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Abstract Learning the structure of Bayesian networks

from data is known to be a computationally challeng-

ing, NP-hard problem. The literature has long inves-

tigated how to perform structure learning from data

containing large numbers of variables, following a gen-

eral interest in high-dimensional applications (“small n,

large p”) in systems biology and genetics.

More recently, data sets with large numbers of ob-

servations (the so-called “big data”) have become in-

creasingly common; and these data sets are not neces-

sarily high-dimensional, sometimes having only a few

tens of variables depending on the application. We re-

visit the computational complexity of Bayesian network

structure learning in this setting, showing that the com-

mon choice of measuring it with the number of esti-

mated local distributions leads to unrealistic time com-

plexity estimates for the most common class of score-

based algorithms, greedy search. We then derive more

accurate expressions under common distributional as-

sumptions. These expressions suggest that the speed

of Bayesian network learning can be improved by tak-

ing advantage of the availability of closed form esti-

mators for local distributions with few parents. Fur-

thermore, we find that using predictive instead of in-

sample goodness-of-fit scores improves speed; and we

confirm that is improves the accuracy of network recon-
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struction as well, as previously observed by Chickering

and Heckerman (2000). We demonstrate these results

on large real-world environmental and epidemiological

data; and on reference data sets available from public

repositories.
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1 Introduction

Bayesian networks (BNs; Pearl, 1988) are a class of

graphical models defined over a set of random variables

X = {X1, . . . , XN}, each describing some quantity of

interest, that are associated with the nodes of a directed

acyclic graph (DAG) G. (They are often referred to in-

terchangeably.) Arcs in G express direct dependence re-

lationships between the variables in X, with graphical

separation in G implying conditional independence in

probability. As a result, G induces the factorisation

P(X | G, Θ) =

N∏
i=1

P(Xi |ΠXi , ΘXi), (1)

in which the joint probability distribution of X (with

parameters Θ) decomposes in one local distribution for

each Xi (with parameters ΘXi
,
⋃

XΘXi
= Θ) condi-

tional on its parents ΠXi .

While in principle there are many possible choices

for the distribution of X, the literature has focused

mostly on three cases. Discrete BNs (Heckerman et al,

1995) assume that both X and the Xi are multinomial

random variables. Local distributions take the form

Xi |ΠXi
∼ Mul(πik | j), πik | j = P(Xi = k |ΠXi

= j);
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their parameters are the conditional probabilities of Xi

given each configuration of the values of its parents,

usually represented as a conditional probability table

for each Xi. Gaussian BNs (GBNs; Geiger and Heck-

erman, 1994) model X with a multivariate normal ran-

dom variable and assume that the Xi are univariate

normals linked by linear dependencies. The parameters

of the local distributions can be equivalently written

(Weatherburn, 1961) as the partial Pearson correlations

ρXi,Xj |ΠXi
\Xj

between Xi and each parent Xj given

the other parents; or as the coefficients βXi
of the lin-

ear regression model

Xi = µXi
+ΠXi

βXi
+ εXi

, εXi
∼ N(0, σ2

Xi
),

so that Xi |ΠXi
∼ N(µXi

+ΠXi
βXi

, σ2
Xi

). Finally, con-

ditional linear Gaussian BNs (CLGBNs;

Lauritzen and Wermuth, 1989) combine discrete and

continuous random variables in a mixture model:

– discrete Xi are only allowed to have discrete parents

(denoted ∆Xi
), are assumed to follow a multinomial

distribution parameterised with conditional proba-

bility tables;

– continuous Xi are allowed to have both discrete

and continuous parents (denoted ΓXi
, ∆Xi

∪ ΓXi
=

ΠXi), and their local distributions are

Xi |ΠXi
∼ N(µXi,δXi

+ ΓXi
βXi,δXi

, σ2
Xi,δXi

)

which can be written as a mixture of linear regres-

sions

Xi = µXi,δXi
+ ΓXi

βXi,δXi
+ εXi,δXi

,

εXi,δXi
∼ N(0, σ2

Xi,δXi
),

against the continuous parents with one component

for each configuration δXi
∈ Val(∆Xi

) of the dis-

crete parents. If Xi has no discrete parents, the mix-

ture reverts to a single linear regression.

Other distributional assumptions, such as mixtures

of truncated exponentials (Moral et al, 2001) or copu-

las (Elidan, 2010), have been proposed in the literature

but have seen less widespread adoption due to the lack

of exact conditional inference and simple closed-form

estimators.

The task of learning a BN from a data set D con-

taining n observations is performed in two steps:

P(G, Θ | D)︸ ︷︷ ︸
learning

= P(G |D)︸ ︷︷ ︸
structure learning

· P(Θ | G,D)︸ ︷︷ ︸
parameter learning

.

Structure learning consists in finding the DAG G that

encodes the dependence structure of the data, thus max-

imising P(G |D) or some alternative goodness-of-fit mea-

sure; parameter learning consists in estimating the pa-

rameters Θ given the G obtained from structure learn-

ing. If we assume parameters in different local distri-

butions are independent (Heckerman et al, 1995), we

can perform parameter learning independently for each

node following (1) because

P(Θ | G,D) =

N∏
i=1

P(ΘXi |ΠXi ,D).

Furthermore, if G is sufficiently sparse each node will

have a small number of parents; and Xi |ΠXi
will have

a low-dimensional parameter space, making parameter

learning computationally efficient.

On the other hand, structure learning is well known

to be both NP-hard (Chickering and Heckerman, 1994)

and NP-complete (Chickering, 1996), even under unre-

alistically favourable conditions such as the availabil-

ity of an independence and inference oracle (Chickering

et al, 2004).1 This is despite the fact that if we take

P(G |D) ∝ P(G) P(D |G),

again following (1) we can decompose the marginal like-

lihood P(D |G) into one component for each local dis-

tribution

P(D |G) =

∫
P(D |G, Θ) P(Θ | G) dΘ =

=

N∏
i=1

∫
P(Xi |ΠXi

, ΘXi
) P(ΘXi

|ΠXi
) dΘXi

;

and despite the fact that each component can be writ-

ten in closed form for discrete BNs (Heckerman et al,

1995), GBNs (Geiger and Heckerman, 1994) and

CLGBNs (Bøttcher, 2001). The same is true if we re-

place P(D |G) with frequentist goodness-of-fit scores

such as BIC (Schwarz, 1978), which is commonly used

in structure learning because of its simple expression:

BIC(G, Θ | D) =

N∑
i=1

log P(Xi |ΠXi
, ΘXi

)− log(n)

2
|ΘXi

|.

Compared to marginal likelihoods, BIC has the advan-

tage that it does not depend on any hyperparameter,

while converging to log P(D |G) as n→∞.

These score functions, which we will denote with

Score(G,D) in the following, have two important prop-

erties:

1 Interestingly, some relaxations of BN structure learning
are not NP-hard; see for example Claassen et al (2013) on
learning the structure of causal networks.
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– they decompose into one component for each local

distribution following (1), say

Score(G,D) =

N∑
i=1

Score(Xi, ΠXi
,D),

thus allowing local computations (decomposability);

– they assign the same score value to DAGs that en-

code the same probability distributions, and can

therefore be grouped in an equivalence classes (score

equivalence; Chickering, 1995).2

Structure learning via score maximisation is performed

using general-purpose optimisation techniques, typically

heuristics, adapted to take advantage of these proper-

ties to increase the speed of structure learning. The

most common are greedy search strategies that employ

local moves designed to affect only few local distribu-

tions, to that new candidate DAGs can be scored with-

out recomputing the full P(D |G). This can be done

either in the space of the DAGs with hill-climbing and

tabu search (Russell and Norvig, 2009), or in the space

of the equivalence classes with Greedy Equivalent Search

(GES; Chickering, 2002). Other options that have been

explored in the literature are genetic algorithms (Lar-

ranaga et al, 1996) and ant colony optimisation (Cam-

pos et al, 2002). Exact maximisation of P(D |G) and

BIC has also become feasible for small data sets in re-

cent years thanks to increasingly efficient pruning of

the space of the DAGs and tight bounds on the scores

(Cussens, 2012; Suzuki, 2017; Scanagatta et al, 2015).

In addition, we note that it is also possible to per-

form structure learning using conditional independence

tests to learn conditional independence constraints from

D, and thus identify which arcs should be included in G.

The resulting algorithms are called constraint-based al-

gorithms, as opposed to the score-based algorithms we

introduced above; for an overview and a comparison

of these two approaches see Scutari and Denis (2014).

Chickering et al (2004) proved that constraint-based

algorithms are also NP-hard for unrestricted DAGs;

and they are in fact equivalent to score-based algo-

rithms given a fixed topological ordering when inde-

pendence constraints are tested with statistical tests

related to cross-entropy (Cowell, 2001). For these rea-

sons, in this paper we will focus only on score-based al-

gorithms while recognising that a similar investigation

of constraint-based algorithms represents a promising

direction for future research.

The contributions of this paper are:

2 All DAGs in the same equivalence class have the same un-
derlying undirected graph and v-structures (patterns of arcs
like Xi → Xj ← Xk, with no arcs between Xi and Xk).

1. to provide general expressions for the (time) com-

putational complexity of the most common class

of score-based structure learning algorithms, greedy

search, as a function of the number of variables N , of

the sample size n, and of the number of parameters

|Θ|;
2. to use these expressions to identify two simple yet

effective optimisations to speed up structure learn-

ing in “big data” settings in which n� N .

Both are increasingly important when using BNs in

modern machine learning applications, as data sets with

large numbers of observations (the so-called “big data”)

are becoming as common as classic high-dimensional

data (“small n, large p”, or “small n, large N” using the

notation introduced above). The vast majority of com-

plexity and scalability results (Kalisch and Bühlmann,

2007; Scanagatta et al, 2015) and computational opti-

misations (Scutari, 2017) in the literature are derived

in the latter setting and implicitly assume n� N ; they

are not relevant in the former setting in which n� N .

Our contributions also complement related work on ad-

vanced data structures for machine learning applica-

tions, which include ADtrees (Moore and Lee, 1998),

frequent sets (Goldenberg and Moore, 2004) and more

recently bitmap representations combined with radix

sort (Karan et al, 2018). Such literature focuses on dis-

crete variables, whereas we work in a more general set-

ting in which data can include both discrete and con-

tinuous variables.

The material is organised as follows. In Section 2

we will present in detail how greedy search can be effi-

ciently implemented thanks to the factorisation in (1),

and we will derive its computational complexity as a

function N ; this result has been mentioned in many

places in the literature, but to the best of our knowledge

its derivation has not been described in depth. In Sec-

tion 3 we will then argue that the resulting expression

does not reflect the actual computational complexity of

structure learning, particularly in a “big data” setting

where n� N ; and we will re-derive it in terms of n and

|Θ| for the three classes of BNs described above. In Sec-

tion 4 we will use this new expression to identify two op-

timisations that can markedly reduce the overall com-

putational complexity of learning GBNs and CLGBNs

by leveraging the availability of closed form estimates

for the parameters of the local distributions and out-of-

sample goodness-of-fit scores. Finally, in Section 5 we

will demonstrate the improvements in speed produced

by the proposed optimisations on simulated and real-

world data, as well as their effects on the accuracy of

learned structures.
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Algorithm 1 Greedy Search

Input: a data set D from X, an initial DAG G (usually the
empty DAG), a score function Score(G,D).
Output: the DAG Gmax that maximises Score(G,D).

1. Compute the score of G, SG = Score(G,D).
2. Set Smax = SG and Gmax = G.
3. Hill climbing: repeat as long as Smax increases:

(a) for every possible arc addition, deletion or reversal in
Gmax resulting in a DAG:

i. compute the score of the modified DAG G∗,
SG∗ = Score(G∗,D):

ii. if SG∗ > Smax and SG∗ > SG , set G = G∗ and
SG = SG∗ .

(b) if SG > Smax , set Smax = SG and Gmax = G.
4. Tabu search: for up to t0 times:

(a) repeat step 3 but choose the DAG G with the high-
est SG that has not been visited in the last t1 steps
regardless of Smax ;

(b) if SG > Smax , set S0 = Smax = SG and G0 = Gmax =
G and restart the search from step 3.

5. Random restart: for up to r times, perturb Gmax with
multiple arc additions, deletions and reversals to obtain
a new DAG G′ and:
(a) set S0 = Smax = SG and G0 = Gmax = G and restart

the search from step 3;
(b) if the new Gmax is the same as the previous Gmax , stop

and return Gmax .

2 Computational Complexity of Greedy Search

A state-of-the-art implementation of greedy search in

the context of BN structure learning is shown in Algo-

rithm 1. It consists of an initialisation phase (steps 1

and 2) followed by a hill climbing search (step 3), which

is then optionally refined with tabu search (step 4) and

random restarts (step 5). Minor variations of this algo-

rithm have been used in large parts of the literature on

BN structure learning with score-based methods (some

notable examples are Heckerman et al, 1995; Tsamardi-

nos et al, 2006; Friedman, 1997).

Hill climbing uses local moves (arc additions, dele-

tions and reversals) to explore the neighbourhood of the

current candidate DAG Gmax in the space of all possi-

ble DAGs in order to find the DAG G (if any) that in-

creases the score Score(G,D) the most over Gmax . That

is, in each iteration hill climbing tries to delete and re-

verse each arc in the current optimal DAG Gmax ; and

to add each possible arc that is not already present in

Gmax . For all the resulting DAGs G∗ that are acyclic,

hill climbing then computes SG∗ = Score(G∗,D); cyclic

graphs are discarded. The G∗ with the highest SG∗ be-

comes the new candidate DAG G. If that DAG has a

score SG > Smax then G becomes the new Gmax , Smax

will be set to SG , and hill climbing will move to the

next iteration.

This greedy search eventually leads to a DAG Gmax

that has no neighbour with a higher score. Since hill

climbing is an optimisation heuristic, there is no the-

oretical guarantee that Gmax is a global maximum. In

fact, the space of the DAGs grows super-exponentially

in N (Harary and Palmer, 1973); hence multiple lo-

cal maxima are likely present even if the sample size n

is large. The problem may be compounded by the ex-

istence of score-equivalent DAGs, which by definition

have the same SG for all the G falling in the same equiva-

lence class. However, Gillispie and Perlman (2002) have

shown that while the number of equivalence classes is of

the same order of magnitude as the space of the DAGs,

most contain few DAGs and as many as 27.4% con-

tain just a single DAG. This suggests that the impact

of score equivalence on hill climbing may be limited.

Furthermore, greedy search can be easily modified into

GES to work directly in the space of equivalence classes

by using different set of local moves, side-stepping this

possible issue entirely.

In order to escape from local maxima, greedy search

first tries to move away from Gmax by allowing up to

t0 additional local moves. These moves necessarily pro-

duce DAGs G∗ with SG∗ 6 Smax ; hence the new can-

didate DAGs are chosen to have the highest SG even

if SG < Smax . Furthermore, DAGs that have been ac-

cepted as candidates in the last t1 iterations are kept

in a list (the tabu list) and are not considered again in

order to guide the search towards unexplored regions

of the space of the DAGs. This approach is called tabu

search (step 4) and was originally proposed by Glover

and Laguna (1998). If a new DAG with a score larger

than Gmax is found in the process, that DAG is taken

as the new Gmax and greedy search returns to step 3,

reverting to hill climbing.

If, on the other hand, no such DAG is found then

greedy search tries again to escape the local maximum

Gmax for r0 times with random non-local moves, that

is, by moving to a distant location in the space of the

DAGs and starting the greedy search again; hence the

name random restart (step 5). The non-local moves are

typically determined by applying a batch of r1 randomly-

chosen local moves that substantially alter Gmax . If the

DAG that was perturbed was indeed the global max-

imum, the assumption is that this second search will

also identify it as the optimal DAG, in which case the

algorithm terminates.

We will first study the (time) computational com-

plexity of greedy search under the assumptions that

are commonly used in the literature (see, for instance,

Tsamardinos et al, 2006; Spirtes et al, 2001) for this

purpose:
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1. We treat the estimation of each local distribution

as an atomic O(1) operation; that is, the (time)

complexity of structure learning is measured by the

number of estimated local distributions.

2. Model comparisons are assumed to always pick the

right model, which happens asymptotically for

n→∞ since marginal likelihoods and BIC are glob-

ally and locally consistent (Chickering, 2002).

3. The true DAG GREF is sparse and contains O(cN)

arcs, where c is typically assumed to be between 1

and 5.

In steps 1 and 2, greedy search computes all the N lo-

cal distributions for G0. In step 3, each iteration tries

all possible arc additions, deletions and reversals. Since

there are
(
N
2

)
possible arcs in a DAG with N nodes,

this requires O(N2) model comparisons. If we assume

G0 is the empty DAG (that is, a DAG with no arcs),

hill climbing will gradually add all the arcs in GREF ,

one in each iteration. Assuming GREF is sparse, and

assuming that arcs are removed or reversed a negligible

number of times, the overall computational complexity

of hill climbing is thenO(cN3) model comparisons. Step

4 performs t0 more iterations, and is therefore O(t0N
2).

Therefore, the combined time complexity of steps 3 and

4 is O(cN3 + t0N
2). Each of the random restarts in-

volves changing r1 arcs, and thus we can expect that it

will take r1 iterations of hill climbing to go back to the

same maximum, followed by tabu search; and that hap-

pens for r0 times. Overall, this adds O(r0(r1N
2+t0N

2))

to the time complexity, resulting in an overall complex-

ity g(N) of

O(g(N)) = O(cN3 + t0N
2 + r0(r1N

2 + t0N
2))

= O(cN3 + (t0 + r0(r1 + t0))N2). (2)

The leading term is O(cN3) for some small constant c,

making greedy search cubic in complexity.

Fortunately, the factorisation in (1) makes it possi-

ble to recompute only one or two local distributions for

each model comparison:

– Adding or removing an arc only alters one parent

set; for instance, addingXj → Xi means thatΠXi
=

ΠXi ∪Xj , and therefore P(Xi |ΠXi) should be up-

dated to P(Xi |ΠXi
∪ Xj). All the other local dis-

tributions P(Xk |ΠXj
), Xk 6= Xi are unchanged.

– Reversing an arc Xj → Xi to Xi → Xj means that

ΠXi
= ΠXi

\Xj and ΠXj
= ΠXj

∪Xi, and so both

P(Xi |ΠXi
) and P(Xj |ΠXj

) should be updated.

Hence it is possible to dramatically reduce the compu-

tational complexity of greedy search by keeping a cache

of the score values of the N local distributions for the

current Gmax

Bi = Scoremax (Xi, Π
max
Xi

,D);

and of the N2 −N score differences

∆ij = Smax − SG∗ =

= Scoremax (Xi, Π
max
Xi

,D)−ScoreG∗(Xi, Π
G∗
Xi
,D), i 6= j,

where Πmax
Xi

and ΠG
∗

Xi
are the parents of Xi in Gmax and

in the G∗ obtained by removing (if present) or adding

(if not) Xj → Xi to Gmax . Only N (for arc additions

and deletions) or 2N (for arc reversals) elements of ∆

need to be actually computed in each iteration; those

corresponding to the variable(s) whose parent sets were

changed by the local move that produced the current

Gmax in the previous iteration. After that, all possible

arc additions, deletions and reversals can be evaluated

without any further computational cost by adding or

subtracting the appropriate ∆ij from the Bi. Arc rever-

sals can be handled as a combination of arc removals

and additions (e.g. reversing Xi → Xj is equivalent to

removing Xi → Xj and adding Xj → Xi). As a result,

the overall computational complexity of greedy search

reduces from O(cN3) to O(cN2). Finally, we briefly

note that score equivalence may allow further compu-

tational saving because many local moves will produce

new G∗ that are in the same equivalence class as Gmax ;

and for those moves necessarily ∆ij = 0 (for arc rever-

sals) or ∆ij = ∆ji (for adding or removing Xi → Xj

and Xj → Xi).

3 Revisiting Computational Complexity

In practice, the computational complexity of estimating

a local distribution P(Xi |ΠXi
) from data depends on

three of factors:

– the characteristics of the data themselves (the sam-

ple size n, the number of possible values for cate-

gorical variables);

– the number of parents of Xi in the DAG, that is,

|ΠXi
|;

– the distributional assumptions on P(Xi |ΠXi
), which

determine the number of parameters |ΘXi |.

3.1 Computational Complexity for Local Distributions

If n is large, or if |ΘXi
| is markedly different for different

Xi, different local distributions will take different times

to learn, violating the O(1) assumption from the pre-

vious section. In other words, if we denote the compu-

tational complexity of learning the local distribution of

Xi as O(fΠXi
(Xi)), we find below that O(fΠXi

(Xi)) 6=
O(1).
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3.1.1 Nodes in Discrete BNs

In the case of discrete BNs, the conditional probabilities

πik | j associated with each Xi |ΠXi are computed from

the corresponding counts nijk tallied from {Xi, ΠXi
};

hence estimating them takesO(n(1+|ΠXi
|)) time. Com-

puting the marginals counts for each configuration of

ΠXi
then takes O(|ΘXi

|) time; assuming that each dis-

crete variable takes at most l values, then |ΘXi
| 6

l1+|ΠXi
| leading to

O(fΠXi
(Xi)) = O

(
n(1 + |ΠXi

|) + l1+|ΠXi
|
)
. (3)

3.1.2 Nodes in GBNs

In the case of GBNs, the regressions coefficients for

Xi |ΠXi
are usually computed by applying a QR de-

composition to the augmented data matrix [1ΠXi
]:

[1ΠXi ] = QR leading to R[µXi ,βXi
] = QTXi

which can be solved efficiently by backward substitu-

tion since R is upper-triangular. This approach is the

de facto standard approach for fitting linear regres-

sion models because it is numerically stable even in

the presence of correlated ΠXi
(see Seber, 2008, for

details). Afterwards we can compute the fitted values

x̂i = ΠXi β̂Xi
and the residuals Xi − x̂i to estimate

σ̂2
Xi
∝ (Xi − x̂i)T (Xi − x̂i). The overall computational

complexity is

O(fΠXi
(Xi)) =

= O
(
n(1 + |ΠXi

|)2
)︸ ︷︷ ︸

QR decomposition

+O (n(1 + |ΠXi
|))︸ ︷︷ ︸

computing QTXi

+

O
(
(1 + |ΠXi

|)2
)︸ ︷︷ ︸

backwards substitution

+O (n(1 + |ΠXi
|))︸ ︷︷ ︸

computing x̂i

+

O (3n)︸ ︷︷ ︸
computing σ̂2

Xi

(4)

with leading term O((n+ 1)(1 + |ΠXi |)2).

3.1.3 Nodes in CLGBNs

As for CLGBNs, the local distributions of discrete nodes

are estimated in the same way as they would be in a

discrete BN. For Gaussian nodes, a regression of Xi

against the continuous parents ΓXi is fitted from the

nδXi
observations corresponding to each configuration

of the discrete parents ∆Xi . Hence the overall compu-

tational complexity is

O(fΠXi
(Xi)) =

=
∑

δXi
∈Val(∆Xi

)

O
(
nδXi

(1 + |ΓXi
|)2
)

+

O
(
2nδXi

(1 + |ΓXi
|)
)

+O
(
1 + |ΓXi

|)2
)

+

O
(
3nδXi

)
= O

(
n(1 + |ΓXi |)2

)
+O (2n(1 + |ΓXi |)) +

O
(
|Val(∆Xi)|(1 + |ΓXi |)2

)
+O (3n)

= O
(

(n+ l|∆Xi
|)(1 + |ΓXi

|)2
)

+

O (2n(1 + |ΓXi
|)) +O (3n) (5)

with leading term O
(
(n+ l|∆Xi

|)(1 + |ΓXi
|)2
)
. If Xi

has no discrete parents then (5) simplifies to (4) since

|Val(∆Xi)| = 1 and nδXi
= n.

3.2 Computational Complexity for the Whole BN

Let’s now assume without loss of generality that the

dependence structure of X can be represented by a

DAG G with in-degree sequence dX1
6 dX2

6 . . . 6
dXN

. For a sparse graph containing cN arcs, this means∑N
i=1 dXi

= cN . Then if we make the common choice

of starting greedy search from the empty DAG, we can

rewrite (2) as

O(g(N)) = O(cN2)

= O

 N∑
i=1

dXi
+1∑

j=1

N−1∑
k=1

1


=

N∑
i=1

dXi
+1∑

j=1

N−1∑
k=1

O(1) = O(g(N,d)) (6)

because:

– parents are added sequentially to each of the N

nodes;

– if a node Xi has dXi parents then greedy search will

perform dXi
+ 1 passes over the candidate parents;

– for each pass, N − 1 local distributions will need to

be relearned as described in Section 2.

The candidate parents in the (dXi +1)th pass are evalu-

ated but not included in G, since no further parents are

accepted for a node after its parent set ΠXi
is complete.

If we drop the assumption from Section 2 that each

term in the expression above is O(1), and we substi-

tute it with the computational complexity expressions

we derived above in this section, then we can write

O(g(N,d)) =

N∑
i=1

dXi
+1∑

j=1

N−1∑
k=1

O(fjk(Xi)).
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where O(fjk(Xi)) = O(f
Π

(j−1)
Xi

∪Xk
(Xi)), the computa-

tional complexity of learning the local distribution of

Xi conditional of j− 1 parents Π
(j)
Xi

currently in G and

a new candidate parent Xk.

3.2.1 Discrete BNs

For discrete BNs, fjk(Xi) takes the form shown in (3)

and

O(g(N,d)) =

=

N∑
i=1

dXi
+1∑

j=1

N−1∑
k=1

O(n(1 + j) + l1+j)

= O

n(c+ 1)(N − 1)N + n(N − 1)

N∑
i=1

dXi
+1∑

j=1

j+

(N − 1)

N∑
i=1

dXi
+1∑

j=1

l1+j


≈ O

ncN2 + nN

N∑
i=1

dXi
+1∑

j=1

j +N

N∑
i=1

dXi
+1∑

j=1

l1+j


The second term is an arithmetic progression,

dXi
+1∑

j=1

j =
(dXi + 1)(dXi + 2)

2
;

and the third term is a geometric progression

dXi
+1∑

j=1

l1+j = l2
dXi

+1∑
j=1

lj−1 = l2
ldXi

+1 − 1

l − 1

leading to

O(g(N,d)) ≈

O

(
ncN2 + nN

N∑
i=1

d2Xi

2
+Nl2

N∑
i=1

ldXi
+1 − 1

l − 1

)
. (7)

Hence, we can see that O(g(N,d)) increases linearly in

the sample size. If G is uniformly sparse, all dXi
are

bounded by a constant b (dXi 6 b, c 6 b) and

O(g(N,d)) ≈ O
(
N2

[
nc+ n

b2

2
+ l2

lb+1 − 1

l − 1

])
,

so the computational complexity is quadratic in N .

Note that this is a stronger sparsity assumption than∑N
i=1 dXi

= cN , because it bounds individual dXi
in-

stead of their sum; and it is commonly used to make

challenging learning problems feasible (e.g. Cooper and

Herskovits, 1992; Friedman and Koller, 2003). If, on the

other hand, G is dense and dXi = O(N), then c = O(N)

O(g(N,d)) ≈ O
(
N2

[
nc+ n

N3

2
+ l2

lN − 1

l − 1

])
and O(g(N,d)) is more than exponential in N . In be-

tween these two extremes, the distribution of the dXi

determines the actual computational complexity of

greedy search for a specific types of structures. For in-

stance, if G is a scale-free DAG (Bollobás et al, 2003)

the in-degree of most nodes will be small and we can

expect a computational complexity closer to quadratic

than exponential if the probability of large in-degrees

decays quickly enough compared to N .

3.2.2 GBNs

If we consider the leading term of (4), we obtain the

following expression:

O(g(N,d)) =

=

N∑
i=1

dXi
+1∑

j=1

N−1∑
k=1

O((n+ 1)(j + 1)2)

= O

(n+ 1)(N − 1)

N∑
i=1

dXi
+1∑

j=1

(j + 1)2



Noting the arithmetic progression

dXi
+1∑

j=1

(j + 1)2 =
2d3Xi

+ 15d2Xi
+ 37dXi

+ 24

6

we can the write

O(g(N,d)) ≈ O

(
nN

N∑
i=1

d3Xi

3

)
,

which is again linear in n but cubic in the dXi . We note,

however, that even for dense networks (dXi
= O(N))

computational complexity remains polynomial

O(g(N,d)) ≈ O
(
nN2N

3

3

)
which was not the case for discrete BNs. If, on the other

hand dXi
6 b,

O(g(N,d)) ≈ O
(
nN2 b

3

3

)
which is quadratic in N .
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3.2.3 CLGBNs

Deriving the computational complexity for CLGBNs is

more complicated because of the heterogeneous nature

of the nodes. If we consider the leading term of (5)

for a BN with M < N Gaussian nodes and N − M

multinomial nodes we have

O(g(N,d)) =

N−M∑
i=1

dXi
+1∑

j=1

N−M−1∑
k=1

O(fjk(Xi))+

M∑
i=1

dXi
+1∑

j=1

N−1∑
k=1

O(fjk(Xi)).

The first term can be computed using (7) since discrete

nodes can only have discrete parents, and thus cluster

in a subgraph of N − M nodes whose in-degrees are

completely determined by other discrete nodes; and the

same considerations we made in Section 3.2.1 apply.

As for the second term, we will first assume that all

Di discrete parents of each node are added first, before

any of the Gi continuous parents (dXi = Di + Gi).

Hence we write

M∑
i=1

dXi
+1∑

j=1

N−1∑
k=1

O(fjk(Xi)) =

=

M∑
i=1

 Di∑
j=1

N−1∑
k=1

O(fjk(Xi)) +

dXi
+1∑

j=Di+1

N−1∑
k=1

O(fjk(Xi))

 .
We further separate discrete and continuous nodes in

the summations over the possible N − 1 candidates for

inclusion or removal from the current parent set, so that

substituting (5) we obtain

Di∑
j=1

N−1∑
k=1

O(fjk(Xi)) =

=

Di∑
j=1

[
N−M∑
k=1

O(fjk(Xi)) +

M−1∑
k=1

O(fjk(Xi))

]

=

Di∑
j=1

[
(N −M)O

(
n+ lj

)
+ (M − 1)O

(
4
(
n+ lj

))]

≈ O

(N + 3M)

Di∑
j=1

(
n+ lj

)
= O

(
(N + 3M)

(
nDi + l

lDi − 1

l − 1

))

dXi
+1∑

j=Di+1

N−1∑
k=1

O(fjk(Xi)) =

=

dXi
+1∑

j=Di+1

[
N−M∑
k=1

O(fjk(Xi)) +

M−1∑
k=1

O(fjk(Xi))

]

=

Gi∑
j=1

[
(N −M)O

(
n+ lDi

)
+

(M − 1)O
((
n+ lDi

)
(1 + j)2

) ]
≈ O

((
n+ lDi

)(
Gi(N −M) +M

G3
i

3

))
.

Finally, combining all terms we obtain the following

expression:

O(g(N,d)) ≈

≈ O

(
nc(N −M)2 + n(N −M)

N−M∑
i=1

d2Xi

2
+

(N −M)l2
N−M∑
i=1

ldXi
+1 − 1

l − 1

)
+

M∑
i=1

O

(
(N + 3M)

(
nDi + l

lDi − 1

l − 1

))
+

M∑
i=1

O

((
n+ lDi

)(
Gi(N −M) +M

G3
i

3

))
.

While it is not possible to concisely describe the be-

haviour resulting from this expression given the number

of data-dependent parameters (Di, Gi, M), we can ob-

serve that:

– O(g(N,d)) is always linear in the sample size;

– unless the number of discrete parents is bounded

for both discrete and continuous nodes, O(g(N,d))

is again more than exponential;

– if the proportion of discrete nodes is small, we can

assume that M ≈ N and O(g(N,d)) is always poly-

nomial.

4 Greedy Search and Big Data

In Section 3 we have shown that the computational

complexity of greedy search scales linearly in n, so greedy

search is efficient in the sample size and it is suitable

for learning BNs from big data. However, we have also

shown that different distributional assumptions on X

and on the dXi
lead to different complexity estimates

for various types of BNs. We will now build on these

results to suggest two possible improvements to speed

up greedy search.
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4.1 Speeding Up Low-Order Regressions in GBNs and

CLGBNs

Firstly, we suggest that estimating local distributions

with few parents can be made more efficient; if we as-

sume that G is sparse, those make up the majority of the

local distributions learned by greedy search and their

estimation can potentially dominate the overall com-

putational cost of Algorithm 1. As we can see from the

summations in (6), the overall number of learned local

distributions with j parents is

N∑
i=1

1l{dXi
>j−1}(j) = N −

N∑
i=1

1l{dXi
<j−1}(j), (8)

that is, it is inversely proportional to the number of

nodes for which dXi is less than j−1 in the DAG we are

learning. If that subset of nodes represents large frac-

tion of the total, as is the case for scale-free networks

and for networks in which all dXi
6 b, (8) suggests that

a correspondingly large fraction of the local distribu-

tions we will estimate in Algorithm 1 will have a small

number j of parents. Furthermore, we find that in our

experience BNs will typically have a weakly connected

DAG (that is, with no isolated nodes); and in this case

local distributions with j = 0, 1 will need to be learned

for all nodes, and those with j = 2 for all non-root

nodes.

In the case of GBNs, local distributions for j =

0, 1, 2 parents can be estimated in closed form using

simple expressions as follows:

– j = 0 corresponds to trivial linear regressions of the

type

Xi = µXi + εXi .

in which the only parameters are the mean and the

variance of Xi.

– j = 1 corresponds to simple linear regressions of the

type

Xi = µXi +XjβXj + εXi ,

for which there are the well-known (e.g. Draper and

Smith, 1998) closed-form estimates

µ̂Xi
= x̄i − β̂Xj

x̄j ,

β̂Xj
=

COV(Xi, Xj)

VAR(Xi)
,

σ̂2
Xi

=
1

n− 2
(Xi − x̂i)T (Xi − x̂i);

where VAR(·) and COV(·, ·) are empirical variances

and covariances.

– for j = 2, we can estimate the parameters of

Xi = µXi +XjβXj +XkβXk
+ εXi

using their links to partial correlations:

ρXiXj |Xk
=

ρXiXj
− ρXiXk

ρXjXk√
1− ρ2XiXk

√
1− ρ2XjXk

= βj

√
1− ρ2XjXk√
1− ρ2XiXk

;

ρXiXk |Xj
= βk

√
1− ρ2XjXk√
1− ρ2XiXj

;

for further details we refer the reader to Weather-

burn (1961). Simplifying these expressions leads to

β̂Xj
=

1

d

[
VAR(Xk) COV(Xi, Xj)−

COV(Xj , Xk) COV(Xi, Xk)
]
,

β̂Xk
=

1

d

[
VAR(Xj) COV(Xi, Xk)−

COV(Xj , Xk) COV(Xi, Xj)
]
;

with denominator

d = VAR(Xj) VAR(Xk)− COV(Xj , Xk).

Then, the intercept and the standard error estimates

can be computed as

µ̂Xi
= x̄i − β̂Xj

x̄j − β̂Xk
x̄k,

σ̂2
Xi

=
1

n− 3
(Xi − x̂i)T (Xi − x̂i).

All these expressions are based on the variances and

the covariances of (Xi, ΠXi), and therefore can be com-

puted in

O

(
1

2
n(1 + j)2

)
︸ ︷︷ ︸

covariance matrix of (Xi, ΠXi
)

+

O(n(1 + j))︸ ︷︷ ︸
computing x̂i

+ O(3n)︸ ︷︷ ︸
computing σ̂2

Xi

, (9)

This is lower than the computational complexity from

(4) for the same number of parents:

j from (4) from (9)

0 O(6n) O(4.5n)

1 O(9n) O(7n)

2 O(16n) O(10.5n)
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and it suggests that learning low-order local distribu-

tions in this way can be markedly faster, thus driving

down the overall computational complexity of greedy

search without any change in its behaviour. We also

find that issues with singularities and numeric stability,

which are one of the reasons to use the QR decompo-

sition to estimate the regression coefficients, are easy

to diagnose using the variances and the covariances of

(Xi, ΠXi
); and they can be resolved without increasing

computational complexity again.

As for CLGBNs, similar reductions in complexity

are possible for continuous nodes. Firstly, if a contin-

uous Xi has no discrete parents (∆Xi = ∅) then the

computational complexity of learning its local distri-

bution using QR is again given by (4) as we noted in

Section 3.1.3; and we are in the same setting we just

described for GBNs. Secondly, if Xi has discrete par-

ents (DXi
> 0) and j continuous parents (GXi

= j),

the closed-form expressions above can be computed for

all the configurations of the discrete parents in∑
δXi
∈V al(DXi

)

O

(
1

2
nδXi

(1 + j)2
)

+

O(nδXi
(1 + j)) +O(3nδXi

) =

= O

(
1

2
n(1 + j)2

)
+O(n(1 + j)) +O(3n) (10)

time, which is lower than that required by the estimator

from (5):

j from (5) from (10)

0 O
(
6n+ lDXi

)
O(4.5n)

1 O
(
11n+ 4lDXi

)
O(7n)

2 O
(
18n+ 9lDXi

)
O(10.5n)

Interestingly we note that (10) does not depend onDXi
,

unlike (5); the computational complexity of learning lo-

cal distributions with GXi 6 2 does not become expo-

nential even if the number of discrete parents is not

bounded.

4.2 Predicting is Faster than Learning

BNs are often implicitly formulated in a prequential set-

ting (Dawid, 1984), in which a data set D is considered

as a snapshot of a continuous stream of observations

and BNs are learned from that sample with a focus on

predicting future observations. Chickering and Hecker-

man (2000) called this the “engineering criterion” and

set

Score(G,D) = log P(X(n+1) | G, Θ,D) (11)

as the score function to select the optimal Gmax , effec-

tively maximising the negative cross-entropy between

the “correct” posterior distribution of X(n+1) and that

determined by the BN with DAG G. They showed that

this score is consistent and that even for finite sample

sizes it produces BNs which are at least as good as the

BNs learned using the scores in Section 1, which focus

on fitting D well. Allen and Greiner (2000) and later

Peña et al (2005) confirmed this fact by embedding k-

fold cross-validation into greedy search, and obtaining

both better accuracy both in prediction and network re-

construction. In both papers the use of cross-validation

was motivated by the need to make the best use of

relatively small samples, for which the computational

complexity was not a crucial issue.

However, in a big data setting it is both faster and

accurate to estimate (11) directly by splitting the data

into a training and test set and computing

Score(G,D) = log P(Dtest | G, Θ,Dtrain); (12)

that is, we learn the local distributions on Dtrain and

we estimate the probability of Dtest. As is the case for

many other models (e.g., deep neural networks; Good-

fellow et al, 2016), we note that prediction is computa-

tionally much cheaper than learning because it does not

involve solving an optimisation problem. In the case of

BNs, computing (12) is:

– O(N |Dtest|) for discrete BNs, because we just have

to perform an O(1) look-up to collect the relevant

conditional probability for each node and observa-

tion;
– O(cN |Dtest|) for GBNs and CLGBNs, because for

each node and observation we need to compute

Π
(n+1)
Xi

β̂Xi
and β̂Xi

is a vector of length dXi
.

In contrast, using the same number of observations for

learning in GBNs and CLGBNs involves a QR decom-

position to estimate the regression coefficients of each

node in both (4) and (5); and that takes longer than

linear time in N .

Hence by learning local distributions only on Dtrain we

lower the overall computational complexity of structure

learning because the per-observation cost of prediction

is lower than that of learning; and Dtrain will still be

large enough to obtain good estimates of their param-

eters ΘXi
. Clearly, the reduction in complexity will be

determined by the proportion of D used as Dtest. Fur-

ther speed-ups are possible by using the closed-form

results from Section 4.1 to reduce the complexity of

learning local distributions on Dtrain, combining the

effect of all the optimisations proposed in this section.
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Fig. 1 Conditional Linear Gaussian BN from Vitolo et al (2018). Yellow nodes are multinomial, blue nodes are Gaussian, and
green nodes are conditional linear Gaussian.

5 Benchmarking and Simulations

We demonstrate the reductions in computational com-

plexity we discussed in Sections 4.1 and 4.2 using the

MEHRA data set from Vitolo et al (2018), which stud-

ied 50 million observations to explore the interplay be-
tween environmental factors, exposure levels to outdoor

air pollutants, and health outcomes in the English re-

gions of the United Kingdom between 1981 and 2014.

The CLGBN learned in that paper is shown in Figure 1:

it comprises 24 variables describing the concentrations

of various air pollutants (O3, PM2.5, PM10, SO2, NO2,

CO) measured in 162 monitoring stations, their geo-

graphical characteristics (latitude, longitude, latitude,

region and zone type), weather (wind speed and direc-

tion, temperature, rainfall, solar radiation, boundary

layer height), demography and mortality rates.

The original analysis was performed with the bn-

learn R package (Scutari, 2010), and it was complicated

by the fact that many of the variables describing the

pollutants had significant amounts of missing data due

to the lack of coverage in particular regions and years.

Therefore, Vitolo et al (2018) learned the BN using the

Structural EM algorithm (Friedman, 1997), which is an

application of the Expectation-Maximisation algorithm

(EM; Dempster et al, 1977) to BN structure learning

that uses hill-climbing to implement the M step.

For the purpose of this paper, and to better illus-

trate the performance improvements arising from the

optimisations from Section 4, we will generate large

samples from the CLGBN learned by Vitolo et al (2018)

to be able to control sample size and to work with plain

hill-climbing on complete data. In particular:

1. we consider sample sizes of 1, 2, 5, 10, 20 and 50

millions;

2. for each sample size, we generate 5 data sets from

the CLGBN;

3. for each sample, we learn back the structure of the

BN using hill-climbing using various optimisations:

– QR: estimating all Gaussian and conditional lin-

ear Gaussian local distributions using the QR

decomposition, and BIC as the score function;

– 1P: using the closed form estimates for the lo-

cal distributions that involve 0 or 1 parents, and

BIC as the score function;

– 2P: using the closed form estimates for the local

distributions that involve 0, 1 or 2 parents, and

BIC as the score functions;

– PRED: using the closed form estimates for the

local distributions that involve 0, 1 or 2 parents
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Fig. 2 Running times for the MEHRA data set, normalised
using the baseline implementation based on the QR decompo-
sition (blue), for 1P (pink), 2P (green) and PRED (red). Bars
represent 95% confidence intervals. Average running times are
reported for QR.

for learning the local distributions on 75% of the

data and estimating (12) on the remaining 25%.

For each sample and optimisation, we run hill-climbing

5 times and we average the resulting running times to

reduce the variability of each estimate. Furthermore, we

measure the accuracy of network reconstruction using

the Structural Hamming Distance Tsamardinos et al
(SHD; 2006), which measures the number of arcs that

differ between the CPDAG representations of the equiv-

alence classes of two network structures. In our case,

those we learn from the simulated data and the original

network structure from Vitolo et al (2018). All compu-

tations are performed with the bnlearn package in R

3.3.3 on a machine with two Intel Xeon CPU E5-2690

processors (16 cores) and 384GB of RAM.

The running times for 1P, 2P and PRED, normalised

using those for QR as a baseline, are shown in Fig-

ure 2. As expected, computational complexity gradu-

ally decreases with the level of optimisation: 1P (pink)

is ≈ 20% faster than QR, 2P (green) is ≈ 25% faster

and PRED (red) is ≈ 60% faster, with minor variations

at different sample sizes. PRED exhibits a larger vari-

ability because of the randomness introduced by the

subsampling of Dtest, and provides smaller speed-ups

for the smallest considered sample size (1 million). Fur-

thermore, we confirm the results from Chickering and

Heckerman (2000) on network reconstruction accuracy.

n BIC PRED

1 11 2

2 2 1

5 0 1

10 0 0

20 0 0

50 0 0

Table 1 Sums of the SHDs between the network structures
learned by BIC, PRED and that from Vitolo et al (2018) for
different sample sizes n.

In Table 1 we report the sums of the SHDs between

the network structures learned by BIC and that from

Vitolo et al (2018), and the corresponding sum for the

networks learned using PRED, for the considered sam-

ple sizes. Overall, we find that BIC results in 13 errors

over the 30 learned DAGs, compared to 4 for (12). The

difference is quite marked for samples of size 1 million

(11 errors versus 2 errors). On the other hand, neither

score results in any error for samples with more than 10

million observations, thus confirming the consistency of

PRED. Finally we confirm that the observed running

times increase linearly in the sample size as we showed

in Section 3.

In order to verify that these speed increases extend

beyond the MEHRA data set, we considered five other

data sets from the UCI Machine Learning Repository

(Dheeru and Karra Taniskidou, 2017) and from the

repository of the Data Exposition Session of the Joint

Statistical Meetings (JSM). These particular data sets

have been chosen because of their large sample sizes and

because they have similar characteristics to MEHRA

(continuous variables, a few discrete variables, 20-40

nodes overall; see Table 2 for details). However, since

their underlying “true DAGs” are unknown, we cannot

Data n d M reference

AIRLINE 53.6× 106 9 19 JSM, the Data Expo-
sition Session (2009)

GAS 4.2× 106 0 37 UCI ML Repository,
Fonollosa et al (2015)

HEPMASS 10.5× 106 1 28 UCI ML Repository,
Baldi et al (2016)

HIGGS 11.0× 106 1 28 UCI ML Repository,
Baldi et al (2014)

SUSY 5.0× 106 1 18 UCI ML Repository,
Baldi et al (2014)

Table 2 Data sets from the UCI Machine Learning Repos-
itory and the JSM Data Exposition session, with their
sample size (n), multinomial nodes (N − M) and Gaus-
sian/conditional Gaussian nodes (M).
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represent 95% confidence intervals. Average running times are
reported for QR.

comment on the accuracy of the DAGs we learn from

them. For the same reason, we limit the density of the

learned DAGs by restricting each node to have at most

5 parents; this produces DAGs with 2.5N to 3.5N arcs

depending on the data set. The times for 1P, 2P and

PRED, again normalised by those for QR, are shown

in Figure 3. Overall, we confirm that PRED is ≈ 60%

faster on average than QR. Compared to MEHRA, 1P

and 2P are to some extend slower with average speed-

ups of only ≈ 15% and ≈ 22% respectively. However,

it is apparent by comparing Figures 2 and 3 that the

reductions in computational complexity are consistent

over all the data sets considered in this paper, and hold

for a wide range of sample sizes and combinations of

discrete and continuous variables.

6 Conclusions

Learning the structure of BNs from large data sets is

a computationally challenging problem. After deriving

the computational complexity of the greedy search al-

gorithm in closed form for discrete, Gaussian and con-

ditional linear Gaussian BNs, we studied the implica-

tions of the resulting expressions in a “big data” setting

where the sample size is very large, and much larger

than the number of nodes in the BN. We found that,

contrary to classic characterisations, computational com-

plexity strongly depends on the class of BN being learned

in addition to the sparsity of the underlying DAG. Start-

ing from this result, we suggested two possible optimi-

sations to lower the computational complexity of greedy

search and thus speed up the most common algorithm

used for BN structure learning. Using a large environ-

mental data set and five data sets from the UCI Ma-

chine Learning Repository and the JSM Data Exposi-

tion, we show that it is possible to reduce the running

time greedy search by ≈ 60%.
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