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Abstract-ln this paper, we propose a novel local search 
heuristic and then hybridize it with a genetic algorithm for k- 
medoid clustering of large data sets, which is an NP-hard 
optimization problem The local search heuristic selects k 
medoids from the data set and tries to efficiently minimize the 
total dissimilarity within each cluster. In order to deal with 
the local optimality, the local search heuristic is hybridized 
with a genetic algorithm and then the Hybrid IC-medoid 
Algorithm (HKA) is proposed. Our experiments show that, 
compared with previous genetic algorithm based k-medoid 
clustering approaches . GCA and RAR.-GA, HKA can 
provide better clustering solutioos and do so more efficiently. 
Experiments use two gene expression data sets, which may 
involve large noise components. 

1. INTRODUCITON 

Clustering is useful in exploratory data analysis. Cluster 
analysis organizes data by grouping individuals in a 
population in order to discover structure or clusters. 
Various types of clustering algorithms have been proposed 
to suit different requirements. To cluster large data sets, 
there is a general consensus that partitional algorithms are 
imperative [5].  Partitional clustering algorithms generate a 
single partitioning, with a specified or estimated number 
of clusters. in an attempt to recover natural groups present 
in the data. Many partitional algorithms have been 
proposed, some based on k-centroid, some based on k- 
medoid, some based on fuzzy analysis, etc. 

K-medoid clustering is similar to k-centroid clustering. 
Both of them attempt to partition the data by assigning 
each object to a representative and then optimizing a 
statistical homogeneity criterion - namely, the total 
expected squared dissimilarity. However, k-medoid 
clustering only allows objects to be chosen as 
representatives. In comparison with k-centroid, the use of 
medoids for clustering has several advantages. Firstly, this 
method has been shown to be robust to the existence of 
noise or outliers (i.e., objects that are very far away from 
the rest of objects) and generally produces clusters of high 
quality Secondly, this method can he used not only on 
points or vectors for which the mean is defined but also on 
any objects for which a similarity measure between two 
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objects is given. Moreover, there are fundamentd 
modeling reasons to prefer medoids over centroids [ l  I]. 

K-medoid clustering of large data sets is an NP-hard 
optimization problem and genetic algorithms have been 
introduced to handle the problem. For example, Lucasius 
et al. [51 proposed the Genetic Clustering Algorithrn 
(GCA), which was tested on three simulated large data 
sets. Estivill-Castro and Murray 131 recommended anothcr 
method called RAR,-GA. It is based on a crossover 
operator named Random Assorting Recombination 
(RARJ. which tries to supply desirable properties (respect 
and proper assortment) to the genetic search. 

One main problem of earlier work on applying genetic 
algorithm to k-medoid clustering of large data sets is that it 
is computationally expensive. In this paper, we propose a 
novel local search heuristic and then hybridize it with a 
genetic algorithm for k-medoid clustering. The local 
search heuristic selects k medoids from the data set and 
tries to efficiently minimize the total dissimilarity within 
each cluster. In order to deal with the local optimality, the 
local search heuristic is hybridized with a genetic 
algorithm and then the Hybrid K-medoid Algorithm 
(HKA) is  proposed. Our experiments show that. compared 
with GCA and RAR,-GA, HKA can provide better 
clustering solutions and do so more efficiently. 
Experiments use two gene expression data sets, which may 
involve large noise components since genes can show 
large variations under minor changes of the experimental 
conditions. 

The outline of the paper is as follows. We briefly 
review k-means algorithm in section 2. Sections 3 and 4 
provide the details of our proposed local search heuristic 
and its genetic algorithm hybridization - HKA. Data sets 
employed in this work are described in section 5 .  Section 
6 contains a description of how various parameters for 
HKA can be set. Section 7 details the experiments and 
compares the HKA against GCA and RAR,-GA. Lastly, 
section 8 presents our conclusions and future work. 

11. K-MEANS ALGORITHM 

The k-means algorithm [41 has been popularly used for 
clustering because of its simplicity and efficiency. It is an 
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iterative scheme attempting to minimize the sum of 
squared Euclidean distances between objects and cluster 
centers. Let x, (i=1,2,. ..n) be a data set X with n objects. k, 
the number of clusters, m,, the centroid of cluster C, 
(i=I,Z,.,.k). Then the algorithm tries to minimize the cost 
function - Mean Square Error (MSE) 

Starting from an initial distribution of cluster centers in 
data space, each object is assigned to the cluster with the 
closest center, after which each center itself is updated as 
the center of mass of all objects belonging to that 
particular cluster. The procedure is repeated until 
convergence. Mathematically the steps can be stated 
below. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Place k points into the space represented by the 
objects that are being clustered. These points 
represent initial group centroids. 
Assign each object to the group that has the 
closest centroid under squared Euclidean 
distance metric. 
When all objects have been assigned, recalculate 
the positions of k centroids m,. 
Repeat steps 2 and 3 until the centroids do not 
change any more. 

This scheme is known to converge sufficiently fast. 
However it's not designed for the k-medoid problem, in 
which only objects are allowed to he chosen as 
representatives. 

111. THE LOCAL SEARCH HEURISTIC 

Our local search heuristic is based on k-medoid. 
Replacing the centroids with the medoids and considering 
the Euclidean distance in equation ( I ) ,  we obtain the 
following cost function - Sum of Euclidean Distance 
(SED), where m, represents the medoid of cluster C, 
(j=l,Z,.. .k). 

Compared with the popularly used squared Euclidean 
distance. the consideration of Euclidean distance is 
mathematically more difficult, however, it is statistically 
more robust 171. Outliers or noise, which by nature should 
be regarded with less weight than other objects, are given 
far much more weight than other objects if the squared 
value is utilized. 

Strictly speaking, an exhaustive search over the data set 
X is required to solve equation (2). However, following 

the efficient k-means algorithm, we describe the local 
search heuristic below to identify the k medoids. 

Step 1. Fix the number of clusters k and the number of 
the nearest neighborsp. 

Step2. Randomly select k medoids (without 
replacement) from the data set X. These objects 
represent initial k medoids. 
Assign each object in X to the cluster Cj with the 
closest medoid under Euclidean distance metric. 
Update k medoids. For j=l to the number of 
clusters k do 
a) Within the cluster Cj, choose a subset CsUaser 

that corresponds to m, and its p nearest 
neighbors (which have no1 been evaluated 
before current iteration) of m,. 

Step 3. 

Step4. 

b) Calculate the new medoid 

after that the old medoid mj is replaced by q 
if it is different from m,. 

c) Repeat steps (a) and (b) until the medoid 
does not change any more. 

Repeat steps 3 and 4 until k medoids do not 
change any more. 

Step5. 

To minimize the function (2), our heuristic mainly 
consists of two loops (outer loop and inner loop). The 
outer loop searches for k medoids with progressively 
lower costs. Starting from the initialization by randomly 
selecting k medoids from the data set that is being 
clustered, the outer loop firstly assigns each object to a 
corresponding cluster with the closest medoid. after which 
the k medoids are updated by inner loop. This procedure 
repeats until convergence. The inner loop (a)-(c), 
however, searches for a medoid with progressively lower 
costs within the corresponding cluster. If the current 
medoid has already been compared with its p nearest 
neighbors and is still the lowest cost, the current medoid is 
declared to be a "local" minimum of the corresponding 
cluster otherwise it is replaced by the one with the lowest 
cost. This procedure repeats until convergence and all k 
medoids are updated in this way. The idea of using size p 
is to get a group of objects around a medoid within the 
corresponding cluster and then identify an object with a 
lower cost as well as the direction where there may exist 
an object that can minimize the cost. 

Unlike some other k-medoid clustering algorithms 
which typically have time complexity of O(nz) per 
iteration, our heuristic only requires O(ipn), where i is the 
iteration number of inner loops and p is a small number of 
the nearest neighbors e.g. 3 is  used in our experiments. 
Furthermore. our heuristic is more general in  the sense 
that it is applicable to situations where the objects to be 
clustered cannot he represented by numerical features. For 
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example, it can be used to cluster web objects (pages, 
URLs), which are nonnumeric in nature. 

Iv. HYBRID &MEDOID ALGORITHM 

The local search k-medoid clustering heuristic works 
quite efficiently, however it falls in the category of 
alternating cluster estimation paradigm [91 and is not 
guaranteed to find the global minimum. The standard 
solution may the heuristic many times from different 
initialization and retain the best solution, i.e. the one with 
the smallest SED. Our suggestion here, however, is to 
hybridize the local search heuristic with a genetic 
algorithm which works as follows. 

Step 1 .  Randomly initialize a population with P 
individuals. Each individual uniquely encodes a 
candidate solution of the k-medoid clustering 
problem. 
Calculate SED value according to equation (2) 
for each individual in the initial population and 
set the fitness value as f = IISED. 
Repeat (a) to (e) until the stopping criterion is 
met. 
a) Use 2-fold tournament selection to select PI2 

parent pairs for reproduction. 
h) Do mix subset recombination crossover on 

parent pairs and then perform p i p  mutation 
on each feature of the offspring with some 
probability. 

c) Run one step of the local search heuristic on 
the new offspring with some probability and 
update the offspring. 

d) Calculate SED value according to equation 
(2) for each offspring member and set fitness 
of the member equal to IISED, 

e) Create the new generation of size P from the 
one best member of the previous generation 
and the best offspring. 

S t e p 4 .  Provide the individual for the terminal 
population member with the best fitness. 

Step 2. 

Step 3. 

A. Representation 

The representation consists of a vector of k features 
(integer numbers), which represent the index of an object 
selected as a medoid and k is the number of medoids. 
Cluster assignment is done implicitly based on distance of 
the objects to the medoids. Only valid individuals that 
have no duplicated index are considered to be included in 
the initial population. 

B. Crossover and Mutation 

Crossover is a probabilistic process that exchanges 
information between two parent individuals for generating 

two offspring. In order to avoid producing illegal 
individuals or producing offspring identical to the parents, 
we apply the mix subset recombination crossover 151, 
which has a built-in mutation with probability of Pm,,* 
Given two parent individuals X, and X, with k features, 
mix subset recombination crossover works as follows: 
( I )  Mix X, and X, to obtian X,, by appending one parent 

individual to another and then the features of 
resulting Xmb are randomly scrabled. 

(2) Perform flip mutation on each feature of X,,,, with a 
predetermined probability Pm,,, and then randomly 
scrable the features of X,,again. 

(3) Build the offspring X, by coping features from X,, 
starting at the IeAmost feature and going featurewise 
to the right, subject to the condition that features 
already in X, are skipped. 

(4) Build the offspring X, by coping features from X,, 
starting at the rightmost feature and going featurewise 
to the left. subject to the condition that features 
already in X, are skipped. 

The crossover is applied on each paired parent with 
probability of P,. 

After crossover, the probability P, of flip mutation will 
be applied to the offspring. Flip mutation replaces the 
chosen feature by another randomly generated feature, 
subject to the restriction that the new feature is not 
presented in the current genotype of the individual. 

C. Fitness Function 

The fitness calculation of an individual is based on the 
medoids formed according to the features encoded in the 
chromosome. It was defined as f = USED, in which SED is 
computed according equation (2), sa that the 
maximization of the fitness leads to the minimization of 
SED. 

D. Stopping Criteria 

There are several possibilities for determining when the 
alogirhtm should stop. Options include the fitness 
threshold, population convergence and fitness 
convergence, etc. In HKA, two different stopping criteria 
are used separately in our experiments. The first stopping 
criterion is that the fitness value of the best population 
member has not changed for n generations. The second 
one is the number of generations, i.e. the evolution stops 
when the user-specified number of generations has been 
run. 

V. DATASKTDESCRIPT~ON 

A. Serum Data 

This data set is described and used in (61. It 
corresponds to the selection of 517 genes whose 
expression vary in response to serum concentration in 
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human fibroblasts (the data can be downloaded from: 
htto:llwww-iabmc.u-strasha.frloroiets/fc~seNm.txt~. 
There are IO clusters found by [61. Here, we expect the 
same number of clusters from it. 

B. Subyeast Dara 

The subyeast is a subset of the yeast cell cycle data set 
provided by [I]. The yeast cell cycle data set contains 
time-course expression profiles for more than 6220 genes, 
with 17 time points for each gene taken at 10-min intervals 
covering nearly two yeast cell cycles (160min). This data 
set is very attractive because a large number of genes 
contained in it are biologically characterized and have 
been assigned to different phases of the cell cycle. The 
subyeast data used in this work is from [IO]. We used the 
same selection of 2945 genes, which are most variable 
genes out of 6220. In that selection, the data for the time 
points 90 and 100 min are excluded because of less 
elticient labeling of their mRNA during the original chip 
hybridizations. The 2945 genes are clustered into 30 
clusters using k-means in that paper. Here, we set the same 
number of clusters for our experiments. 

Both gene data sets are normalized so that every gene 
has an average expression value of zero and a standard 
deviation equal to one. Normally, to measure the 
dissimilarity between two genes one tends to choose 
correlation coefficients which capture the similarity of the 
“shapes” of two expression profiles, and ignores 
differences between their magnitudes. However, Euclidean 
distance metric is used for all results reported here since it 
has heen’shown that the correlation coefficient and 
Euclidean distance are equivalent on a standardized gene 
expression data set [12]. 

VI. PARAMETERS CONFIGURATION 

Before running HKA, there are some parameters that 
need to be set including the crossover probability P,, 
mutation probability P,, build-in mutation probability 
P,,,, population size, the order of tournament selection. 
probability of one step of local search heuristic and its 
number of the nearest neighbor size p. 

Generally, we have found that a crossover rate of 0.9- 
1.0 offers best results, thus the probability (P,) is set to 
0.95. The mutation rate (P.) and build-in mutation rate 
( P m , A  were set at 0.02 and 0.05 respectively. Both 
mutations are useful to add new features to offspring 
individuals and allow them to search other areas that have 
not explored by the algorithm. 

For population size setting. we found HKA performs 
well on a generally small population. However, a too small 
population would retard the search ability of HKA. Based 
on vial runs, we found a population size of 30 for serum 
data and 50 for subyeast data to he an acceptable lower 
limit, and better performance can he obtained by using a 
large population size. 

The order of tournament selection controls how quickly 
dominant individuals take over a population. A higher 
order of tournament selection leads to faster convergence 
to a local extremum and restricts the HKA’s space search 
capability. In order to alleviate the selection pressure and 
provide adequate search, the tournament order is set to he 
as low as possible, i.e. 2.  

The optimal probability of applying one step of local 
search heuristic and its p size have been determined based 
on a number of trials. We found a probability of 0.2 of 
applying one step of local search heuristic withp size of 3 
performs well on the two gene expression data sets. 

VII. EXPERIMENTS 

In this section, we compare the performance of HKA 
with GCA and RAR,-GA in terms of efficiency and 
solution quality on above two gene expression data sets. 
Rather than fitness value, we report the SED value for all 
experiments. This allows us to compare performance of 
the different algorithms with similar hut different fitness 
functions. All results reported in this section are obtained 
on a PC with AMD Athlon 1800 running Windows2000 
operation system. 

Before comparing the performance of the three 
algorithms, we give a brief description of the genetic 
algorithm used in GCA and RAR,GA. In GCA, a genetic 
algorithm based on roulette selection, a mix subset 
recombination crossover and a flip bit mutation are used 
with integer coding for k-medoid clustering. In RAR,-GA. 
a similar genetic algorithm was used but with a crossover 
method called Random Assorted Recombination (RARJ, 
which tries to supply desirable properties (respect and 
proper assortment) [31 to genetic search. Given two parent 
individuals XI and X ,  with k features, RAR, iteratively 
added features into one single offspring X,. At each 
iteration, a random number was drawn uniformly in 
I0,ll. If <cur (a predefined threshold), a feature was 
selected randomly from (XI  n X&X, and included into 
X,. If >cut, a feature was selected randomly and 
uniformly from (XI  U X,)- [ (Xl  l l  X,) U Xn] and included 
into X,. If (XI r7 X,)-X, or (X I  U X&[ (XI n X,) U X,] 
was empty before Xo had k features, Xn was completed 
with random features from ( X ,  U X,)-X, The fitness 
function for both GCA and RAR,-GA is the inverse of the 
total distortion, however in GCA it is further modified by 
a linear scaling. 

To make the comparison among the three algorithms 
more meaningful, the population size setting of GGA and 
RAR,-GA on the two data sets is identical to that in HKA. 
The rest of the parameters of GCA and RAR,,-GA are 
shown in table I .  They are specified according to the 
original papers for best performance. (Note: A much 
smaller mutation probability is  used for RAR,,-GA and 
HKA because it is applied on each feature of the offspring 
individuals. However, in GCA the mutation probability is 
applied on each individual of the offspring.) 
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Table 1. THE PARAME'ER SEl"GS OF THE THREE 
ALGORITHMS (GCA. RARwGA AND HKA) FOR 
EXPERMENTS ON TWO GENE EXPRESSION DATA SETS 

~~~ 

Build-inmutation 
probability PmmY 

I Alprithm 
GCA 1 RARwGA I HKA 

Parameter 

,2i NIA oo5 

Algofitbm 

Cut value ( w )  

nei hhors ) 
Probability of one step of 

local search heuristic 

mj 
N,A 

Two different sets of experiments are carried out using 
different stopping criteria. One set of experiments applies 
the first stopping criterion that the fitness value of the best 
population member has not changed for n generations. For 
experiments on serum data, a reasonable n value is set to 
be 20 for HKA and 100 for both of GCA and RAR,-CA. 
On subyeast data, it is set to be IO and 50 respectively. 
Another set of experiments applies the second stopping 
criterion that the evolution stops when the user-specified 
number of generations has been run. In order to make the 
comparison among the three algorithms as fair as possible 
under the second stopping criterion, we have carefully 
determined the number of generations performed by each 
algorithm in such a way that all the three algorithms go 
through roughly the same number of solution evaluations. 
This is fair because the majority of processing time in the 
three algorithms is taken by solution evaluations. More 
precisely, the n u d e r  of generations setting and 
corresponding total number of solution evaluations are 
listed as follows in table 2 for serum and subyeast data. 
(Note: The total number of solution evaluations is 
averaged over IO trials since each mn of HKA for the 
same number of generations it i s  slightly different.) 

Table 1. THE NUMBER OF GENERAnONS SETIWG AND 
CORRESPONDING TOTAL NUMBER OF SOLUTION 
EVALUATlON FOR EXPERIMENTS USE THE SECOND 
STOPPING CRITERION ON TWO GENE EXPRESSION 
DATA SETS 

Serumdata I Suhyeast data 

SED R~~ time SED Runtime 
(seconds) (seconds) 

....... .................. 
................ .......................... ........ ........... .... ............................ 

1 Solution TotalNo.of Eval. (30,0111 49,952 ~ , o w I  50,000 (30.0001 ~O.WOJ 

Parameter 

Population 
Size 

Generations 

To compare performance of the three algorithms in 
terms of efficiency and solution quality, we recorded 
average run rime and SED value found from the 
experiments that use the first stopping criterion. They are 

Algorithm 
GCA RAR.-GA HKA 

Serumbubyeas' Scrumbuhyeas Serum(Subyeas1 
30 1 50 30 I 50 30 I 50 

420 I 435 loo0 I loo0 loo0 1 IWO 

obtained by generating 10 random starting populations, 
and running each experiment once with each of the 10 
random starting populations. All the results were then 
averaged over the 10 trials. All experiments used the same 
IO random starting populations. Table 3 lists the average 
values of run time and SED found by the three algorithms 
on serum and subyeast data. 

Table 3. COMPARING THE AVERAGE VALUES OF RUN 
TIME AND SED FOUND BY THE THREE ALGORITHMS 
(GCA, RARwGA AND HKA) FROM THE EXPERIMENTS 
THAT USE THE FIRST STOPPING CRITERION ON TWO 
GENE EXPRESSION DATA SETS. THE RESULTS ARE 
AVERAGED OVER THE 10 TRIAL5 

-1 
HKA 17.2 861.076 1395.6 8019.2 

Testing on Serum gene expression data, table 3 shows 
that, on average, each run of GCA and RAR,-CA needs 
69.5 and 66.3 seconds respectively, which takes about 4 
times longer than HKA. Furthermore, on average HKA 
achieves better clustering solution than that of OCA and 
RAR,-GA. Testing on subyeast gene expression data, 
similar results are obtained. On average, GCA takes 
5150.8 seconds and results in ove.SED=8079.4, while 
RARw-GA takes 6200.3 seconds and results in 
ave.SED41 16.8. However HKA needs only 1395.6 
seconds and achieves ave.SED=8019.2. 

Another set of experiments is carried out using the 
second stopping criterion and run 10 repeated experiments 
over the three algorithms using random initialization. The 
average leaming curve for each of the three algorithms is 
then calculated. Figures I and 2 show the performance of 
the three algorithms in terms of SED value against 
solution evaluations. 

950 

880 

85(1 

Fig. 1. Toe average SED value found an scmm data by the three 
algorithms (HKA, GCA and RAR,GA) plotted against solution 
e"ill"ati0"S 
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Fig. 2. The average SED value found an subyeast data by the 
three algorithms (HKA, GCA and RARUGA) plotted against 
solution evaluations. 

As can be clearly seen from the above figures, HKA is 
much more efficient than the other two within the first 
several thousands solution evaluations. For GCA and 
RAR,-GA, even at the end of total allocated solution 
evaluations, the solution obtained can only be comparable 
with the solution found by HKA at around 1,000 and 
4,000 solution evaluations on serum and yeast data 
respectively. 

VIII. CONCLUSIONS AND FUTURE WORK 

In this paper, we considered the k-medoid clustering 
problem of large data sets. Since it is an NP-hard 
optimization problem, genetic algorithms have been 
introduced to handle the problem. However earlier work 
on the applications of genetic algorithm to the k-medoid 
clustering is computationally expensive. In this paper, we 
solve the problem by proposing a novel local search 
heuristic and hybridize it with a genetic algorithm. We test 
our proposed HKA on two gene expression data sets, 
which may involve large noise components. Our 
experiments show that, compared with previous genetic 
algorithm based approaches - GCA and RAR,-GA, HKA 
can provide better clustering solutions and do so more 
efficiently. 

HKA presented here can he used not only for gene 
expression data where the mean is defined, but also on any 
objects for which a similarity measure between two 
objects is given. Besides, the promising results lead us 
believe that HKA can be extended to a class of real world 
large clustering problems where other methods have not 
been appropriate. 

There are several issues for future research. For 
example, an interesting area is to get better results by 
applying other genetic operators and studying the best way 
of hybridizing the local search heuristic with a genetic 
algorithm. A dynamic HKA which does not require 
specification of the number of clusters priori will also be 
investigated, perhaps involving a fitness function which 
maximizes both the homogeneity within each cluster and 

the heterogeneity among clusters. Finally we intend to 
evaluate HKA against non-GA based k-medoid clustering 
approaches. 
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