016) 'Enhancement of Visual Field Predictions with Pointwise 

Exponential Regression (PER) and Pointwise Linear Regression (PLR)', 

Translational vision science & technology, 5(2), pp. 12-12. 

Moret, M.A., Pascutti, P.G., Bisch, P.M. and Mundim, K.C. (1998) 'Stochastic 

molecular optimization using generalized simulated annealing', Journal of 

computational chemistry, 19(6), pp. 647-657. 

Nakamura, K. and Hong, B. (2016) 'Fast-convergence superpixel algorithm via an 

approximate optimization', Journal of Electronic Imaging, 25(5), pp. 053035-

053035. 

Nayak, J., Acharya, R., Bhat, P.S., Shetty, N. and Lim, T. (2009) 'Automated diagnosis 

of glaucoma using digital fundus images', Journal of medical systems, 33(5), pp. 

337. 

NHS Choices (2016) Causes of glaucoma. Available at: 

http://www.nhs.uk/Conditions/Glaucoma/Pages/Causes.aspx (Accessed: 

December/19 2016). 

Nonnemaker, J. and Baird, H.S. (2009) 'Using synthetic data safely in classification', 

bold, 2, pp. 76. 

Nouri-Mahdavi, K., Hoffman, D., Coleman, A.L., Liu, G., Li, G., Gaasterland, D. and 

Caprioli, J. (2004) 'Predictive factors for glaucomatous visual field progression in 

the Advanced Glaucoma Intervention Study', Ophthalmology, 111(9), pp. 1627-

1635. 

Nouri-Mahdavi, K., Hoffman, D., Gaasterland, D. and Caprioli, J. (2004) 'Prediction of 

visual field progression in glaucoma', Investigative ophthalmology & visual 

science, 45(12), pp. 4346-4351. 

http://www.nhs.uk/Conditions/Glaucoma/Pages/Causes.aspx


 

 

290 

 

 

Nouri-Mahdavi, K., Hoffman, D., Ralli, M. and Caprioli, J. (2007) 'Comparison of 

methods to predict visual field progression in glaucoma', Archives of 

Ophthalmology, 125(9), pp. 1176-1181. 

O'Neil, M.A. and Burtscher, M. (2015) 'Rethinking the parallelization of random-restart 

hill climbing: a case study in optimizing a 2-opt TSP solver for GPU execution', 

Proceedings of the 8th Workshop on General Purpose Processing using GPUs. 

ACM, 99-108. 

Otori, Y., Takahashi, G., Urashima, M., Kuwayama, Y. and Quality of Life 

Improvement Committee (2017) 'Evaluating the Quality of Life of Glaucoma 

Patients Using the State Trait Anxiety Inventory', Journal of glaucoma, . 

Özgür, A. and Erdem, H. (2017) 'The impact of using large training data set KDD99 on 

classification accuracy', PeerJ Preprints, 5, pp. e2838v1. 

Papadimitriou, C.H. and Steiglitz, K. (1982) Combinatorial optimization: algorithms 

and complexity. Courier Corporation. 

Park, E., Chang, H.J. and Nam, H.S. (2017) 'Use of Machine Learning Classifiers and 

Sensor Data to Detect Neurological Deficit in Stroke Patients', Journal of medical 

Internet research, 19(4), pp. e120. 

Pascolini, D. and Mariotti, S.P. (2012) 'Global estimates of visual impairment: 2010', 

The British journal of ophthalmology, 96(5), pp. 614-618. 

Patil, T.R. and Sherekar, S. (2013) 'Performance analysis of Naive Bayes and J48 

classification algorithm for data classification', International Journal of Computer 

Science and Applications, 6(2), pp. 256-261. 

Pavlidis, S., Swift, S., Tucker, A. and Counsell, S. (2013) 'The Modelling of Glaucoma 

Progression through the Use of Cellular Automata', International Symposium on 

Intelligent Data Analysis. Springer, 322-332. 

Pendergast, S.D. and McCuen, B.W. (1996) 'Visual field loss after macular hole 

surgery', Ophthalmology, 103(7), pp. 1069-1077. 

Peng, W., Chen, J. and Zhou, H. (2009) 'An implementation of ID3-decision tree 

learning algorithm', From web.arch.usyd.edu.au/wpeng/DecisionTree2.pdf 

Retrieved date: May, 13. 

Penna, T.J. (1995) 'Traveling salesman problem and Tsallis statistics', Physical Review 

E, 51, pp. 1. 



 

 

291 

 

 

Phung, S.L., Bouzerdoum, A. and Nguyen, G.H. (2009) 'Learning pattern classification 

tasks with imbalanced data sets'. 

Pradeep Ramulu (2017) Standard Automated Perimetry. Available at: 

http://eyewiki.aao.org/Standard_Automated_Perimetry (Accessed: 28 March 

2017). 

Quigley, H.A. and Broman, A.T. (2006) 'The number of people with glaucoma 

worldwide in 2010 and 2020', The British journal of ophthalmology, 90(3), pp. 

262-267. 

Quigley, H.A. (2011) 'Glaucoma', The Lancet, 377(9774), pp. 1367-1377. 

Radcliffe, N.J. and Surry, P.D. (1994) 'Fitness Variance of Formae and Performance 

Prediction.', FOGA. Citeseer, 51-72. 

Ramrattan, R.S., Wolfs, R.C., Panda-Jonas, S., Jonas, J.B., Bakker, D., Pols, H.A., 

Hofman, A. and de Jong, P.T. (2001) 'Prevalence and causes of visual field loss in 

the elderly and associations with impairment in daily functioning: the Rotterdam 

Study', Archives of Ophthalmology, 119(12), pp. 1788-1794. 

Rennie, J.D., Shih, L., Teevan, J. and Karger, D.R. (2003) 'Tackling the poor 

assumptions of naive bayes text classifiers', ICML. Washington DC), 616-623. 

Resnikoff, S., Pascolini, D., Etya'ale, D., Kocur, I., Pararajasegaram, R., Pokharel, G.P. 

and Mariotti, S.P. (2004) 'Global data on visual impairment in the year 2002', 

Bulletin of the World Health Organization, 82(11), pp. 844-851. 

Ritch, R. and Schlötzer-Schrehardt, U. (2001) 'Exfoliation syndrome', Survey of 

ophthalmology, 45(4), pp. 265-315. 

Ritch, R., Schlötzer-Schrehardt, U. and Konstas, A.G. (2003) 'Why is glaucoma 

associated with exfoliation syndrome?', Progress in retinal and eye research, 

22(3), pp. 253-275. 

Rizzo, M.I., Greco, A., De Virgilio, A., Gallo, A., Taverniti, L., Fusconi, M., Conte, M., 

Pagliuca, G., Turchetta, R. and de Vincentiis, M. (2017) 'Glaucoma: recent 

advances in the involvement of autoimmunity', Immunologic research, 65(1), pp. 

207-217. 

Rokach, L. and Maimon, O. (2005) 'Clustering methods', Data mining and knowledge 

discovery handbook, , pp. 321-352. 

http://eyewiki.aao.org/Standard_Automated_Perimetry


 

 

292 

 

 

Romeijn, H.E. and Smith, R.L. (1994) 'Simulated annealing for constrained global 

optimization', Journal of Global Optimization, 5(2), pp. 101-126. 

Ronan, T., Qi, Z. and Naegle, K.M. (2016) 'Avoiding common pitfalls when clustering 

biological data', Science signaling, 9(432), pp. re6. 

Rudolph, G. (1994) 'Convergence analysis of canonical genetic algorithms', IEEE 

Transactions on Neural Networks, 5(1), pp. 96-101. 

Rutenbar, R. (1989) 'Simulated annealing algorithms: an overview', Circuits and 

Devices Magazine, IEEE, 5(1), pp. 19-26. 

Sacchi, L., Tucker, A., Counsell, S., Garway-Heath, D. and Swift, S. (2014) 'Improving 

predictive models of glaucoma severity by incorporating quality indicators', 

Artificial Intelligence in Medicine, 60(2), pp. 103-112. 

Selman, B. and Gomes, C.P. (2006) 'Hill-climbing search', Encyclopedia of Cognitive 

Science, 81, pp. 82. 

Shavlik, J.W., Mooney, R.J. and Towell, G.G. (1991) 'Symbolic and neural learning 

algorithms: An experimental comparison', Machine Learning, 6(2), pp. 111-143. 

Shih, Y. (1999) 'Families of splitting criteria for classification trees', Statistics and 

Computing, 9(4), pp. 309-315. 

Signor, S.A., Arbeitman, M.N. and Nuzhdin, S.V. (2016) 'Gene networks and 

developmental context: the importance of understanding complex gene expression 

patterns in evolution', Evolution & development, 18(3), pp. 201-209. 

Sivapriya, C. and Latha, P. (2017) 'Optic Nerve Head Segmentation for Early Diagnosis 

of Glaucoma Based on Active Contour Model', International Journal of 

Engineering Science, 5177. 

Skiścim, C.C. and Golden, B.L. (1983) 'Optimization by simulated annealing: A 

preliminary computational study for the tsp', Proceedings of the 15th conference on 

Winter Simulation-Volume 2. IEEE Press, 523-535. 

Sleath, B., Sayner, R., Vitko, M., Carpenter, D.M., Blalock, S.J., Muir, K.W., 

Giangiacomo, A.L., Hartnett, M.E. and Robin, A.L. (2017) 'Glaucoma patient-

provider communication about vision quality-of-life', Patient education and 

counseling, 100(4), pp. 703-709. 

Spry, P.G.D. and Johnson, C.A. (2002) 'Identification of Progressive Glaucomatous 

Visual Field Loss', Survey of ophthalmology, 47(2), pp. 158-173. 



 

 

293 

 

 

ST APOR, K. (2006) 'Support vector clustering algorithm for identification of glaucoma 

in ophthalmology', bulletin of the polish academy of sciences technical sciences, 

54(1). 

Stylianou, A. and Talias, M.A. (2017) 'Big data in healthcare: a discussion on the big 

challenges', Health and Technology, 7(1), pp. 97-107. 

Sullivan-Mee, M., Halverson, K.D., Saxon, G.B., Saxon, M.C., Shafer, K.M., Sterling, 

J.A., Sterling, M.J. and Qualls, C. (2005) 'The relationship between central corneal 

thickness-adjusted intraocular pressure and glaucomatous visual-field loss', 

Optometry-Journal of the American Optometric Association, 76(4), pp. 228-238. 

Sun, Y., Kamel, M.S., Wong, A.K. and Wang, Y. (2007) 'Cost-sensitive boosting for 

classification of imbalanced data', Pattern Recognition, 40(12), pp. 3358-3378. 

Sundar, P.P. (2013) 'A Comparative Study For Predicting Students Academic 

Performance using Bayesian Network Classifiers', IOSR Journal of Engineering 

(IOSRJEN) e-ISSN, , pp. 2250-3021. 

Sutter, J.M., Dixon, S.L. and Jurs, P.C. (1995) 'Automated descriptor selection for 

quantitative structure-activity relationships using generalized simulated annealing', 

Journal of chemical information and computer sciences, 35(1), pp. 77-84. 

Swift, S. and Liu, X. (2002) 'Predicting glaucomatous visual field deterioration through 

short multivariate time series modelling', Artificial Intelligence in Medicine, 24(1), 

pp. 5-24. 

Swift, S., Tucker, A., Crampton, J. and Garway-Heath, D. (2007) 'An improved 

restricted growth function genetic algorithm for the consensus clustering of retinal 

nerve fibre data', Proceedings of the 9th annual conference on Genetic and 

evolutionary computation. ACM, 2174-2181. 

Swift, S., Tucker, A., Vinciotti, V., Martin, N., Orengo, C., Liu, X. and Kellam, P. 

(2004) 'Consensus clustering and functional interpretation of gene-expression data', 

Genome biology, 5(11), pp. R94. 

Szu, H. and Hartley, R. (1987) 'Fast simulated annealing', Physics letters A, 122(3), pp. 

157-162. 

Tao, W. and Wei-hua, L. (2010) 'Naive bayes software defect prediction model', 

Computational Intelligence and Software Engineering (CiSE), 2010 International 

Conference on. IEEE, 1-4. 



 

 

294 

 

 

Tasoulis, D., Plagianakos, V. and Vrahatis, M. (2004) 'Unsupervised clustering of 

bioinformatics data', European Symposium on Intelligent Technologies, Hybrid 

Systems and their implementation on Smart Adaptive Systems, Eunite. , 47-53. 

Taylor, M. and Mildenberger, T. (2017) 'Extending electronic length frequency analysis 

in R', Fisheries Management and Ecology, 24(4), pp. 330-338. 

Thylefors, B. and Negrel, A.D. (1994) 'The global impact of glaucoma', Bulletin of the 

World Health Organization, 72(3), pp. 323-326. 

Tielsch, J.M., Sommer, A., Katz, J., Royall, R.M., Quigley, H.A. and Javitt, J. (1991) 

'Racial variations in the prevalence of primary open-angle glaucoma: the Baltimore 

Eye Survey', Jama, 266(3), pp. 369-374. 

Tovée, M.J. (2008) An Introduction to the Visual System. Second edn. Cambridge, UK: 

Cambridge University Press. 

Tovey, C.A. (1985) 'Hill climbing with multiple local optima', SIAM Journal on 

Algebraic Discrete Methods, 6(3), pp. 384-393. 

Tran, B., Xue, B. and Zhang, M. (2016) 'Genetic programming for feature construction 

and selection in classification on high-dimensional data', Memetic Computing, 8(1), 

pp. 3-15. 

Tsai, Y. and Chatterjee, A. (2017) 'Comprehensive, Quantitative Crack Detection 

Algorithm Performance Evaluation System', Journal of Computing in Civil 

Engineering, 31(5), pp. 04017047. 

Tsallis, C. (1988) 'Possible generalization of Boltzmann-Gibbs statistics', Journal of 

statistical physics, 52(1-2), pp. 479-487. 

Tsallis, C. and Stariolo, D.A. (1996) 'Generalized simulated annealing', Physica A: 

Statistical Mechanics and its Applications, 233(1), pp. 395-406. 

Tucker, A., Crampton, J. and Swift, S. (2005) 'Rgfga: An efficient representation and 

crossover for grouping genetic algorithms', Evolutionary computation, 13(4), pp. 

477-499. 

Tucker, A., Vinciotti, V., Liu, X. and Garway-Heath, D. (2005) 'A spatio-temporal 

Bayesian network classifier for understanding visual field deterioration', Artificial 

Intelligence in Medicine, 34(2), pp. 163-177. 



 

 

295 

 

 

Turpin, A., Frank, E., Hall, M., Witten, I. and Johnson, C. (2001) 'Determining 

progression in glaucoma using visual fields', Advances in Knowledge Discovery 

and Data Mining, , pp. 136-147. 

VanBuren, J., Oleson, J.J., Zamba, G.K. and Wall, M. (2016) 'Integrating independent 

spatio‐temporal replications to assess population trends in disease spread', Statistics 

in medicine, 35(28), pp. 5210-5221. 

Varma, S. and Simon, R. (2006) 'Bias in error estimation when using cross-validation 

for model selection', BMC bioinformatics, 7(1), pp. 1. 

Varty, Z. (2017) 'Simulated Annealing Overview', . 

Veneziano, D., Di Bella, S., Nigita, G., Laganà, A., Ferro, A. and Croce, C.M. (2016) 

'Non‐coding RNA: Current Deep Sequencing Data Analysis Approaches and 

Challenges', Human mutation, . 

Viera, A.J. and Garrett, J.M. (2005) 'Understanding interobserver agreement: the kappa 

statistic', Fam Med, 37(5), pp. 360-363. 

Viswanathan, A.C., Fitzke, F.W. and Hitchings, R.A. (1997) 'Early detection of visual 

field progression in glaucoma: a comparison of PROGRESSOR and STATPAC 2', 

The British journal of ophthalmology, 81(12), pp. 1037-1042. 

Vizarim, N.P., Carlone, M., Verga, L.G. and Venegas, P.A. (2017) 'Critical Forces at 

Fractional Matching Fields in Superconducting Thin Films with Triangular Pinning 

Lattice', Materials Research, (AHEAD), pp. 0-0. 

Wan, C. and Freitas, A.A. (2017) 'An empirical evaluation of hierarchical feature 

selection methods for classification in bioinformatics datasets with gene ontology-

based features', Artificial Intelligence Review, , pp. 1-40. 

Wandell, B.A., Dumoulin, S.O. and Brewer, A.A. (2007) 'Visual field maps in human 

cortex', Neuron, 56(2), pp. 366-383. 

Wang, M., Li, B., Zhang, G. and Yao, X. (2017) 'Population Evolvability: Dynamic 

Fitness Landscape Analysis for Population-based Metaheuristic Algorithms', IEEE 

Transactions on Evolutionary Computation, . 

Wang, Y. and Hajli, N. (2017) 'Exploring the path to big data analytics success in 

healthcare', Journal of Business Research, 70, pp. 287-299. 



 

 

296 

 

 

Wang, Q., Garrity, G.M., Tiedje, J.M. and Cole, J.R. (2007) 'Naive Bayesian classifier 

for rapid assignment of rRNA sequences into the new bacterial taxonomy', Applied 

and Environmental Microbiology, 73(16), pp. 5261-5267. 

Weinreb, R.N. and Khaw, P.T. (2004) 'Primary open-angle glaucoma', The Lancet, 

363(9422), pp. 1711-1720. 

Whitley, D., Sutton, A.M., Ochoa, G. and Chicano, F. (2014) 'The component model for 

elementary landscapes and partial neighborhoods', Theoretical Computer Science, 

545, pp. 59-75. 

Wolpert, D.H. and Macready, W.G. (1997) 'No free lunch theorems for optimization', 

IEEE transactions on evolutionary computation, 1(1), pp. 67-82. 

Woods, C.T. and Laederach, A. (2017) 'Classification of RNA structure change by 

‘gazing’at experimental data', Bioinformatics, 33(11), pp. 1647-1655. 

World Health Organization (2007) 'Global Initiative for the Elimination of Avoidable 

Blindness: action plan 2006-2011', . 

Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., 

Ng, A., Liu, B. and Philip, S.Y. (2008) 'Top 10 algorithms in data mining', 

Knowledge and information systems, 14(1), pp. 1-37. 

Xiang, Y. and Gong, X. (2000) 'Efficiency of generalized simulated annealing', Physical 

Review E, 62(3), pp. 4473. 

Xiang, Y., Sun, D., Fan, W. and Gong, X. (1997) 'Generalized simulated annealing 

algorithm and its application to the Thomson model', Physics Letters A, 233(3), pp. 

216-220. 

Xiang, Y., Gubian, S. and Martin, F. (2017) 'Generalized Simulated Annealing', in 

Computational Optimization in Engineering-Paradigms and Applications. InTech. 

Xiang, Y., Gubian, S., Suomela, B. and Hoeng, J. (2013) 'Generalized Simulated 

Annealing for Global Optimization: The GenSA Package.', R Journal, 5(1). 

Xie, L., Draizen, E.J. and Bourne, P.E. (2017) 'Harnessing big data for systems 

pharmacology', Annual Review of Pharmacology and Toxicology, 57, pp. 245-262. 

Yang, M., Yang, J., Zhang, Q., Niu, Y. and Li, J. (2013) 'Classification of retinal image 

for automatic cataract detection', e-Health Networking, Applications & Services 

(Healthcom), 2013 IEEE 15th International Conference on. IEEE, 674-679. 



 

 

297 

 

 

Yang, X. (2009) 'Firefly algorithms for multimodal optimization', International 

symposium on stochastic algorithms. Springer, 169-178. 

Yang, Y. and Chen, W. (2016) 'Taiga: performance optimization of the C4. 5 decision 

tree construction algorithm', Tsinghua Science and Technology, 21(4), pp. 415-425. 

Yang, Z., Huo, H. and Fang, T. (2017) 'Automatically finding the number of clusters 

based on simulated annealing', Journal of Shanghai Jiaotong University (Science), 

22(2), pp. 139-147. 

Yau, S.S., Wang, J., Niknejad, A., Lu, C., Jin, N. and Ho, Y.K. (2003) 'DNA sequence 

representation without degeneracy', Nucleic acids research, 31(12), pp. 3078-3080. 

Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E. and Ruzzo, W.L. (2001) 'Model-

based clustering and data transformations for gene expression data', Bioinformatics, 

17(10), pp. 977-987. 

Yoon, K. and Kwek, S. (2007) 'A data reduction approach for resolving the imbalanced 

data issue in functional genomics', Neural Computing and Applications, 16(3), pp. 

295-306. 

Zhang, D., Chow, C., Liu, A., Zhang, X., Ding, Q. and Li, Q. (2017) 'Efficient 

evaluation of shortest travel-time path queries through spatial mashups', 

GeoInformatica, , pp. 1-26. 

Zhang, H., Kang, Y., Zhu, Y., Zhao, K., Liang, J., Ding, L., Zhang, T. and Zhang, J. 

(2017) 'Novel naïve Bayes classification models for predicting the chemical Ames 

mutagenicity', Toxicology in Vitro, 41, pp. 56-63. 

Zhang, J., Wang, S., Chen, L. and Gallinari, P. (2017) 'Multiple Bayesian discriminant 

functions for high-dimensional massive data classification', Data Mining and 

Knowledge Discovery, 31(2), pp. 465-501. 

Zhang, P. (1993) 'Model selection via multifold cross validation', The Annals of 

Statistics, , pp. 299-313. 

Zhang, W., Feng, H., Wu, H. and Zheng, X. (2017) 'Accounting for tumor purity 

improves cancer subtype classification from DNA methylation data', 

Bioinformatics, , pp. btx303. 

Zhang, X., Dastiridou, A., Francis, B.A., Tan, O., Varma, R., Greenfield, D.S., 

Schuman, J.S., Huang, D. and Advanced Imaging for Glaucoma Study Group 

(2017) 'Comparison of Glaucoma Progression Detection by Optical Coherence 

Tomography and Visual Field', American Journal of Ophthalmology, . 



 

 

298 

 

 

Zhao, Y., Healy, B.C., Rotstein, D., Guttmann, C.R., Bakshi, R., Weiner, H.L., Brodley, 

C.E. and Chitnis, T. (2017) 'Exploration of machine learning techniques in 

predicting multiple sclerosis disease course', PloS one, 12(4), pp. e0174866. 

  


