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Abstract—This present study is what we think is one of the 

first studies to apply Deep Learning to learn depth of anesthesia 

(DoA) levels based solely on the raw EEG signal from a single 

channel (electrode) originated from many subjects under full 

anesthesia. The application of Deep Neural Networks to detect 

levels of Anesthesia from Electroencephalogram (EEG) is 

relatively new field and has not been addressed extensively in 

current researches as done with other fields. The peculiarities of 

the study emerges from not using any type of pre-processing at 

all which is usually done to the EEG signal in order to filter it or 

have it in better shape, but rather accept the signal in its raw 

nature. This could make the study a peculiar, especially with 

using new development tool that seldom has been used in deep 

learning which is the DeepLEarning4J (DL4J), the java 

programming environment platform made easy and tailored for 

deep neural network learning purposes. Results up to 97% in 

detecting two levels of Anesthesia have been reported 

successfully. 

Keywords—Deep learning; DeepLearning4J; depth of 
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I. INTRODUCTION 

Recently electrical brain signals have been researched 
extensively to serve different applications and especially the 
application in biomedical engineering. The Brain Computer 
Interface (BCI) has been designed around brain signals and it 
connects computers to human mind and translates his intention 
to commands that is used to communicate with other devices. 
A major benefit of BCI is the assistance it provides for disabled 
people to easily communicate with other humans. Besides that, 
biomedical applications such as the diagnosis of brain related 
disease such as Alzheimer, Epilepsy, and the severely affected 
brains which resulted from traumas or those leading to 
Nicoma. In addition to all that, BCIs has succeeded recently to 
effectively assist as one of the biometric Identification 
methods. 

Electroencephalography (EEG) is a recording of brain low 
voltage signals emerging from currents flowing within the 
brain neurons and gives the unique reference for brain 
electrical activities which can be measured and recorded. That 
EEG signals contains considerable amount of information 
related to time and frequency classified into four different 
bands; Beta (13 to 30 HZ), Alpha (8 to 13 Hz), Theta (4 to 8 
Hz), and Delta (0.5 to 4 Hz). The human physical and 
conditions can be identified from each band giving a unique 
feature for such conditions, as each band reflects differently to 
the type of physical stimulus. 

Nevertheless, a major challenge in detecting (EEG) signal 
level arises due to the fact that brain signals come in very low 
amplitude. Other activities done by the patients such as eye 
blinks, muscular movements, teeth movements, and even heart 
beats could interfere with the EEG signal and introduces 
considerable distortion. The EEG signals needs to be processed 
in order to obtain appropriate features, hence it is normally 
analyzed by time domain algorithms, or frequency domain 
algorithms, beside time-frequency processing algorithms. But 
the frequency content of those bands is more informative and 
hence more often used in EEG analysis relying on the Fast 
Fourier Transform (FFT) or other similar types of transform 
[1]. 

Many techniques has been proposed by researchers to clean 
EEG signal which diverges from temporal filtering [2], [3], 
spatial filtering [4]-[6], feature extraction [25], [7] and 
selection [8]-[11], besides dimensionality reduction [12]-[14]. 
Power Spectral Density (PSD) is one of the dominant feature 
extraction technique currently and extensively used in EEG 
classification. Self-organizing Maps (SOM), as well as 
correlation [16] and entropy [17], beside Support Vector 
Machines [15], [18], [19], are considered some of the statistical 
feature extraction methods that were successfully been used in 
EEG preprocessing. 

This paper presents a novel EEG-Anesthesia Level 
recognition algorithm to overcome this constraint by fully 
utilizing a large Deep Neural Networks (DNN) when its 
hyperparameters carefully tailored, to give the best 
performance. In this work, a supervised training method was 
adopted to preliminary training of each layer, then use 
supervised training method to fine-tune of the whole network. 
Finally, pattern classification is implemented by SoftMax 
classifier. The mentioned model accepts the raw EEG as input 
with complete disregard to any feature engineering solutions. 
When fully trained, the DNN is tested on 7 out of 23 different 
subjects collected from operation rooms EEG recorder 
collecting. The results showed that its speed while training 
reached up to 15 minutes with a round 10K training epochs has 
finally attained an accuracy of 97% in identifying 100,000 
testing data samples covering the 22 patients but with special 
focus on 7 of them. 

After discussing the Deep Learning concepts and 
approaches to EEG classification and deep neural networks in 
Section 2, we present some related works in Section 3, 
although there were very few which combines DoA level 
prediction and Deep Learning approach. We present the 
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methodology of Feed Forward Deep Neural Networks which 
operates on different activation functions in Section 4. In 
Section 5, we present the material used for this study; while 
Section 6 shows the results. And finally, we conclude the work 
with discussion on future directions. 

II. DEEP LEARNING 

Deep Machine Learning is based on the concept of 
computational models used to represent information with 
similar characteristics close to that of the human brain. It tries 
to model the high-level abstractions contained in data. The 
“Deep Learning” topic, the hottest in the artificial intelligence 
and machine learning techniques, is one of the recently gained 
the most of the researcher’s attentions and currently and widely 
used in solving many engineering problems. Those solutions 
diversify from those related to computer vision [20], speech 
recognition [22], and even in natural language processing [21]. 
Basically, is known that the Deep Learning is considered a 
hierarchical structural that has the capability of extracting 
advanced level features from lower ones constructed within a 
multi-layer network and hence overcomes the traditional 
problem faced by shallow neural networks. 

Based on neural networks, the Deep Learning (DL) is a 
machine learning network topology that tries to model high 
level abstractions contained in data. Different from older 
learning algorithms or so called shallow learning, but now deep 
learning can process ultimately huge numbers of data using 
many layers containing many neurons. In detail the DNN 
comprises of layers of nonlinear processing units or nodes 
called neurons. These neurons change their parameters during 
learning process to reach best fit. A deep neural network 
consists of an input layer, output layer and multiple hidden 
layers in between. Now each layer processes the output from 
the previous layer and deliver to the next layer. The layers 
memorize low-level features up to high-level features 
embedded in data as layers go deeper and deeper. So, when 
further we dive into the network, the more complex features 
the network can represent and memorize. Nevertheless, in 
order to find the best network to do such a good work, many 
variations of hidden layer configurations beside other learning 
parameters need to be tested. 

Many types of activation function for the neuron are 
employed. This makes it another axis of freedom to be 
considered during the creation of a deep neural network. 
Examples of activation functions are ReLU (Rectified Linear 
Unit), the Logistic, the TanH, and the SoftExponential. The 
output layer for classification of multiple classes normally uses 
the softmax function for the activation. The function that learns 
the weight vector is called the optimizer function. A popular 
optimizer is SGD (Stochastic Gradient Descent) is typically 
used in training. The training dataset is fed into the network in 
batches. The process of passing of each data in the training 
dataset is called an epoch. In training a deep neural network, 
the optimizer, number of epochs, and batch size are parameters 
to be considered and makes the great difference in the final 
layer (softmax layer). 

It has been noted that Deep Learning not yet been widely 
used in detecting Anesthetic levels although of its early 
applications covered most of bioengineering applications. Only 

few studies pinpointed the deep learning importance in EEG-
based Anesthetic level detection. 

III. RELATED WORKS 

Underneath the deep learning model, we can find deep 
neural networks, convolutional neural networks, beside 
recurrent neural networks. For our classification of Anesthesia 
level using EEG signal the deep neural network (DNN) is 
successfully applied. The first researches combining EEG 
signals and DL, has started with classifying brain's motor 
activity [23], then brain-computer interface [24], [26], in 
addition to BCI using motor imagery [25], and more. 
Although, Anesthetic level detection in EEG is studied 
extensively, little research has been done to implement end-to-
end detection and classification networks. In this thesis, Deep 
Neural Networks (DNNs) are used to detect and classify the 
EEG data for possible Anesthetic levels for patients under 
surgery, and their further classification into two classes (Wake 
and Anesthetized). 

Artificial neural network (ANN) based detection of 
anesthetic levels have been researched by several researchers. 
Watt [27] uses a three-layered feed forward neural network for 
detection of the spectral signatures within EEG recording 
giving three distinct levels of anesthesia. He claimed the 
overall accuracy rate obtained is 77%. Krikic [28] suggested a 
new method which uses spectral entropy and embedded eigen-
spectrum features. He used a type of neural network namely 
radial basis pattern classifier to reach overall accuracy rate of 
98%. 

IV. METHODOLOGY 

The general form of computation done in neurons in any 
neural network is following the next two operations: to 
combine linearly inputs 

         ∑ 
                  (1) 

And a non-linear transformation 

                       (2) 

Using some of the non-linear activation functions, usually 
two activation functions are widely used in classical ANN 
framework and they are the sigmoidal function beside the tanh 
function as shown next, respectively: 

       
 

       .           (3) 

      
         

                     (4) 

We can have fully connected layers of those neurons 
following previous paradigm, but conventional ANN paradigm 
shows limit to the approximations and conversion. Based on 
that researchers have proposed some alteration on the number 
of hidden layers as to be deeper beside some presentation of 
newer activation functions. Loss function is also another newer 
concept in Deep Learning with its Deep Neural Networks. 
Activation functions such as Rectified Linear Units (RLU) and 
SoftMax are newly introduced with deep Neural networks. The 
next shows their formulas, respectively: 

                         (5) 
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∑ 
              (6) 

The weights in the ANN is adjusted during the training 
phase until the correct output vector is generated from a given 
input. This operation continues until the global error is 
minimized to an acceptable value. It is worth noting that we 
use the Feedforward Neural Network (FNN) to refer to the a 
more basic ANN architecture used. The neurons are connected 
forward in series way and its activation propagates in 
unidirectional from the input layer to the output layer [1]. 

V. MATERIALS 

It has been known that there is a strong relation between 
Bispectral Index and the EEG graphic features and found that 
the anesthetic features are linearly correlated with the BIS 
reading for all levels of anesthesia. As many literatures has 
approached the classification of anesthetic levels, only the next 
levels illustrated in Table I are of concern to us. Human experts 
have assessed the anesthetic levels and reached 5 
classifications labels; Awake state, light anesthesia, moderate 
anesthesia, deep anesthesia, and near suppression level. As 
noted earlier, we are implementing an artificial deep neural 
model to extract most dominant features from EEG signal in 
supervised manner that were classified by human experts in 
prior. The resulted DNN would then be used to classify test 
sets of data. In this work, the raw EEG data were not being 
processed by any preprocessing algorithms or filter 
intentionally done, therefore bandpass filters were not used 
beside down or up sampling or even baseline removals. The 
reason behind that is two folded, one for leaving the processing 
light and fast to work noticeably fast for real time applications, 
while the other is to show the effectiveness of the deep learning 
when used in processing raw EEG data. 

The EEG data generated from the 22 subjects were taken 
under full Anesthesia for different surgery time spanning from 
½ hour to 2 hours. Although noise and deformation of the EEG 
were quite high with the beginning of the surgery giving 
unclear EEG signal patterns, but some were in good shape and 
were successfully extracted for training the DNN model. 
Finally, the resulted good records that span equally between 
the two anesthetic levels were only witnessed in only 7 
subjects in which we based our training sets on. 

For each experiment only one second epoch was extracted 
(128 samples). And to investigate performance of the proposed 
DNN model for DoA prediction, we created 7 test data that 
were showing quite clear Awaken epochs and plenty of 
Anesthetized epochs. For each subject (patient) 2 sets of 
datasets create, i.e., one for Awaken state and the other for 
Anesthetized state. Two schemes to organize training datasets 
were also followed; one to construct data set for a particular 
subject for sole training; while the others work as test sets; and 
in another scheme, all datasets except one are used for training 
leaving the one set for testing. 

Totally 121,000 epochs were obtained from 7 subjects and 
later the other 15 subjects were taken some of their epochs for 
testing. We have to bear in mind that, the datasets were 
measuring different brain activities for different stages of 
hypnosis stages. 

Training sets were intentionally extracted to fill 90% of the 
total available sets while the remaining 10% epochs were 
selected for testing. Anyway, we further re-distributed 
trainig_to_testing datasets to balance different configuration 
that we thought would be more helpful in determining the best 
distribution raises to the best DNN performance. 

We have used a so-called comma-separated values (CSV) 
data, the recorded data organized to, in this work (series of 
EEG data till 128 samples per epoch). It was exported from 
MATLAB program responsible to open the long EEG file and 
cut to small epochs. Then the result is de-normalized on 
multiple sets of data then joined together resulting in the CSV 
data that the DeepLearning4J the JAVA programming uses for 
all neural network computation. 

VI. RESULTS 

The complete data of five subjects have been used to train 
and test the network with. In a total of 3610 epochs each with 
128 readings giving a total of 462,080 data readings. Then data 
has been arranged such that the one which gives a specific 
class are to be grouped together then comes the other class 
group. In a total of two classes cover the two anesthetic levels, 
Waken and Anesthetized. 

Three different configuration of data training has been 
implemented: the train_and_test_all in which 65% used for 
training and remaining 35% is kept for testing. Another 
configuration is the train one and test all. Also, 
train_all_except_one for test. And finally, 
train_one_and_test_on_each other alone. Next table shows 
results. 

Table I shows the accuracy of the five subjects validation 
results emerged from DeepLearning4J package when all are 
used for train and subsequent test. The percentage of the taken 
epochs for train to the test is 65% to 35%. Accuracy up to 
100% reached when chosen a batch size of less than 1000. 
Table II shows validation results for the configuration of taking 
one subject for training and leaving the others for testing. This 
one has resulted in an accuracy up to 93%. The reason behind 
other lower accuracies is the EEG subject difference and the 
abundance of clean signals prior to and during anesthesia. 

Tables III and IV depict the other two training 
configurations where one subject is taken for training and the 
others are grouped in one set for testing and vice versa. An 
accuracy of 90% and 99% for the consequent two methods has 
been reached. The result indicators in the following tables are 
based on the next interpretations: 

1) Accuracy: is defined as the percentage of epochs that 

were correctly identified by our model. 

2) Precision: is the number of true positives divided by 

the number of true positives and false positives. 

3) Recall: The number of true positives divided by the 

number of true positives and the number of false negatives. 

4) F1 Score - Weighted average of precision and recall. 

Here the Accuracy measures the model overall 
performance, while the Precision, Recall and F1 measure a 
model’s relevance. 
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For Comparison purposes another four references has been 
used for benchmarking. In [29] studied the use of neural 
networks in the classification of anesthesia depth level using 
recurrent neural networks (shallow neural networks) and 
reached an accuracy of 99.6%. Another work [30] has used 
Elman Neural Networks and Multilayer Perceptron MLP to 
reach an accuracy of 95% and 99%, respectively. Both of those 
works have used three Anesthetic levels of low, medium, and 
high. A combined wavelet and neural network classifiers has 
been studied in [31] with an accuracy of classification reaching 
96.6%. All those works have reported results based on three 
level of anesthesia and inclusively using features extracted 
from the EEG signal for trained data, beside using shallow 
neural networks. Nevertheless, our works have used a deep 
neural network based on deep learning operating exclusively 

on raw EEG signals, classifying only two anesthetic levels and 
reported a maximum accuracy of 97%. 

VII. CONCLUSION 

This experimented study demonstrated that the DL training 
with EEG data set is able to detect two levels of anesthesia in 
an untrained (unseen) data set corresponding to new subjects 
with high accuracy up to 97%. Experiments have shown that 
multiple factors increase the training and the recognition 
accuracies, such as increasing training data, having more 
subject’s diversities contributing those data, beside choosing 
cleaner training epochs, in addition to tuning the 
hyperparameters of the network and in particularly the training 
batch size. 

TABLE I. TEST RESULTS CONDUCTED ON ALL SUBJECT’S DATA BUT DISTRIBUTED BASED ON 65% FOR TRAINING AND 35% FOR TESTING. BATCH SIZE ARE 

DIFFERENT, BUT THE DATA EPOCHS IS 3610 X 128 

Batch Size Accuracy Precision Recall F1 Score 

< 1000 100% 100% 100% 100% 

1000 92% 85% 73% 77% 

3610 90% 87% 86% 87% 

TABLE II. TEST RESULTS ON THE 5 SUBJECTS DATA BUT TAKEN AS TRAIN ONE AND TEST ONE. THE TRAINING DATA SIZE IS DIFFERENT ACCORDING TO 

SUBJECT TRAINED 

Epochs Trained Tested Accuracy 

235 Class 0  

235 Class 1      
P1 

P2 

P6 

P7 
P19 

85% 

71% 

93% 

86% 

141 Class 0 

558 Class 1 
P2 

P1 
P6 

P7 
P19 

68% 
44% 

74% 

69% 

157 Class 0 

1032 Class 1 
P6 

P1 
P2 

P7 

P19 

40% 
61% 

68% 

75% 

290 Class 0 
290 Class 1 

P7 

P1 

P2 
P6 

P19 

85% 

84% 
72% 

79% 

60 Class 0 

623 Class 1 
P19 

P1 

P2 

P6 
P7 

35% 

38% 

38% 
38% 
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TABLE III. TEST RESULTS ON THE SAME SUBJECTS DATA BUT TAKEN AS TRAIN ONE AND TEST ALL. READINGS ARE GIVEN FOR DIFFERENT BATCH SIZES. THE 

TRAINING DATA SIZE IS DIFFERENT ACCORDING TO SUBJECT TRAINED 

Trained On Tested Accuracy Precision Recall F1 Score 

P1 P (2, 6, 7, 19) 

78% 

71% 

82% 

79% 

76% 

67% 
50% 

50% 

76% 

76% 
82% 

79% 

76% 

66% 
90% 

88% 

P2 P (1, 6, 7, 19) 

90% 

87% 

82% 
69% 

85% 

87% 

83% 
50% 

83% 

83% 

86% 
69% 

84% 

85% 

82% 
82% 

P6 P (1, 2, 7, 19) 

82% 

79% 

67% 

48% 

81% 
80% 

71% 

50% 

74% 
74% 

76% 

48% 

76% 
75% 

66% 

65% 

P7 P (1, 2, 6, 19) 

87% 

85% 
83% 

78% 

84% 

84% 
84% 

82% 

73% 

73% 
73% 

73% 

77% 

76% 
76% 

74% 

P19 P (1, 2, 6, 7) 

80% 

77% 

72% 
64% 

80% 

80% 

78% 
73% 

67% 

67% 

67% 
66% 

69% 

68% 

66% 
62% 

TABLE IV. TEST RESULTS ON THE SAME SUBJECT’S DATA BUT TAKEN AS TRAIN ALL EXCEPT ONE THEN TEST THAT ONE. READINGS GIVEN FOR DIFFERENT 

BATCH SIZES. THE TRAINING DATA SIZE IS DIFFERENT ACCORDING TO SUBJECT TRAINED 

Trained On Tested Accuracy Precision Recall F1 Score 

P (2, 6, 7, 19 P1 
82% 

79% 

73% 

86% 

82% 

72% 

82% 

82% 

82% 

81% 

79% 

70% 

P (1, 6, 7, 19) P2 
99% 

99% 
99% 

99% 

99% 
99% 

99% 

99% 
99% 

99% 

99% 
99% 

P (1, 2, 7, 19) P6 
85% 

82% 

75% 

6*% 
73% 

73% 

67% 
67% 

66% 

67% 
69% 

67% 

P (1, 2, 6, 19) P7 

89% 

90% 

92% 

91% 

89% 

87% 

62% 
50% 

89% 

88% 

86% 
91% 

89% 

88% 

67% 
95% 

P (1, 2, 6, 7) P19 

96% 

96% 

96% 

96% 

89% 

92% 

94% 

94% 

91% 

91% 

91% 

91% 

90% 

93% 

92% 

93% 
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