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ABSTRACT 

We sought to determine the effect of manipulating mechanical ventilatory constraint during 

submaximal exercise on dyspnoea in older men and women. Methods: Eighteen healthy 

subjects (60-80 y; 9 men, 9 women) completed two days of testing. On Day 1, subjects 

performed pulmonary function testing and a maximal incremental cycle exercise test. On 

Day 2, subjects performed three 6-min bouts of cycling at ventilatory threshold, in a single-

blind randomized manner, while breathing: i) normoxic helium-oxygen (HEL) to reduce the 

work of breathing (Wb) and alleviate expiratory flow limitation (EFL); ii) through an 

inspiratory resistance (RES) of ~5 cmH2O·l-1·s-1 to increase Wb; and iii) ambient air as a 

control (CON). Oesophageal pressure, diaphragm electromyography, and sensory responses 

(using the category-ratio 10 Borg scale) were monitored throughout exercise. Results: 

During the HEL condition, there was a significant decrease in Wb (men: –21±6%, women: –

17±10%) relative to CON (both p<0.01). Moreover, if EFL was present during CON (4 men, 5 

women), it was alleviated during HEL. Conversely, during the RES condition, Wb (men: 

42±19%, women: 50±16%) significantly increased relative to CON (both p<0.01). There was 

no main effect of sex on Wb (p=0.59). Across conditions, women reported significantly 

higher dyspnoea intensity than men (2.9±0.9 vs. 1.9±0.8 Borg scale units, p<0.05). Despite 

significant differences in the degree of mechanical ventilatory constraint between 

conditions, dyspnoea intensity was unaffected, independent of sex (p=0.46). Conclusion: 

When older men and women perform submaximal exercise at a moderate intensity, 

mechanical ventilatory constraint does not contribute significantly to the sensation of 

dyspnoea. 
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 The perceived intensity of exertional breathlessness (i.e. dyspnoea) is higher in older 

women than in older men, possibly due to sex-difference respiratory system 

morphology. 

 During exercise at a given absolute intensity or minute ventilation, older women have 

a greater degree of mechanical ventilatory constraint (i.e. work of breathing and 

expiratory flow limitation) than their male counterparts, which may lead to a greater 

perceived intensity of dyspnoea. 

 Using a single-blind randomized study design, we experimentally manipulated the 

magnitude of mechanical ventilatory constraint during moderate-intensity exercise at 

ventilatory threshold in healthy older men and women. We found that changes in the 

magnitude of mechanical ventilatory constraint within the physiological range had no 

effect on dyspnoea in healthy older adults. 

 When older men and women perform submaximal exercise at a moderate intensity, 

mechanical ventilatory constraint does not contribute significantly to the sensation of 

dyspnoea. 

 

INTRODUCTION 

Dyspnoea, defined briefly as a subjective experience of breathing discomfort 

(American Thoracic Society, 1999), is a common sensory consequence of physical exertion 

(Sheel et al., 2011). The magnitude of dyspnoea during exercise increases throughout the 

healthy aging process, whereby older individuals report higher levels of dyspnoea for a given 

absolute exercise intensity than their younger counterparts (Killian et al., 1992; Mahler et 

al., 2003). While our understanding of the mechanisms of dyspnoea is incomplete, 

exertional dyspnoea is generally thought to occur due to the perception of increased 

respiratory effort required to meet the ventilatory demands of exercise (Jensen et al., 2011). 

Healthy aging is associated with a significant change to the structures of the respiratory 

system that leads to a progressive decline in pulmonary function (Janssens, 2005) and an 

increased ventilatory response to exercise (Patrick et al., 1983). Consequently, older 
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individuals have a greater magnitude of mechanical ventilatory constraint during exercise 

than younger individuals, as indicated by a greater work of breathing (Wb), higher operating 

lung volumes, and an increased propensity towards expiratory flow limitation (EFL) (Molgat-

Seon et al., 2018a). The magnitude of mechanical ventilatory constraint directly affects the 

degree of respiratory effort required to exercise at a given absolute intensity (O'Donnell et 

al., 2000), and therefore is likely to influence the perception of dyspnoea. 

It is becoming increasingly apparent that biological sex also affects dyspnoea during 

exercise in healthy older individuals. Activity-related dyspnoea is twice as common in 

women than men in the general population between the ages of 38 and 67 y (Ekström et al., 

2017). Moreover, we and others have shown that older women report higher levels of 

dyspnoea during exercise at a standardized rate of oxygen uptake  V  2) (Ofir et al., 2008) 

and absolute work rate (Molgat-Seon et al., 2018a) than older men. Although the precise 

causes of sex-differences in the perception of dyspnoea during exercise are likely 

multifactorial, it is possible that inherent differences in the structure of the respiratory 

system play a contributory role. Specifically, the smaller lungs and airways in women 

relative to men are thought to predispose women to mechanical ventilatory constraint 

during exercise (Molgat-Seon et al., 2018c), which could result in a greater perception of 

breathing discomfort. We base this hypothesis on three primary lines of evidence. First, 

older women have a higher Wb  or a given  inute ventilation  V E) and are more likely to 

exhibit EFL during exercise than older men (Molgat-Seon et al., 2018a). Second, indices of 

mechanical ventilatory constraint and respiratory effort during submaximal exercise have 

been shown to correlate with ratings of dyspnoea in older men and women (Molgat-Seon et 

al., 2018a). Third, when the degree of mechanical ventilatory constraint is experimentally 

increased during exercise, using resistive loading or dead-space loading, the perception of 

dyspnoea is increased concomitantly (el-Manshawi et al., 1986; Iandelli et al., 2002; Jensen 

et al., 2011). It follows that acute manipulation of mechanical ventilatory constraint during 

exercise in healthy older men and women would result in corresponding changes in the 

perceived intensity of dyspnoea. Furthermore, reducing mechanical ventilatory constraint in 
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older women may eliminate the sex-differences in exertional dyspnoea observed in older 

individuals. However, this hypothesis remains untested. 

The aim of the present study was to determine the effect of acutely altering the 

magnitude of mechanical ventilatory constraint during submaximal exercise on the 

perception of dyspnoea in healthy older men and women. We hypothesized that during 

submaximal exercise: i) reducing mechanical ventilatory constraint would decrease the 

perceived intensity of dyspnoea, and ii) that increasing mechanical ventilatory constraint 

would increase the perceived intensity of dyspnoea. We further hypothesized that the effect 

of manipulating mechanical ventilatory constraint would have a significantly greater effect 

on the perceived intensity of dyspnoea in women than in men.  

 

METHODS 

Ethical Approval. All subjects provided written informed consent, and all study procedures 

were approved by the Providence Health Care Research Ethics Board at the University of 

British Columbia (#H16-01732), which conforms to the standards set by the latest revision of 

the Declaration of Helsinki, except for registration in a database. 

 

Subjects. Eighteen healthy, recreationally active older individuals (9 men, 9 women) 

between the ages of 60 and 80 y participated in the study. All subjects had normal 

pulmonary function based on predicted values (Burrows et al., 1961; Black & Hyatt, 1969; 

Crapo et al., 1982; Morris, 1988), a body mass index of 18-30 kg·m-2 and peak aerobic power 

≥80% predicted (Blackie et al., 1989). Subjects were excluded if they were current smokers, 

had previously smoked >5 pack-years, or had a history or current symptoms of 

cardiorespiratory disease or any contraindications to exercise testing. 

 

Experimental Overview. Participants reported to the laboratory for two days of testing 

separated by ≥48 h. During Day 1, anthropometric measurements were taken, followed by 

pulmonary function testing and a maximal incremental cycle exercise test. Exercise data 
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obtained during Day 1 were used to determine each subject’s first ventilatory threshold 

(VTh). During Day 2, subjects performed a series of constant-load cycle exercise trials at the 

work rate corresponding to their VTh under 3 experimental conditions in a single-blind 

randomized fashion separated by periods of rest. The aim of these experimental trials was 

to manipulate the degree of mechanical ventilatory constraint during moderate-intensity 

exercise, and the primary outcome measure was the perception of dyspnoea. 

 

Pulmonary Function Testing. Spirometry, whole-body plethysmography, single breath 

diffusing capacity for carbon monoxide, 12-s maximum voluntary ventilation, as well as 

maximum inspiratory and expiratory pressures were assessed using a pulmonary function 

testing system (Vmax Encore 229 with V62J Autobox; CareFusion, Yorba Linda, USA) 

according to standard recommendations (Green et al., 2002; Miller et al., 2005; Wanger et 

al., 2005; MacIntyre et al., 2005). Pulmonary function measurements were expressed in 

absolute units and as a percentage of predicted normal values (Burrows et al., 1961; Black & 

Hyatt, 1969; Crapo et al., 1982; Morris, 1988).  

 

Exercise Protocol. During Day 1 and Day 2, exercise testing was conducted on an 

electronically braked cycle ergometer (ergoselect 200, ergoline GmbH, Bitz, Germany). 

During Day 1, exercise testing began with 6 min of rest followed by 1 min of unloaded (0 W) 

pedalling, then 20 W step-wise increases in workload (starting at 20 W) every 2 min until 

volitional exhaustion. Peak work rate was defined as the highest work rate sustained for at 

least 30 s. Day 2 involved 3 identical exercise trials. Each constant-load cycle exercise trial 

was preceded by a 6-min rest period followed by 1 min of unloaded pedalling. Then, power 

output progressively increased in a ramp fashion over 1 min up to each subject’s 

predetermined work rate, which was then sustained for 5 min. The exercise intensity for the 

constant-load exercise trials was set at each subject’s VTh, which was determined based on 

gas exchange data obtained during the incremental exercise test performed on Day 1 using 

a combination of previously described methods (Caiozzo et al., 1982; Beaver et al., 1986). 
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For each individual, the respiratory compensation point and VTh were identified. The 

exercise intensity corresponding to VTh was set for each subject based on the work rate that 

was most congruent among the different methods of VTh determination. During the first 

experimental trial, subjects were free to choose any cadence they preferred (mean±SD: 

85±5 rpm, range: 70-105) and were instructed to maintain a similar cycling cadence across 

all constant-load cycle exercise tests. Experimental trials were separated by at least 15 min 

of rest but were extended based on subject’s personal pre erence (mean±SD: 22±6 min, 

range: 15-32 min). Prior to beginning the second and third constant-load exercise trials, we 

ensured that cardiorespiratory variables returned to the levels observed during the rest 

period prior to the first trial. 

 

Experimental Conditions. To reduce the magnitude of mechanical ventilatory constraint, 

subjects breathed a normoxic helium-oxygen inspirate (HEL). Replacing nitrogen with helium 

as the backing gas reduces resistance to flow by promoting the laminar flow of air and 

increases the ability to generate flow (Papamoschou, 1995). Thus, helium reduces the 

potential for EFL by increasing ventilatory capacity (V ECAP) at a given lung volume (Babb, 

1997a), and reduces the resistive component of Wb (Papamoschou, 1995). To increase 

mechanical ventilatory constraint, subjects breathed compressed ambient air through a 

resistor placed in the inspiratory circuit of the breathing apparatus (RES). The aperture of 

the resistor was individually set to increase inspiratory resistance to ~5 cmH2O·l-1·s-1 

(mean±SD: 5.7±0.8 cmH2O·l-1·s-1, range: 4.2-6.8 cmH2O·l-1·s-1), thereby increasing inspired 

Wb  or a given V E. The magnitude of inspiratory resistance was chosen in order to increase 

the resistive component of Wb to the same degree as the magnitude of the sex-difference in 

Wb at a given absolute V E based on our previous work in healthy older men and women 

(Molgat-Seon et al., 2018a). In other words, we wanted to increase the Wb in older men to a 

similar level as observed in wo en at t e sa e absolute V E and we wanted to increase the 

Wb in older women by an equivalent amount above their normally occurring Wb at a given 
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V E. As a control condition, subjects breathed ambient air through an unobstructed breathing 

circuit (CON).  

During all constant-load exercise trials, inspired gas was delivered by connecting a 

non-diffusing 100 l reservoir bag (Vacumed model 1196-100, Ventura, CA, USA) to the 

inspiratory limb of the breathing circuit. The reservoir bag was connected to a series of 

compressed-gas tanks that delivered gas through a humidifier. The order of the 

experimental conditions was randomized and we took several measures to ensure the 

subjects were blinded. First, the breathing apparatus was identical in appearance for each 

trial. Second, for all trials, compressed gas was delivered through a reservoir connected to 

the inspiratory limb of the breathing circuit. Finally, all calibration and setup procedures 

between trials were performed in an identical manner. After each trial, we asked subjects to 

guess which experimental condition they had completed; on average, subjects guessed 

correctly on 27±15% of occasions. 

 

Flow, Respiratory Pressures, and Diaphragm Electromyogram. At rest and during exercise on 

both visits, subjects breathed through a mouthpiece connected to a two-way non-

rebreathing valve (Hans Rudolph 2700B, Hans Rudolph, Kansas City, USA). Inspired and 

expired flow were measured using calibrated pneumotachographs (model 3813, Hans 

Rudolph, Kansas City, USA), and volume was obtained by numerical integration of the flow 

signals. On Day 2, each pneumotachograph was calibrated with helium-oxygen prior to the 

HEL condition, and with ambient air prior to the RES and CON conditions. Mouth pressure 

(Pmo) was measured through a port in the mouthpiece using a calibrated differential 

transducer (DP15-34, Validyne Engineering, Northridge, USA). During Day 2, subjects were 

instrumented with a multi-pair oesophageal electrode catheter equipped with two balloons, 

which was used to measure oesophageal pressure (Poe), gastric pressure, and 

electromyogram of the crural diaphragm (EMGdi), the technical details of which are 

provided elsewhere (Luo et al., 2008). Poe and gastric pressure were measured by 

connecting the distal end of each respective balloon to independent, calibrated differential 
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transducers (DP15-34, Validyne Engineering, Northridge, USA). EMGdi was measured by 

connecting the catheter to a grounded bio-amplifier (model RA-8, Yinghui Medical 

Technology Co. Ltd., Guangzhou, China).   

 

Cardiorespiratory Responses. Standard cardiorespiratory measures were recorded at rest 

and during exercise using a commercially available metabolic cart (TrueOne 2400, 

Parvomedics, Sandy, USA). Heart rate and electrocardiogram changes were monitored 

continuously using a 12-lead electrocardiogram hidden from subject view (Cardiosoft 

Diagnostics System v6.71, GE Healthcare, Mississauga, Canada). Arterial oxygen saturation 

was estimated using a finger-pulse oximeter (Radical-7, Massimo Corporation, Irvine, USA). 

End-tidal CO2 (PETCO2) was sampled through a port in the mouthpiece connected to a 

calibrated CO2 analyser (Vacumed model 17630, Ventura, USA). Since helium interferes with 

the infrared signal used by the CO2 analysers, the CO2 analysers were calibrated before each 

trial using two different calibration gases: one containing nitrogen as a backing gas (for the 

CON and RES conditions), the other containing helium as the backing gas (for the HEL 

condition).  

 

Maximal Ventilatory Capacity and Operational Lung Volumes. Prior to and immediately 

following exercise on Day 1, subjects performed a series of forced vital capacity (FVC) 

manoeuvres at different efforts in order to construct maximum expiratory flow-volume 

(MEFV) curves by taking into account exercise-induced bronchodilation and thoracic gas 

compression (Guenette et al., 2010). Breathing a helium-rich gas increases the ability to 

generate flow at a given lung volume (Papamoschou, 1995). Thus, to account for the effect 

of helium on the MEFV curve, the same series of FVC manoeuvers was repeated with helium 

instead of room air immediately after the last constant-load exercise trial during Day 2.  

Inspiratory capacity manoeuvres were performed at rest and during the last 15 s of each 

exercise stage on Day 1. On Day 2, inspiratory capacity manoeuvres were performed at rest 

and during the last 15 s of each constant-load exercise trial. End-inspiratory lung volume 
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(EILV) and end-expiratory lung volume (EELV) were derived from each inspiratory capacity 

manoeuvre (Guenette et al., 2013). Theoretical maximum ventilation (V ECAP) for rest, each 

incremental exercise stage, and for each constant-load exercise test were calculated based 

on the maximum expiratory airflow during a composite-averaged tidal breath (see Data 

Processing and Analysis) and the corresponding operating lung volumes as previously 

described (Johnson et al., 1999). Fractional utilization of available ventilatory capacity 

(V E/V ECAP) was determined as the quotient of V E and V ECAP.  The presence of EFL was 

determined by positioning each flow-volume curve within the corresponding MEFV curve 

according to the measured EELV lung volume. The magnitude of EFL was then calculated as 

the % overlap between the expiratory portion of the tidal breaths and the MEFV curve, and 

EFL was present if ≥5% o  the tidal flow-volume curve encroached on the MEFV curve. 

 

Perceptual Responses. At rest and during exercise, subjects rated t e intensity o  “breat ing 

disco  ort”  dyspnoea) and “leg disco  ort” using the modified category-ratio 10 Borg 

scale (Borg, 1982). Dyspnoea was de ined as “t e sensation o  laboured or difficult 

breat ing” and leg disco  ort was de ined as t e “sensation o  leg  uscle  atigue”.  T e 

endpoints o  t e scale were anc ored suc  t at 0 represented “no breat ing/leg 

disco  ort” and 10 represented “t e  ost severe breat ing/leg disco  ort ever 

experienced or i agined”. During Day 1, perceptual responses were recorded at rest and 

during the last 30 s of each exercise stage. During Day 2, perceptual responses were 

recorded at rest and during the last 30 s of each minute during all constant-load exercise 

tests.  Given the subjective nature of perceived dyspnoea and leg discomfort, perceptual 

responses during Day 2 were assessed by an experimenter who was blinded to the 

condition. 

 

Data Processing and Analysis. Airflow, respiratory pressures, PETCO2, and EMGdi were 

collected using a 16-channel analogue-to-digital data acquisition system (PowerLab, 

ADInstruments, Colorado Springs, USA), sampled at 2000 Hz, then recorded using dedicated 
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software (LabChart 7.3.7, ADInstruments, Colorado Springs, USA). Raw EMGdi signals were 

amplified and band-pass filtered between 20 and 1000 Hz (Biomedical Amplifier, Guangzhou 

Yinghui Medical Equipment Co Ltd, Guangzhou, China) and converted to a root mean square 

(RMS) using a time constant of 100 ms and a moving average window. EMGdi data were 

analysed on a breath-by-breath basis, whereby for each breath peak RMS data were 

obtained by manually selecting RMS signals falling between zones of cardiac artefact 

(Ramsook et al., 2017). The electrode pair with the largest EMGdi amplitude for each breath 

was used for analysis, and the associated EMGdi data were then expressed as a percent of 

maximum EMGdi activity (EMGdi,max), defined as the highest level of EMGdi during an 

inspiratory capacity manoeuvre at rest or during exercise (Jolley et al., 2009). The ratio 

between EMGdi expressed as a function of EMGdi,max and tidal volume normalised to vital 

capacity was used as an index of neuromechanical (un)coupling (NMU) of the respiratory 

system (Schaeffer et al., 2014; Guenette et al., 2014). Flow, volume, and pressures were 

composite averaged using customized software, and Wb was then calculated by integrating 

the area within the oesophageal pressure–volume curve (Dominelli & Sheel, 2012). All 

cardiorespiratory and perceptual variables were analysed over the last 2 min of each 

constant-load exercise test.  

 

Statistics. We performed an a priori sample size calculation using an estimated difference 

between means for dyspnoea of 1.0 unit on the Borg CR-10 scale, assuming a standard 

deviation (SD) of 0.75 and an  of 0.05 to yield a statistical power of 0.80. These estimates 

are based upon: i) the anticipated degree of change to the work of breathing (HEL vs. RES 

conditions), ii) our previous work in older men and women, wherein older wo en  ad a 1.0 

unit on t e  org 0-10 scale di  erences in t e perceived intensity o  dyspnoea at a given 

wor  rate and relative V  2 than older men (Molgat-Seon et al., 2018a), iii) the observation 

that a difference in dyspnoea of 1.0 unit on the Borg CR-10 scale is correlated with electrical 

activity of the diaphragm during exercise (Schaeffer et al., 2014), iv) the recommended 

minimally clinically important difference for dyspnoea in patients with chronic obstructive 
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pulmonary disease of 1.0 unit on the Borg CR-10 scale (Ries, 2005). The calculated sample 

size was 9 subjects per group. 

Subject characteristics, pulmonary function, and peak exercise data were compared 

between t e sexes using Student’s unpaired t-test. A 2×3 (sex [male or female] by condition 

[CON, RES, and HEL]) repeated measures analysis of variance was used to test for 

differences in perceptual and cardiorespiratory variables during the last 2 min of the 

constant-load exercise tests. When significant F ratios were detected, Tu ey’s post  oc test 

was used to determine the location of group mean differences. The association between Wb 

and dyspnoea across conditions was assessed via random-coefficients regression (Xu, 2003). 

The occurrence of EFL during the constant-load exercise tests was expressed as frequency 

statistics; comparisons were made between conditions using Fisc er’s Exact Test. All 

analyses were performed using a statistical software package (SPSS v20.0, IBM, Armonk, 

USA) and the level of statistical significance was set at p<0.05. All data are presented as 

mean±SD unless otherwise stated. 

 

RESULTS 

Subject Characteristics and Pulmonary Function. Table 1 summarizes descriptive 

characteristics and pulmonary function data for all subjects. When expressed in absolute 

terms, the majority of pulmonary function measures were greater in men than women (all 

p<0.05), with the exception of the ratio of forced expiratory volume in 1 s to forced vital 

capacity (p=0.16), and forced expiratory flow between 25 and 75% of forced vital capacity 

(FEF25-75%) (p=0.92).  

 

Incremental Exercise Responses. Data at peak exercise are shown in Table 2. There was a 

significant effect of sex on absolute V  2, carbon dioxide output, work rate, V E, tidal volume, 

and V ECAP (all p<0.05). When V  2 peak was expressed as a percent of predicted, there was 

no significant effect of sex, indicating that subjects’ relative fitness was similar. On average, 

subjects in both groups achieved a respiratory exchange ratio of 1.10±0.05 (range: 1.05-
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1.18) and near maximum heart rates based on predicted normal values (Tanaka et al., 2001) 

(99±8%, range: 91-112%), indicating that maximal effort was exerted across groups. Ratings 

of perceived dyspnoea and leg discomfort are shown in Figure 1. Women had a higher 

perceived intensity of dyspnoea than men at 40, 60, 80, and 100 W (all p<0.05). However, 

when work rate was expressed as a function of peak work rate, the effect of sex was no 

longer present (p>0.05, data not shown). Additionally, no sex-differences in dyspnoea were 

noted when the perceived intensity of dyspnoea during incremental exercise was expressed 

as a function of V E/MVV or V E/V E CAP (both p>0.05). Women reported greater leg discomfort 

at 80 W (p<0.05), but no significant differences were noted at any other absolute work rate 

(all p>0.05). Again, when work rate was expressed as a function of peak work rate, the effect 

of sex on leg discomfort was no longer evident (p>0.05, data not shown). 

Exercise data at VTh in both groups are presented in Table 3. On average, men and 

women reached VTh at similar fractions of peak exercise V  2 (p=0.74), but since men were 

working at a higher absolute work rate, they had a higher V  2, V C 2, V E, and tidal volume 

than women (all p<0.05). All other cardiorespiratory and perceptual variables at VTh were 

similar between the sexes (all p>0.05). 

 

Response to Constant-Load Exercise. Cardiorespiratory variables during the three constant-

load cycle exercise trials are shown in Table 4. Across conditions, men had significantly 

higher V  2 and V C 2 than women (both p<0.05), while respiratory exchange ratio, heart 

rate, arterial oxygen saturation, and PETCO2 were similar between the sexes (all p 0.05). 

T ere was no signi icant e  ect o  condition on V  2, V C 2, respiratory exchange ratio, heart 

rate, arterial oxygen saturation, or PETCO2 (all p>0.05). The ventilatory response to constant-

load exercise under all three experimental conditions is depicted in Figure 2A. There was a 

significant effect of condition and sex on V E (both p<0.05). Speci ically, V E was slightly, but 

significantly, lower during the RES relative to the CON condition (p<0.05), while V E during 

the HEL condition was not significantly different from CON (p=0.27). However, there was no 

systematic effect of condition on tidal volume or breathing frequency (Table 4; both 



 

 

 
This article is protected by copyright. All rights reserved. 
 

14 

p>0.05). T e  ractional utili ation o  V E/V E CAP is shown in Figure 2B. There was a significant 

main effect of condition (p<0.001), but not sex (p=0.76), whereby V E/V E CAP was significantly 

lower during HEL relative to CON (p=0.03), but similar to CON during RES (p=0.93). There 

were no significant differences in operating lung volumes between the sexes or between 

conditions (all p>0.05; Figure 2C). 

 The Wb during constant-load exercise is depicted in Figure 3A. As expected, RES 

significantly increased Wb (men: 42±19%, women: 50±16%), while HEL significantly reduced 

Wb (men: –21±6%, women: –17±10%) relative to CON (both p<0.05). The relative increase in 

Wb during the RES condition and the relative decrease in Wb during the RES condition were 

similar between the sexes (both p>0.05). Figure 4 shows the Wb during each constant-load 

exercise test as a  unction o  V E and compared to values derived from sex- and age-specific 

regression equations (Molgat-Seon et al., 2018a). The change in EMGdi activity followed a 

similar pattern between conditions as the Wb (Figure 3B), whereby, relative to CON, EMGdi 

(men: 35±18%, women: 22±17%) was significantly increased during RES (p=0.007), and 

significantly reduced (men: –7±6%, women: –12±8%) during HEL (p=0.03). Moreover, the 

pattern of change in EMGdi during HEL and RES conditions (as a % of CON) was similar 

between the sexes (both p>0.05). Figure 3C shows the degree of NMU during each constant-

load exercise test. There was a significant effect of condition (p<0.001), but not sex (p=0.76), 

whereby NMU was higher during RES and lower during HEL relative to CON (both p<0.05). 

The frequency of EFL during each constant-load exercise test is shown in Figure 5. 

During CON, 9 of 18 subjects were flow limited, and the frequency of EFL was not 

significantly different relative to CON during RES (5 of 18 subjects, p=0.31). However, 0 of 18 

subjects were flow limited during the HEL condition - a significant reduction in the 

frequency of EFL relative to CON (p=0.001). 

 

Perceptual Responses to Constant-Load Exercise. The perceptions of dyspnoea and leg 

discomfort during the constant-load exercise trials are shown in Figure 6. There was a 

significant effect of sex on dyspnoea, whereby women had a higher perception of dyspnoea 
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than men across conditions (p=0.02, 2=0.32; Figure 6 A); however, there was no significant 

effect of condition on the perception of dyspnoea during constant-load exercise (p=0.11, 

2=0.14). There was no significant correlation between Wb and dyspnoea across conditions 

(slope=0.01 unitsJ-1
min-1, r2=0.61, p=0.10). Moreover, there was no significant effect of sex 

or condition on the perception of leg discomfort (Figure 6B). 

 

DISCUSSION 

Major Findings. We sought to determine the effect of experimentally manipulating 

mechanical ventilatory constraint during exercise on the perception of dyspnoea in healthy 

older men and women. The major findings from our study are twofold. First, women had a 

greater perception of dyspnoea during short-duration constant-load exercise at VTh across 

experimental conditions. Second, acutely increasing or decreasing the degree of mechanical 

ventilatory constraint during submaximal exercise at the same relative intensity in healthy 

older men and women did not affect the perceived intensity of dyspnoea. Overall, our 

findings suggest that, in healthy older adults, sex-differences in exertional dyspnoea are not 

caused by sex-differences in mechanical ventilatory constraint, at least during exercise at 

VTh.  

 

Sex-differences in the Perception of Dyspnoea. During incremental exercise, women had 

significantly higher dyspnoea for a given absolute work rate at 40, 60, 80 and 100 W (Figure 

1), an observation that is consistent with our previous data (Molgat-Seon et al., 2018a) and 

those of others (Killian et al., 1992; Ofir et al., 2008). At VTh during the incremental exercise 

test, women reported dyspnoea that were on average 0.6 Borg scale units greater than in 

men; however, this difference did not reach statistical significance (p=0.18, Table 3). Yet, 

during the constant-load exercise trials at VTh, women reported significantly higher levels of 

dyspnoea than men by an average of 1.0 Borg scale unit across experimental conditions 

(Figure 6). The discrepancy between the presence of a significant sex-difference in dyspnoea 

during constant-load exercise at VTh and the absence thereof at the same exercise intensity 
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during incremental exercise likely reflects differences in the exercise protocol, the timing of 

dyspnoea measurements (i.e. once every 2 min vs. every minute for 6 min), the relatively 

small sample size, and the fact that multiple observations were made for each subject 

during the constant-load exercise trials. Nevertheless, the salient question is what 

mechanism causes the observed sex-differences in dyspnoea during exercise in healthy 

older individuals?  

The neurophysiological mechanisms of dyspnoea are complex and multifactorial 

(Parshall et al., 2012). Exertional dyspnoea in healthy individuals is thought to reflect the 

perception of increased respiratory effort required to meet the increased ventilatory 

demands. Sex-differences in the mechanical ventilatory response to exercise in healthy 

younger and older adults have previously been observed (Dominelli et al., 2015a; Molgat-

Seon et al., 2018a). Regardless of age, women have a higher Wb for a given V E ≥50-65 l·min-1 

than men (Molgat-Seon et al., 2018a); this has been ascribed to women having a higher 

resistive Wb (Guenette et al., 2009; Dominelli et al., 2015a). Additionally, older women 

appear to have a higher propensity towards EFL during exercise than older men (Molgat-

Seon et al., 2018a). In the present study, we noted that during exercise at a fixed relative 

intensity (i.e. at VTh), women had a similar Wb (Figure 3A) but a higher perceived intensity of 

dyspnoea than men (Figure 6A). The similar Wb between the sexes implies that women are 

likely having to dedicate a greater fraction of whole-body V  2 to breathing than men based 

on the linear relationship between Wb and V  2 of the respiratory muscles (Dominelli et al., 

2015b). Therefore, we reasoned that if older women have a greater degree of mechanical 

ventilatory constraint (i.e. a similar Wb despite at lower V E) during exercise than do older 

men, that a relatively greater load would be imposed on their respiratory muscles. The 

perception of increased respiratory effort may explain the sex-differences in exertional 

dyspnoea in healthy older men and women. However, we acknowledge that there are likely 

other explanations for why women in our study had a higher perceived intensity of 

dyspnoea during exercise at VTh than men, such psychological and/or sociocultural 
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differences between the sexes that are known to influence the perception of dyspnoea 

(Bowden et al., 2011). 

 

Manipulations of Mechanical Ventilatory Constraint During Exercise. We experimentally 

altered the magnitude of mechanical ventilatory constraint during a series of short-duration 

constant-load exercise trials in a group of healthy older men and women. During the RES 

condition, we increased Wb so that it remained within the physiological range observed 

during incremental exercise. Based on data from our previous work in older men and 

women (Molgat-Seon et al., 2018a), we increased Wb in men to a similar extent to what 

would be observed in older women at the same absolute V E without breathing through a 

resistor (Figure 4). We also increased the Wb in women to a similar extent to that observed 

in men, albeit at a significantly lower absolute V E (Figure 4).  Thus, if the sex-difference in Wb 

contributed to sex-differences in dyspnoea, we would expect to observe an increase in 

dyspnoea in men to a similar level as women during the CON condition, and an increase in 

dyspnoea in women over and above their CON condition. However, regardless of sex, 

dyspnoea did not increase relative to CON during the RES condition (Figure 6A). 

Experimental studies in healthy young individuals involving the addition of external resistive 

loads during exercise have shown that dyspnoea increases in a resistance-dependent 

manner (Cotes et al., 1985; el-Manshawi et al., 1986). However, the level of added 

resistance in these previous studies ranged from 33-73 cmH2O·l-1·s-1, which greatly exceeds 

the resistance of the intrathoracic airways of individuals with even the most profound 

degree of pathological airway obstruction (Hogg et al., 1968), thereby limiting the 

generalizability of those findings. Conversely, another study used a similar experimental 

protocol but with a lower level of added resistance (~2.7 cmH2O·l-1·s-1) and found that 

healthy individuals did not report higher levels of dyspnoea during exercise with the added 

external resistance relative to control (Lane et al., 1987). In our study, the level of external 

inspiratory resistance was 5.7±0.8 cmH2O·l-1·s-1, which resulted in an increase in Wb that 

never exceeded the absolute values observed during maximal exercise in a similar group of 
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healthy older individuals (Molgat-Seon et al., 2018a). Thus, our data suggest that increasing 

the Wb to physiologically relevant levels during constant-load exercise does not increase the 

intensity of perceived dyspnoea in healthy older adults, regardless of sex.   

By using a normoxic helium-oxygen inspirate, we were able to reduce the magnitude 

of mechanical ventilatory constraint during the HEL condition. Breathing helium during 

exercise has been shown to eliminate EFL and reduce the resistive Wb in healthy younger 

individuals (Babb, 1997a; 1997b; Dominelli et al., 2013). Since older women have a higher 

propensity towards EFL and a higher resistive component of Wb than older men (Molgat-

Seon et al., 2018a), we surmised that the HEL condition would result in a reduction in 

dyspnoea in women to a level equivalent to that of men during the CON condition, while 

having only a small positive effect on dyspnoea relative to the CON condition in men. Based 

on data from our previous work in older men and women (Molgat-Seon et al., 2018a), the 

HEL condition reduced Wb in women to a similar extent to that observed in men at the same 

absolute V E, and we reduced Wb in men well below the values typically observed at the 

same absolute V E (Figure 4). However, HEL had no significant effect on dyspnoea (Figure 

6A). Therefore, our data suggest that decreasing the normally occurring Wb by 18±4% during 

constant-load exercise does not decrease the perceived intensity of dyspnoea in healthy 

older adults, regardless of sex. 

The purpose of this study was to determine the effect of manipulating mechanical 

ventilatory constraint on dyspnoea during sub-maximal exercise in older men and women.  

However, given that older individuals have a lower resting arterial partial pressure of oxygen 

than younger individuals (Janssens, 2005), we were concerned about the possible effects 

exercise-induced reductions in arterial oxygen saturation influencing respiratory or limb 

sensations.  In a separate trial (data not shown), all participants performed exercise whilst 

breathing a mildly hyperoxic gas mixture (FIO2=0.26). This inspirate was selected to prevent 

any decrease in arterial oxygen saturation below resting values. Moreover, we avoided 

using a highly hyperoxic inspirate (e.g. FIO2=0.6) as this would have reduced the drive to 

breathe and increased the arterial partial pressure of oxygen to a non-physiological state. 
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We found that hyperoxia slightly lowered V E relative to CON (men: –5±1 l·min-1, women: –

3±1 l·min-1) and by association Wb (men: –8±3 J·min-1, women: –4±2 l·min-1) without a 

measurable change in the perceived intensity of dyspnoea or leg discomfort. As such, our 

measures of dyspnoea and our manipulations of mechanical constraint are unlikely to be 

confounded by the effect of arterial oxygenation.  

Our observation that women had a higher perceived intensity of dyspnoea at a given 

work rate during incremental exercise (i.e. during Visit 1) is unsurprising due to differences 

in lung and airway size as well as absolute aerobic capacity. This observation agrees with our 

previous work (Molgat-Seon et al., 2018) as well as that of others (Killian et al., 1992; Ofir et 

al., 2008). However, in the present study, we had older men and women exercise at similar 

relative exercise intensities (i.e. at VTh), w ic  resulted in lower wor  rate and V E in women 

than in men. Despite these differences, women and men utilized a similar fraction of V ECAP 

(Figure 2B) and had a statistically similar Wb (Figure 3 and Figure 4). This is an important 

point because in this situation we were able to test whether manipulating Wb had a greater 

effect on the perceived intensity of dyspnoea during exercise in older women than older 

men. However, despite increasing and decreasing the degree of mechanical ventilatory 

constraint during exercise, there was no effect of condition on dyspnoea (Figure 6A). 

Moreover, there was no significant association between Wb and dyspnoea across 

conditions, which we interpret to mean that the magnitude of mechanical ventilatory 

constraint is not the primary determinant of exertional dyspnoea, regardless of sex.  

 

Mechanisms of Dyspnoea in Healthy Aging. During exercise, the mechanisms of dyspnoea 

are complex and multifactorial (Killian & Jones, 1994). Broadly speaking, the perceived 

intensity of dyspnoea is thought to increase, in part, due to a mismatch between respiratory 

motor output and the mechanical response to this output, also known as NMU (Jensen et 

al., 2009). Previous studies have used EMGdi as a surrogate for neural respiratory drive to 

the diaphragm (Luo et al., 2008), and while this approach has several limitations (Faisal et 

al., 2016; Martinez-Valdes et al., 2018), it is commonly employed in combination with 
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normalized measures of tidal volume to provide a quantitative estimate of NMU in both 

health and disease (Schaeffer et al., 2014; Guenette et al., 2014; Ciavaglia et al., 2014; 

Elbehairy et al., 2016). In the present study, we manipulated the degree of mechanical 

ventilatory constraint during exercise in healthy older men and women, which 

correspondingly altered EMGdi (Figure 3B). However, changes in EMGdi were not 

accompanied by proportional changes in normalized measures of tidal volume, which 

implies that we also experimentally manipulated NMU (Figure 3C). Based on our results, we 

conclude that NMU is not the primary determinant of dyspnoea during exercise in healthy 

older adults, at least during short-duration exercise at VTh. Moreover, our results do not 

support the hypothesis that sex-differences in exertional dyspnoea observed in healthy 

older individuals are caused by sex-differences in mechanical ventilatory constraint. The 

question then becomes, if mechanical ventilatory constraint does not explain sex-

differences in dyspnoea during exercise in healthy older individuals, what does? 

Dyspnoea is a complex sensation that arises through the interaction of mechanical, 

chemical, neural, affective, and sociocultural factors (Parshall et al., 2012). Our study aimed 

to manipulate experimentally one of these contributing factors, and therefore other factors 

are likely to explain the observed sex-differences in exertional dyspnoea. If we narrow our 

perspective to physiological factors that are known to differ during exercise on the basis of 

biological sex, possible explanations include the pulmonary vascular response to constant-

load exercise, and sex-differences in respiratory muscle activation during exercise. Recent 

data in healthy older men and women during moderate intensity exercise at approximately 

72-74% of age-predicted maximal heart rate show that older women have a greater 

pulmonary artery wedge pressure compared to older men at the same relative exercise 

intensity (Esfandiari et al., 2017). It is possible, albeit speculative, that the increased 

dyspnoea in older women observed in the present study was the result of sex-differences in 

the hemodynamic response to exercise in healthy older adults. We have recently shown 

that older and younger women rely on scalene and sternocleidomastoid muscles to a 

greater extent during exercise than older and younger men (Molgat-Seon et al., 2018b). The 
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increased motor output to the scalene and sternocleidomastoid muscles may also increase 

the perception of dyspnoea (Gigliotti, 2010). Nevertheless, the multifactorial nature of the 

mechanisms of dyspnoea cannot be overstated. The notion that a single causative factor can 

explain sex-differences in dyspnoea in older individuals is appealing due to its conceptual 

tidiness, 

but is likely an oversimplification. Therefore, future studies that consider a host of 

potentially “dyspnogenic” factors in a large population of healthy men and women are 

needed to improve our understanding of the mechanistic basis of sex-differences in 

exertional dyspnoea.     

 

Limitations. There are several limitations of our study that should be acknowledged. First, 

the constant-load exercise bouts were performed at a moderate exercise intensity (i.e. VTh) 

and the results of our study cannot be generalized to higher or lower intensities. 

Nevertheless, we chose to perform experimental trials at VTh (i.e. equivalent to ~74% of 

peak V O2 in our subjects) because it is physiologically equivalent between the sexes and 

commensurate with an exercise intensity that most individuals are able to sustain for 

relatively long periods of time. Second, given the moderate intensity and short-duration of 

each exercise bout, the absolute dyspnoea ratings in our study were relatively low  ‘slig t’ 

to ‘ oderate’). T ere ore, it is possible t at t ere is a perceptual  or per aps even 

mechanical) threshold above which acute alterations in mechanical ventilatory constraints 

may influence dyspnoea. Third, as is the case with any study involving a subjective primary 

outcome variable, the placebo effect may have confounded our results. However, we took 

great care in ensuring that the subjects and the experimenter tasked with asking the 

subjects to rate their perceptions of dyspnoea were blinded to the experimental conditions. 

This was accomplished by standardizing the gas delivery method across trials, performing 

the same calibration procedures in the same order between trials, and instructing subjects 

not to speak for at least 1 min after the end of each trial due to the effect of helium on voice 

pitch. Fourth, although our study was appropriately powered to detect a 1.0 unit on the 
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Borg CR-10 scale difference in dyspnoea between groups, the study was not powered to 

detect a smaller effect. Therefore, it is possible that mechanical ventilatory constraint may 

still contribute to sex-differences in the perceived intensity of dyspnoea during exercise, 

albeit to a small extent. Fifth, VTh is a discrete boundary between two exercise intensity 

domains. We were careful in our determination of VTh (Caiozzo et al., 1982; Beaver et al., 

1986), and this approach is similar to that of others who have made between-group 

comparisons during dynamic exercise  (Babb, 1997a). However, it is possible that during 

experimental trials some participants were exercising slightly above VTh while others were 

slightly below VTh, which may have had an impact on our observed findings. Specifically, the 

perceptual responses to an increase or a decrease in mechanical ventilatory constraint 

during exercise may be differ based on whether participants are exercising above or below 

VTh. To account for this limitation, future studies should consider performing similar 

experiments with participants exercising at fixed fractions of peak work rate above and 

below VTh. Lastly, our manipulations of mechanical ventilatory constraint were relatively 

modest. Although we could have used a proportional assist ventilator to further reduce the 

Wb (Dominelli et al., 2016; 2017), the reductions in Wb would have been the result of 

decreases in both the resistive and viscoelastic components of Wb, and would have made 

blinding subjects to the experimental condition impossible. Similarly, we could have used a 

higher resistive load, but this would not have been representative of the resistive work 

associated with exercise hyperpnoea in healthy individuals. 

 

Perspectives. Our study is the first to investigate the mechanisms of sex-differences in 

exertional dyspnoea by experimentally manipulating mechanical ventilatory constraint 

during exercise in healthy older men and women. We found that acutely manipulating the 

degree of mechanical ventilatory constraint during short bouts of exercise at VTh did not 

have a significant effect on the perceived intensity of dyspnoea in healthy older men and 

women. We recognize that the contextual nature of our study limits the generalizability of 

our findings. Therefore, we provide the following perspectives. First, the perception of 
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dyspnoea during the constant-load exercise tests was considered ‘slig t’ to ‘ oderate’ 

according to the Borg scale (Borg, 1982). Although the degree of mechanical ventilatory 

constraint did not appear to contribute to dyspnoea at VTh, our findings cannot be 

extrapolated to higher exercise intensities where the perception of dyspnoea is greater. 

Moreover, due to the complexities associated with the precise detection of VTh, some 

participants may have been exercising slightly above VTh while others were exercising 

slightly below VTh. Although it is well established that exercise intensity has a substantial 

effect on the perception of dyspnoea during exercise (Killian & Jones, 1994), it is unclear 

how changes in exercise intensity modulate the perceptual responses to increasing or 

decreasing the magnitude of mechanical ventilatory constraint. Second, our comparisons 

between older men and older women were made at a similar relative exercise intensity, but 

for short periods of time (i.e. 6 min). It is unknown how the time course of dyspnoea would 

change during longer bouts of exercise, or how mechanical ventilatory constraint might 

influence this time course. Lastly, the finding of sex-differences in the perception of 

dyspnoea during exercise is not unique to healthy older individuals; sex-differences in the 

perception of activity-related breathlessness have been reported in studies involving 

healthy young individuals (Schaeffer et al., 2014; Cory et al., 2015), asthmatics (Chhabra & 

Chhabra, 2011), and individuals with chronic obstructive pulmonary disease (de Torres et 

al., 2006; 2007; Guenette et al., 2011). While it is tempting to generalize our findings to 

other populations, it is currently unclear how aging, biological sex, and respiratory disease 

interact to influence the perception of breathing discomfort during physical exertion.  

 

Conclusions. Acutely manipulating the magnitude of mechanical ventilatory constraint 

during short bouts of moderate-intensity exercise in healthy older men and women did not 

have an effect on the perception of dyspnoea. Although sex-differences in respiratory 

mechanics are evident in healthy older adults, they do not appear to contribute to the 

magnitude of exertional dyspnoea, at least during short bouts of submaximal exercise. Thus, 

the higher levels of dyspnoea observed in older women relative to older men may be caused 
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by physiological mechanisms that were not assessed in the present study, or by non-

physiological factors. Future work is required to determine the mechanisms that lead to sex-

differences in dyspnoea in older adults. 
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FIGURE LEGENDS 
 
Figure 1. Perceptions of dyspnoea (panel A) and leg discomfort (panel B) during incremental 
cycle exercise in men and women. The highest equivalent work rate achieved by all subjects 
was 100 W. Dashed lines within each group connect the 100 W data point to the peak 
exercise data point. The work rates corresponding to VTh are depicted by the grey dotted 
line for men and the black dotted line for women. * p<0.05, men vs. women.  
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Figure 2.  roup  ean V E (panel A), V E/V E CAP (panel B), and operating lung volumes (panel C) 
during the last 2 min of each constant-load exercise condition. In panel C, the grey shaded 
area represents average resting operating lung volumes for all subjects. V E,  inute 
ventilation  V E/V E CAP, fractional utilization of ventilatory capacity; CON, control condition; 
RES, resistor condition; HEL, helium condition. *p<0.05, effect of sex, † p<0.05, effect of 
condition. 
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Figure 3. Group mean Wb (panel A), EMGdi (panel B), and NMU (panel C) during the last 2 
min of each constant-load exercise condition. Wb, work of breathing; EMGdi, diaphragm 
electromyogram; EMGdi,max, maximum EMGdi activity; NMU, neuromechanical uncoupling; 
VT, tidal volume; VC, vital capacity; CON, control condition; RES, resistor condition; HEL, 
helium condition. † p<0.05, effect of condition. 
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Figure 4. Wb during the last 2 min of each constant-load exercise condition. In panel A, 
mean values for men and women are shown for each condition and juxtaposed over 
regression lines for men and women from a previous study in a separate group of subjects 
aged 60-80 y (Molgat-Seon et al., 2018a). In panel B, mean values for men and women 
pooled together are shown for each condition and juxtaposed over a single regression lines 
for men and women from a previous study in a separate group of subjects aged 60-80 y 
(Molgat-Seon et al., 2018a). Wb, work of breathing; CON, control condition; RES, resistor 
condition; HEL, helium condition. † p<0.05, effect of condition. 
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Figure 5.  The number of expiratory-flow limited subjects in each group during the last 2 min 
of each constant-load exercise test. EFL; expiratory flow limitation; CON, control condition; 
RES, resistor condition; HEL, helium condition. † p<0.05, effect of condition. 
 

 
Figure 6. Group mean perceptions of dyspnoea (panel A) and leg discomfort (panel B) during 
the last 2 min of each constant-load exercise test. CON, control condition; RES, resistor 
condition; HEL, helium condition. * p<0.05, effect of sex. 
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TABLES 
 
Table 1. Subject characteristics and pulmonary function data. 

 Men Women  

Age, y 69 ± 7 65 ± 5  
Height, cm 177 ± 7 165 ± 6 * 
Body mass, kg 78 ± 10 61 ± 7 * 
BMI, kg m-2 25 ± 3 22 ± 2 * 
FVC, l 4.84 ± 0.98 3.50 ± 0.56 * 
FVC, % predicted  107 ± 13 108 ± 15  
FEV1, l 3.38 ± 0.71 2.61 ± 0.43 * 
FEV1, % predicted 105 ± 14 110 ± 15  
FEV1/FVC 70 ± 5 75 ± 4  
FEV1/FVC, %predicted 98 ± 8 102 ± 6  
FEF25-75, l·s-1 2.12 ± 0.91 2.08 ± 0.73  
FEF25-75, %predicted 81 ± 32 84 ± 27  
MVV, l·min-1 147 ± 32 105 ± 19 * 
TLC, l 7.40 ± 1.01 5.30 ± 0.72 * 
TLC, % predicted 106 ± 10 102 ± 10  
VC, l 5.07 ± 1.06 3.58 ± 0.52 * 
VC, % predicted 107 ± 13 110 ± 12  
IC, l 3.15 ± 0.71 2.33 ± 0.53 * 
IC, % predicted 100 ± 24 96 ± 19  
FRC, l 4.25 ± 1.08 2.97 ± 0.35 * 
FRC, % predicted 91 ± 18 100 ± 7  
RV, l 2.33 ± 0.29 1.72 ± 0.38 * 
RV, % predicted 92 ± 9 88 ± 16  
DLCO, ml·min-1·mmHg-1 28 ± 4 20 ± 2 * 
DLCO, % predicted 106 ± 10 92 ± 8 * 
MIP, cmH2O -110 ± 17 -76 ± 21 * 
MIP, % predicted 104 ± 15 107 ± 25  
MEP, cmH2O 153 ± 43 103 ± 12 * 
MEP, % predicted 77 ± 21 76 ± 9  

Abbreviations: BMI, body mass index; FVC, forced vital capacity; FEV1, forced expiratory 
volume in 1 s; FEF25-75, forced expired flow between 25 and 75% of FVC; MVV, maximum 
voluntary ventilation; TLC, total lung capacity; VC, vital capacity; IC, inspiratory capacity; 
FRC, functional residual capacity; RV, residual volume; DLCO, diffusion capacity of the lung 
for carbon monoxide; MIP, maximum inspiratory pressure; MEP, maximum expiratory 
pressure. * p<0.05, men vs. women. 
 
  



 

 

 
This article is protected by copyright. All rights reserved. 
 

37 

Table 2. Cardiorespiratory and perceptual responses at peak exercise during the 
incremental exercise test. 

 Men Women  

Work rate, W 196 ± 63 129 ± 27 * 
V O2, l·min-1 2.55 ± 0.62 1.62 ± 0.29 * 
V O2 ml·kg-1·min-1 32.9 ± 10.4 26.8 ± 4.0  
V O2, % predicted 108 ± 19 109 ± 18  
V CO2, l·min-1 2.84 ± 0.69 1.76 ± 0.25 * 
RER 1.12 ± 0.05 1.09 ± 0.07  
HR, beats·min-1 158 ± 12 156 ± 16  
HR % predicted 99 ± 7 97 ± 8  
SpO2, % 97 ± 2 97 ± 3  
VT, l 2.55 ± 0.43 1.69 ± 0.28 * 
Fb, breaths·min-1 41 ± 10 37 ± 5  
V E, l·min-1 103 ± 20 62 ± 12 * 
V E/V O2 41.5 ± 7.7 38.9 ± 7.8  
V E/V CO2 37.6 ± 5.5 35.4 ± 5.4  
PETCO2, mmHg 33.0 ± 3.6 34.6 ± 4.8  
EELV, % TLC 57 ± 7 55 ± 4  
EILV, % TLC 91 ± 5 88 ± 3  
V ECAP, l·min-1 141 ± 29 102 ± 10 * 
V E/ V ECAP, % 73 ± 14 62 ± 13  
V E/MVV, % 71 ± 14 61 ± 14  
Dyspnoea 5.7 ± 2.6 5.8 ± 1.3  
Leg Discomfort 7.7 ± 2.0 6.9 ± 2.0  

Abbreviations: V O2, oxygen uptake; V CO2; carbon dioxide output; RER; respiratory exchange 
ratio; HR, heart rate; SpO2, oxygen saturation by pulse oximetry; VT, tidal volume; Fb, 
breathing frequency; V E, minute ventilation; V E/ V O2, ventilatory equivalent for oxygen; 
V E/V CO2, ventilatory equivalent for carbon dioxide; PETCO2, partial pressure of end-tidal 
carbon dioxide; EELV, end-expiratory lung volume; EILV, end-inspiratory lung volume; V ECAP, 
ventilatory capacity; MVV, maximum voluntary ventilation. * p<0.05, men vs. women. 
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Table 3. Cardiorespiratory and perceptual responses at VTh during the incremental exercise 
test.  

 Men Women  

Work rate, W 124 ± 50 78 ± 20 * 
V O2, l·min-1 1.90 ± 0.50 1.17 ± 0.23 * 
V O2, %max 74 ± 5 74 ± 7  
V CO2, l·min-1 1.88 ± 0.49 1.14 ± 0.20 * 
RER 0.99 ± 0.06 0.97 ± 0.07  
HR, beats·min-1 123 ± 23 130 ± 20  
SpO2, % 97 ± 2 96 ± 3  
 V E, l·min-1 57 ± 11 35 ± 7 * 
VT, l 2.14 ± 0.40 1.40 ± 0.25 * 
Fb, breaths·min-1 27 ± 7 25 ± 3  
V E/ V O2 30.6 ± 5.1 29.9 ± 4.1  
V E/V CO2 31.6 ± 4.0 31.1 ± 3.4  
PETCO2, mmHg 40.8 ± 3.8 40.9 ± 3.6  
EELV, % TLC 54 ± 5 53 ± 7  
EILV, % TLC 83 ± 6 80 ± 8  
V ECAP, l·min-1 113 ± 33 83 ± 31 * 
V E/ V ECAP, % 56 ± 17 48 ± 16  
V E/MVV, % 40 ± 8 39 ± 10  
Dyspnoea 2.1 ± 1.2 2.7 ± 0.8  
Leg Discomfort 2.8 ± 0.8 2.8 ± 1.7  

Abbreviations: V O2, oxygen uptake; V CO2; carbon dioxide output; RER; respiratory exchange 
ratio; HR, heart rate; SpO2, oxygen saturation by pulse oximetry; VT, tidal volume; Fb, 
breathing frequency; V E, minute ventilation; V E/ V O2, ventilatory equivalent for oxygen; 
V E/V CO2, ventilatory equivalent for carbon dioxide; PETCO2, partial pressure of end-tidal 
carbon dioxide; EELV, end-expiratory lung volume; EILV, end-inspiratory lung volume; V ECAP, 
ventilatory capacity; MVV, maximum voluntary ventilation. * p<0.05, men vs. women. 
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Table 4. Cardiorespiratory variables during the three constant-load cycle exercise conditions.  

 HEL CON RES  
 Men Women Men Women Men Women  

Work rate, W 124 ± 50 78 ± 20 124 ± 50 78 ± 20 124 ± 50 78 ± 20 * 
V O2, l·min-1 2.20 ± 0.51 1.48 ± 0.29 2.11 ± 0.51 1.45 ± 0.20 2.08 ± 0.47 1.41 ± 0.23 * 
V CO2, l·min-1 2.15 ± 0.35 1.42 ± 0.20 2.00 ± 0.43 1.34 ± 0.15 2.08 ± 0.59 1.33 ± 0.17 * 
RER 0.98 ± 0.05 0.96 ± 0.08 0.96 ± 0.06 0.93 ± 0.07 0.98 ± 0.08 0.95 ± 0.06  
HR, beats·min-1 120 ± 11 127 ± 14 121 ± 18 126 ± 8 121 ± 16 128 ± 12  
SpO2, % 97 ± 1 98 ± 2 97 ± 1 98 ± 1 97 ± 1 97 ± 2  
VT, l 2.33 ± 0.46 1.55 ± 0.22 2.36 ± 0.38 1.58 ± 0.23 2.51 ± 0.46 1.63 ± 0.26 * 
Fb, breaths·min-1 25 ± 4 28 ± 5 25 ± 4 26 ± 5 22 ± 4 24 ± 4  
PETCO2, mmHg 39.6 ± 4.2 39.9 ± 5.3 40.9 ± 3.5 40.9 ± 4.3 41.3 ± 3.4 41.8 ± 4.8  

Abbreviations: V O2, oxygen uptake; V CO2; carbon dioxide output; RER; respiratory exchange ratio; HR, heart rate; SpO2, oxygen saturation by 
pulse oximetry; VT, tidal volume; Fb, breathing frequency; PETCO2, partial pressure of end-tidal carbon dioxide. * p<0.05, men vs. women. 
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