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Abstract

Many applications in science involve finding estimates of unobserved variables

from observed data, by combining model predictions with observations. The

Sequential Monte Carlo (SMC) is a well-established technique for estimating

the distribution of unobserved variables which are conditional on current

observations. While the SMC is very successful at estimating the first central

moments, estimating the extreme quantiles of a distribution via the current

SMC methods is computationally very expensive. The purpose of this paper

is to develop a new framework using probability distortion. We use an SMC

with distorted weights in order to make computationally efficient inferences

about tail probabilities of future interest rates using the Cox-Ingersoll-Ross

(CIR) model, as well as with an observed yield curve. We show that the

proposed method yields acceptable estimates about tail quantiles at a fraction
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of the computational cost of the full Monte Carlo.

Keywords: Simulation, Sequential Monte Carlo, Extreme event simulation,

Risk analysis
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1. Introduction

This study concerns the problem of estimating the latent states of a dy-

namic system from observed time series data. Such problems arise in many

branches of the physical and social sciences, including the geosciences, navi-

gation and econometrics. Filtering is an indefinitely repetitive procedure of

merging model predictions and noisy observations for the purpose of making

estimates. The estimate of a state at a particular point in time is a proba-

bility distribution (conditional upon the observations which have been made

up to that time) which is, in some cases, characterized by its first few central

moments. The Kalman Filter (Kalman, 1960) is a commonly used estimator

for linear systems. Provided that the conditional densities are Gaussian and

that the Kalman Filter is used as a closed-form solution, the Kalman Filter

is most satisfactory.

When a system is nonlinear, a stochastic partial differential equation solu-

tion must typically be solved in order to generate a conditional distribution.

A numerical solution for such an equation is often intractable. This is espe-

cially the case when a real-time solution is being sought (e.g., in navigation

and tracking) or when the state or the observation dimension is high (e.g., in

the geosciences or econometrics). Nonlinear filtering in different disciplines

requires various Bayesian approximation methods, each of which require con-

cessions to the accurate estimation and computational loads which are par-

ticular to those implementations. To illustrate, the Extended Kalman Filter
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(EKF) (Anderson & Moore, 1979) and the Unscented Kalman Filter (UKF)

(Julier & Uhlmann, 2004), as well as their variants as cited in Date et al.,

(2008 and 2010) can all be listed as different approximation methods. A

sequential Monte Carlo (SMC), also called a particle filter, extends a dis-

crete approximation of conditional density. The SMC can also be used as a

recursive procedure for approximation of the conditional density at random

together with novel measurement and insight into state dynamics to form

discrete approximation of conditional density at the consecutive phase.

Considering the mean approximation and the covariance of the unobserv-

able variables, the SMC is likely to prove more accurate than filtering algo-

rithms which are based upon the linearization of dynamics and/or assump-

tions about Gaussianity (Gaussian density), such as the UKF. In the SMC,

the UKF and the EKF are frequently utilized for the purpose of producing an

approximate posterior distribution (e.g., a proposal distribution). The SMC

has experienced prominent theoretical advances regarding its asymptotic be-

haviour when the number of support points (or particles) at each time step

tend to infinity (Crisan & Doucet, 2002; Del Moral et al., 2012) and when

the state dimension tends to infinity (Snyder et al., 2008). Significant prac-

tical applications of the SMC range from tracking (e.g., Arulampalam et al.,

2002), financial mathematics (e.g., Lautier & Galli, 2004), the geosciences

(e.g., Van Leeuwen, 2010) and epidemiology (e.g., Barndorff-Nielsen & Shep-

hard, 2002), financial econometrics (e.g., Lopes & Tsay, 2010) and economics

(e.g., Sheinson et al., 2014).

On the contrary, the filtering problem has been far less explored in the

literature when the propagation of extreme quantiles in the conditional dis-

tribution is a greater concern than that of the propagation of its central

moments. Arriving at results with extreme probabilities may be fruitful for
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various applications in the context of econometrics (for instance, in determin-

ing the probability of the hyperinflation of a financially stable state) and the

geosciences (for example, in determining the probability of a rarely occurring

extreme weather condition, such as those which typically only occur once ev-

ery century). A simple simulation method when determining the probability

of an order of 1 in 1 million entails producing billions of primary random

variable samples. More promising methods can be used for computing tail

probabilities which are grounded in importance sampling and the utilization

of exponential twisted distributions which entail moving the mean towards

the extreme quantile in the event of normal distribution. Kaynar & Ridder

(2010) explore new importance sampling algorithms for the efficient simula-

tion of rare events. Despite this, their methods are not suited to recursive

Bayesian computations which are central for the employment of both SMC-

type method and time consuming algorithms.

One way of efficiently sampling from the tails of distributions is by distort-

ing the probability distribution by using an appropriate nonlinear weighting

function (e.g., Gonzalez & Wu, 1999; Mattos et al., 2006). Researches inves-

tigate the effect of various probability distortion functions for dealing with

the estimation of tail quantiles. The use of probability distortion function

may be helpful in various applications of many branches of the physical and

social sciences, including psychology (for example, in determining the prob-

ability distortion by means of a probability weighted function for making

decisions under risk (Gonzalez & Wu, 1999)) and econometrics (for example,

in determining the probability distortion for the hedging of futures contracts

(Mattos et al., 2006)).

The main objective of this paper is to investigate the use of probability

weight distortions for the SMC for the purpose of sampling from tail dis-
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tributions in a recursive fashion. As an application, we demonstrate that

the proposed modification can efficiently capture the extreme quantiles of

instantaneously compounded interest rate, i.e, the short rate (and hence the

extreme quantiles of the corresponding bond yields), when the short rate is

driven by the Cox-Ingersoll-Ross (CIR) process (Cox et al., 1985). The pro-

posed procedure can be adapted to other short rate processes, such as those

proposed by Vasicek (1977), Chan et al. (1992), and Longstaff & Schwartz

(1993). In fact, there is extensive literature on the use of filtering frameworks

in interest rate modelling (e.g., Geyer & Pichler, 1999; Chatterjee, 2005; Date

& Wang, 2009; De Rossi, 2010; Fileccia, 2012). Our work may be seen as a

generic extension of this existing body of work where the SMC is employed

to efficiently extract information about very low probability events. Besides

modelling interest rates, the proposed modification of the SMC has potential

applications in many other branches of science where filtering is employed

and where modelling the tail events is of interest. Possible research areas for

future exploration include applications in epidemiology and the geosciences.

The rest of the paper is organized as follows. In Section 2, the frame-

work for the sequential Monte Carlo method is outlined along with our novel

modification for distorting probability weights. In Section 3, the algorithm is

demonstrated with a simulation example. Finally, conclusions are provided

in Section 4.

2. Sequential Monte Carlo (SMC) methods

Sequential Monte Carlo (SMC) methods for recursive Bayesian estimation

are widely discussed in the literature. These methods solve recursive inference
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problem for state space models of the form:

xt = ft (xt−1, vt) , (1)

yt = ht (xt, nt) . (2)

Here, xt and yt are the state and observation vectors at time t (t = 1, . . . , T ),

respectively. vt and nt are the state and observation noise vectors at time t,

respectively. Moreover, ft and ht are possibly non-linear and time-dependent

functions of the state and observation vectors at time t, respectively.

For the sake of completeness, a variant of this class of methods described

in Doucet et al. (2000) is briefly outlined below. The reader is referred to

Gordon et al. (1993), Kong et al. (1994), and Doucet & Johansen (2008) for

more details.

Sequential Monte Carlo (SMC)

At time t = 1, 2, . . .

1. Importance Sampling

• For i = 1, . . . , N

– Sample x̃it ∼ π(xt | xi0:t−1, y0:t) and set x̃i0:t , (xi0:t−1, x̃
i
t).

• For i = 1, . . . , N

– Evaluate the importance weights up to a normalising con-

stants

w̃i
t = w̃i

t−1
p(yt | x̃it)p(x̃it | x̃it−1)
π(x̃it | x̃i0:t−1, y0:t)

.

• For i = 1, . . . , N

– Normalise the importance weights

wi
t =

w̃i
t

N∑
j=1

w̃j
t

.
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• Evaluate Neff using

Neff =
1

N∑
i=1

(wi
t)

2

.

2. Re-sampling

• If Neff > Nthreshold

– xi0:t = x̃i0:t for i = 1, . . . , N .

• Otherwise

– For i = 1, . . . , N , sample index j(i) distributed according to

the discrete distribution with N elements satisfying

Pr{j(i) = l} = w̃l
t for l = 1, . . . , N .

– For i = 1, . . . , N , xi0:t = x̃
j(i)
0:t and wi

t =
1

N
.

Given a discrete measure, {xit−1, wi
t−1}Ni=1 which approximates p(xt−1 |

yt−1), and a measurement yt, this procedure gives the discrete measure {xit, wi
t}Ni=1

which approximates p(xt, yt). The convergence results for the SMC can be

found in Crisan & Doucet (2002). The finite sample performance of the

SMC depends on the choice of importance density π(·|·). We will assume

in our work that we are utilizing the transition density itself. Moreover, we

explicitly introduce a distortion of probabilities in order to emphasize low

probability samples. Specifically, we use the following probability distortion

function before the re-sampling step in order to generate more particles from

the tail quantile.

W i
t =

exp (−s× w̃i
t)− 1

exp (−s)− 1
. (3)
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Here, s is a user-chosen coefficient and W i
t are the modified weights of these

particles. Re-sampling with distorted probabilities ensures that extra copies

of extreme values of xt are produced at each time step.

As an illustration of the impact of this weighting function, Figure 1 dis-

plays the modified weights W i
t with various s parameter values (1, 5, 10, 20,

50) compared to the standard weights, w̃i
t, which are defined in Equation 3.

It can clearly be seen that small probabilities will be over-weighted, while

high probabilities are still approximately the same when the modified weights

Insert Figure [1]

W i
t are applied compared to the standard weights w̃i

t. It is expected that

the estimation performance of the extreme values of x at each time with

the modified weighted SMC, as defined in the following algorithm, will work

better than the standard weighted SMC.

To predict and update Equations 1 and 2, the sequential Monte Carlo

(SMC) with modified particle weights using proposed probability distortion

(defined in Equation 3) is briefly outlined as follows:

SMC with probability distortion

At time t = 1, 2, . . .

1. Importance Sampling

• For i = 1, . . . , N

– Sample x̃it ∼ π(xt | xi0:t−1, y0:t) and set x̃i0:t , (xi0:t−1, x̃
i
t).

• For i = 1, . . . , N

– Evaluate the importance weights up to a normalising con-

stants

w̃i
t = w̃i

t−1
p(yt | x̃it)p(x̃it | x̃it−1)
π(x̃it | x̃i0:t−1, y0:t)

.

• For i = 1, . . . , N
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– Modify weights

W i
t =

exp (−s× w̃i
t)− 1

exp (−s)− 1
.

• For i = 1, . . . , N

– Normalise modified weights

wi
t =

W i
t

N∑
j=1

W j
t

.

• Evaluate Neff using

Neff =
1

N∑
i=1

(wi
t)

2

.

2. Re-sampling

• If Neff > Nthreshold

– xi0:t = x̃i0:t for i = 1, . . . , N .

• Otherwise

– For i = 1, . . . , N , sample index j(i) distributed according to

the discrete distribution with N elements satisfying

Pr{j(i) = l} = wl
t for l = 1, . . . , N .

– For i = 1, . . . , N , xi0:t = x̃
j(i)
0:t and wi

t =
1

N
.

3. Simulation Study

3.1. Model and methodology

This section focuses on the simulation study for the purpose of comparing

the performance of a sequential Monte Carlo (SMC) with modified (defined
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in Equation 3) and standard weights for estimating the extreme quantiles or

expectiles. The Cox-Ingersoll-Ross (CIR) (Cox et al., 1985) model has proved

to be very popular for archieving that in both the academic literature and

among practitioners due to the three features commonly observed in the data;

namely: the nonnegativity of interest rates; conditional heteroscedasticity;

and the time-varying market prices of risk (De Rossi, 2010). The CIR model

satisfies the following stochastic differential equation:

dxt = κ(θ − xt)dt+ σ
√
xtdZt,

where xt is assumed to be the interest rate and Zt is an independent Wiener

process at each time point, θ is the long-term mean of xt, and κ is its mean

reversion parameter. Moreover, the volatility parameter σ determines the

magnitude of changes in xt.

For this model, the yield of a zero coupon bond which matures after

T years is given in the following (give expression for it, with Equation 5,

define, at, bt here). This equation can be used for calibrating the model to

the observed yield curve, as well as for finding a yield for a non-standard

maturity. More details on the CIR can be found in standard text books,

such as Cairns (2004) and Kwok (2008).

There are various methods developed in the financial literature for esti-

mating CIR models. We estimate the following CIR model using the state

space approach described by Geyer & Pichler (1999). This model is consid-

ered to be a discretised state space form of the CIR model and is used as an

illustrative example (see e.g., Geyer & Pichler, 1999). The state (transition)

equation of this model is given by

xt = µt + vt vt ∼ N(0, Qt), (4)

where µt and Qt are distributed in such a way that the two moments of the
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approximate normal and exact transition density are equal. The µt is defined

as

µt = θ[1− exp(−κ∆t)] + exp(−κ∆t)xt−1,

where κ and θ are constants and ∆t is the time interval between t and t− 1.

The Qt would be defined as

Qt = σ21− exp(−κ∆t)

κ

(
θ

2
[1− exp(−κ∆t)] + exp(−κ∆t)xt−1

)
,

where σ is a constant.

The observation equation represents the linear relationship between the

observed yields (yt) and the state variables (xt). The observation equation

for the observed yields (yt), characterised by a time to maturity (τ), is given

by

yt = at + btxt + nt nt ∼ N(0, H), (5)

where nt is a T × 1 vector of measurement errors and H is the variance-

covariance matrix of nt. The errors nt are serially and cross-sectionally un-

correlated with a zero mean. In our application, the number of observed

yields and associated maturities do not change over time. Therefore, H has

a constant dimension of T × T and is assumed to be a diagonal matrix. The

at and bt would be defined as

at = − log
A(τ)

τ
,

bt =
B(τ)

τ
,

where τ denotes the maturity associated with the observed yields. The A(τ)
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and B(τ) would be defined as

A(τ) =

2φ1 exp(φ2
τ

2
)

φ4

φ3

,

B(τ) =
2 (exp(φ1τ)− 1)

φ4

,

where

φ1 =

√
(κ+ λ)2 + 2σ2,

φ2 = κ+ λ+ φ1,

φ3 =
2κθ

σ
,

φ4 = 2φ1 + φ2(exp(φ1τ)− 1).

Here, the quantities A and B are the known function of the maturity (τ), λ

is the risk premium parameter, and the CIR parameters are presented by κ,

θ and σ.

To compare the performance of the SMC with modified (defined in Equa-

tion 3) and standard weights, the CIR model simulation for interest rates in

the form of Equations 4 and 5 was chosen as an illustrative example, with

the following details being obtained from Geyer & Pichler (1999):

Step 1. Start SMC simulation with the following settings

(a) Parameters

κ θ σ λ

0.169 6.56 0.321 -0.201

(b) Maturity (τ)=1 year, Time Interval (∆t)=
1

12
(Monthly)

(c) Initial value of x0 ∼ N(0, 1). Also, any negative elements of the

xt|t are replaced with 0 through the simulation period due to

the nonnegativity restriction on the state variables: xt > 0 in

the CIR model for interest rates.
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(d) H is chosen as a constant as 1.

Step 2. Obtain xit and yit from step 1.

Step 3. Repeat step 1 and 2 for each simulation whose details are defined in

Table 1.

Insert Table [1]

Here, the SMC_10K and SMC_100 algorithms use the standard parti-

cle weights with 10,000 and 100 particles, respectively while the modified

SMC_100 algorithm uses the modified weights of the particles which were

discovered by means of the proposed probability distortion (this is defined in

Equation 3 with the arbitrarily chosen coefficient s value being equal to 1,

5, 10, 20, and 50, respectively). Here, all the simulation codes were written

using R software version 3.4.2 for Windows 64 bit and was run on a PC with

an Intel Core i7 Processor, 16 GB RAM, and a 240 SSD Hard Drive.

The performance of these models are compared with two different mea-

sures of the state estimation error: the Mean Absolute Error (MAE) and the

Mean Squared Error (MSE). These are defined as follows:

MAE =
1

T

T∑
t=1

∣∣¯̂xt − ¯̂xt,model

∣∣ (6)

MSE =
1

T

T∑
t=1

(
¯̂xt − ¯̂xt,model

)2
. (7)

Here, ¯̂xt and ¯̂xt,model are the true average state estimate and model average

state estimate obtained from the 500 repeat simulations of each model at each

time step (t = 1, . . . , T ), respectively. The models with the lowest MAE and

MSE values indicate best modelling performance.

3.2. Results and discussion

Table 2 displays the MAEs and MSEs for the average state estimate (¯̂xt)

of various quantiles (5%, 10%, 90%, 95%, 100%) of the CIR as well as the
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normalized computational times for SMC_10K, SMC_100, and modified

SMC_100 algorithms with various s parameter values (1, 5, 10, 20, 50).

Insert Table [2]

The results of simulation with seven different models, in terms of the

MAE and the MSE for various quantiles, illustrate the following:

1. In terms of accuracy of state estimation, SMC_10K is clearly the best

algorithm, although it is computationally the most expensive as well.

2. The performance of all the modified SMC_100 methods with different

values of s is better than SMC_100, for all the quantiles tested and for

both the error measures.

3. The computation times of all the modified SMC_100 methods with

different values of s are close to that of SMC_100, with all being around

900 times faster than SMC_10K.

Insert Figures [2(a)-2(g)]

Figure 2 illustrates the state estimate behaviour at each time step, aver-

aged over 500 simulations, for all the 7 models. It can be seen that increasing

the value of s (from SMC_100 to modified SMC_100 (s = 50) gradually re-

covers the accuracy of the state estimate.

Figure 3 displays the density plot of the state estimate (x̂t, known as

an interest rate) particles which were obtained from the results of the 500

repeat simulations with the different limit specifications of the state estimate

particles from the SMC_10K (solid line), the SMC_100 (dotted line), and

the modified SMC_100 (s = 10) (dashed line), respectively. Note that the

modified SMC_100 with other s parameter values has been omitted for the

sake of brevity. Also, the interest rate (x̂t) is here shown in percentage form.

Insert Figures [3(a)-3(d)]
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It is worth noting that the sequential Monte Carlo with modified par-

ticle weights using the proposed probability distortion (modified SMC_100

(s = 10)) provides more robust results than to the sequential Monte Carlo

with standard particle weights (SMC_100) when compared to the sequential

Monte Carlo using standard weights with 10,000 particles (SMC_10K) for

estimating extreme quantile of state estimate (xt) for the CIR model sim-

ulation. Since, it can clearly be seen that the modified SMC_100 (s=10)

provides more chance for extreme values to occur in the tail quantiles when

compared to the SMC_100.

To summarize, the modified SMC algorithm proposed here offers a means

for estimating the tail quantiles of latent states with an accuracy comparable

to that of a full Monte Carlo, but at a small fraction of the computational

cost. The accuracy of the mean estimates of the modified SMC are still

better than what is achievable with the same number of particles using the

traditional SMC.

4. Conclusions

This paper proposes a modified SMC procedure with a probability dis-

tortion at each step. We demonstrate through numerical experiments on

a commonly used interest rate model that the modified procedure can es-

timate tail quantiles accurately and far more efficiently than a full Monte

Carlo based SMC. The benefits of the proposed procedure will span a large

number of applications across the sciences. It will open up new lines of en-

quiry and may spur discipline-specific efforts for further research. We are

currently exploring the performance improvement of the modified SMC with

alternative functions of proposed probability distortions, as well as its appli-

cation in other domains. For example, the proposed methodology could be
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used to test whether the predicted location of a tracked object, such as a

drone, is within a safe flying zone with a given level of confidence.
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5. Tables

Table 1. The simulation details for all algorithms of CIR model

Model Particles (N) Time Steps (T ) Repeat (R)
SMC_10K 10,000 100 500
SMC_100 100 100 500
Modified SMC _100 (s = 1) 100 100 500
Modified SMC _100 (s = 5) 100 100 500
Modified SMC _100 (s = 10) 100 100 500
Modified SMC _100 (s = 20) 100 100 500
Modified SMC _100 (s = 50) 100 100 500
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Table 2. MAE and MSE of model average state estimate (¯̂xt) various quantiles of CIR

and computational time of model simulations

MAE Computation
Quantile Time

Model 5% 10% 90% 95% 100%
SMC_10K 0.0021 0.0049 0.0457 0.0491 0.0502 1
SMC_100 0.0023 0.0153 0.9686 1.0945 1.2281 0.00119
Modified SMC_100 0.0021 0.0103 0.8606 0.9800 1.1102 0.00115
(s = 1)
Modified SMC_100 0.0019 0.0073 0.4249 0.4860 0.5516 0.00118
(s = 5)
Modified SMC_100 0.0017 0.0044 0.1964 0.2170 0.2374 0.00120
(s = 10)
Modified SMC_100 0.0020 0.0071 0.1370 0.1538 0.1733 0.00123
(s = 20)
Modified SMC_100 0.0022 0.0053 0.2138 0.2434 0.2715 0.00132
(s = 50)

MSE
Quantile

Model 5% 10% 90% 95% 100%
SMC_10K 0.0002 0.0004 0.0030 0.0032 0.0033
SMC_100 0.0002 0.0038 1.4174 1.7398 2.1124
Modified SMC_100 0.0002 0.0016 1.2530 1.5393 1.8840
(s = 1)
Modified SMC_100 0.0002 0.0008 0.2657 0.3426 0.4295
(s = 5)
Modified SMC_100 0.0002 0.0003 0.0538 0.0624 0.0715
(s = 10)
Modified SMC_100 0.0001 0.0008 0.0261 0.0318 0.0398
(s = 20)
Modified SMC_100 0.0002 0.0004 0.0792 0.0971 0.1132
(s = 50)
Notes: The computation times of the algorithms are normalized with respect to the

computation time of SMC_10K (taken to be 1).
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6. Figures
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Figure 1. The plot of modified weights with different s parameter values (1, 5, 10,

20, and 50) versus weights defined in Equation 3 are displayed, respectively.
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(c) Modified SMC_100 (s=1)
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(f) Modified SMC_100 (s=20)
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Figure 2. The true state versus the average state estimate (¯̂xt) for each time step (t =

1, . . . , T ) from the SMC_10K (2(a)), the SMC_100 (2(b)), the modified SMC_100

(s = 1) (2(c)), the Modified SMC_100 (s = 5) (2(d)), the modified SMC_100 (s =

10) (2(e)), the modified SMC_100 (s = 20) (2(f)), and the modified SMC_100 (s =

50) (2(g)) algorithm simulations are shown, respectively.
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Figure 3. The density plot of state estimate (x̂t) particles obtained from the

SMC_10K (solid line), the SMC_100 (dotted line), and the modified SMC_100 (s

= 10) (dashed line) algorithm simulations with 500 repeats (R), particles (N), and

time steps (T ) with various limit specifications for the state estimate (x̂t) particles

are displayed, respectively.


	1 Introduction
	2 Sequential Monte Carlo (SMC) methods
	3 Simulation Study
	3.1 Model and methodology
	3.2 Results and discussion

	4 Conclusions
	5 Tables
	6 Figures

