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A B S T R A C T

We study a double-cantilever beam (DCB), in which either the crack-mouth opening displacement or the end
rotations are prescribed, in the linear-elastic-fracture-mechanics (LEFM) limit of an infinitely stiff and brittle
interface. We present a novel, yet extremely simple, derivation of the closed-form solution of this problem when
the arms are modelled with Timoshenko beam theory. We remove the assumption that the cross sections of the
DCB arms are assumed not to rotate (i.e. that they are clamped) at the crack tip, which is made in so-called
‘simple beam theory’ (SBT). Therefore, with our ‘enhanced simple beam theory’ (ESBT), in front of the crack tip,
cross sections are allowed to rotate, although the beam axis stays undeformed. Thus, we can determine the crack-
tip rotation caused by the deformation of the beam in front of the crack tip also in the LEFM limit. As a result,
most of the inaccuracies of the SBT are eliminated, without the need for a crack-length correction, used in the
‘corrected beam theory’ (CBT). In this way, we can derive a very accurate data reduction formula for the critical
energy release rate, Gc, which does not require the measurement of the crack length, unlike CBT. In our nu-
merical results we show that, compared to the most effective data reduction methods currently available (in-
cluding CBT), our formula is either as accurate or more accurate for the case of brittle delamination of thick
composite plates, in which shear deformability can play a significant role.

1. Introduction

Determining the fracture resistance of adhesives or laminated
composites is nowadays essential for their industrial application.
Standardised procedures have been developed for different types of
specimens and modes of delamination (debonding). Such procedures
are based on relatively simple tests used to produce data which are then
processed using one of several data reduction schemes proposed. Thus,
we can say that standards for determining the fracture resistance of
adhesives consist of two main parts: (i) the experimental part (where
details on how to prepare and perform the experiments are given) and
(ii) the post-processing part (where expressions for computing the
fracture resistance from the experimental data are contained). In this
work we will concentrate only on the second (post-processing) aspect
for the standard double cantilever beam (DCB) test used for de-
termining the fracture resistance in mode I.

Based on the work of Ripling and his co-workers in the mid 1960s
and early 1970s [1], a first ASTM standard for determining fracture
resistance of adhesives in mode I was released. Up to the present day,
this standard has not changed considerably and its current version,

ASTM D3433-99(2012) [2], still uses the same expressions for the
fracture resistance that Ripling et al. proposed in Ref. [1]. The original
standard, which introduced the DCB specimen, used the critical energy
release rate, Gc, as the measure of fracture resistance of the adhesive.
Expressions for Gc were derived from linear elastic fracture mechanics
(LEFM) theory under the assumptions that the DCB arms act as if they
were Timoshenko beams clamped at the crack tip and the interface
material is infinitely stiff and perfectly brittle. We will refer to such
models as ‘simple beam theory’ (SBT) models. In fact, the same formula
proposed by Ripling et al. [1] and used in ASTM D3433-99(2012) [2] is
also used in the British Standard BS ISO 25217:2009 [3] under the
name ‘simple beam theory’ (SBT).

However, Ripling himself [1] noticed that this simple model of the
real problem, under a given load, resulted in deflections smaller than
the ones obtained from the actual experiments. He attributed this to the
fact that the arms of the DCB, rather than being clamped, actually ro-
tate at the crack tip. Furthermore, he suggested that the expression for
Gc derived under the assumption that the arms are clamped at the crack
tip could be corrected by adding some extra length to the actual crack
length. Following the same line of reasoning, so-called ‘corrected beam
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theory’ (CBT) was introduced in the British Standard [3] and it is
considered as one of the most accurate data reduction schemes cur-
rently available in the standards [4–6].

In this work we revisit the SBT assumption that the arms are
clamped at the crack tip. Even if in reality the arms were connected by
an infinitely rigid and perfectly brittle interface, it is expected that they
would deform around the crack tip. This behaviour could be captured
using 3D or 2D solid finite element models, but it can be also captured if
the arms are modelled as Timoshenko beams, which is less obvious. It
the latter case, although transverse separation at the interface is not
allowed, the arms rotations due to shear still are. Consequently, the
arms of a DCB will act as clamped only if they are shear-rigid, which
corresponds to Euler-Bernoulli beam theory. The rotation of the arms at
and in front of the crack tip is something that, to the best of authors'
knowledge, has not been included so far in approaches that combine
Timoshenko beam theory and LEFM. Thus, we will call our approach
‘enhanced simple beam theory’ (ESBT). As already mentioned, when
Euler-Bernoulli beam theory is used, ESBT is equivalent to SBT.

Based on our ESBT solution, we derive a novel expression for Gc that
accounts for the rotation at the crack tip. Using the so-called ‘equivalent
crack length’ approach [6,7], we derive a data reduction scheme based
on the ESBT model that does not require the measurement of the crack
length and is therefore practical and, as confirmed by our numerical
results, very accurate. Measuring the crack length is, in fact, common in
all the available data reduction schemes in the current versions of
American and British Standards for determining fracture resistance in
modeI [2–4]. This is usually performed using a travelling microscope or
a high-resolution camera, which can be time-consuming and prone to
inaccuracy. Thus, following our work from Ref. [6], in this work we
dedicate special attention to data reduction schemes that do not require
the measurement of the crack length.

Beside the novel ESBT data reduction scheme, in this work we
consider Euler-Bernoulli and Timoshenko versions of SBT data reduc-
tion schemes that do not require the measurement of the crack length
and are already known from the literature [7–9]. Based on virtual ex-
periments, where numerical models are used to create input data for
data-reduction schemes, we compare the data-reduction schemes that
do not require measurement of the crack length (including ESBT) with
those available in BS-ISO 25217:2009 [3] standard. The accuracy of
each data reduction scheme is assessed by how close the computed
value of Gc matches the input value of the work of separation (area
under the traction-separation law) of the cohesive-zone model (CZM)
used at the interface in the numerical analysis.

The structure of the paper is as follows. In Section 2, we define the
problem and derive the closed-form solutions in terms of contact trac-
tions at the interface, bending moments, shear forces and cross-sec-
tional rotations of the upper arm. In Section 3, we derive expressions for
the cross-head displacement and the critical energy release rate. One
data-reduction scheme based on ESBT and two other ones (Euler-Ber-
noulli and Timoshenko) based on SBT are derived in Section 4. They all
use the concept of equivalent crack length and, therefore, do not re-
quire measurement of the crack length. In Section 5, we assess the ac-
curacy of these data-reduction schemes and compare it to that provided
by the of formulae provided in BS ISO 25217:2009 [3]. In Section 6 we
summarise the main contributions of the paper and give some re-
commendations for future work. The solution of the problem of a DCB
with prescribed rotations based on ESBT assumptions and the corre-
sponding formula for Gc are given in Appendix A.

2. Definition and solution of the problem

2.1. Problem description

We consider a double cantilever beam (DCB) composed of two
identical arms with length L, arm depth h and width b as shown in
Fig. 1. At the left-hand side there is an initial notch of length a0 between

the arms, whereas on the rest of the interface the arms are connected.
At the left-hand end, the bottom arm is pinned, whereas on the upper
arm a transversal displacement δ is applied. As a consequence, two
identical, but opposite transverse forces F act on the arms at the left-
hand end. Because these forces are applied symmetrically with respect
to the mid-plane of the interface between the two arms, stresses and
strains in the arms are symmetrical with respect to the mid-plane of the
interface, too. Thus, for the sake of simplicity, only one arm of the DCB
can be considered in the analysis. In particular we will consider only the
upper arm and assume that the x-axis is the centroidal axis of the arm
(reference axis), while y and z axes are the principal axes of the arm's
cross section.

We model the arm as a Timoshenko beam with linear-elastic con-
stitutive law, where material properties are defined by Young's mod-
ulus, E, and shear modulus, μ. In a general case E and μ can have in-
dependent values, while for an isotropic material = +µ E0.5 /(1 ),
where ν is Poisson's ratio. We denote the bending stiffness of the upper
arm by EI , where =I bh /123 is the second moment of area, and the
shear stiffness by µAs where =A A ks s is the shear-corrected cross-
sectional area with =A bh and =k 5/6s . The use of Timoshenko beam
theory also implies that we assume that displacements and rotations of
the arms are relatively small compared to the specimen's dimensions.

We assume that the interface connection between the arms is in-
finitely stiff and perfectly brittle, which means that there is no se-
paration at a point of the interface before the crack reaches that point.
Such a model corresponds to LEFM, where it is assumed that the crack
will propagate when a critical value of the energy release rate, Gc, is
reached. In the following section we will derive a closed-form expres-
sion for Gc for a DCB with arms modelled as Timoshenko beams and an
infinitely stiff, perfectly brittle interface.

2.2. Solution of the differential equations of the problem

According to Fig. 1, the x-axis corresponds to the centroidal line of
the upper arm, whereas the y-axis passes through the crack tip, i.e.
between the cracked and undamaged part of the DCB. We will focus on
the undamaged part and investigate what happens in front of the crack
tip.

The general form of the differential equation for a Timoshenko
beam with constant bending and shear stiffness reads

+ =x
EI

q x
µA

q x( ) 1 ( ) 1 ( ) 0,
s

IV
(1)

where is the transversal displacement of the upper arm in y-direction
and q is the distributed load on the arm which is positive when pointing
upwards. Because for an infinitely stiff interface in front of the crack tip

=x( ) 0, and thus =x( ) 0IV , Equation (1) becomes

= >q x q x x( ) ( ) 0, for 0, (2)

where = µA EI/s . Note also that the contact tractions on the interface
can be defined as

=x q x
b

( ) ( ) . (3)

The solution of Equation (2) is

= + >q x e c e c x( ) , for 0,x x
1 2 (4)

where c1 and c2 are integration constants.

Remark 2.1. It can be easily shown that solution (4) is a particular case
of the solution of a Timoshenko beam on a Winkler foundation.
Assuming linear-elastic springs defined by the stiffness k in N/mm3, it
follows that =x q x k( ) ( )/(2 ). Thus, for the particular case when
k , the first member in Equation (1) vanishes, i.e. =x( ) 0IV .
Solutions for a beam on a Winkler foundation for finite values of k are
available in the literature [10–12].
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The following beam theory relations

=q x x( ) ( ),T (5)

=x x( ) ( ),T M (6)

=x EI x( ) ( ),M (7)

where T and M are the shear force and the bending moment in the
upper arm, respectively, and x( ) is the arm's cross-sectional rotation
defined as

= +x x x
µA

( ) ( ) ( ) ,
s

T

(8)

give us

= >x q x x( ) ( ) , for 0.M (9)

because, again, =x( ) 0 for >x 0.
We assume the crack is sufficiently distant from the free (right-hand

side) end of the specimen, in a way that all the boundary effects on the
right-hand end of the specimen can be neglected. Thus, we can assume
an infinite length of the arm and write the following conditions

= = =x x xlim ( ) lim ( ) lim ( ) 0.
x x x

T M (10)

This condition and Equation (9) give

=q xlim ( ) 0,
x (11)

from which it follows that =c 01 . The remaining constant is determined
for any position of the crack, a, from the equilibrium of moments about
the crack tip as

=F a c e x xd 0.x
2

0 (12)

Hence, after integrating by parts, we obtain

=c F a .2 (13)

Finally, in front of the crack tip ( >x 0) we have

=q x F a e( ) ,x (14)

and from Equations (3), (6), (8) and (9), respectively, we obtain

=x F a
b

e( ) ,x
(15)

=x F a e( ) ,xM (16)

=x F a e( ) ,xT (17)

=x F a
EI

e( ) .x
(18)

Although these functions have only been obtained for >x 0, we can
notice that

=
+

x F alim ( ) ,
x 0

M (19)

=
+

x F alim ( ) .
x 0

T (20)

On the other hand, from the part of the DCB where the arms are

detached, we know that the bending moments in the upper arm vary
linearly and the shear forces are constant, i.e. for <a x 0 we have

= +x F x a( ) ( ),M (21)

=x F( ) .T (22)

It follows that

= = =
+

x x F a(0) lim ( ) lim ( ) ,
x x0 0

M M M (23)

=x Flim ( ) .
x 0

T (24)

By comparing Equations (16), (19) and (23), and Equations (20) and
(24), we can notice that, at the crack tip ( =x 0), there is a cusp in the
function of bending moments and a discontinuity in the function of
shear forces (as shown in Fig. 2). This implies that, at the crack tip,
there must be a concentrated transversal force. This force, denoted by
F0, is responsible for the jump in the function of shear forces from the
value F to the value Fa , which means that it is pointing down-
wards and its value is

= +F F a(1 ).0 (25)

Thus, by taking into account the entire domain (x a), we can
write

= <
>

x F a x
F a e x

( ) for 0,
for 0,xT

(26)

Fig. 1. Geometry of a DCB specimen.

Fig. 2. Diagrams of contact tractions, x( ), shear forces, x( )T , and bending
moments, x( )M , in the upper arm of a DCB with prescribed displacement.
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=
+

x
F x a a x
F a e x

( )
( ) for 0,

for 0,xM
(27)

Also, by taking into account (5), we can define

= <
>

q x a x
F a e x

( ) 0 for 0,
for 0,x (28)

which, according to (3), gives

=
<

>x
a x

e x( )
0 for 0,

for 0.F a
b

x
(29)

As expected, on the detached part of the DCB ( <a x 0) there
are no contact tractions, but on the interface between the arms ( >x 0)
there are compressive tractions (σ and q are pointing upwards). Because
the resultant of these tractions, as well as the applied load on the upper
layer, F, is pointing upwards, to obtain the equilibrium of transversal
forces there must exist another concentrated force pointing downwards.
We already showed that this reaction force, defined as F0 in (25), is
acting at the crack tip.

This result means that, at the crack tip, Timoshenko beam theory
predicts an infinite positive (i.e. tensile) value of the interface stress
orthogonal to the crack (see Fig. 2). Note also that x( ) is not defined
for =x 0 in (29). However, unlike the stress singularity found in LEFM
using continuum models, Timoshenko beam theory also predicts that
the tensile-stress zone in front of the crack tip shrinks to a point (and so
does also Euler-Bernoulli beam theory), which effectively means that
the tensile stress profile becomes a Dirac delta function. This is clearly a
result of the assumption, made in the beam theories, that beam cross
sections do not deform within their plane.

We will express the cross-sectional rotations of the upper arm using
Equation (7) to obtain

= +x x x EI c( ) ( )d / ,3M (30)

where c3 is an integration constant. Note that x( )M , according to (27),
is defined differently for a x 0 and for x 0. For x 0, from the
boundary condition =( ) 0 we obtain =c 03 . Furthermore, because

x( )M has C0 continuity, x( ) has C1 continuity over the entire domain
(x a). This means that at the crack tip, using solution (18) for x( )
valid for >x 0, we can write

= =
+

x F a
EI

(0) lim ( ) .
x 0 (31)

This relation also results in =c Fa EI/( )3 for a x 0. Thus,
cross-sectional rotations of the upper arm can be defined over the entire
domain as

=
+( )x

a x a x

e x
( )

for 0,

for 0.

F
EI

x a

F a
EI

x

2
2

(32)

2.3. The case of Euler-Bernoulli theory

Solutions for the case when Euler-Bernoulli beam theory is used to
model the arms can be obtained as limit values of Timoshenko beam
theory solutions when µAs . Because

=lim ,
µAs (33)

functions (15)–(18) will all return zero values for any >x 0. By taking
into account the entire domain (x a) we can write

= < >x a x x( ) 0 for 0 and 0, (34)

= <
>

x F a x
x

( ) for 0,
0 for 0

T
(35)

= +
>

x F x a a x
x

( ) ( ) for 0,
0 for 0

M
(36)

= +( )x a x a x

x
( ) for 0,

0 for 0.

F
EI

x
2
2

(37)

Note that, in order to obtain the equilibrium of transverse forces and
moments around the crack tip, at the crack tip there must exist a con-
centrated force, F0, pointing downwards and an anti-clockwise con-
centrated moment, M0, defined as

= =F F M F a, and ,0 0 (38)

respectively. Such boundary conditions at the crack tip imply that the
arms are clamped, which is additionally confirmed in Equation (37)
giving =(0) 0. In this case, on the interface, the tensile-stress zone
remains concentrated at the crack tip, while the compressive-stress
zone also shrinks to a single point, again at the crack tip. Note that x( )
is not defined for =x 0 in (34), because of the stress singularity at the
crack tip. Note also that, because =x( ) 0 for >x 0, the arms are un-
deformed in front of the crack tip. Thus, we can conclude that Euler-
Bernoulli beam theory indeed returns clamped conditions at the crack
tip, meaning that in that case ESBT corresponds to SBT.

Remark 2.2. Additionally, in Appendix A.1, we extend the closed-form
solution derived in in this section to the case of a DCB with prescribed
rotations.

3. Enhanced simple beam theory (ESBT) and simple beam theory
(SBT) expressions for Gc

Based on the solutions derived in the previous section, here we
derive a novel formula for Gc based on the presented ESBT model. This
formula can be considered as a general LEFM solution, from which two
particular formulae available in the literature can be derived, for the
cases of (i) Timoshenko beam theory with the arms clamped at the
crack tip (SBT-T) and (ii) Euler-Bernoulli beam theory (SBT-E).

3.1. Enhanced simple beam theory (ESBT)

The crack mouth opening displacement, δ, can be computed as-
suming that the detached part of the DCB ( a x 0) acts like a
Timoshenko cantilever beam with an initial rotation

= Fa EI(0) /( ), as defined in (31). Thus, using classic beam de-
flection formulae and assuming deflections of both arms we can write

= a2[ (0) ],c (39)

where

= +F a
EI

F a
µA3

,c
s

3

(40)

is the deflection of a shear-deformable (fully clamped) cantilever beam.
Finally, we obtain

= + +F a
EI

F a a
µA

2
3

(1 ) .
s

3

(41)

The critical energy release rate, Gc, has the general expression

> =a G
b a

0 1 ,c (42)

where the dot represents the derivative with respect to time (i.e. >a 0
means that the crack is propagating) and is the total potential energy.
For this case, we can consider one of the two equivalent cases of pre-
scribed displacement or prescribed force. Although the former is chosen
in a real experiment, the latter is more convenient for the analytical
derivation and gives
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= F
2 (43)

Therefore we have

=G F
b a2

d
d

,c (44)

from which, using (41), we can obtain

= + +G F
b

a
EI

a
µA

1 2 for ESBT.c
s

2 2

(45)

This novel formula, so far as authors are aware, has not been pre-
sented in the literature as yet. Because it is based on the ESBT model,
which removes the SBT assumptions so far used by other authors, it is
also the only correct formula for Gc for the LEFM limit case and
Timoshenko beam theory. Expression (45) can be also written as

= +G F a
b EI a

( ) 1 1 for ESBT.c
2 2

(46)

Remark 3.1. Expression (46) is similar to those reported by Suo et al.
[13] and Bao et al. [14], where instead of the coefficient a1/( ), the
product Y h a( ) /1

1/4 is used. Parameters λ and ρ in their expressions
are functions of material constants for the plane-stress orthotropic case
(E1, E2, µ12 and 12 or 21), whereas Y ( )1 is the quadratic [13] or cubic
[14] fit of the finite element solutions for the plane elasticity problem.
This means that Y ( )1 accounts for some additional effects (through-the-
thickness compressibility of the arms, in-plane warping of the arms'
cross-sections etc.), that cannot be captured using beam models.
Therefore, it can be expected that expressions for Gc from Refs.
[13,14] describe better the real behaviour of a DCB specimen, than
expression (46). On the other hand, although the method proposed in
Refs. [13,14] is effectively a way of correcting the LEFM solution by
taking into account the deformation in front of the crack tip, such
correction does not take into account the deformation and damage of
the interface, unlike other more widely used methods, e.g. CBT and
ECM [3]. More importantly, the main problem in the practical use of
this method in real-life applications is that it requires the measurement
of the crack length. A better alternative, as presented in Refs. [6,7,9,15]
and in the present paper, is to use data-reduction schemes that do not
require the measurement of the crack length and are based on the
concept of equivalent crack length. It is also worth mentioning that
formulae for Gc used in Refs. [13,14] are based on the work of Gillis and
Gilman [16], which was later extended by Wiederhorn et al. [17] and
Srawley and Gross [18].

3.2. Timoshenko beam theory with arms clamped at the crack tip (SBT-T)

If we assume that the arms of the DCB are clamped at the crack tip
we have =(0) 0, which means that, according to (39), we have

= = +F a
EI

F a
µA

2 2
3

.c
s

3

(47)

Thus, from (44) we obtain

= +G F
b

a
EI µA

1 for SBT T.c
s

2 2

(48)

Note that ESBT formula for Gc (45), compared to SBT-T formula for
Gc (48), has an additional term which takes into account the rotation at
the crack tip.

Remark 3.2. Expression (48) for Gc is equivalent to that proposed by
Ripling et al. [1] used in ASTM D3433-99(2012) [2] and also in BS ISO
25217:2009 [3] in the SBT data reduction scheme. However, in that
formula for Gc it is assumed that the material of the arms is isotropic
with = 1/3 and the value of shear correction coefficient is =k 2/3s .

Because in our approach values of E, μ and ks can be independently
assigned (although for a rectangular cross-section we exclusively use

=k 5/6s ), Equation (48) can be considered as a general form of the SBT
formula. Moreover, de Moura et al. [7] use formula (48) in their
‘compliance based beam method’ (CBBM).

Remark 3.3. Expressions (45) and (48) can be also considered as data
reduction schemes, where, assuming that geometry and material of the
arms are known, a and F are the only measured quantities. Therefore,
for the same values of b, EI , µAs, F and a, we can derive the ratio
between expressions (48) and (45) as

=
+

G
G

a
a

1 2
( 1)

,c
SBT T

c
ESBT 2 (49)

where for a rectangular cross-section

=a a
h

µ
E

10 .
(50)

Fig. 3 shows the values of the ratio (49) with respect to the
normalised crack length (a h/ ) for different values of µ E/ . It can be
noted that the more shear deformable the arms (lower values of µ E/
and a h/ ), the bigger the difference between Gc

SBT T and Gc
ESBT . On the

contrary, if shear stiffness of the arms is increased (which in the limit
case leads to Euler-Bernoulli beam theory), the value of ratio (49)
approaches 1. This confirms that in the limit case of Euler-Bernoulli
beam theory ESBT corresponds to SBT-E. It can be also noted that,
independently on the value of µ E/ , the ratio (49) cannot be less than
0.5, i.e. Gc

SBT T cannot be less than 50% of Gc
ESBT . This result can be

easily confirmed analytically, where the minimum of ratio (49) is
obtained for =a h E µ/ /(10 ) .

3.3. Euler-Bernoulli beam theory (SBT-E)

In Section 2.3 we have shown that for the limit case of Euler-Ber-
noulli beam theory the arms are clamped at the crack tip so that, ac-
cording to (37), =(0) 0. Thus, by letting µAs , Equation (39)
results in

= F a
EI

2
3

.
3

(51)

Equation (44) in this case gives us

=G F a
b EI

for SBT E.c
2 2

(52)

This is a well-known LEFM formula for Gc [19], which is also the
basis for some more sophisticated data reduction schemes, such as CBT
and ECM from BS ISO 25217:2009 [3].

Fig. 3. Ratio G G/c
SBT T

c
ESBT (expressions (48) and (45)) with respect to the

normalised crack length (a h/ ) for different values of µ E/ .
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4. Data reduction schemes that do not require the crack-length
measurement

The expressions for Gc derived in the previous section for cases of
ESBT, SBT-T and SBT-E can be also considered as data reduction
schemes. This means that, for known material and geometrical prop-
erties of the specimen (b, EI and µAs), expressions (45), (48) and (52)
could be used to compute Gc from experimental data consisting of the
crack length, a, and the applied force, F.

However, optical determination of the position of the crack tip is
difficult, time consuming and a significant source of inaccuracy in the
results. This was a motivation for many authors [7,8,15,20] to propose
approaches for computing Gc that do not require the measurement of
the crack length. Because the cross-head opening displacement, δ, can
be accurately measured directly from the testing machine, the idea is to
use this parameter instead of a in formulae for Gc.

4.1. Concept of ‘equivalent crack length’

For the three cases from Section 3 (ESBT, SBT-T and SBT-E), using
Equations (41), (47) and (51), it is possible to express a in terms of F
and δ, i.e. =a a F( , ), and replace it in the corresponding expressions
(45), (48) and (52) for Gc. This has been the approach used in Refs.
[7–9,15] for the SBT-T and SBT-E cases, which is here extended to the
ESBT case.

However, the implications of using simplified beam theory models
was not recognised in the above-mentioned earlier work by other au-
thors. This is because, as noted in Ref. [6], the crack-mouth opening
displacement, δ, computed from (41), (47) or (51), using the real
measured values of the applied force, F, and of the crack length, a, is
different from the actual (measured) value of δ. This would happen also
in an ideal case with no measurement errors and the material and
geometrical properties known with no uncertainty. Focussing on the
cases contemplated by the test standards considered in this work, i.e.
adhesive joints or composite delamination, there will normally be a
difference between the measured displacement and that given by (41),
due to aspects including 3D effects, through-the-thickness deformation
of the arms, geometrical non-linearities, possible rate-dependent re-
sponse, interface compliance, a finite-size cohesive zone, possibly also
due to fibre-bridging.

For this reason, using the measured values of F and δ, for each of the
theories considered here, the following expressions can be written:

= +
+F a

EI
F a a

µA
2

3
(1 )

, for ESBTeq eq eq

s

3

(53)

= +
F a

EI
F a

µA
2

3
for SBT T,eq T eq T

s

.
3

.

(54)

=
F a

EI
2

3
for SBT E,eq E.

3

(55)

where aeq, aeq T. and aeq E. are the equivalent crack lengths for ESBT, SBT-
T and SBT-E. The word ‘equivalent’ is used because they are the values
of the crack lengths that make the relevant expressions for δ valid when
the measured values of F and δ are used.

4.2. Data-reduction schemes based on the concept of ‘equivalent crack
length’

Although the concept of ‘equivalent crack length‘ has been discussed
by De Moura et al. [7], the difference between the actual (a) and the
equivalent (aeq) crack length was not rigorously taken into account in
the derivation of the expression for Gc. The actual crack length, a, in the
expression for Gc equivalent to (48) was simply substituted by the
equivalent one, aeq, which was then expressed in terms of F and δ using

relation (54). However, this procedure is not rigorous because, as ex-
plained in Section 4.1, a aeq. A similar approach was used in Refs.
[8,9,15] for the case of Euler-Bernoulli beam theory, where a in ex-
pression for Gc (52) was expressed in terms of F and δ using (51). By
doing so, it is assumed that the actual (measured) values of F, δ and a
satisfy relation (51), which is not correct.

Therefore, the concept of equivalent crack length must be correctly
implemented in order to obtain valid expressions for Gc. First of all, in
Equation (44), δ must be expressed using expressions (53)–(55), i.e.

= F a( , )eq must be used instead of = F a( , ). It is extremely im-
portant to note that the critical energy release rate is obtained by taking
the derivative with respect to the actual crack length, and not the
equivalent one (see Equation (42)). As a result, in Equation (44), we
need to write:

= =

=

a a
a
a a a

a
a a

a
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a
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d

d
d
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(56)

depending on which theory (EBST, SBT-T or SBT-E) we are using in the
model.

Thus, considering (56), substituting (53)–(55) in (44) gives

=G G
a
a

d
d

for ESBT,c c
eq*

(57)

=G G
a

a
d

d
for SBT T,c c

T eq T.
(58)

=G G
a

a
d

d
for SBT E,c c

E eq E.
(59)

where

= +
+

G F
b

a
EI

a
µA

1 2
,c

eq eq

s

*
2 2

(60)

= +G F
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EI µA
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T eq T

s

2 .
2

(61)

=G
F a

b EI
.c

E eq E
2

.
2

(62)

Note that using the same measured data (a, F and δ), formulae
(57)–(59) return the same value of Gc, independently on the beam
theory used or conditions assumed at the crack tip. The before-men-
tioned approaches from the literature [7–9,15], in fact, give only the
values of Gc

T and Gc
E , but not the actual value of Gc. The exact value of Gc

can be computed only if we can compute the derivatives a ad /deq ,
a ad /deq T. and a ad /deq E. . This would, however, require the knowledge

(i.e. measurement) of the actual crack length, a.
In Ref. [6] we used an FE model with a quasi brittle interface to

produce virtual experimental data (values of F, δ and a). We showed
that, even for cases of extremely ductile interfaces in the virtual ex-
periments, the values of the derivatives a ad /deq T. and a ad /deq E. are very
close to 1. Therefore, formulae for Gc

T and Gc
E can be considered as very

accurate approximations for Gc in a wide range of cases of practical
interest, such as those studied in Ref. [6]. Moreover, because they do
not require the measurement of the crack length, they can be also
considered as reliable and practical data reduction schemes. It is rea-
sonable to expect that similar and even higher accuracy in the de-
termination of Gc can be obtained using the ESBT-based value Gc

* be-
cause ESBT theory removes the simplifying assumptions made in SBT-T
and SBT-E-based models.

Based on the discussion from the previous paragraph, we will in-
troduce three data-reduction schemes, namely ESBT, SBT-T and SBT-E,
that do not require the crack-length measurement and are based on
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expressions (60), (61) and (62), respectively. At this point it is ex-
tremely important to distinguish these data-reduction-scheme formulae
from the exact formulae for Gc given in (45), (48) and (52) for each
particular case. Unlike the exact formulae for Gc, the mentioned data-
reduction schemes to not require the crack-length measurement. In
Section 5 we will show that ESBT is not only the most accurate data
reduction scheme that does not require the crack-length measurement,
but is also more accurate than the most accurate data-reduction scheme
from the standards, which happens to be CBT [3]. Note also that data
reduction schemes equivalent to SBT-T and SBT-E have been proposed
in Refs. [7–9,15].

Nevertheless, to make our EBST, SBT-T and SBT-E data-reduction
schemes complete, we need to compute aeq, aeq T. and aeq E. from the
measured values of F and δ. From expressions (53)–(55) it is obvious
that this requires solving cubic equations for aeq, aeq T. and aeq E. .

The closed-form solution of cubic equation (53) for aeq reads

= +a a1 1 , for ESBT,eq eq E

3

.
33

(63)

where

=a EI
F

3
2

, for SBT E,eq E. 3
(64)

is the solution of Equation (55) for a for the SBT-E case.
The closed-form solution of cubic equation (54) for aeq T. reads

=a 1 , for SBT T,eq T. 3
3 (65)

where

= + +
a a1

2 2
.eq E eq E

3
.

3 2
.

3

(66)

Note that aeq, aeq T. and aeq E. given here are the only real roots of
(53), (54) and (55), respectively. See e.g. Ref. [21] for the detail on the
analytical solution of a cubic equation. In the CBBM approach proposed
by De Moura et al. [7], which is based on SBT-T, the related cubic
equation is solved numerically. Solving Equation (55) for aeq E. provides
the solution given in (64) and denoted as aeq E. . This result was used in
Refs. [8,9,15] to eliminate a from expression (52) for Gc.

Remark 4.1. In Appendix A.2, based on the solutions derived in
Appendix A.1, we obtain a well-known formula for Gc [22] for DCB
with prescribed rotations, which does not require the measurement of
the crack length. Moreover, we show that in that case

= = =a a a a a ad /d d /d d /d 1eq eq T eq E. . and the crack propagation is
steady state. Although the derived formula (A.11) for Gc could be
used as the most accurate data-reduction scheme, prescribing equal and
opposite rotations on the arms requires sophisticated experimental rigs
[23,24] which makes the testing procedure less practical. In Section 5
we will show that the errors in computing or Gc using expressions for
Gc

*, Gc
T and Gc

E for the case of DCB with prescribed displacement are very
small and effectively negligible for brittle interfaces (especially when
ESBT model is used). Thus, because prescribing displacement is also
much more practical than prescribing rotations, from an engineering
point of view it is recommended that future standards continue to be
based on the DCB test with prescribed displacement.

5. Numerical assessment of accuracy of the data-reduction
schemes

In this section we will assess the accuracy of the data reduction
schemes used in BS ISO 25217:2009 [3] and the three data reduction
schemes presented in Section 4 based on the equivalent-crack-length
approach.

There are three data reduction schemes in BS ISO 25217:2009 [3],
namely ‘simple beam theory’ (SBT), ‘corrected beam theory’ (CBT) and
‘enhanced compliance method’ (ECM). The expressions for Gc for each
of these methods are given in Table 1. In Remark 3.2 we have already
mentioned that the SBT formula for Gc from Ref. [3] is a specific case of
formula (48). The term ac in the CBT expression for Gc represents the
crack length correction, which is obtained graphically from the

a Clog log 1/3 plot, where =C F/ is the measured compliance. Factor
n in the ECM expression for Gc is the slope of the linear fit of the

a Clog log data and is also obtained graphically. Note that all
methods from the current version of the British Standard require the
measurement of the crack length a (as indicated in Table 1). More
details about these methods can be found in Ref. [3].

The data-reduction schemes presented in Section 4 based on the
equivalent-crack-length concept, ESBT, SBT-T and SBT-E, are also
summarised in Table 1. For ESBT we use Equation (60) for Gc

* and ex-
pression (63) to compute the equivalent crack length. We use Equation
(61) to compute Gc

T , whereas the equivalent crack length for SBT-T is
computed using (65). For SBT-E we use (62) for Gc

E and (64) for the
equivalent crack length.

5.1. Virtual experiments

5.1.1. Motivation
To compare the accuracy of different data reduction schemes we

present three different examples, all based on experimental tests re-
ported in the literature, but instead of using the actual experimental
data, we create ‘virtual’ experimental data. This is done by fitting the
actual experimental load-displacement (F ) curves using a finite-
element (FE) model. Assuming that the interface properties of the
model are constant along the interface, we use F data from our
virtual experiments (which is extremely close to the actual experi-
mental F data) to compute Gc using different data reduction
schemes presented in Table 1. The virtual experiments also give us the
actual crack length, a, which is necessary to compute Gc using data
reduction schemes from BS ISO 25217:2009 [3]. Moreover, knowing
the actual values of a allows us to compute the derivatives a ad /deq ,

a ad /deq T. and a ad /deq E. , which are necessary to compute the correct
value of Gc (see Equations (57–59)). These derivatives are computed
numerically using a 5-point central difference formula reported in Ref.
[6].

5.1.2. Beam model vs. 2D plane-stress model
In the present work we use two types of FE models for virtual ex-

periments: (i) beam model and (ii) 2D plane-stress model. Because it is
assumed that DCB is symmetric with respect to the mid-plane of the

Table 1
Overview of the data reduction schemes used in the present comparison.

Label Fracture toughness (Gc) Measured
quantities

Computed quantities

SBT
+F

E b
a

h h
4 2

2
3 2

3
1 a, F –

CBT
+

F
b a ac

3
2 ( )

a, F, δ ac (requires linear fit of the
measured data)

ECM n F
b a2

a, F, δ n (requires linear fit of the
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ESBT
+ +F

b
aeq
EI

aeq
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2 2 1 2 F, δ
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1 3
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33 1 ,
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interface, only one arm is modelled in both cases.
Beam model, originally proposed in Ref. [25], consists of Ti-

moshenko beam elements and interface elements with an embedded bi-
linear cohesive-zone model (CZM), as the one shown in Fig. 4. The area
under the bi-linear traction-separation law ( s) is given by

= s
2

,max max
(67)

where max is the maximum allowed value of the contact traction σ and
smax is the maximum value of the relative displacement at the interface s
before the interface is fully damaged. The initial stiffness of the inter-
face is defined by =k s/max 0, where s0 is the maximum relative dis-
placement at the interface before the softening of the interface starts to
taking place.

Although neither of the models used for virtual experiments is able
to fully account for 3D effects, they can be partially accounted for by
determining an equivalent Young's modulus. Unlike the 2D plane-stress
model, the beam model cannot capture the influence of the through-
the-thickness deformation in the arms. In Ref. [5], it was shown that the
differences between the Euler-Bernoulli beam model (closed-form) so-
lutions and 2D plane-stress model FE analysis solutions are not negli-
gible. On the other hand, in Ref. [25] it was demonstrated that Ti-
moshenko beam model can be used to substitute more complex 2D
models without any significant loss of accuracy. This is confirmed also
in the present work, as shown in Figs. 5–7.

Because in our virtual experiments the input value of is known in
advance and the values of the actual crack length, a, can be easily
obtained, we assess the accuracy of data reduction schemes from
Table 1 based on how close they predict the value of . The comparison
of different data reduction schemes is given in terms of normalised
fracture resistance, which is defined as G /c , where Gc is defined dif-
ferently for each data reduction scheme presented in Table 1.

Even though 2D plane-stress model provides a more accurate
modelling of the problem, in this work we present the results using the
Timoshenko beam model because for the LEFM limit case ( max
and s 0max ) this model corresponds exactly to ESBT model (see
Section 2). Therefore, any differences between Gc computed using the

ESBT data-reduction scheme and in the Timoshenko beam FE model
can be attributed only to different models of the interface (LEFM vs.
cohesive zone of finite size). Moreover, we can asses the inaccuracy
related to the deformation of the beam in front of the crack tip (ac-
counted for in our ESBT, but neglected in the SBT or approximately
taken into account in the ECM and CBT [3]) in a clear way.

Remark 5.1. In Ref. [6] we showed that in general Gc is not equal to the
work of separation (the area under the traction-separation law), , of
the CZM. Their difference is given by the derivative, with respect to the
crack length, of the energy dissipated ahead of the crack tip per unit of
specimen width. For a steady-state crack propagation, in which that
energy remains constant as the crack tip advances, this derivative
vanishes and = Gc. The virtual experiments presented in Ref. [6]
showed that for a DCB with prescribed displacement and constant
properties along the interface, the difference between and Gc is
negligible for brittle interfaces and very small for ductile interfaces.
Crack propagation for a DCB with prescribed rotations is steady-state
even if the interface is quasi-brittle (also shown in Ref. [6]). The
difference between and Gc is greater, though still very limited, for the
cases where a rising R-curve (variation of properties along the
interface) is modelled [6]. Furthermore, in Ref. [6] we also show that
the proof that the critical value of the J integral, Jc, is equal to the
nonlinear energy release rate is not valid for a non-homogeneous
material. Nevertheless, in our virtual experiments =Jc because ,
as well as the other CZM parameters, are constant along the interface.

5.1.3. Modelling the real experiments
By fitting the real experimental F curves, the maximum contact

traction, max and the maximum relative displacement at the interface
before failure, smax , for the CZM were obtained (see Fig. 4). In our
numerical simulations we fix =s s0.01 max0 .

The fist example is a CFRP DCB with Hysol® 9309 adhesive reported
by Blackman at al. [26], the second one is a DCB made of aluminium
adherends and bonded with the epoxy adhesive Hysol® 9466 reported
by Alfano et al. [15], and the third one, reported by Lopes et al. [20], is
a DCB made of steel adherends bonded with the epoxy adhesive Sika-
force® 7752. All the relevant data used in virtual experiments is pre-
sented in Table 2. These examples cover a wide range of adhesive be-
haviours, from extremely brittle (experiment 1), to extremely ductile
(experiment 3).

Beam FE simulations have been performed using our own code in
Fortran, whereas 2D simulations have been performed in Abaqus soft-
ware. 2200, 2000 and 3000 2-node Timoshenko beam FEs have been
used to model Experiments 1, 2 and 3, respectively, whereas for the 2D
model, meshes of 1294 × 7, 400 × 30 and 600 × 25 fully-integrated 4-
node plane-stress solid rectangular elements (named CPS4 in Abaqus)

Fig. 4. A standard bi-linear traction-separation law of a CZM.

Fig. 5. Experiment 1 [27] - A comparison between beam and 2D plane-stress finite elements: (a) F curve and (b) a curve.
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have been used. For both models, 4-node interface elements (named
COH2D4 in Abaqus) of the same length as the elements used to model
the arms have been used at the interface. Besides using the quantities
reported in Table 2, CFRP from Experiment 1 has been modelled using

=E 8y GPa and = 0.34xy in the 2D model, where y is the vertical
(transversal) direction. For the other two Experiments no data other
than that reported in Table 2 has been necessary.

In Figs. 5–7, a comparison between beam and 2D plane-stress FE
models is given in terms of F, δ and a for each experiment. It can be
noted that the models agree extremely well and that their differences
for the examined cases are negligible. For Experiment 1, the numerical
noise in the relative difference is more pronounced, but the average
values are still very low (< 2% for F and < 1% for a). These results
confirm that Timoshenko beam model can be used instead of conven-
tional 2D models without any significant loss of accuracy to model
crack propagation in different types of DCB specimens.

Moreover, the beam FE model is computationally more efficient and
robust than the compared 2D model. Displacement control has been
used for for both models. Values of the displacement increment were
0.06, 0.025 and 0.1 mm for Experiments 1, 2 and 3, respectively. Using
the beam model, 1 increment cut for Experiment 1 and 2 increment cuts
for Experiment 3 were necessary to reach the desired value of the
maximum displacement. For Experiment 2, the maximum displacement
has been reached without any increment cuts.

For the 2D model, obtaining the solution was less straight-forward.
Except for Experiment 1, an incremental, quasi-static fully-implicit
analysis with the same time increments as for the beam models has
been used. Because of the difficulties of achieving convergence, for
Experiment 1 an implicit-dynamic analysis, with an initial displacement

increment of 0.025 mm and a variable time increment, has been used.
The output was recorded every 0.025 increments of prescribed dis-
placement. A quasi-Newton iterative solution procedure was used in
each increments, with the stiffness matrix reformed every 3 iterations.

5.2. Numerical results

For the first experiment [26], the results in Fig. 8(a) show that CBT
is the most accurate data reduction scheme from the British Standard
[3] because it gives an excellent estimation of for any position of the
crack. The main reason why SBT is less accurate is that, due to both the
compliance of the interface and the deformation of the arms in front of
the crack tip, the measured crack length does not correspond to the one
assumed in the model. This issue is also present in CBT and ECM, but
because these data reduction schemes use corrections based on the
measured compliance, the final results for Gc are more accurate.

Next, in Fig. 8(b), we compare the CBT predictions to those pro-
vided by the data reduction schemes of Section 4, which do not require

Fig. 6. Experiment 2 [15] - A comparison between beam and 2D plane-stress finite elements: (a) F curve and (b) a curve.

Fig. 7. Experiment 3 [20] - A comparison between beam and 2D plane-stress finite elements: (a) F curve and (b) a curve.

Table 2
Data used in the set of virtual experiments (∗ isotropic = 1/3,∗∗ isotropic

= 0.3).

Experiment L h b a0 E μ max

[mm] [mm] [mm] [mm] [GPa] [GPa] [N/mm] [MPa]

1 110 1.55 24 22 137 4.0 0.257 50
2 200 15 25 30 65.7 25.3∗ 2.7 14
3 300 12.7 25 55 204 78.6∗∗ 4.5 15
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the measurement of the crack length (ESBT, SBT-T and SBT-E). It can be
appreciated that all data-reduction schemes considered are extremely
accurate, despite some numerical noise of the results from the 2D
model. However, from the results from the beam model, we see that
ESBT is the most accurate data reduction scheme, although the differ-
ences with respect to SBT-E and CBT are negligible. The adhesive in this
example is very brittle (see Table 2) which makes its behaviour being
extremely close to LEFM assumptions. Thus, this behaviour can be best
captured using ESBT, where the equivalent crack length is extremely
close to the actual one (which can be easily obtained from our virtual
experiments). The assumption made in SBT-T (shear deformable arms
clamped at the crack tip) results in lower values of the fracture re-
sistance compared to the ones obtained in ESBT and SBT-E. It can also
also seen that for this case, the accuracy of all data reduction schemes
that do not require the measurement of the crack length (ESBT, SBT-T
and SBT-E) is comparable to the accuracy of CBT (which does require
measurement of the crack length).

Additionally, the exact value of Gc (computed from any of expres-
sions (57)–(59)) normalised with respect to is plotted in Fig. 8(b) and
denoted as ‘Gc (Exact)‘. We can see that, for this case Gc is extremely
close to which means that the crack propagation is extremely close to
being steady state. Moreover, because values of fracture resistance
predicted using ESBT and SBT-E data-reduction schemes are extremely
close to Gc, we can assume that a ad /d 1eq and a ad /d 1eq E. . Only the
result for the beam FE model is shown, because the result for 2D FE
model contained a considerable amount of numerical noise. The same is
done for Experiments 2 and 3, although there is less numerical noise.

The second experiment [15] features an adhesive with more pro-
nounced ductility, which means that the actual behaviour of the DCB is
not close to the LEFM assumptions. In Fig. 9(a) we can see that the
results obtained using the data reduction schemes from the British
Standard [3] are now less accurate. CBT, thanks to the crack length
correction, is again the most accurate, whereas SBT is now extremely
inaccurate. In Fig. 9(b) we can see that SBT-T again gives smaller values
of the fracture resistance compared to ESBT and SBT-E, which, inter-
estingly enough, in this case results in a better approximation of . It
can be noticed that in Fig. 9(b), the results of data-reduction schemes
based on the concept of equivalent crack length obtained using the 2D
model are slightly shifted with respect to the results obtained using the
beam model.

The exact values of Gc are lower than , which means that all the
derivatives ( a ad /deq , a ad /deq T. and a ad /deq E. ) are in this case less than
1. If we recall that the transversal displacements on the interface are not
allowed in LEFM models, than we can conclude that in this virtual
experiment these derivatives represent the influence of the interface
compliance on the accuracy of a data-reduction scheme considered.

Thus, the more ductile the interface, the less accurate a data-reduction
scheme.

However, it is again important to note that the accuracy of the data
reduction schemes that do not require the measurement of crack length
(ESBT, SBT-T and SBT-E) is comparable to that of CBT predictions (or
even higher for longer cracks). Note that, although the adhesive in this
example is relatively ductile, the error in predicting the input value of
for all data reduction schemes presented in Fig. 9(b) is within ± 2%.

The adhesive in the third experiment [20] is extremely ductile. In
Fig. 10(a) we see very similar behaviour as the one presented in
Fig. 9(a) for the second experiment. The same applies to Fig. 10(b)
which is very similar to Fig. 9(b). However, we can notice that for the
third experiment all the data-reduction schemes provide predictions of

which are more accurate than for the second one, despite the ad-
hesive in the third experiment being the most ductile one. The reason
for this lies in the fact that the initial notch length, a0, is considerably
larger for the third experiment than for the second one. In fact, ex-
tending the curves in Fig. 10 to the left-hand side up to =a 30 mm
would result in values that are less close to 1 than the ones presented in
Fig. 9. Fig. 10(b) confirms that, although they are based on LEFM, all
the data-reduction schemes considered in the present comparison are
very accurate even for such a ductile adhesive, i.e. in the case when the
damage-process zone has a length that is not small compared to spe-
cimen's dimensions. Results obtained using the beam model and the 2D
model agree almost perfectly in this case.

5.3. Delamination of thick composite plates

In this section we will focus on the first experiment and see what
would happen if the arms of the DCB were thicker. Besides the original
thickness =h 1.55 mm, reported in Ref. [26] and Table 2, we will
consider two additional cases in which the arms are twice and four
times thicker. The results presented in Fig. 11 show that the ESBT data
reduction scheme is the only one that can give an excellent accuracy in
the case of delamination of relatively thick composite plates. In
Fig. 11(a and b) we can observe that CBT and SBT-E are still highly
accurate, whereas the accuracy of SBT-T is significantly lower than in
the case with original depth of the arms (see Fig. 8(b)). Only the beam
FE model has been used to obtain results for Fig. 11.

6. Conclusions

In this work we have presented a novel ‘enhanced simple beam
theory’ (ESBT), in which a DCB is modelled using Timoshenko beam
theory and LEFM assumptions. Unlike conventional simple beam theory
(SBT), on which current standards are based, the rotations of the cross

Fig. 8. Experiment 1 (CFRP with Hysol® 9309 [26]): a comparison between (a) the data reduction schemes from the British Standard [3] (SBT, CBT and ECM) and (b)
the present data-reduction schemes that do not require measurement of the crack length (ESBT, SBT-T, SBT-E).
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sections in front of the crack tip are allowed in our formulation. The
arms of the DCB rotate in front of the crack tip because of their shear-
deformability. Consequently, when the arms are shear-rigid (which
corresponds to Euler-Bernoulli beam theory) ESBT is equivalent to SBT
and the clamped boundary conditions at the crack tip follow as a result.

Based on the ESBT solution, we derive a novel expression for the
critical energy release rate, Gc, which takes into account the rotations of
the arms at the crack tip. Furthermore, using the concept of ‘equivalent
crack length’, we develop an ESBT-based data-reduction scheme for the
determination of Gc that does not require measurement of the crack
length. This is an important advantage with respect to the data reduc-
tion schemes from the standards [2,3], where such measurement is an
essential part. We also compare the accuracy of ESBT data reduction
scheme with that of two other data reduction schemes, obtained as
particular cases of ESBT. These are SBT-T, where it is assumed that the
arms are Timoshenko beams clamped at the crack tip (equivalent to
CBBM [7]), and SBT-E, where the arms are assumed as Euler-Bernoulli
beams (equivalent to what was proposed in Refs. [9,15]). Both SBT-T
and SBT-E data reduction schemes use the equivalent-crack-length
concept.

Our numerical results based on virtual experiments show that the
data-reduction schemes that use the concept of equivalent crack length
are as accurate as the most accurate data reduction scheme from the

standards, which happens to be CBT from the British Standard [3].
ESBT, SBT-T and SBT-E can be all considered equally accurate for
ductile adhesives, but for more brittle adhesives SBT-T is less accurate
than the other two. In particular, if the adhesive is brittle and the arms
have a more pronounced shear deformability, e.g. for the case of thick
composite plates, ESBT is the most accurate data reduction scheme.

Our theoretical and numerical findings show that the data reduction
schemes that use the concept of equivalent crack length should be
seriously taken into account in future versions of the existing test
standards. In this way, DCB tests could be performed without the time-
consuming crack-length measurements, which would significantly
simplify and speed up the procedure without any loss of accuracy in the
characterisation of fracture resistance. However, a wide experimental
study of available data reduction schemes, including the one presented
in this paper, should be conducted to assess their accuracy for as many
specimen geometries and materials as possible. As an alternative, vir-
tual experiments with more sophisticated numerical models (which
may include different traction-separation laws for CZM, rate-dependent
CZMs, plasticity, 3D effects, fibre bridging etc.) can be used for further
investigations.

Fig. 9. Experiment 2 (aluminium Hysol® 9466 [15]): a comparison between (a) the data reduction schemes from the British Standard [3] (SBT, CBT and ECM) and (b)
the present data-reduction schemes that do not require measurement of the crack length (ESBT, SBT-T, SBT-E).

Fig. 10. Experiment 3 (steel with Sikaforce® 7752 [20]): a comparison between (a) the data reduction schemes from the British Standard [3] (SBT, CBT and ECM) and
(b) the present data-reduction schemes that do not require the measurement of crack length (ESBT, SBT-T, SBT-E).
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Appendix A. LEFM solution for a Timoshenko DCB with prescribed rotations

Appendix A.1. Solution of the problem

If a DCB with prescribed rotations is considered, the same procedure presented in Section 2.2 can be followed. The main difference is that, in case
of prescribed rotations, a concentrated moment, M, is applied at the left hand end of the upper arm, instead of the force, F. Thus, solution (4) is still
valid and from boundary condition (11) again follows that =c 01 . However, the equilibrium of moments around the crack tip now reads

=M c e x xd 0,x
2

0 (A.1)

which after integrating by parts gives

=c M .2 (A.2)

If we compare this solution with equation (13) we can see that the moment Fa is simply substituted by M. The same thing occurs in Equations
(14–18). Thus, by taking into account the entire domain (x a), we can define the functions of contact tractions at the interface, shear forces and
bending moments in the upper arm as

=
<

>x
a x

e x( )
0 for 0,

for 0,M
b

x
(A.3)

= <
>

x a x
M e x

( ) 0 for 0,
for 0,xT

(A.4)

=x M a x
M e x

( ) for 0,
for 0,xM

(A.5)

Again, in order to satisfy the equilibrium of transversal forces, a concentrated reaction force =F M0 pointed downwards must exist at the
crack tip. Solving = +x x x EI c( ) ( )d / 3M using Equation (A.5) results in =c 03 for x 0 and = =c M EI(0) /( )3 for a x 0, which
finally gives

=
<( )

x
x a x

e x
( )

for 0,

for 0.

M
EI

M
EI

x

1

(A.6)

Appendix A.2. Expression for Gc

Using

Fig. 11. Results for thick composite plates using ESBT, SBT-T, SBT-E and CBT data reduction schemes. Input data are as in Table 2 for the first experiment [26], but
with an increased arm thickness equal to (a) 3.1 mm and (b) 6.2 mm.
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= M a
EI2

,c
2

(A.7)

from Equation (39) we can now obtain

= +M a
EI

M a
EI
2 .

2

(A.8)

The potential energy is now computed as

= M , (A.9)

where θ is the prescribed rotation, i.e.

= = +a M
EI

a( ) 1 .
(A.10)

For prescribed rotations, using (A.9) and the definition for the critical energy release rate (42), we obtain

=G M
b EI

.c
2

(A.11)

Note that, although shear defromability of the arms has an influence on the cross-head displacement (A.8) and rotation (A.10), it has no influence
on the formula for Gc. In fact, the same formula can be derived using the SBT assumptions both for Timoshenko [6] and Euler-Bernoulli beam theory
[22,24] (as shown in the next subsection). Thus, for a DCB with prescribed rotations = = =G G G Gc c c

T
c
E* and = = =a a a a a ad /d d /d d /d 1eq eq T eq E. . .

Furthermore, because in a DCB with prescribed rotations crack propagates in a steady-state manner (as shown in Ref. [6]), for a quasi-brittle
interface = = = =G G G Gc c c

T
c
E* .

Appendix A.3. Euler-Bernoulli limit case

When Euler-Bernoulli beam theory is used to model the arms of a DCB with prescribed rotations (A.3) and (A.4) become = =x x( ) ( ) 0T ,
whereas Equations (A.5) and (A.6) now give

= < <
>

x M a x
x

( ) for 0,
0 for 0,

M
(A.12)

=
<

x
a x

x
( )

for 0,
0 for 0.

.
M x
EI

(A.13)

Note that because the moments around the crack tip must be in equilibrium, a counter-clockwise concentrated moment reaction =M M0 must
exist at the crack tip.

Because for Euler-Bernoulli beam theory from (A.10) we have

= M a
EI

, (A.14)

which from (A.9) again gives result (A.11) for Gc.
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