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Abstract 

A model for the hydroelastic response of enclosed shallow water basins with floating 

slender plates of large span, in variable bathymetry is presented. The eigenproblem 

for the system’s resonant behaviour is formulated in the strong and variational form. 

Based on the variational form, and special hydroelastic finite elements, a quadratic 

eigenvalue problem is derived for the eigenfrequencies and eigenmodes of the basin-

floating body system. Benchmark examples, for simplified configurations, are used to 

study the effects of parameters like the plate’s span, position, draft, mass, stiffness 

and depth of the basin. It is observed that the presence of the plate can alter 

significantly the eigenstates of the pond if the depth of the basin is relatively small, 

compared to the plate draft. In such cases the plate span and position play a crucial 

role. The hydroelastic analysis can be important even in cases where the depth 

increases and the upper surface elevation differences, in the presence or absence of 

the floating plate, appear to be less significant. This is due to the importance in 

accurately calculating the curvature and hence bending moments inside the plate. The 

proposed model could be relevant to the seiche formation analysis in reservoirs with 

floating photovoltaic platforms or ice-covered lakes. 

Keywords: VLFS hydroelasticity; seiches; shallow water basins; floating 

photovoltaic platforms; finite elements 

 

1. Introduction 

The formation of standing waves in enclosed or partially enclosed bodies of water, 

such as lakes, bays, reservoirs and harbours has been documented in several occasions 

[1, 2, 3]. The term seiche has been popularised by the Swiss hydrologist François-

Alphonse Forel for these rhythmic oscillations, initially in the context of limnology 

[4]. Seiches fall in the category of long period (infragravity) waves and are often 
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imperceptible to the naked eye due to their very long wavelengths [5]. In many cases 

the free water surface elevation or depression, associated with the formation of a 

seiche, is only a few centimetres. However, extreme seiches, associated to wave 

amplitudes of several meters, have been documented, e.g. in Lake Erie [6]. 

The formation of seiches is attributed principally to atmospheric pressure changes or 

ground excitation, for example due to earthquakes [7, 8]. An impressive event 

regarding the formation of seiches in Scottish lakes Loch Long, Loch Lomond, Loch 

Katrine and Loch Ness, due to an earthquake that hit Lisbon Portugal (epicentre about 

200km west-southwest of Cape St. Vincent) was documented in 1755 [9]. More 

recently, seiches with amplitude of approximately 2 meters were observed in the 

Norwegian fjord Sognefjorden, during the 2011 Tohoku earthquake [10]. Seiches in 

smaller basins (e.g. reservoirs) have also been attributed to earthquakes [2]. 

The case of seiche type standing waves in ice-covered lakes is a related subject that 

has been investigated by several authors [6, 11]. The long waves that appear in such 

cases might have altered characteristics due to the interaction with floating ice 

formations. If floating ice formations have large horizontal dimensions, with respect 

to their thickness, hydroelastic effects might become significant and influence the 

response of the lake-slender floating body system. In such cases, large areas of 

hydroelastic interactions are bound to manifest and it can be conjectured that the 

response of the system will be altered. I. V. Sturova [12] presented a model for the 

analysis and simulation of seiches in lakes with large slender floating bodies, 

representing floating ice formations. This model referred to a fully covered basin with 

either freely floating ice or fixed at the basin boundaries. The outcome of this study 

was that the presence of freely floating, slender structures of large span, does not 

affect significantly the resonant behaviour of the lake during a seiche. In particular, 

very slight differences between the eigenfrequencies of the lake with free surface and 

the same lake with large floating ice formations were reported. The situation was 

different in the case of ice formations that were rigidly fixed at the lake shore and 

extending as floating cantilevers. In such cases, the effect of the ice cover was found 

to be significant in the system response, particularly near the basin boundaries. 

A recent concept related to energy production is that of floating photovoltaic systems 

(floating PV) [13, 14]. Such installations might also be relevant to the phenomenon of 

hydroelastic resonances. Large floating photovoltaic platforms are placed into lakes or 

water reservoirs, similar to the one shown in Fig 1. (left), for the exploitation of solar 

energy but also for preventing excessive water evaporation. It has been established 

that the efficiency of a photovoltaic panel increases when they are floating on water, 

since the latter acts as a coolant and the PV system operates at a lower temperature 

[13]. A floating PV facility of very large horizontal dimensions (approximately 57000 

m
2
) is currently installed in Queen Elizabeth II pond in Surrey [14]. The horizontal 

span of such a platform classifies it in the category of very large floating structures. 

The distinguishing features regarding the analysis of floating PV platforms in ponds 

are that the pond area might be not much larger than that of the platform, while the 
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maximum depth is not necessarily much larger than the platform draft. In such cases, 

the overlap area and the platform draft, along with the macroscopic stiffness of the 

platform could be crucial parameters affecting the hydroelastic system response. 

Hydroelastic models could thus be a valuable tool in assessing the structural integrity 

of this kind of multi-million pound installations.   

 

 

Figure 1. Left: enclosed water reservoir (West London area, UK), Right: partially 

enclosed and ice-covered basin in a Norwegian fjord (near Stavanger, Norway). 

Finally, it should be noted that resonant hydroelastic oscillations are also observed 

during the interaction of ice-shelves with oceanic waves. Several authors have studied 

this type of hydroelastic resonant behaviour [15, 16, 17] while different models and 

solution methodologies have been presented to this end [18-21]. 

The aim of the present study is to assess the following possibility: ‘will the presence 

of freely floating Very Large Floating Structure (VLFS) shift the natural frequencies 

of a pond and in general alter the response of the confined shallow basin with respect 

to seiche formation?’ Applications could include the structural integrity assessment of 

large floating PV installations or ice covered basins, like the fjord region shown in 

figure 1 (right). The study is organised as follows: sections 2 and 3 present the 

geometry and governing equations for the eigenproblem considered. In section 3, the 

variational form of the eigenproblem is derived and its properties are analysed in 

section 4. Subsequently, in order to study the effects of the system parameters (e.g. 

plate span, depth, plate material properties) a shallow basin of infinite width is 

considered. In section 5, a hydroelastic finite element procedure for the determination 

of eigenfrequencies and eigenmodes of such a basin is briefly discussed. The rest of 

the paper includes numerical examples and parametric studies on the basin-floating 

structure response. In particular, the effects of the plate’s span, position, draft, mass, 

stiffness and the basin depth are studied. Cases of multiple floating plates and variable 

bathymetry basins are included. The basic findings and conclusions are finally 

summarised and discussed along with planned future developments and extensions of 

the proposed model.  
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2. The Hydroelastic Model 

2.1 Domain Geometry 

Let 2   be closed and bounded with smooth boundary  . For N  , the open 

subsets j , 1, 2,...,j N  of   with smooth boundaries j   are introduced, such that 

j    and i j    for i j  and , 1, 2,...,i j N , where j j j    . The 

configuration is depicted in Fig. 2. Finally, we denote 

0 1

N

jj
    and                                                   (2.1) 

0 1 2 ... N      .                                              (2.2)               

The geometry introduced is aimed to represent a confined bulk of water, like a lake or 

a pond, with multiple very large bodies of shallow draft floating freely on the water 

surface. The areas occupied by the floating bodies are disjoint. Furthermore the 

bathymetry function ( , ) :b x y   and the positive constants , j  , with j  , 

denoting the density of water and the density of each plate respectively, are 

introduced. According to Archimedes principle, the draft of each plate is 

/j j jd    , where j  is the thickness distribution of floating body j . The domain 

occupied by the fluid is thus defined as 

 3

0 ( , , ) | [ , ], ( , ) , 0,1,2,...,j jD x y z z b d x y j N       ,            (2.3) 

while each floating body occupies one of the domains 

 3( , , ) | [ , ], ( , ) , 1,2,...,j j j j jD x y z z d d x y j N       ,           (2.4) 

 

Figure 2. Multiple Very Large Floating Bodies of shallow draft in a confined, 

shallow water environment. 
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2.2 Governing Equations 

In order to derive a relatively simple but realistic model of hydroelastic interactions 

regarding multiple floating bodies in an enclosed shallow water basin, the following 

set of assumptions will be adopted. 

(A1) The fluid motion is irrotational and governed by linear shallow water 

hydrodynamics. This assumption is compatible with the analysis of standing waves 

with large wavelength in lakes or ponds, when the depth is much smaller than the 

considered wavelengths.  

(A2) The floating bodies are elastic, slender and subject to the Kirchhoff-Love 

assumptions for bending of thin plates. In particular it is / diam( ) 1j j   , for 

1, 2,...,j N . The plate material is an isotropic solid satisfying Hooke’s law. Its 

elastic modulus is 0jE   and its Poisson’s ratio ( 1,0.5]j   . 

(A3) The floating bodies do not drift in the horizontal plane x y  and only deflect 

along the z -axis. 

Effects of Coriolis force are not considered in this study. Their effect has been found 

by I. V. Sturova [12] to be negligible in the hydroelastic response of ice covered 

lakes. It is natural to assume that the same will hold for water reservoirs that have 

much smaller span. The irrotationality and shallow water conditions in assumption 

(A1) allow for the introduction of the scalar functions : (0, ]j j T    , 

0,1, 2,...,j N , representing the fluid velocity potential. The velocity vector, with 

velocity components along the x  and y  direction, in each region is then defined as 

, ( , )j j jx y  u .                                               (2.5) 

Given shallow water conditions, while considering waves of small amplitude, the 

velocity potential 0 , in the region where no floating plates exist, satisfies the wave 

equation 

0 0( ) 0tt g b      ,  in 0 (0, ]T  ,                                (2.6) 

where t  denotes differentiation with respect to time and g  is the acceleration of 

gravity. The free surface elevation in 0  is [22] 

1

0 0tg     .                                                      (2.7) 

Denoting the fluid upper surface elevation (plate deflection) in j  as 

: (0, ]j j T    , continuity of fluid mass underneath the floating plate, leads to 

the equation 
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( ) 0t j jb d        , in (0, ]j T  .                            (2.8) 

Conservation of mass and energy at the interfaces j  between j , 1, 2,...,j N  and 

0  imply the interface conditions [22] 

0 0( )j j jb d b      n n  and  0t j t       on (0, ]j T          (2.9)  

where 0,jn n  denote the outward unit normal on j  and 0  respectively. 

Finally, rigid wall conditions, yielding full reflection, apply on the pond perimeter  , 

where consequently the fluid velocity is zero and thus    

0 0 0  n , on  (0, ]T .                                        (2.10)    

In order to formulate the hydroelastic interaction model, equations (2.6) and (2.8) 

must be supplemented by the plate deflection model. Assuming that the floating plates 

are always in contact with the fluid, the upper surface elevation of the fluid in j  

coincides with the floating plate deflection. Thus, the pressure on the upper surface of 

the fluid acts as a distributed load on the plate. Based on assumptions (A2) and (A3), 

the equation governing the response of floating plate j  is   

  0j j tt j j j j t jk g                ,                          (2.11) 

where 

3

212(1 )

j j

j

j

E
k







 . 

The plate bending moment tensor for floating plate j , in vector form, is 

1 0

( ) 1 0

0 0 1

j xx j

j j j j yy j

j xy j

k

 

  

 

   
   

    
       

M .                               (2.12) 

Freely floating boundary conditions are realised by imposing the normal bending 

moment and active shear force to be zero at the lateral boundary of each plate [23], 

that is 

( ) ( ) 0T

n j j j j  M n M n   and ( ) ( ) 0j j j   Q T t , on j , 1, 2,...,j N ,  (2.13)       

where ( ) ( )T

j j j j T n M t  is the twisting moment and ( ) ( )j j j  Q M n  is the 

shear force, with jt  being the unit tangent vector on j .  

The strong form of the Initial Boundary Value (IBV) hydroelastic problem in the 

enclosed shallow basin is to find : (0, ]j j T    , 0,1, 2,...,j N  and 
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: (0, ]j j T     for 1, 2,...,j N  that satisfy the field equations (2.6), (2.8) and 

(2.11), interface conditions (2.9) and boundary conditions (2.10), (2.13), along with 

appropriate initial conditions. In the following section, after introducing convenient 

nondimensional variables, the weak form of the respective hydroelastic problem will 

be derived in the frequency domain, leading to a quadratic eigenvalue problem in 

variational form.  

3. The Hydroelastic Eigenproblem 

Introducing the characteristic length   [1, ]max diamP j N jl    , the following 

nondimensional quantities are defined 

( , ) ( , ) / Px y x y l ,  
1/2

/ Pt t g l  /j j Pl   and 
1/2 3/2

j j Pg l   .            (3.1)    

Introducing standing wave solutions of the form  ( , , ) Re ( , ) i t

j jx y t x y e   , 

1, 2,...,j N , and  ( , , ) Re ( , ) i t

j jx y t x y e    , 0,1, 2,...,j N  and using the 

nondimensional quantities defined in (3.1) governing equations, in steady state 

conditions and nondimensional form, become (after dropping tildes) 

   21 0j j j j jK m i             in j  for 1, 2,...,j N ,          (3.2) 

  0j j jB i    , in j  for 1, 2,...,j N  and                        (3.3) 

       
  2

0 0 0 0B      ,   in 0  ,                                           (3.4)        

where 
1

j P jm l d ,  
1

4

j P jK gl k


 , 
1

j P jB l b m   for 1,2,...,j N  and 0 / PB b l .   

The above equations are supplemented by the interface conditions 

0 0 0j j jB B     n n  and
 0j     on j , 1, 2,...,j N ,         (3.5b)  

the zero normal bending moment and active shear conditions at the lateral boundary 

of the floating plates, that is Eqs. (2.13) and the zero normal velocity condition on  .  

The variational form of the above stated problem can be derived by multiplying 

equations (3.2), (3.3) and (3.4) by the conjugate of suitable weight functions j , jw , 

1, 2,...,j N   and 0w  respectively, integration over the appropriate domain and 

application of the Green-Gauss theorem. In the case of the fourth order term 

 j jK   , two repeated applications of the Green-Gauss theorem and appropriate 

handling of the resulting boundary integrals, using the surface and normal gradient 

operators [24], the surface divergence theorem and Stokes theorem, results to  
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 

 

              (1 )( 2 )

              ( ) ( ) ( )

j j

j

j j

j j j j j j j

j j xx j xx j yy j yy j xy j xy j

n j j j j j j j

K dxdy K dxdy

K dxdy

ds ds

    

      

    

 



 

    

         

     

 



 M n Q T t

         (3.6)  

Finally, the weak form for the hydroelastic problem, taking also into account (2.13), is 

2( , ) 0
j j j

j j j j j j j j ja dxdy i dxdy m dxdy        
  

       ,                 (3.7)    

0
j j j

j j j j j j j j jB w dxdy i w dxdy w B ds 
  

         n  and             (3.8) 

0 0

2

0 0 0 0 0 0 0 0 0 0
j

B w dxdy w dxdy w B ds
  

          n ,                (3.9)  

where,  

( , )

(1 )( 2 )

j

j

j j j j j j j

j j xx j xx j yy j yy j xy j xy j

a K dxdy

K dxdy

    

      





  

         




,           (3.10) 

and the homogeneous Neumann condition for 0  on  , i.e. 0 0 0 0 0w B ds


   n , 

has been implemented. Assuming further that the weight functions jw  and 0w , satisfy 

the interface condition 0ji w i w   on j , for 1, 2,...,j N  and taking into account 

interface condition (2.9a) and the fact that 0j  n n  (see also Fig. 2), it is 

0 0 0 0( ) 0
j

j j j jw B w B ds


      n n .                               (3.11)       

The variational form of the eigenvalue problem results by the summation of (3.7), 

(3.8) and (3.9) over all j  and can be stated as: 

find  , 2 ( ; )j jH   , 1( ; )j jH    1, 2,...,j N  and 
1

0 0( ; )H   , 

such that for all admissible 
2 ( ; )j jH   , 1( ; )j jw H    1, 2,...,j N  and 

1

0 0( ; )w H   , it is 

0 0

2

1

2

0 0 0 0 0

1

( , )

( ) 0

j j j

j

N

j j j j j j j j j j j

j

N

j j j j

j

a dxdy B w dxdy m dxdy

i w dxdy B w dxdy w dxdy

      

   

  


  


     
  

         
  

   

   

,  (3.12)    
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where ( ; )k

jH   is the space of complex-valued functions f  defined on j  and 

have Lebesgue-square integrable derivatives 
1 2

1 2

a a

a a

f

x y




 
 for all non-negative integers 

1 2 0a a k   . It is expected that the solution behaves as non-propagating waves 

and thus    arg arg 0j j      
   

.  

 

4. Properties of the Eigenstates 

4.1 Mass Conservation and Mean Value of the Wave Fields 

In this section the mass conservation properties of the system will be examined. It will 

be demonstrated, using the variational form, that mass conservation enables the 

estimation of the wave fields j  and j  in the mean value sense. Since the shallow 

water environment under consideration is confined by rigid boundaries with no inflow 

or outflow conditions, and no mass sources or sinks are present, physical intuition 

suggests that the total amount of mass should remain constant. Consequently, the 

mean value of the upper surface elevation, that being the plate deflection in the 

hydroelastic interaction regions, or free surface water waves in the unoccupied portion 

of the pond, should equal that of the undisturbed state, which is zero. The following 

proposition summarizes these results.    

PROPOSITION 1 Let   denote the measure of   and set 0 0m  . At each 

eigenstate n  

(i) the mean value of the upper surface elevation in   is zero and 

(ii) the mean value of the velocity potential in   is proportional to the mean value 

of m , i.e 

1

0

0
j

N

j

j

dxdy





   and                                             (4.1) 

 
1

0

0
j

N

j n j j

j

i m dxdy 





    .                                     (4.2) 

Proof. The above properties can be easily shown by appropriately testing the 

variational form. Due to the homogeneous Neumann conditions for 0  on  , the fact 

that the plate is freely floating and the form of the interface conditions, every constant 

function is admissible as a weight function in the variational form. Selecting 

0 1j jw w    , in (3.12) results in 

0

2

0 0 0 0

1 1

( ) 0
j j

N N

j j j j

j j

i dxdy dxdy B B ds  
  

 

            n n .    (4.3) 
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The free surface elevation in domain 0  is 0 0i    . Thus, using interface 

conditions (2.9) and the fact that 0j  n n , it is 

0
0

1

0
j

N

j

j

i dxdy dxdy
i


  

 


   , 

which implies (4.1). For the derivation of (4.2), note that when 0 1j jw w     Eq. 

(3.12) becomes 

0

2

0

1

(1 ) 0
j j j

N

j j j j

j

i dxdy m dxdy i dxdy i dxdy      
   



      
  

     . 

Adding the term 
0 0

2

0 0(1 ) ( ) 0i dxdy i dxdy   
 

      , and rearranging the 

integrals in the series, results to 

0 1j j

N N

j n j j

j j

dxdy i m dxdy 
 

 

     .                               (4.4) 

Eq. (4.2) now follows since 0 0m  .                                                                              □  

It is worth mentioning that when floating plates are present in the basin, the upper 

surface elevation is not continuous at the interface between the plates and free water 

regions. These discontinuities occur since different differential operators govern the 

evolution of the field in the hydroelastic and free water regions. According now to 

(4.1), the mean value of the upper surface elevation (including these finite jumps) 

vanishes. 

4.2 Eigenfrequency Spectrum and Orthogonality Conditions  

This subsection is devoted to the proof of the following proposition regarding the 

distribution of eigenvalues for the problem considered and the derivation of 

orthogonality conditions for the eigenfunctions. In order to derive the orthogonality 

conditions, the variational form in eigenstate p  is tested with the admissible weight 

functions  ( ) ( ) ( )

0, ,q q q

j ji i   , 1, 2,...,j N , while in eigenstate q  the weight functions 

 ( ) ( ) ( )

0, ,p p p

j ji i    are used. At all eigenstates functions 0, ,j j   are real since the 

standing wave solutions pursued and Eqs. (3.2-3.4) imply that the surface elevation 

and velocity potential are real and imaginary (or vice versa) respectively, without any 

loss of generality. The process of the proof for these properties will furthermore 

reveal several other important inequalities that the hydroelastic fields satisfy. 

PROPOSITION 2 

(i) The eigenvalues are real and symmetrically placed with respect to the imaginary 

axis 
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(ii) The eigensolution corresponding to 0 0   is 0j    in j   for 1, 2,...,j N  

and j jc   in j   for 0,1, 2,...,j N , where jc  are constants  

(iii)  (Orthogonality conditions) Given any two eigenstates p  and q  of 

the hydroelastic system, where p q , it is 

 

0

( ) ( ) ( ) ( )

0 0 1

( ) ( ) ( ) ( )

1

( )

0

j

j

Nq p q p

p q j j jj

N p q p q

j j j jj

dxdy m dxdy

dxdy

   

 

 

 

     
 

   

 

 
         and        (4.5a) 

0 0

( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0 01

( ) ( ) ( ) ( ) ( ) ( )

1

( , ) 0

j

j j

Nq p q p q p

p q j j jj

N
q p q p q p

j j j j j j j j

j

dxdy m dxdy B dxdy

a dxdy B dxdy

   

   

  

 


       
 

      
  

  

  
.   (4.5b) 

Proof. Regarding the existence of real eigenvalues, testing the variational form (3.12) 

with the admissible functions j j  , j jw    and 0 0w   , results to  

2
2

0

22 2
0

222

0 ( ) ( )
1 1

2 22

0 0 ( )( ) ( )
1

( )

( , ) 0

jj

j j

N N

j j j j j jL L
j j

N

j j j j j jLL L
j

m i dxdy

B a B

    

  

 
 

 


            

 
        

  



.  (4.6)  

where 2 ( )jL 
  is the L

2
 norm of a function defined in j . Since it is 

1 1

( ) 2 (Re Im Re Im )
j j

N N

j j j j j j j j

j j

i dxdy dxdy   
 

 

         
      

   ,  (4.7) 

Eq. (4.7) is a quadratic polynomial with real coefficients, of the form 
2 0     . For   to be real it suffices to show that the discriminant is 

positive or zero, that is 2 4 0     . This condition, since 

2
2

0

22

0 ( ) ( )
1

0
j

N

j jL L
j

m 
 



    , reduces to 0  . This last inequality can be 

easily verified by using the strong ellipticity of ja  for a plate bending problem on a 

Winkler type foundation, as it is 0jK   and 0 1/ 2j  , thus [24]  

 2 22

1

22 2

( ) ( )( )
1 1

( , )

essinf (1 ) 0

j

j
j jj

N

j j j j j

j

N N

j j j j j j jL HL
j j

a dxdy

K K

   

    




 
 

   
 

 
    

  

 

 
,     (4.8) 
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where 
2 ( )j

j H



 is the 2 ( )jH   semi-norm. Now, the result follows directly from the 

2L  products appearing in (4.8) and the definition of the respective norms. 

At all eigenstates, when 0  , using Eqs (3.3), (3.4) and the Green-Gauss theorem it 

is 

 

2

2

2

1 1

2

( )
1 1

2

0 0 0 0 0 0 0 0
( )

1 1

2

( )
1

( ) ( ) ( )

2 ( )

2 ( )

2

j j

jj

jj

j

N N

j j j j j j j j j j

j j

N N

j j j j j j j j j j
L

j j

N N

j j
L

j j

N

j j
L

j

i dxdy B B dxdy

B B B ds

B B B ds

B

  
 

 


 


 




            
      

         

         

 

  

 

 

n n

n n

2
2

0
0

2 22

0 0 0 ( )( )
2 2

LL
B 


   

. 

Equation (4.6) then becomes 

2
2

0

22 2
0

2 22

0 ( )( )
1

2 22

0 0 ( )( ) ( )
1

( , ) 0

j

j j

N

j j LL
j

N

j j j j j jLL L
j

m

B a B

 

  




 


 
   

 

 
       





.       (4.9) 

Since it has already been established that all eigenvalues are real, the above equation 

suggests that eigenvalues are symmetrically placed with respect to the imaginary axis. 

Furthermore, since 2 2
0 0

2 22

0 0( ) ( )L L
 

 
  , equation (4.9) can be written as 

22 2

2 22
2

( )( ) ( )
1 1 0 0

( , )
jj j

N N N N

j j j j j j j jLL L
j j j j

m a B    
 

   

 
    

 
    ,    (4.10) 

which implies that at all eigenstates, when 0  , it is 

2 2

22

( ) ( )
1 0 0

( , )
j j

N N N

j j j j j jL L
j j j

a B  
 

  

     .                     (4.11) 

When 0  , Eq. (4.6) becomes  

22 2
0

2 22

0 0 ( )( ) ( )
1

( , ) 0
j j

N

j j j j j jLL L
j

B a B  
 



 
       

 .    (4.12) 

Inequality (4.8) now implies 0j  . The 
2L  norms of the velocity potential gradient 

being zero is equivalent to j jc  , where jc  0,1, 2,...,j N  are constants. Since the 
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velocity potentials are defined up to a constant, the zero solution when 0   is 

achieved if the quotient spaces 
1

\ ( )j H    are considered. 

Testing the variational form in eigenstate p  with the admissible weight functions 

 ( ) ( ) ( )

0, ,q q q

j ji i   , 1, 2,...,j N , and the variational form in eigenstate q  with the 

weight functions  ( ) ( ) ( )

0, ,p p p

j ji i    results, due to the symmetry of the bilinear 

functionals ja , into two quadratic expressions of the form 

2 0p pA B J    , 2 0q qA B J    ,                               (4.13)       

are derived, having the same coefficients 

0

( ) ( ) ( ) ( )

0 0 1
j

Nq p q p

j j jj
A dxdy m dxdy 

 
     ,                             (4.14) 

 ( ) ( ) ( ) ( )

1
j

N p q p q

j j j jj
B dxdy 

 
     and                                  (4.15) 

0

( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( )

0 0 0

( , )
j j

N
q p q p q p

j j j j j j j j

j

q p

J a dxdy B dxdy

B dxdy

   
 





     
  

  

  



.               (4.16)    

and two positive roots p , q . Vieta’s formulae for the sum and product of the 

quadratic polynomial roots with coefficients , ,A B J , yield the desired result.            □ 

4.3 Energy Conservation and the Rayleigh Quotient 

A second important property of the hydroelastic interaction model presented above is 

the absence of energy dissipation mechanisms. This property is linked to the presence 

of a conserved quantity (energy) that can be used for the definition of a Rayleigh-type 

quotient characterizing the eigenvalues of the system. Such a result can be directly 

derived from Eq. (4.10) as     

PROPOSITION 3 (Rayleigh Quotient) At all eigenstates p  it is 

2 2

2

22

( ) ( )
1 02

2

( )
1

( , )
j j

j

N N

j j j j j jL L
j j

p N

j j
L

j

a B

m

  





 
 




 
    



 


.               (4.17) 

In concluding this section it is interesting to note the similarities of the present 

eigenvalue problem with Sturm-Liouville systems. Extensive numerical evidence 

shows that the eigenstates behave as stationary points of the Rayleigh quotient, 

similarly as in the case of  Sturm-Liouville systems.  
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5. Finite Element Solution of a simplified Eigenproblem 

Several properties of the hydroelastic eigenstates, as predicted by the proposed model, 

have been studied qualitatively in the previous section. A parametric analysis with 

respect to geometric and plate material characteristics of the floating plate/basin 

system is expected to provide further insight. The analytical solution of the 

hydroelastic problem under consideration is very difficult or even impossible for 

involved geometries or variable bathymetry basins. Therefore, a finite element 

procedure for determining the hydroelastic eigenfrequencies and eigenmodes will be 

adopted. 

Let h h

j V  , 
1( ; )h h

j j jW H     and 1

0 0 0( ; )h hW H    . The case 

2

0( ; )hV H  , that could lead to conforming approximations, is demanding for 2D 

problems due to the presence of the fourth order operator. In 1D cases, conforming 

Hermite interpolation is straightforward to apply for the specific hydroelastic model 

[26]. The restriction of the approximation functions in a specific hydroelastic finite 

element K  (in hydroelastic region j ) can be written as ( ) ( )

1K

PSh a a

j j ja
H 


  and 

( ) ( )

1K

WSh a a

j j ja
L


   , where 

( )a

jH  are shape functions for the plate deformation and 

( )a

jL  are typical Lagrange shape functions for the velocity potential. The natural 

numbers PS  and WS  indicate the number of shape functions adopted for the two fields 

and thus characterise the order of approximation of the hydroelastic element. The 

nodal unknown quantities for the plate 
( )a

j  include deflections and their derivatives. 

In the free water region, where the governing model is the D’Alembert wave 

equation, the FE approximation is ( ) ( )

0 0 01K

WSh a a

a
L


    based on Lagrangian shape 

functions. A quasi-uniform triangulation of  , where elements in contact with the 

interfaces j  have nodes on the interface, is assumed. The above presented 

approximations, using variational form (3.12) and the standard Galerkin method, 

produce the local hydroelastic finite element matrices 

 
2

( ) ( )

K( )
j

h

j j j jm H H dxdy 

 


  m m ,                                     (5.1a) 

( ) ( ) ( ) ( )

K( ) ( )
j

h

j j j j ji H L L H dxdy   

 


   c c ,                             (5.1b) 

( ) ( ) ( ) ( ) ( ) ( )

K( ) ( , )
j j

j j j j j j j j ja H H H H dxdy B L L dxdy     


 

       k k ,     (5.1c) 

and the following standard local matrices in the free water region 

 
0

2
( ) ( )

K(0) 0 0

h L L dxdy 

 


  m m , 
0

( ) ( )

K(0) 0 0 0B L L dxdy 




    k k ,   (5.2) 
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where h  is the eigenfrequency approximation. Combining the local contributions 

and formulating a global system of FE equations leads to a Quadratic Eigenvalue 

Problem (QEP) [25, 27] of the form 

  2
h h h   M C K u 0 ,                                            (5.3)           

where, M  is real and has contributions from K( ) K(0),jm m  over all elements K  in  , 

C  has contributions from K( )jc  in all j  and K is real with contributions from 

K( ) K(0),jk k  in  . Since j  are not represented in M , the matrix is positive semi-

definite. Global matrix C is singular as well (since it is only defined in the 

hydroelastic regions) and furthermore it is T c c     C C . The QEP has thus a 

singular mass-type matrix and skew-symmetric damping-type matrix. For this type of 

problems, the eigenvalues are real and there exist both finite and infinite in measure 

eigenvalues [25, 27]. Both these facts are reflected in the analysis of the continuous 

system presented in section 4.2. The properties of the discrete system are a direct 

consequence of the skew symmetric form in (4.7), produced by the terms with first 

time derivatives in the time domain problem. Such terms do not correspond to energy 

loses and therefore conservation of energy, compatible with the fact that no 

dissipative mechanisms are present in the model, occurs. This property is then 

reflected in the real valued spectrum of the system. Since M  is singular, the analysis 

can be performed in terms of the reverse polynomial [25], setting 1          

2( )Q      K C M O .                                         (5.4) 

Using the reverse polynomial, the infinite measure eigenfrequencies are mapped to 

the zero values of  . The reverse polynomial can be solved directly in MATLAB ® 

using the polynomial eigenvalue solver ‘polyeig’, or by linearization. In the 

following, the above FE based numerical strategy will be adopted, utilizing the 

HELFEM hydroelastic elements introduced in [26] for plates of infinite width. Finite 

Elements for simulations in two horizontal dimensions, based on nonconforming 

approximations will be the subject of a forthcoming study.  

 

6. FE Convergence and Parametric Analysis 

The effect of several parameters, present in the hydroelastic eigenproblem, will be 

studied, using the hydroelastic elements HELFEM, introduced in [26]. In order to 

simplify the analysis and isolate the effect that specific factors have on the 

hydroelastic response, basins of constant depth and a single floating plate of infinite 

width will be initially considered. The convergence characteristics of the HELFEM 

elements will be studied first. A basin of total length 1000 mL   is considered. The 

floating plate has stiffness 5 GPaE  , Poisson’s ratio 0.3v   and density 
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3900 kg/m  . These values are close to the properties of sea ice [12], however the 

analysis is also relevant to VLFS, the response of which is governed by the same 

model [28]. In all cases hereafter the plate’s thickness is 1 m  , gravity acceleration 

is 29.81 m/secg   and the density of water is 31000 kg/mw  . A floating plate of 

span 200mPl   is located at the middle of the pond. The first and sixth 

eigenfrequency is calculated using the hydroelastic finite elements HELFEM(3,2) and 

HELFEM(5,4) [26]. Element HELFEM(3,2) has standard cubic Hermite interpolation 

of 3
rd

 degree for the deflection and quadratic Lagrange interpolation for the velocity 

potential. Element HELFEM(5,4) features Hermite interpolation of 5
th

 degree for the 

deflections and quartic Lagrange polynomials for the velocity potential. For this 

specific problem an analytical solution was also pursued using a sixth order ordinary 

differential equation for the velocity potential in the hydroelastic region [22] and 

subsequently applying interface and freely floating plate conditions. In particular, 

following the analysis adopted by J.J. Stoker [22] and also by I.V. Sturova [12] and 

Meylan et al. [19], the velocity potential in a hydroelastic region j   can be expressed 

in the form 

6

1

( ) nx

j n

n

x A e




   ,                                                  (6.1) 

where n  are the roots of the polynomial 6 2 2 1 2(1 ) ( ) 0K M B M        . The 

velocity potential outside the hydroelastic region is of the form 

1 2( ) cos( / ) sin( / )x D x B D x B     .                              (6.2) 

Using the interface conditions (3.5b), the zero bending moment and shear force 

conditions at the end points of the floating plate and the zero velocity conditions at the 

end points of the basin, a homogeneous system for the unknowns 1 2, ,nA D D  is 

derived. For nontrivial solutions, this approach involves the calculation of a 

determinant that leads to a transcendental equation for the eigenfrequencies and the 

eigenfunctions. This approach is very efficient for one floating plate but becomes 

more involved if two or more plates are considered. Furthermore it can only be 

applied to constant depth basins. The analytical solutions derived are used to establish 

convergence rates for the finite element scheme adopted and for validation. For the 

example analysed in figure 3 regarding the eigenfrequencies, a solution with 50 

elements is the same as the exact one within machine precision. The observed 

convergence rates, based on comparison against the analytical solution, calculated by 

using 5, 10, 15, 20 and 25 elements in total, are plotted using double logarithmic scale 

in Fig. 3. The observed convergence rates are very close to the expected, theoretical 

ones, (4 for HELFEM(3,2) and 8 HELFEM(5,4)), based on the selected order of 

interpolation [24]. Furthermore, as expected, the approximation is found to deteriorate 

as the mode number increases, although the errors obtained are very small even with 

coarse meshes. HELFEM(5,4) for the first eigenfrequency provides results of machine 
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precision even for very coarse meshes. The expected rates have been also obtained for 

the eigenmodes.  

 

Figure 3. Convergence rates for Finite Elements HELFEM(3,2) and HELFEM(5,4). 

In the simplified setting introduced, using the hydroelastic elements HELFEM(3,2), 

the effect of the plate’s span, position, stiffness, mass and draft will be first analysed. 

Furthermore, examples regarding multiple floating bodies and shallow basins of 

variable bathymetry will be presented. The influence of all these parameters will be 

quantified using two indicators. The first indicator is the 2L  norm of the difference 

between the upper surface elevation in the presence and absence of a floating body, 

over the respective norm of the basin without the body. For the basin without the 

floating plate this function at eigenstate n  is denoted as nH , while for basin with the 

floating plate, the upper surface elevation, including the plate deflection at the region 

of hydroelastic interaction, is denoted as n .  The first indicator is thus 

2

2

( )

( )

Y
n n L

n

n L

H

H







 ,                                                   (6.3) 

and describes the influence of the floating plate on the eigenfunctions. The second 

indicator is the ratio of the hydroelastic system eigenfrequency n  over the respective 

eigenfrequency of the pond without the floating plate, denoted here as n . The 

eigenfrequencies and eigenfunctions for a basin of length L  and constant depth B  are 

n

B
n

L
  , ( ) cosn n

n x
H x C

L

 
  

 
,                                 (6.4) 

where nC  is a scaling constant. 
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6.1 Effect of Plate Span and Position 

First the effect of the plate’s span in a basin of total length 1000 mL   is considered. 

The floating plate has the same as above material properties. The first six eigenstates 

for a basin of depth 2m with a floating plate of length 400 mPl  , are shown in Fig 4. 

The plate’s midpoint coincides with the midpoint of the basin. In all cases presented 

henceforth the horizontal coordinate is translated such that point zero coincides with 

the left edge of the plate. The upper surface elevation of the basin without the floating 

plate is depicted as a blue dashed line. All eigenmodes have been scaled so that they 

have maximum amplitude equal to one in the dimensional setting. It is evident that the 

presence of the floating body produces differences in the eigenfunction profile and 

that these differences become more significant at higher eigenmodes. Note that the 

basin considered in this example is extremely shallow (2m depth). However, this 

configuration can be related to applications of floating Photovoltaic (PV) platforms in 

shallow ponds [13]. It is interesting to note that the upper surface elevation at the 

edges of the plate has not the same value as the upper surface elevation at the water 

next to the edges. In the cases considered this jump in the upper surface 

elevation/plate deflection has very small values and is not visible without zooming at 

the specific locations. Finally, the small depth of the basin ensures that the long wave 

approximation adopted is valid for even higher modes. 

 

Figure 4. Eigenstates for a floating plate of span 400m at the middle of a closed 

shallow basin (1000m length and 2m deep). The mode of the basin without the plate is 

plotted as blue dashed line.       

The effect of the plate span is studied in Figs. 5 and 6. In all cases the plate’s midpoint 

is located at the middle of the basin. The case of the very shallow basin (2m) is 

considered along with a basin of 3m and one of 4m depth. The length of the floating 

plate Pl is increased up to the point that the whole pond is covered. Figure 5 shows the 
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first indicator as a function of the nondimensional plate span /Pl L . It is thus 

representative of the plate’s span effect on the eigenfunctions. It is evident that as the 

depth increases the effect of the floating plate in the pond becomes less significant. 

Higher modes are affected more by the presence of the plate. At the same time, the 

effect of the plate is more intense when the plate covers only a portion of the basin. 

 

Figure 5. Effect of the floating plate span on the upper surface elevation – plate 

deflection in a shallow basin of depth mB . The plate thickness is 1 m  .  

 

Figure 6. Effect of the floating plate span on the eigenfrequencies of a shallow basin 

having depth mB . The plate thickness is 1 m  . 

As a general rule it can be stated that the effect is more significant when the plate 

span is approximately half the basin length, although the actual span that maximises 

the first indicator depends on the specific mode considered. In all cases, if the plate 
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increases to the point that it covers the whole basin, the differences in the upper 

surface elevation between the basin without the plate and the basin with the floating 

plate become almost zero. Finally, for values of the ratio / 0.1Pl L  , since the 

thickness of the plate is 1 m  , the floating plate cannot be classified as thin 

( / 0.01Pl  ) and the results gradually become inaccurate as /Pl L decreases. The 

problematic region is depicted using a red frame in Figs. 5 and 6. Figure 6, shows the 

effect of the plate span on the eigenfrequencies of the system. The effect here has the 

reverse trend when compared to figure 5. The eigenfrequenies are affected more as 

the span of the floating plate increases relative to the length of the basin. Again, 

shallower basins are affected more. A maximum reduction of approximately 25% is 

observed for the shallower basin, while the maximum reduction is approximately 17% 

when / 3B    and 12% when / 4B   . 

REMARK: When a floating plate of relatively small stiffness spans the whole basin it 

has been observed that the eigenfunctions corresponding to the first few modes are 

approximately the same, in the 2L  norm, as that of the lake without the plate. At the 

same time, the ratio of the lower hydroelastic eigenfrequencies to that of the basin 

approaches a value that is approximately independent of the mode number n . It is 

evident that this value depends strongly on the basin depth. This type of behaviour is 

observed in Figs. 5 and 6 when / 1Pl L  . In such cases, the effect of the stiffness 

being very minor, the basin behaves like one with a reduced depth occurring by taking 

into account the plate draft.  

In order to examine the effect of the plate’s position inside the basin, a plate of length 

400 mPl   is considered inside a pond of length 1000 mL  and depth 2 mB  . The 

plate now is positioned such that its left edge is only 50 m away from the left endpoint 

of the basin. Figure 7, shows the first 6 eigenstates of the configuration. It is observed 

that significant differences in the upper surface elevation occur when comparison is 

made to the response of the basin without the floating body (dashed blue line). When 

comparisons are made with the case of the same plate located at the middle of the 

basin (Fig. 4), significant differences are observed as well. This fact suggests that the 

plate’s position inside the basin affects the eigenstates and could be an important 

design parameter. 

The effect of the plate’s position is studied in Figs. 8 and 9. Again, the case of the 

very shallow basin (2m) is considered along with a basin of 3m and one of 4m depth. 

The length of the floating plate in all cases is 400 mPl  . The distance between the 

basin’s left endpoint and the plate’s left edge is denoted by  . 
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Figure 7. Eigenstates for a floating plate of span 400m inside a closed shallow basin 

(1000m length and 2m deep). The mode of the basin without the plate is plotted as 

blue dashed line. 

Figure 8 shows the effect of the plates position on the upper surface elevation-plate 

deflection as a function of the nondimensional distance / L , for the three different 

basin depths. As expected, the curves are symmetric with respect to the value 

/ 0.3L  , which corresponds to the plate’s midpoint be located exactly halfway the 

basins length. That is, the system is indifferent whether distance / L  is measured 

with respect to the left or the right endpoint of the basin. The effect of the plate’s 

location is more intense when the plate is nearer the basin’s boundary points. 

Furthermore, differences in the upper surface elevation, with respect to the pond 

without the plate, are amplified when the depth decreases and the number of the 

considered mode increases. 

Figure 9, shows the effect of the plate’s position on the eigenfrequencies. In this case, 

the location of the maximum intensity of the effect depends strongly on the number of 

the mode. In general, the effects appear to be more intense on the first 

eigenfrequency. The variation of the ratio /n n   with respect to / L  becomes more 

oscillatory as n  increases. At the same time, the amplitude of this oscillation reduces. 

Finally, we remark the fact that in the above examples, the number of eigenfunction 

nodes increases with frequency like a typical Sturm-Liouville system. 
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Figure 8. Effect of the floating plate’s position on the upper surface elevation – plate 

deflection in a shallow basin of depth mB . The plate thickness is 1 m  . 

 

Figure 9. Effect of the floating plate’s position on the eigenfrequencies of a shallow 

basin having depth mB . The plate thickness is 1 m  . 

 

6.2 Effect of Plate Draft, Mass and Stiffness 

The effect of the draft, mass and stiffness of the floating plate are studied in this 

section. A basin of length 1000 mL   and depth 3 m  is considered and a plate with 

span 200 mPl  is floating with its center located at the middle of the basin. The mass 

parameter m  is allowed to vary, by varying the plate density value between 0 and 950 

kg/m
3
. The plate’s thickness is 1 m  . Two different values are selected for the 
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Young’s modulus of the floating plate material, namely 6 25 10 N/mE    and 

9 25 10 N/mE   , producing the stiffness parameters 91.823 10K    and 

61.823 10K    respectively. The effect of the material parameters on the 

eigenfrequencies is presented in the left column plots of Fig. 10, while the effect on 

the eigenmodes is depicted in the right column plots of Fig. 10. Solid lines represent 

the variation when the plate draft is included in the model and dashed lines are used 

for the case where the draft is not taken into account. The circle markers are used for 

the curves corresponding to the more flexible elastic plate. 

The increase of the plate mass reduces the eigenfrequencies and increases the 

differences in the upper surface elevation, with respect to upper surface elevation of 

the pond without the plate. However, these alterations appear to be caused only 

because of the related increase of the draft. If the draft is ignored the eigenstates are 

practically identical to those of the pond without the plate. The increase of the plate 

stiffness appears to have a very small influence on the eigenstates for the first few 

modes and the range of Young’s modulus values examined. Still its effect appears to 

increase with increasing mode number and it is therefore expected that higher modes 

will be more sensitive to flexibility variations. In all cases, the plate draft is the crucial 

parameter, affecting more explicitly the eigenstates of the system.    

 

Figure 10. Effect of the floating plate’s draft, mass and stiffness on the 

eigenfrequencies (left column) and eigenmodes (right column) of a 3m deep basin.  

It is interesting, although probably not relevant to the analysis of very large floating 

PV platforms or floating ice formations, to examine the case where the stiffness of the 

plate increases even further. To this end a Young’s modulus value of 
11 25 10 N/mE    (

41.823 10K    ) is assumed while the other parameters are: 

400 mPl   , 1000 mL   , 3 mB   , 0.3v  , 1 m   and / 0.9w   . The 

response of the pond is shown in figure 11 
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Figure 11. Eigenstates for a stiff ( 11 25 10 N/mE   ) floating plate of span 400m 

inside a closed shallow basin (1000m length and 3m deep). The mode of the basin 

without the plate is plotted as blue dashed line. 

 

6.3 Multiple Floating Plates 

As a first case study a basin of 3m depth and 1000m length with two floating plates is 

considered. The first plate has a length of 400m and is placed near one edge of the 

basin. In particular, the left boundary of the plate is positioned 10m away from the left 

end point of the basin. The second plate has a span of 200m. Both plates have 

stiffness 5 GPaE  , Poisson’s ratio 0.3v  , density 3900 kg/m  and thickness 

1 m  . The control parameter is the distance between the floating plates denoted as 

 , while 400mPl  . It is expected that when distance   varies, the eigenstates of 

the system will be altered. The effect of the distance   on the first four eigenstates is 

presented in figure 12. The indicator for the shift of the spectrum is now presented as 

1 /n n   so that the effect on the eigenfrequencies and the effect on the 

eigenfunctions can be efficiently plotted in the same diagram. 

It is evident that the effect of the distance   on the eigenstates depends strongly on 

the specific mode examined. For the first mode (wavelength of magnitude comparable 

to the basin length), the effect on the eigenfrequency is more significant when the 

distance between the plates is small, while the effect on the eigenfunction is 

intensified for large values of  . This result suggests that for the first mode and for 

the parameters examined, when the two plates are very close to each other, the system 

behaves similarly to a basin with one plate having the combined length of the two. An 

interesting observation is that the effect of   on the upper surface elevation, for the 
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case of the first and second mode, has a minimum which roughly coincides with the 

  value producing the maximum shift of the eigefrequency. 

The eigenstates of the system examined are plotted in figure 13 for the case 

/ 0.3L  . The dashed line corresponds to the upper surface elevation of the water in 

a pond without floating plates. It is again observed that the effect of the floating 

bodies on the upper surface elevation is more intense for the higher modes.     

 

Figure 12. Effect of two floating plates on the eigenstates of a 3m deep basin, as a 

function of the distance between the plates.  

 

Figure 13. First four eigenstates of a 3m deep basin with two floating plates, for 

/ 0.3L  . The large plate is located 10m from the basin edge. 
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6.4 Variable Bathymetry Basins 

In this section, a variable bathymetry basin will be studied. A pond with infinite 

width, length L   and a linearly varying depth profile is considered. The shallow end 

of the pond is assume to have depth oB  and the slope is denoted as  . The 

eigenstates of the pond with no floating plates are simulated by the equation 

(considering the nondimensional variables introduced in section 3) 

2[ ] 0o

d d
B x

dx dx


 
    

 
.                                      (6.5)  

The same form has been used by [29] for the study of long wave propagation over 

piece-wise linear seabed profiles. Setting [ ]o

d
B x

dx
 


  , differentiating eq. (6.5), 

and using the substitution oz B x  ,  results to 
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.                                              (6.6) 

The analytical solution of the above equation is (see Polyanin and Zaitsev [30]) 

   1 1

1 1 2 1( ) 2 2z z C J z C Y z       
 

 .                        (6.7) 

Applying the zero velocity boundary conditions 
1(0) ( ) 0PLl     nontrivial 

solutions are obtained, setting 
1β 2 oB   , when 

       1 1 1 1F( ) β β 1 / ( ) β β 1 / ( ) 0o p o pJ Y L B l Y J L B l       ,          (6.8) 

Approximate formulas for the roots of F( ) , in terms of the quantity 1 / ( )o pL B l   

can be found in [31], page 347, section 9.5.27. For the specific case study two basins 

are considered, one with 0.004   and one with 0.009  . For both basins it is 

1000 mL   and 1moB  . The first six roots of the transcendental equation (6.6) for 

both basins have been calculated using Newton-Raphson iterations and initial values 

based on the formulas in [31]. 

The effect of a floating plate with span 300mPl  , stiffness 5 GPaE  , Poisson’s 

ratio 0.3v  , density 
3900 kg/m   and thickness is 1 m  on the first six 

eigenfrequencies is plotted in Fig. 14 as a function of the plate location. Similarly to 

Figs. 8 and 9,   denotes the distance between the left lateral boundary of the plate 

and the left end point of the basin. For both basins considered, the effect intensifies 

when the plate floats at the shallow region of the basin. Furthermore, the spectrum is 

altered to a greater extent when the mean depth is smaller. 
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Subsequently, for the case 0.004  a floating plate of 300mPl   is assumed to be 

located at distance 50m form the shallow end. The floating plate has the same 

properties as above. The first six eigenstates of the system are depicted in Fig. 15. The 

presence of the floating plate alters significantly the response of the system, in terms 

of the eigenmodes. 

 

Figure 14. Effect of a floating plate’s position on the eigenfrequencies of two basins 

with constant, mild slope. The distance of the plate from the basin shallow edge is 

denoted by  . 

 

Figure 15. First six eigenstates of a 1000 m long, deepening pond with 0.004  and 

a floating plate of span 300 m located 50 m away from the shallow end. 
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Figure 16. Curvature of the plate at the eigenstates presented in Fig. 14 (solid line) 

and curvature of the basin’s upper surface elevation at the same span when no plate is 

present (dashed). 

The absolute value of the curvature along the span of the beam is plotted in Fig. 16. 

The curvature is an indicator of the normal stress magnitude inside the beam, 

generated due to the induced bending moments. For small deflections, the curvature 

  is the second spatial derivative of the deflection   and the bending moment is 

proportional to the curvature M κb xx . The curvature of the free surface elevation 

without a floating plate is plotted as well (using a dashed line) for comparison 

purposes. It is observed that the peak curvature value increases as the mode number 

increases. Apart from the case of the first mode, the maximum curvature in the 

presence of the floating plate is significantly higher. The proposed finite element 

procedure is an efficient means to calculate bending moment distributions, and 

consequently stresses, along the floating plates. In situations where the depth is small 

compared to the thickness of the plate, e.g. in the above configuration, 3D effects in 

the response of the system are expected to become significant. In such cases the 

analysis should be supplemented with the use of more elaborate models that can take 

into account through the depth variations of the hydorelastic field and possible local 

singularities near the corner boundaries of the fluid-floating structure system [32]. 

The same basin and floating plate are studied in the following example, with the plate 

now being located at the middle of the pond ( 350m  ).  The first six eigenmodes of 

the system, depicted in Fig. 17, indicate that the differences in the upper surface 

elevation of the plate are in this case much smaller. It might be temping thus to 

analyse the response of the system in terms of the pond with no floating body. 

However, the curvature distributions along the plate (depicted in Fig. 18), indicate 

differences of approximately 40%, in certain cases. This example reveals the 

significance of the coupled hydroelastic analysis, even in situations where the 
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differences between the upper surface eigenmodes appear to be negligible. In the case 

where the stiffness is small and at the same time the draft of the plate, compared to the 

depth of the water, is small, the effect of the floating plate is insignificant in the sense 

that the eigenfrequencies of the basin and the L
2 

norm of the eigenfunctions are 

virtually not altered. In such cases the problem can be treated as a singularly 

perturbed problem of the basin eigenstates. Finally, it is mentioned that the model 

presented can be used for the treatment of floating plates rigidly connected to the 

basin banks, as well. 

 

Figure 17. First six eigenstates of a 1000 m long, deepening pond with 0.004  and 

a floating plate of span 300 m located 350 m away from the shallow end. 

 

Figure 18. Curvature of the plate at the eigenstates presented in Fig. 16 (solid line) 

and curvature of the basin’s upper surface elevation at the same span when no plate is 

present (dashed line). 
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7. Conclusions and Future Developments 

The hydroelastic response of closed shallow basins with floating slender plates of 

large span has been studied, based on the variational form of a simplified model, and 

special hydroelastic finite elements. The phenomenon is found to be governed by a 

quadratic eigenvalue problem for the eigenfrequencies and eigenmodes of the basin-

floating body system. Several benchmark examples are presented for certain 

simplified configurations in order to study the effects of parameters like the plate’s 

span, position, draft, mass, stiffness and depth of the basin. The presence of the plate 

has been found to alter significantly the eigenstates of the pond if the depth of the 

basin is relatively small compared to the plate draft. The plate draft is a crucial 

parameter for the problem. When the draft is significant, the plate span and position 

inside the basin play a decisive role. The stiffness of the floating plate is shown to 

have only minor effects for the values of Young’s modulus examined, and influences 

mostly higher modes. The hydroelastic analysis is important even in cases where the 

depth, compared to the draft, increases and the upper surface elevation differences, in 

the presence or absence of the floating plate, appear to be insignificant. This is due to 

the underestimation in the maximum curvature, and hence bending moment values, 

that can occur if the upper surface elevation of the system is calculated without the 

plate. Finally, the finite element method appears to be an efficient, powerful and 

versatile tool for hydroelastic simulations of this type and particular involved 

problems like cases of variable bathymetry basins or when multiple floating plates are 

considered. To study more realistic geometries and floating plates of finite width, 

finite elements in two horizontal dimensions are needed [33]. Future work is planned 

towards the development of such a model, based on the variational form presented in 

sections 3 and 5. A 2D Finite Element method of this kind can be used for the 

simulation of multiple floating plates of irregular shape, incorporating the effects of 

variable bathymetry, variable plate properties and simple anchoring configurations 

[34]. It is envisioned that this new methodology will constitute an efficient tool for the 

analysis of demanding problems of VLFS hydroelasticity [35] like the hydroelastic 

resonant behaviour of closed basins. 
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