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Abstract—Let X be a random variable taking values in a finite
dimensional linear space and Y ∈ {0, 1} its associated label. We
study the case, where conditional distribution p(x) = P(Y = 1 |
X = x) depends on x through some linear form θx. We show
that in this case, under a mild assumption on the distribution µ
of X , a maximum-likelihood estimator p̂, as well as the induced
class of logistic classifiers, are uniformly (w.r.t. p) consistent.

Index Terms—Uniform consistency, logistic classifier, finite-
dimensional linear spaces.

I. INTRODUCTION

WE consider the statistical problem of binary classifica-
tion, where the goal is to attach every x from a finite-

dimensional linear space E to one of the two classes, 0 or
1. Formally, a classifier is a Borel function δ : E → {0, 1}.
The pair (x, y), where y ∈ {0, 1} is the true class of x,
is considered as a realization of a random vector (X,Y ).
We denote the distribution of X by µ and the conditional
probability of Y = 1, given X = x, by p(x). The function
p is considered as an element of L1(E,µ), the space of all
µ-integrable functions, endowed with the semi-metric

d(p1, p2) =

∫
E

|p1 − p2|dµ.

Usually the distribution µ of X and the function p
are unknown and are estimated from the training sample
(X1, Y1), . . . , (Xn, Yn). Each estimator p̂ induces a class of
empirical classifiers of the form

δ̂u(x) =

{
1, if p̂(x) > u,
0, otherwise.

where u is the pre-selected threshold. Following [4], we call
an estimate p̂ consistent, if p̂(X) tends in probability to
p0(X), where p0 is the true conditional probability. We call
p̂ uniformly consistent, if the convergence is uniform in p0.
In our previous work (see [4]) we have proved that the con-
sistency/uniform consistency of p̂ yields consistency/uniform
consistency of the associated classifier δ̂u (see [4] for defini-
tions of consistency and uniform consistency of δ̂u).

The notion of uniform consistency is important from the
practical point of view (it is of no use in knowing that
Pp0{d(p0, p̂) ≥ ε} < δ for n ≥ n0, if that n0 depends
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on the unknown distribution of (X,Y )) and may be con-
sidered as the first step in analysis of convergence rate of
estimators. However, to the best of our knowledge, currently
there are no literature that would consider this problem (it
should not be confused with the similar notion meaning that
supx|p̂(x)− p0(x)| −−−−→

n→∞
0 in probability or almost surely).

While in our previous work (see [4]) we have proved uniform
consistency of histogram-type estimators, in this work we are
studying the behavior of logistic classifiers. More specifically,
we study the case, where p is known to belong to the set

P (E) = {pθ | θ ∈ E′},

where E′ is the dual space of E,

pθ(x) = φ(θx),

and φ is a known link function (i.e. an increasing homeomor-
phism between R∪{−∞,∞} and [0; 1]). The usual choice of
φ is the logistic link, i.e.

φ(θx) =
1

1 + e−θx
.

Due to technical reasons, we find it more convenient to work
with the set P̄ (E), the set consisting of all functions p with
the following property: there exists (pn) ⊂ P (E) such that
pn(x) −−−−→

n→∞
p(x), for all x. For p, p0 ∈ P̄ (E) denote

mp(x, y) =

{
log p(x), if y = 1,

log(1− p(x)), if y = 0,

M(p0, p) = Ep0mp(X,Y ),

Mn(p) = mp(X,Y ),

mp,r(x, y) = sup
p′∈P̄ (E)
d(p′,p)<r

mp′(x, y),

M(p0, p, r) = Ep0mp,r(X,Y ),

Mn(p, r) = mp,r(X,Y ),

where Ep0 is the expectation with respect to the true
conditional probability p0 and, for any function f(X,Y ),
f(X,Y ) = f(X1,Y1)+···+f(Xn,Yn)

n . mp(xi, yi) and M(p0, p)
are better known as log-posterior, given its true label, and
expected log-posterior, given true posterior distributions of the
two populations, respectively. Define

p̂ = arg max
p∈P̄ (E)

Mn(p). (1)

The main result of this paper is the following theorem.

Theorem 1. Let the distribution µ of X satisfy the following
condition: for all p ∈ P̄ (E), there exists a set A with
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µ(A) = 1 and such that, for all x ∈ A and all p′ ∈ P̄ (E)
with d(p′, p) = 0,

p′(x) = p(x). (2)

Then the estimator p̂ defined as (1) is uniformly consistent,
that is, for all ε > 0

sup
p0∈P̄ (E)

Pp0{d(p0, p̂) ≥ ε} −−−−→
n→∞

0.

The work is organized as follows. In Section II we prove
that P̄ (E) is a compact set which is a crucial assumption for
our main result. In Section III we establish some properties
of functions M(p0, p) and M(p0, p, r). We follow with the
Section IV, where we prove two uniform versions of the
Weak Law of Large Numbers. Finally, in Section V we prove
Theorem 1 and in Section VI we discuss how restrictive is the
condition on µ.

II. PROPERTIES OF P̄ (E)

We denote the elements of E′ by θ, each θ is a linear
functional on E and the value of θ at x is denoted by θx.

Lemma 1. Each sequence (θn) ⊂ E′ contains a subsequence
(θnk

) such that, for all x ∈ E, θnk
x has a limit, finite or

infinite.

Proof: If dimE = 0, then E = {0}. If (θn) ⊂ E′, then
θn0 = 0, for all n, because each linear functional maps 0 to
0. Therefore, θnx −−−−→

n→∞
0, for all x ∈ E.

Now suppose that dimE ≥ 1 and fix any sequence (θn) ⊂
E′. There are two options:

1) (θn) is bounded, i.e. ||θn|| ≤ c with some c ∈ R.
It is well known that every bounded set in a finite-
dimensional linear space is precompact. Therefore there
exists a subsequence (θnk

) which tends to some θ ∈ E′.
Obviously, then θnk

x −−−−→
k→∞

θx, for all x ∈ E.

2) (θn) is not bounded. Define an = θn
‖θn‖ and note that

‖an‖ = 1 for all n, i.e. (an) is a bounded sequence.
Find nk −−−−→

k→∞
∞ such that ‖θnk

‖ −−−−→
k→∞

∞ and
ank
−−−−→
k→∞

a ∈ E′. Note that ‖a‖ = 1 and therefore
the set H = {x | ax = 0} is the hypersubspace of
E: dimH = dimE − 1 < dimE. Let θ′n denote the
restriction of θn on H . Then θ′n ∈ H ′. By induction
assumption there exists a subsequence (θ′nk(l)

) of (θ′nk
)

such that θnk(l)
x = θ′nk(l)

x has a limit, finite or infinite,
for all x ∈ H . If x 6∈ H , then either ax > 0 and then
θnk(l)

x =
θnk(l)

x

‖θnk(l)
‖‖θnk(l)

‖ −−−→
l→∞

∞, or ax < 0 and

θnk(l)
x =

θnk(l)
x

‖θnk(l)
‖‖θnk(l)

‖ −−−→
l→∞

−∞.

Lemma 2. P̄ (E) is a compact set in L1(E,µ).

Proof: Let (qn) ⊂ P̄ (E). We need to find its convergent
(in L1(E,µ)) subsequence whose limit is some q ∈ P̄ (E). For
all n, there exists a sequence (pnm | m ≥ 1) ⊂ P (E) such that
pnm(x) −−−−→

m→∞
qn(x), for all x. Obviously, then pnm −−−−→

m→∞
qn in L1(E,µ). Find mn such that d(pnmn

, qn) < 1/n and

denote pn = pnmn
. By Lemma 1, there exists a sequence

nk −−−−→
k→∞

∞ and a function q such that pnk
(x) −−−−→

k→∞
q(x),

for all x. Then, by the definition of P̄ (E), q ∈ P̄ (E).
Moreover, pnk

−−−−→
k→∞

q in L1(E,µ). Therefore,

d(qnk
, q) ≤ d(qnk

, pnk
)+d(pnk

, q) <
1

nk
+d(pnk

, q) −−−−→
k→∞

0,

that is, qnk
−−−−→
k→∞

q.

Let S(E′) be the unit sphere in E′ and for all a ∈ S(E′)

ker a = {x ∈ E | ax = 0}.

Lemma 1 suggests that p ∈ P̄ (E)\P (E) has the following
form:

p(x) =


0, if a1x < 0,
q1(x), if x ∈ E1,
1, if a1x > 0,

(3)

where a1 ∈ S(E′), E1 = ker a1 and q1 ∈ P̄ (E1). Then we
have two situations: function q1 belongs to P (E1), or it is
of form (3) form, but with some a2 ∈ S(E′1), E2 = ker a2

and q2 ∈ P̄ (E2) instead of a1, E1, q1. We can repeat this
reasoning several times but eventually we will reach a point,
where dimEk equals 0. Then Ek = {0} and P̄ (Ek) = P (Ek)
contains only one function which maps 0 (the only point of
Ek) to ϕ(0) (e.g. to 1

2 , if ϕ is the standard logistic function).
For example, if dimE = 2, then P̄ (E) contains the

following three types of functions:

pθ for θ ∈ E′,
pa1,θ1 for a1 ∈ S(E′), E1 = ker a1 and θ1 ∈ E′1,
pa1,a2,0 for a1 ∈ S(E′), E1 = ker a1, a2 ∈ S(E′1),

where

pa1,θ1(x) =


0, if a1x < 0,
ϕ(θ1x), if a1x = 0,
1, if a1x > 0

and

pa1,a2,0(x) =



0, if a1x < 0,
0, if a1x = 0, a2x < 0,
ϕ(0), if a1x = 0, a2x = 0,
1, if a1x = 0, a2x > 0,
1, if a1x > 0.

III. PROPERTIES OF M

Lemma 3. M(p0, p) is an upper semi-continuous function.

Proof: By one of equivalent definitions of upper semi-
continuity (see p. 602 statement B1 from [6]) we need to prove
that

(p0n, pn) −−−−→
n→∞

(p0, p)⇒ lim
n→∞

M(p0n, pn) ≤M(p0, p).

Suppose the contrary and find (p0n, pn) −−−−→
n→∞

(p0, p) such
that

lim
n→∞

M(p0n, pn) > M(p0, p).



Find a subsequence (p0nk
, pnk

) such that
limk→∞M(p0nk

, pnk
) exists and equals

limn→∞M(p0n, pn). We can suppose that almost everywhere
p0nk

(x) −−−−→
n→∞

p0(x), pnk
(x) −−−−→

n→∞
p(x). Then almost

surely

0 ≤ −mpnk
(X, 1)p0nk

(X)−mpnk
(X, 0)(1− p0nk

(X))

−−−−→
k→∞

−mp(X, 1)p0(X)−mp(X, 0)(1− p0(X)),

which yields, by Fatou’s lemma,

lim
n→∞

Ep0nk
(−mpnk

(X,Y )) ≥ Ep0(−mp(X,Y )),

lim
n→∞

Ep0nk
mpnk

(X,Y ) ≤ Ep0mp(X,Y ),

lim
n→∞

M(p0nk
, pnk

) ≤M(p0, p).

We got a contradiction.

Lemma 4. The function p0 7→M(p0, p0) is continuous.

Proof: Let p0n −−−−→
n→∞

p0. Note that the function p log p

is continuous in interval [0; 1] (if we define 0 log 0 = 0),
and therefore bounded. Hence by the dominated convergence
theorem, M(p0n, p0n) −−−−→

n→∞
M(p0, p0).

Lemma 5. M(p0, p) < M(p0, p0), if d(p0, p) > 0.

Proof: We use Lemma 5.35 in [7]. Denote the counting
measure on {0, 1} by ν. If d(p, p′) > 0, then conditional
distributions of Y w.r.t. X corresponding to p and p′ are
different which implies that distributions of (X,Y ) differ as
well. For any function f

Epf(X,Y )

= E [f(X, 1)p(X) + f(X, 0)(1− p(X))]

=

∫
E

µ(dx)

∫
{0,1}

f(x, y)qp(x, y)ν(dy),

where

qp(x, y) =

{
p(x), if y = 1,

1− p(x), if y = 0,

that is, qp(x, y) is the density of (X,Y ) with respect to
µ × ν. By Lemma 5.35 in [7], p0 is the unique maximum
of Ep0 log

qp(X,Y )
qp0 (X,Y ) . It is enough to note that mp(x, y) =

log qp(x, y) which is why

Ep0 log
qp(X,Y )

qp0(X,Y )
= Ep0 log qp(X,Y )− Ep0 log qp0(X,Y )

= Ep0mp(X,Y )− Ep0mp0(X,Y )

= M(p0, p)−M(p0, p0).

Therefore p0 is the unique maximum of M(p0, p).

Lemma 6. For all p, r and (x, y)

mp,r(x, y) = sup
d(p′,p)<r
p′∈P (E)

mp′(x, y).

Proof: Fix p, r and x. It is enough to prove that

sup
d(p′,p)<r
p′∈P̄ (E)

p′(x) = sup
d(p′,p)<r
p′∈P (E)

p′(x), (4)

inf
d(p′,p)<r
p′∈P̄ (E)

p′(x) = inf
d(p′,p)<r
p′∈P (E)

p′(x).

We will prove the first equality, the second is proved analo-
gously. Denote the left hand side of (4) by c and the right hand
side by c′. Obviously, c′ ≤ c and it is sufficient to prove that
c ≤ c′. Fix any p′ ∈ P̄ (E) with d(p′, p) < r. There exists
a sequence (pn) ⊂ P (E) such that pn(x′) −−−−→

n→∞
p′(x′),

for all x′. Then pn −−−−→
n→∞

p′ in L1(E,µ). Fix n0 such that
d(pn, p

′) < r − d(p′, p) for n ≥ n0. Then for n ≥ n0

d(pn, p) ≤ d(pn, p
′) + d(p′, p) < r

and therefore

c′ ≥ sup
n
pn(x) ≥ lim

n
pn(x) = p′(x). (5)

Note that (5) holds for every p′ with d(p′, p) < r. Therefore,
also c ≤ c′.

Lemma 7. For any p ∈ P̄ (E) and all x,

lim
r→0

sup
p′∈P̄ (E)
d(p′,p)<r

p′(x) = sup
p′∈P̄ (E)
d(p′,p)=0

p′(x).

lim
r→0

inf
p′∈P̄ (E)
d(p′,p)<r

p′(x) = inf
p′∈P̄ (E)
d(p′,p)=0

p′(x).

Proof: We will prove the first equality, the second is
proved analogously. Fix p ∈ P̄ (E), x and denote

cr = sup
p′∈P̄ (E)
d(p′,p)<r

p′(x), c = sup
p′∈P̄ (E)
d(p′,p)=0

p′(x).

Since cr decreases, if r ↓ 0, the limit c′ = limr→0 cr exists
and we need to prove that it equals c.

Obviously, cr ≥ c for all r. Therefore, c′ ≥ c. We will prove
the converse inequality. By Lemma 6, there exists pn ∈ P (E)
such that d(pn, p) −−−−→

n→∞
0 and pn(x) −−−−→

n→∞
c′. Without loss

of generality we can suppose that pn(x′) −−−−→
n→∞

p′(x′), for all

x′, where p′ is a fixed function in P̄ (E). Then pn −−−−→
n→∞

p′

in L1(E,µ). Therefore, d(p′, p) = 0 and c′ = p′(x) ≤ c.
If the condition (2) holds, then it follows from Lemma 7

that M(p0, p, r) −−−→
r→0

M(p0, p).

IV. UNIFORM LAWS OF LARGE NUMBERS

In this Section, we present two Lemmas that are the uniform
versions of the Weak Law of Large Numbers. In Lemma 8,
random variables are required to have finite expectations and
the proof is analogous to that of the Khinchin’s theorem (see
[5], Theorem 4.15). In Lemma 9, the expectations of random
variables might be infinite but random variables are required
to be non-positive. The proof of Lemma 9 is analogous to that
of Cramer’s theorem (see [1]).



Recall that a family (Zs) of random variables, where
each Zs is defined in a probability space (Ωs,Ps), is called
uniformly integrable, if

sup
s

Es|Zs|1{|Zs|≥c} −−−→c→∞
0.

Lemma 8. Let (Zs) be a uniformly integrable family of
random variables and as = EsZs. Let (Zsi) be a sequence of
independent copies of Zs. Then, for all ε > 0,

sup
s

Ps{
∣∣Z̄s − as∣∣ > ε} −−−−→

n→∞
0.

Proof: Denote b = sups Es|Zs|. First we will show that
b < ∞. Since (Zs) is uniformly integrable, there exists c ∈
[0;∞) such that

sup
s

Es|Zs|1{|Zs|≥c} ≤ 1.

Then, for all s,

Es|Zs| = Es|Zs|1{|Zs|<c} + Es|Zs|1{|Zs|≥c} ≤ c+ 1.

Now fix ε, set δ = ε3

8b and define

Usni =

{
Zsi, if

∣∣Zsi∣∣ ≤ δn,
0, otherwise.

Obviously, (Usni | i ≥ 1) is a sequence of independent
identically distributed random variables. Also

VarsUsn1 ≤ EsU
2
sn1 = EsZ

2
s1{|Zs|≤δn}

≤ δnb.

Denote asn = EsUsn1. Then asn = EsZs1{|Zs|≤δn}. Note that∣∣asn − as∣∣ =
∣∣EsUsn1 − EsZs

∣∣
=
∣∣EsZs1{|Zs|>nδ}

∣∣
≤ Es|Zs|1{|Zs|>nδ}

≤ ε/2,

for all n ≥ n0, where n0 does not depend on s. Then, for all
n ≥ n0,

Ps{
∣∣Ūsn − as∣∣ ≥ ε} ≤ Ps{

∣∣Ūsn − asn∣∣ ≥ ε/2}
≤ 4

ε2
VarsŪsn =

4

nε2
VarsUsn1

≤ 4δ

ε2
b =

ε

2
.

Also, by Chebyshev’s inequality,

Ps{Z̄s 6= Ūsn} ≤
n∑
i=1

Ps{Zsi 6= Usni} = nPs{|Zs| > nδ}

≤ 1

δ
sup
s

Es|Zs|1{|Zs|>nδ} < ε/2,

for n ≥ n1, where n1 does not depend on s. Therefore, for
n ≥ max(n0, n1),

Ps{
∣∣Z̄s − as∣∣ ≥ ε} ≤ Ps{Z̄s 6= Ūsn}+ Ps{

∣∣Ūsn − as∣∣ ≥ ε}
≤ ε/2 + ε/2 = ε.

In the next Section, we use this Lemma with Zp0 =
mp0(X,Y ), where p0 is the true conditional probability. The
family (Zp0) is uniformly integrable because

Ep0 |mp0(X,Y )|1{|mp0
(X,Y )|≥c}

= E|log p0(X)|1{|log p0(X)|≥c}p0(X)

+ E|log(1− p0(X))|1{|log(1−p0(X))|≥c}(1− p0(X))

≤ ε,

for c ≥ c0, where c0 is such that p|log p| ≤ ε/2 and (1 −
p)|log(1− p)| ≤ ε/2 for p ≤ e−c0 .

Lemma 9. Let m(x, y) be a non-positive function, satisfying
the following condition: for all p0 ∈ P̄ (E),

Ep0m(X,Y ) ≤ a.

Then for all q > a there exists c > 0 such that, for all p0 ∈
P̄ (E) and for all n,

Pp0{m(X,Y ) ≥ q} ≤ e−cn.

Proof: For λ ≥ 0 denote

Mp0(λ) = Ep0eλm(X,Y ),

Λp0(λ) = logMp0(λ).

These are known as the moment generating function and the
cummulant generating function of m(X,Y ), respectively. We
will use the following properties of the function Mp0(λ) (see
[3], Section XIII.2):

1) Mp0(λ) is defined and continuous for λ ≥ 0 and
Mp0(0) = 1.

2) Mp0(λ) is differentiable in (0;∞) and M ′p0(λ) =

Ep0m(X,Y )eλm(X,Y ).
3) M ′p0(λ) −−−→

λ→0
Ep0m(X,Y ).

From these properties we get the following properties of the
function Λp0(λ):

1) Λp0(λ) is defined and continuous for λ ≥ 0 and
Λp0(0) = 0.

2) Λp0(λ) is differentiable in (0;∞) and Λ′p0(λ) =
M ′

p0
(λ)

Mp0
(λ) .

3) Λ′p0(λ) −−−→
λ→0

Ep0m(X,Y ).

Step 1. Fix any a < q′ < q. First we will prove that

∃λ > 0 ∀p0 Λp0(λ) < λq′. (6)

Suppose the contrary. Then

∀λ > 0 ∃p0 Λp0(λ) ≥ λq′.

Take λ = 1/n and find p0n such that

Λp0n

(
1

n

)
≥ q′

n
. (7)

Since p0n ∈ P̄ (E) and P̄ (E) is compact, without loss of
generality, we can assume that p0n(X) −−−−→

n→∞
p0(X) almost

surely. Inequality (7) can be rewritten as

Λp0n
(

1
n

)
− Λp0n(0)

1/n− 0
≥ q′. (8)



By Lagrange’s mean value theorem, the left hand side of (8)
equals Λ′p0n(λ̃n), where λ̃n ∈ (0; 1/n). Therefore

M ′p0n(λ̃n) = Mp0n(λ̃n)Λp0n(λ̃n) ≥ q′Mp0n(λ̃n) ≥ q′′,

for n large enough, where a < q′′ < q′, that is,

Ep0nm(X,Y )eλ̃nm(X,Y ) ≥ q′′. (9)

Note that

Ep0nm(X,Y )eλ̃nm(X,Y ) = EEXp0nm(X,Y )eλ̃nm(X,Y ),

where EXp0n denotes the conditional expectation, given X , and

EXp0nm(X,Y )eλ̃nm(X,Y )

= m(X, 0)(1− p0n(X))eλ̃nm(X,0)

+m(X, 1)p0n(X)eλ̃nm(X,1)

−−−−→
n→∞

m(X, 0)(1− p0(X)) +m(X, 1)p0(X)

= EXp0m(X,Y ).

Then by Fatou’s lemma,

E lim
n→∞

EXp0n(−m(X,Y )eλ̃nm(X,Y ))

≤ lim
n→∞

EEXp0n(−m(X,Y )eλ̃nm(X,Y )),

EEXp0(−m(X,Y ))

≤ lim
n→∞

EEXp0n(−m(X,Y )eλ̃nm(X,Y )),

lim
n→∞

Ep0nm(X,Y )eλ̃nm(X,Y )

≤ Ep0m(X,Y ) ≤ a < q′′,

a contradiction to (9).
Step 2. Find λ > 0 such that (6) holds and set c = λq−λq′.

Then c > 0 and by Chebyshev’s inequality,

Pp0{m(X,Y ) ≥ q}
= Pp0{m(X1, Y1) + · · ·+m(Xn, Yn) ≥ nq}
= Pp0{eλ(m(X1,Y1)+···+m(Xn,Yn)) ≥ eλnq}
≤ e−λnqEp0eλ(m(X1,Y1)+···+m(Xn,Yn))

≤
(

e−λqEp0eλm(X,Y )
)n

=
(

e−λq+Λp0 (λ)
)n

≤
(

e−λq+λq
′
)n

= e−cn.

In the next Section we will use this Lemma with m(x, y) =
mp,r(x, y).

V. UNIFORM CONSISTENCY

In this Section we prove our main result, Theorem 1. We
precede the proof by two supporting Lemmas.

Lemma 10. For all ε there exists ε′ such that for all p0, p
with d(p0, p) ≥ ε,

M(p0, p) < M(p0, p0)− ε′. (10)

Proof: Suppose the contrary. Then there exists ε such that

∀ε′ ∃p0 ∃p (d(p0, p) ≥ ε, M(p0, p) ≥M(p0, p0)− ε′) .

Take ε′ = 1/n and find p0n and pn such that

d(p0n, pn) ≥ ε, M(p0n, pn) ≥M(p0n, p0n)− 1/n. (11)

Without loss of generality, we can suppose that pn −−−−→
n→∞

p

and p0n −−−−→
n→∞

p0 almost everywhere. By Lemma 4 then
M(p0n, p0n) −−−−→

n→∞
M(p0, p0). By (11), d(p0, p) ≥ ε.

Moreover, by Lemma 3, Lemma 8 and (11),

M(p0, p) ≥ lim
n→∞

M(p0n, pn) ≥ lim
n→∞

M(p0n, p0n) = M(p0, p0).

This contradicts to Lemma 5.

Lemma 11. Let the condition of Theorem 1 hold. Take any ε
and let ε′ be as in Lemma 10. Then for all p there exists r
such that, for all p0 with d(p0, p) ≥ ε,

M(p0, p, r) ≤M(p0, p0)− ε′.

Proof: Suppose the contrary. Then

∃p ∀r ∃p0 (d(p0, p) ≥ ε, M(p0, p, r) > M(p0, p0)− ε′) .

Find such p, take r = 1/n and find p0n such that

d(p0n, p) ≥ ε, M(p0n, p, 1/n) > M(p0n, p0n)− ε′. (12)

Without loss of generality, we can suppose that p0n −−−−→
n→∞

p0.
Metric is a continuous function, therefore, d(p0n, p) −−−−→

n→∞
d(p0, p). Also, by Lemma 4, M(p0n, p0n) −−−−→

n→∞
M(p0, p0).

Moreover,

M(p0n, p, 1/n) = Ep0nmp,1/n(X,Y )

= Ep0n(X) sup
d(p′,p)<1/n

log p′(X)

+ E(1− p0n(X)) sup
d(p′,p)<1/n

log(1− p′(X)).

By Fatou’s lemma and Lemma 7,

lim
n→∞

E
[
p0n(X) sup

d(p′,p)<1/n

log p′(X)

+ (1− p0n(X)) sup
d(p′,p)<1/n

log(1− p′(X))
]

≤ E lim
n→∞

[
p0n(X) sup

d(p′,p)<1/n

log p′(X)

+ (1− p0n(X)) sup
d(p′,p)<1/n

log(1− p′(X))
]

= E [p0(X) log p(X) + (1− p0(X)) log(1− p(X))]

= M(p0, p),

that is,
lim
n→∞

M(p0n, p, 1/n) ≤M(p0, p). (13)

If we calculate limits in (12), we get that

d(p0, p) ≥ ε, lim
n→∞

M(p0n, p, 1/n) ≥M(p0, p0)− ε′.



But by (13) and Lemma 10,

lim
n→∞

M(p0n, p, 1/n) ≤M(p0, p) < M(p0, p0)− ε′,

a contradiction.
Proof of Theorem 1: Fix some ε > 0 and δ > 0. Denote

B = {(p0, p) ∈ P̄ (E)× P̄ (E) | d(p0, p) ≥ ε},

By Lemma 10, there exists ε′ such that for all (p0, p) ∈ B

M(p0, p) < M(p0, p0)− ε′.

Then by Lemma 11, for all p there exists r(p) such that for
all (p0, p) ∈ B

M(p0, p, r(p)) ≤M(p0, p0)− ε′.

The set B is compact and is covered by sets A(p) = {(p0, p
′) |

d(p′, p) < r(p)}. These sets are open because metric d is
continuous w.r.t. p′ and r(p) does not depend on p0. Therefore,
there exist p1, . . . , pk such that

B ⊂ A(p1) ∪ · · · ∪A(pk).

Choose n0 such that, for all n ≥ n0 and for j = 1, . . . , k,

sup
p0∈P̄ (E)

Pp0{Mn(p0) ≤M(p0, p0)− ε′/2} ≤ δ

2k

and

sup
p0∈P̄ (E)

Pp0{Mn(pj , r(pj)) ≥M(p0, p0)− ε′/2} ≤ δ

2k
.

Fix p0 and n ≥ n0 and set q = M(p0, p0)− ε′/2. Then

Pp0{Mn(p0) ≤Mn(pj , r(pj))}
≤ Pp0{Mn(p0) ≤ q}+ Pp0{Mn(pj , r(pj)) ≥ q}
≤ δ/k.

If (p0, p̂) ∈ A(pj), then

Mn(p0) ≤Mn(p̂) ≤Mn(pj , r(pj)),

where the first inequality holds because p̂ is chosen to
maximize Mn(p) and the second inequality holds because
d(p̂, pj) < r(pj). Therefore,

Pp0{d(p0, p̂) ≥ ε} = Pp0{(p0, p̂) ∈ B}

≤
k∑
j=1

Pp0{(p0, p̂) ∈ A(pj)}

≤
k∑
j=1

Pp0{Mn(p0) ≤Mn(pj , r(pj))}

≤ kδ/k = δ.

�

VI. DISCUSSION

We proved that the logistic classifier is uniformly consistent,
provided that the distribution µ of X satisfies condition (2).
A natural question arises, how restrictive is that condition. We
can prove that in the case E = Rk condition (2) holds, if µ
has a density with respect to the Lebesgue’s measure. In such
a case, µ(A) = 0 with any A of zero Lebesgue’s measure.

Since Lebesgue’s measure of any hyperplane is 0, there are
essentially only two types of functions p ∈ P̄ (E): functions pθ
and functions pa,0. If p = pθ, then there is no other function
p′ ∈ P̄ (E) equal to p almost everywhere: if p′ = pθ′ with
θ 6= θ′,

µ{p = p′} = µ{x | θx = θ′x} = 0,

and if p′ = pa,0, then µ{p = p′} = 0 because p(x) ∈ (0; 1)
and p′(x) is equal to 0 or 1 for almost all x.

Now let p = pa,0. If p′ is equal to p almost everywhere,
then p′ is equal to pa′,0 almost everywhere. Denote

C+(a′) = {x | ax ≥ 0, a′x ≥ 0},
C−(a′) = {x | ax ≤ 0, a′x ≤ 0},

C+ =
⋂

d(pa′,0,p)=0

C+(a′),

C− =
⋂

d(pa′,0,p)=0

C−(a′)

and
C =

⋂
d(pa′,0,p)=0

(C+(a′) ∪ C−(a′)) .

Every intersected set is closed and covers suppµ. Therefore,
C ⊃ suppµ and µ(C) = 1. On the other hand, C is the union
of three convex sets: C+, C− and {x | ax = 0}. The boundary
of a convex set is of Lebesgue’s measure 0. Therefore, if C◦ is
the interior of C, then µ(C◦) = 1. If x ∈ C◦, then with any a′,
such that d(pa′,0, p) = 0, one of the following holds: ax < 0,
a′x < 0 or ax > 0, a′x > 0. In both cases, pa′,0(x) = pa,0(x).

The simplest example, where condition (2) does not hold,
is the following. Let E = R3 and µ be the distribution of the
random vector X = (1, cosT, sinT ), where T is distributed
uniformly in [0; 2π] (see Figure 1). Let p = pa,0, where

ax = −x1 for x ∈ R3.

In other words,

p(x) =


0, if x1 > 0,
1/2, if x1 = 0,
1, if x1 < 0.

It is obvious that almost surely p(X) = 0.
For all t ∈ [0; 2π] let p′t = pat,0, where

atx = (−x1 + x2 cos t+ x3 sin t)/
√

2.

In other words,

p′t(x) =


0, if −x1 + x2 cos t+ x3 sin t < 0,
1/2, if −x1 + x2 cos t+ x3 sin t = 0,
1, if −x1 + x2 cos t+ x3 sin t > 0.



Let xs = (1, cos s, sin s) for s ∈ [0; 2π]. If s 6= t, then
p′t(xs) = 0 because

−1 + cos s cos t+ sin s sin t = −1 + cos(s− t) < 0.

Therefore, almost surely p′t(X) = p(X). On the other hand,
p′t(xt) = 1

2 because

−1 + cos2 t+ sin2 t = 0.

Therefore,
p′t(xt) = 1/2 6= p(xt).

Fig. 1. Example of the situation, where condition on µ does not hold. At
the point x in the plot, p′t(x) 6= p(x).

To sum up, we could not prove uniform consistency of
a logistic classifier, without putting any restrictions on the
distribution µ of X . Given that in our previous work (see [4])
we have proved the uniform consistency of histogram type
classifiers and no restrictions were needed, an open question
remains, whether a class of logistic classifiers is not uniformly
consistent, in general, or its uniform consistency can be proved
in some other way.

ACKNOWLEDGMENT

This work was supported by the Singapore Bioimaging
Consortium, Agency for Science, Technology and Research,
Singapore and Department of Statistical Science, University
College London, United Kingdom.

REFERENCES

[1] A. Dembo, O. Zeitouni, Large deviations techniques and applications,
Springer, 1998.

[2] R.M. Dudley, Real analysis and probability, Cambridge University Press,
2002.

[3] W. Feller, An Introduction to Probability Theory and Its Applications,
vol. 2, Wiley, 1971.

[4] A. Kazakeviciute, V. Kazakevicius, M. Olivo, Conditions for existence
of uniformly consistent classifiers, unpublished.

[5] V.V. Petrov, Limit theorems of probability theory: sequences of indepen-
dent random variables, Clarendon Press, Oxford, 1995.

[6] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, Wiley, 2005.

[7] A.W. van der Vaart, Asymptotic Statistics, Cambridge University Press,
2000.

Agne Kazakeviciute received a Bsc degree in Statis-
tics from Vilnius University, Lithuania, in 2012 and
a MSc degree in Medical Statistics from University
College London, United Kingdom, in 2013. She is
currently pursuing her PhD in Statistical Science at
University College London under the joint UCL-
A*STAR research scholarship. She is particularly
interested in statistical and machine learning pattern
recognition and functional data analysis. On top of
this, her research interests include high-dimensional
image processing.

Malini Olivo is currently Head of Bio-Optical
Imaging Group, Singapore Bioimaging Consortium,
A*STAR, Singapore. She holds an adjunct Pro-
fessorship at the National University of Ireland,
Royal College of Surgeons, Ireland and is also a
visiting Professor at Harvard Medical school. She
obtained a Ph.D. in Bio-Medical Physics in 1990
from University Malaya/University College London,
and did her post-doctoral training between 1991-
1995 in University College London, UK and both
McMaster University and University of Toronto,

Canada. She was a Principal Investigator at the Singapore National Cancer
Centre and Singhealth from 1996 to 2009, heading biophotonics research
for clinical translation in cancer. In 2009, she took a Stokes Professorship
Science Foundation Ireland Chair in the National University of Ireland
and returned to Singapore in 2012 to head bio-optical imaging in SBIC,
A*STAR. She is recognized as a pioneer in the area of clinical applications
of photomedicine in optical diagnostics and therapeutics in Singapore. Her
current research interests are in nano-biophotonics and its applications in
translational medicine. Malini Olivo is well recognized internationally in her
field and serves in numerous scientific advisory boards in the area of Photonics
in Medicine. She currently serves in the EU research commission in Photonics
21 shaping research in photonics for Life sciences till 2015.




