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Abstract: Extensive uncertainties exist in many resources and environmental management 6 

problems, which can be interrelated and thus amplify the complexity and nonlinearity of 7 

study systems. The interactions from dependent random variables pose significant impacts on 8 

the potential management strategies. In this study, an inexact copula-based stochastic 9 

programming (ICSP) method is developed to deal with interactive uncertainties with interval 10 

and stochastic characteristics as well as to address nonlinear dependence among multiple 11 

random variables. Specifically, the impacts of their interactions among random variables are 12 

revealed based on the concept of copula. ICSP can also reflect the risk of violating system 13 

constraints with linear and nonlinear dependences. The developed ICSP method is then 14 

applied to planning water-resources management problems; results (i.e. system benefit, 15 

economic penalty, water allocation, and flood diversion) under a variety of risk levels have 16 

been generated. Results are useful for generating desired strategies for water allocation and 17 

flood diversion under various individual and joint probabilities. Compared to the 18 

conventional joint-probabilistic chance-constrained programming (JCCP) approach, ICSP can 19 
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better reveal multiple uncertainties and their interrelationships under nonlinear condition and 20 

generate more robust solutions. 21 

Keywords：Copula, decision making, join probability, multiple uncertainties, planning, water 22 

resources 23 

 24 

Introduction 25 

Uncertainties exist in a variety of components in water resources systems, resulting in 26 

extensive complexities in problems of water management and flood prevention (Guang et al., 27 

2017; Wan et al., 2017; Fletcher et al., 2017; Cheng et al., 2017; Jato-Espino et al., 2018; 28 

Booras et al., 2018). Moreover, such uncertainties may exhibit multiple formats (e.g., interval, 29 

fuzzy and/or random features) due to their inherent complexities and data unavailability. 30 

Correspondingly, extensive optimization approaches were proposed for tackling such 31 

complex uncertainties in water resources systems (Huang et al., 1996; Singh, 2012; Yager, 32 

2014; Hu and Li, 2015; Kong et al., 2016; Ghassemi et al., 2017; Pastori et al, 2017; Garg 33 

and Joshi, 2017; Goharian et al., 2018). 34 

Joint chance-constrained programming (JCCP) is an effective way for measuring the 35 

reliability of system constraints when multiple uncertain constraints are satisfied at a specific 36 

level (Parlar, 1985; Watanabe and Ellis, 1994). JCCP can not only reflect the reliability of 37 

satisfying system constraints, but also analyze the interactive effects among various system 38 

constraints. Previously, a number of JCCP methods were developed for water resources 39 

management. Li and Huang (2010) coupled inexact two-stage integer programming method 40 

with JCCP to reflect joint probabilities existing in water availabilities and storage capacities. 41 



Zhuang et al. (2015) developed an inexact joint probabilistic programming (IJPP) approach, 42 

in which the conventional JCCP was improved to reflect the randomness in the left-hand-side 43 

of constraints. The previous JCCP methods handle problems in which the relations among 44 

random variables are linear so that the sum of individual probabilities satisfies the joint 45 

probability of constraints. Instead, nonlinear interactions exist among these random 46 

right-hand sides. However, such nonlinearities are hard to incorporate in JCCP because: (1) 47 

the traditional joint probability methods can only capture the dependence between some 48 

random variables with specific probability distribution (e.g. normal, lognormal or gamma) 49 

(Zhang and Singh, 2006, 2007; Zeng, 2016), and (2) nonlinearity among random variables 50 

leads to nonlinear constraints, resulting difficulties in the solution process of the optimization 51 

model under multiple uncertainties. 52 

Stochastic mathematical programming (SMP) is effective for tackling uncertainties 53 

existing in decision making problems, which is an extension of mathematical programming 54 

whose coefficients are represented as chances or probabilities (Li et al., 2008). As an 55 

extension of the previous efforts, this study aims to develop an inexact copula-based 56 

stochastic programming (ICSP) method for water-resources planning under multiple 57 

uncertainties. As a function that links univariate distribution to a flexible multivariate 58 

distribution (instead of a multivariate normal distribution), copula can effectively capture 59 

system dependence (especially for nonlinear dependence) among multiple variables, as well 60 

as tail dependence of uncertain data (Zhao and Lin, 2011). The concept of copula will be 61 

introduced into the two-stage joint-probabilistic chance-constrained programming framework 62 



to simulate nonlinear dependence among random variables in the right-hand sides of 63 

constraints which can not be dealt with using the existing optimization methods. The ICSP 64 

method can also effectively handle uncertainties expressed as random variables and interval 65 

numbers when the constraints are nonlinear, and robustly manage the overall system risk. 66 

Based on the risk level, the interactive effects of multiple system constraints can be 67 

investigated through the copula function. 68 

 69 

Modeling formulation 70 

Two-Stage Joint-Probabilistic Chance-Constrained programming 71 

In water resources planning problems, the storage capacities of multiple reservoirs may 72 

be satisfied with a given probability, representing the risk of violating the constraints under 73 

uncertainty. Joint-probabilistic chance-constrained programming (JCCP) method can be used 74 

to deal with the problems that interactions exist among random variables in the constraints. In 75 

real-world water-resources planning problems, uncertainties often exist in both parameters 76 

and system components (Fan et al., 2015). Some future changes may impact the optimization 77 

processes, which need to be taken into account (Asztalos and Kim, 2017; Kong et al., 2017). 78 

In general, two-stage stochastic programming (TSP) can be used for solving water-resources 79 

system planning problems under random uncertainty; interrelationships exist among random 80 

variables in the right-hand sides of constraints; however, TSP can not reflect the dependence 81 

of random variables (Gu et al., 2013). Joint-probabilistic chance-constrained programming 82 

(JCCP) that is able to deal with interactions among random variables in the constraints can be 83 

incorporated into the TSP framework, leading to a two-stage joint-probabilistic 84 

chance-constrained programming (TJCP) model as follows (Model A): 85 
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where f  stands for net system benefit; 
jx  denotes decision variable which can be decided 94 

before the realizations of random variables; 
ijy  indicates the recourse decision variable 95 

which can be determined after the random variables are known; 
jc  stands for coefficient of 96 

jx ; 
jd  stands for coefficient of 

ijy ; ip  stands for the probability of occurrence for scenario 97 

i ; 
rja , rb , 

kja , 
kija , 

sja  and 
sija  stand for parameters in the constraints; ki  and  sb t  98 

stand for the random variables; 1,2, ,j n  stands for index of decision variables, 
jx ; 99 

1,2, ,i m , 1,2, ,r R , 1,2, ,k K  and 1,2, ,s S  stand for indices of scenarios. The 100 

related joint constraints are satisfied at a level of probability 1 P , corresponding to a 101 

violation risk level of P . TJCP focuses on dealing with uncertainties expressed as random 102 

variables, and tackling joint probabilistic constraints with linear relationship among multiple 103 

random variables. The nonlinear dependence among random variables in the constraints is 104 

hard to be simulated, which could become more difficult under uncertainty. 105 

 106 



Copula Function 107 

A copula function is a joint-distribution function that links together univariate 108 

distribution functions to a flexible multivariate distribution (Karmakar and Simonovic, 2007; 109 

Komino and Blachowicz, 2015; Verhoest et al., 2015). If F  is a d -dimensional distribution, 110 

and 1 2, , , dX X X  are random variables, copula C  can be expressed as follows (Joe and Xu, 111 

1996): 112 

        1 1 1 2 2, , , , ,d d dF x x C F x F x F x      (7) 113 

where 1 2, , , dF F F  are univariate margin distributions; 1 2, , , dx x x  are values of random 114 

variables 1 2, , , dX X X . Compared with the classical multivariate joint probabilistic 115 

distribution modeling, the copula approach has an advantage that the marginal distributions 116 

and multivariate dependence can be constructed separately. It means that marginal and joint 117 

probability functions in copula can be chosen more flexible (Kong et al., 2015; Fan et al., 118 

2016). Moreover, there is no assumption for the variables in copula functions to be 119 

independent or normal or have the same type of marginal distributions (Zhang and Singh, 120 

2007). 121 

The Archimedean copula is one of the widely applied copula classes nowadays as (i) it 122 

can be employed whether the correlation among variables is positive or negative; (ii) it can be 123 

constructed easily, and contains a variety of copulas; (iii) it can capture extensive dependence 124 

structures with different desirable properties (Genest and Mackay, 1986). For the above 125 

reasons, Gumbel-Hougaard, Clayton (Cook-Johnson) and Ali-Mikhail-Haq copulas that 126 

belong to the Archimedean copula family are adopted in this study. They are used for 127 

building the dependence among random variables in the right-hand sides of constraints. 128 

Ali-Mikhail-Haq copula AMHC
: 129 



 

1

1

1 1

d

j

jAMh

d

j

j

u

C

u










 
  

 





        (8) 130 

where  1,1    is the parameter of Ali-Mikhail-Haq copula. Clayton copula CJC
: 131 
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and    1, \ 0    is the parameter of Clayton copula. Gumbel-Hougaard copula GHC
: 133 
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and  1,    is the parameter of Gumbel-Hougaard copula. 135 

In this study, the method of inference functions for margins (IFM) is used for parameter 136 

estimation. The major advantage of IFM is that the parameters of marginal distributions and 137 

those of copula can be estimated separately, simplifying the calculations of estimation (Joe 138 

and Xu, (1996). The maximum likelihood (ML) estimation is to determine the parameter of 139 

copula. Rosenblatt transformation with Cramér von Mises statistic is applied to investigate 140 

the property of joint distribution generated by copula (The detail descriptions about 141 

estimation of copula parameter and goodness-of-fit statistics for copula are shown in 142 

Supplemental Information). 143 

 144 

Inexact Copula-Based Stochastic Programming 145 

The concept of copula is introduced into the TJCP framework for tackling joint and 146 

interactive uncertainties with nonlinear dependence existed among random variables. Besides, 147 

various uncertainties (e.g., interval values) may also exist in the objective function and/or the 148 

constraints. Interval-parameter programming (IPP) can deal with uncertainties represented as 149 

interval numbers. Consequently, IPP and copula are introduced into the TJCP framework to 150 



deal with uncertainties presented in terms of interval values and random variables as well as 151 

to handle joint probabilistic constraints with nonlinear relationship among random variables 152 

in the constraints. This leads to an inexact copula-based stochastic programming (ICSP) 153 

model as follows (Model B): 154 
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where jx  and ijy   are interval decision variables. f   is net system benefit with interval 163 

values; jc , jd  , 
te  are interval parameters in the objective function; ip  is the probability 164 

of occurrence for scenario i ; rja  , 
rb , kja  , kija  , sja   and sija   are parameters with interval 165 

values in the constraints; ki  and  sb t  are random variable;  C   is the copula function; 166 

1 P  is a prescribed joint probability level that joint constraints are enforced to be satisfied; 167 

tz  is the binary variable; 1,2, ,j n  is index of decision variables; 1,2, ,i m , 168 

1,2, ,r R , 1,2, ,k K  and 1,2, ,t T  are indices of scenarios. An interval number 169 

 ,x x x t x x t x            is an interval with known upper bound x  and lower bound 170 

x  but unknown distribution information (Li et al., 2008; Kong et al., 2015). 171 



Solution Method for Solving ICSP 172 

In ICSP, the joint probabilistic distribution of constraints is constructed by the copula 173 

function, thus the dependence (including nonlinear dependence) among random variables in 174 

the right-hand sides of the constraints can be reflected. However, considering copula relations 175 

leads to more complex nonlinear constraints, resulting difficulties in the solution process of 176 

the optimization model under uncertainty. Therefore, there is difficulty in solving model B 177 

because of constraint (14) associated with nonlinear and uncertain features.  178 

For the conventional TJCP model, the nonlinear constraint (4) can be transformed to 179 

linear constraints by letting the random variable take a set of individual probabilistic 180 

constraints. The individual probabilities are determined through ensuring that the sum of 181 

these probabilities is equal to the joint probability. This is because the relationships among 182 

random variables in the constraints are linear in TJCP. For the ICSP model, the nonlinear 183 

constraint (14) can also be transformed to a linear constraint. As  1,2, ,sja s S   are 184 

deterministic and  1,2, ,sb s S  are random, Equation (14) can be decomposed into:  185 
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 (19) 187 

where    01s sF b t p   denotes the cumulative distribution of random variable  sb t  under 188 

scenario s . Equation (18) is a set of individual probabilistic constraints. The individual 189 

probabilities of constraints can be determined by solving Equation (19) in the following way: 190 

if there are S  random variables, the violation probabilities of the former 1S   constraints 191 

(i.e. 0 , 1, , 1sp s S  ) are predefined and the last probability is obtained through solving the 192 

equation:          =1- , =1-0 0
1 1 ' 1 1, , 1S S SC F b t p F b t p F b t P     . Because the copula 193 

function is a nondecreasing monotonous function, a single value for   SF b t  can be 194 



obtained. Moreover, since the values of 0 , 1, , 1sp s S   are predefined, a series of 195 

combinations of individual probabilities can be obtained for one overall constraint violation 196 

probability [i.e. P  in Equation (19)]. Therefore, constraint (14) can be decomposed into 197 

constraint (18) which is a set of linear constraints with constraint (19) being solved. In other 198 

words, the joint probabilistic constraints associated with copula relationship can be 199 

transformed to linear by letting the random variable take a set of individual probabilistic 200 

constraints with the corresponding individual probabilities determined by copula. 201 

After transforming the joint probabilistic constraints with copula relations to linear 202 

constraints, the ICSP model can be solved by two-step solution method (Fan and Huang, 203 

2012). The main idea of the two-step solution method is to transform inexact model with 204 

interval numbers to two deterministic sub-models by analyzing interactions among 205 

parameters and variables in both objective function and constraints. The sub-models 206 

correspond to the upper-bound and lower-bound objective function values, respectively (See 207 

in Supplemental Information). Then solutions for the ICSP model can be obtained: 208 

,opt opt optf f f               (20) 209 

1, , 1,2, ,j j jx x x j n            (21) 210 

2, , 1,2, ,j j jy y y j n            (22) 211 

Combing the transformation from copula-based joint probabilistic constraints to linear 212 

constraints and the two-step method discussed above, the procedure of solution algorithm for 213 

the ICSP method is given below: 214 

Step 1: Formulate an ICSP model. 215 

Step 2: Acquire the parameters, including inexact parameters with interval values and 216 

probability distribution. 217 

Step 3: Determine the best fit copula function which can effectively capture the 218 



dependence among random variables in the constraints. The copula function is 219 

determined in three steps. First, some copula functions are selected based on the 220 

several desirable properties. Second, the parameters of copula functions are 221 

estimated, and the corresponding joint distributions among random variables are 222 

obtained based on the marginal distributions. Then, the results generated by the 223 

chosen copula are compared using good-of-fit statistics to determine the best fit 224 

copula function. 225 

Step 4: Transform the nonlinear constraints to linear constraints by the copula method. 226 

Thus a set of individual probability combinations based on the specific joint 227 

probability are obtained. 228 

Step 5: Reformulate the ICSP model to two deterministic sub-models by the two-step 229 

method. 230 

Step 6: Solve the sub-models through simplex method. The order of solving sub-models 231 

is based on the objective function. If the objective function is to be maximized, 232 

first solve the sub-model corresponding to f   (Otherwise, first solve the 233 

sub-model corresponding to f   instead). Then solve the other sub-model on the 234 

basis of the solutions above. 235 

Step 7: The solution of entire ICSP model can be obtained based on the solutions of two 236 

sub-models shown in Equations (20)-(22). 237 

 238 

Application 239 

Overview of the Studied System 240 

In this study, a synthetic water-resources system planning problem is applied to illustrate 241 

the applicability of the proposed ICSP approach. The studied system consists of a river, a 242 

tributary of the river, and two storage reservoirs (as shown in Fig. 1) (Li and Huang, 2010; 243 



Gu et al., 2013). The main functions of these two reservoirs are flood control, and the 244 

auxiliary functions of these two reservoirs are irrigation, aquaculture, hydropower, industrial 245 

and municipal water supplies (Gu et al., 2013). Between the two reservoirs, there is a 246 

tributary that provide water downstream cities and countries. Water supply to downstream 247 

target area changes as the diversifications of water availabilities and storage capacities. It 248 

may be difficult for decision makers to determine water-allocation targets and schemes in the 249 

case of uncertain water inflows and demands (Li and Huang, 2009). In detail, if the value of 250 

promised water is regulated high (i.e. the decision makers promise too much water to be 251 

realized), shortage may be generated. Penalties may be resulted to the local economy in 252 

accordance with the exceeded expenses which should be paid for the alternative water instead 253 

of local water. If the value of promised water is regulated low (i.e. the decision makers 254 

promise too little water to water users) and high stream inflows may lead to a raised surplus, 255 

reservoirs may overflow during flooding events. Flood diversion must be taken to release the 256 

surplus water. Therefore, effective flood diversion during the high inflow season and 257 

reasonable allocation of water resources during the low inflow season are critical in this 258 

water-resources system planning problem. 259 

----------------------------- 260 

Place Fig. 1 here 261 

----------------------------- 262 

There are various uncertainties in many components of water resources systems. In 263 

detail, flows of river and tributary are uncertain and exhibit probabilistic characteristics; the 264 

total storage and dead storage capacities of reservoirs are affected by many impacts and could 265 

be characterized to be random variables; the promised amounts of water are uncertain 266 

resulted by the uncertain available water flow from rivers and reservoirs; the benefits, 267 

penalties and costs for flood diversion may be available as interval values. Moreover, outflow 268 

from reservoir 1 and inflow of tributary both flow downstream into Reservoir 2, leading to a 269 



joint probability problem (Li and Huang, 2010). Therefore, a water allocation model that can 270 

deal with such a complicated water-resources system planning problem is in demand. 271 

 272 

ICSP for Water Resources Management 273 

In order to control flood and prevent waterlogging, the study problem for water 274 

resources allocation based on ICSP can be designed as model C. The objective is to achieve a 275 

maximum net system benefit, which is made up of three parts. They are the benefit for 276 

satisfying the promised water, the penalty when the promised water is not delivered and the 277 

cost for flood diversion. Constraints (24) and (25) indicate the relationship between current 278 

storage levels and initial storage levels in reservoirs 1 and 2. Related to the water resources 279 

system in Fig. 2, the current storage of reservoir 1 is determined by initial storage of reservoir 280 

1, inflow from river, release flow from reservoir 1 and water loss; the current storage of 281 

reservoir 2 is determined by initial storage of reservoir 2, outflow from reservoir 1, inflow of 282 

tributary, release flow from reservoir 2 and water loss. Constraints (26) to (28) indicate the 283 

water delivery to the water users and diversion if the condition of overflows during flooding 284 

seasons occurs. Constraints (29) and (30) indicate the storage water of reservoirs cannot be 285 

greater than the maximum amount of reservoirs, and cannot be lower than the minimum 286 

amount of reservoirs. Constraint (31) indicates the water-allocation target should fall in 287 

between the maximum amount of water demand and the water shortage. Constraint (32) 288 

indicates whether or not there is a need for flood diversion. Constraint (33) and (34) are 289 

non-negativity and technical constraints. 290 
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1 2 1 2 1 2 1 2 1 2, ,k k k k k k k kX Y RE U Z k k                (26) 297 

1 2 1 2 1 2 1 2, ,k k k k k kRE U Z X k k                (27) 298 

 
1 2 1 2 1 2 1 2, ,k k k k k kX Y U Z k k                (28) 299 

(2) Water storage constraints   300 

    
1 1 21 1 2 1 2Pr , ,Pr , , 1k k kC ST TR k ST TR k k P             (29) 301 

    
1 1 21 1 2 1 2Pr , ,Pr , , 1k k kC ST DR k ST DR k k P             (30) 302 

(3) Water-allocation target constraints 303 

1 2 maxk kY X X                  (31) 304 

(4) 0-1 constraints 305 

1 2 1 2

1, water diversion is undertaken
,

0, otherwise
k kZ k k


 


       (32) 306 

(5) Non-negativity and technical constraints 307 

1 2 1 2 1 2max 1 20 , ,k k k k k kU M Z k k               (33) 308 

1 2 1 20, ,k kY k k                 (34) 309 

where f   is net system benefit ($); B  is net benefit per unit water allocated ($/m3); 310 

X   is water allocation target (m3); C  is penalty of net benefit per unit of water not 311 

delivered ($/m3); 
1 2k kY 

 is water shortage under scenarios 1k  and 2k  (m3); 
1kp  and 

2kp  312 

are probabilities of scenarios 1k  and 2k , respectively; F  is fixed charge for flooding 313 

diversion ($); V   is floating charge for flooding diversion ($/m3); 
1 2k kU 

 is amount of 314 



flooding diversion under scenarios 
1k  and 

2k  (m3); 
1 2k kZ  is used for identifying whether or 315 

not the flooding diversion is needed to be undertaken under scenarios 
1k  and 

2k  (binary 316 

variable); 
1kST 
 is storage volume of water in reservoir 1 under scenario 

1k  (m3); 
1 2k kST 

 is 317 

storage volume of water in reservoir 2 under scenarios 
1k  and 

2k  (m3); 0

1ST   and 0

2ST   318 

are initial storage volumes of water in reservoirs 1 and 2 (m3), respectively; 
1kq
 and 

2kq
 are 319 

available water resources under scenarios 
1k  and 

2k  (m3), respectively; CLC , SLC  and 320 

ELC  are coefficients of canal loss, seepage loss and evaporation loss, respectively; 
1kRE 
 is 321 

release flow from reservoir 1 under scenario 
1k  (m3); 

1 2k kRE 
 is release flow from reservoir 322 

2 under scenarios 
1k  and 

2k  (m3); 
1TR  and 

2TR  are total storage capacities of reservoirs 323 

1 and 2 (m3), respectively; 
1DR  and 

2DR  are dead storage capacities of reservoirs 1 and 2 324 

(m3), respectively; 
maxX   is maximum amount of water demand (m3); 

1 2 maxk kM 
 is maximum 325 

amount of flooding diversion under scenarios 
1k  and 

2k  (m3); P  and P  are joint 326 

probabilities of violating risk in the chance constraints of total and dead storage capacities, 327 

respectively; 
1k  and 

2k  are indices of scenarios for stream 1 and stream 2, respectively; 1K  328 

and 2K  are total numbers of scenarios for stream 1 and stream 2, respectively. 329 

Tables 1, 2 and 3 present the related parameter values including economic data, water 330 

resources availability and reservoir storages, which are based on literatures (Gu et al., 2013). 331 

Benefits would be produced for water users if the promised water targets are satisfied. 332 

However, expenditure will be paid when two cases happen: One case is that the water 333 

pre-allocation does not meet the requirement, and the other case is that flood diversion 334 

practices are required when the streamflow is too large. Table 2 is the streamflow data of 335 

streams. The corresponding probabilities can be identified as probability distributions of 336 

seasonal flows. It also indicated that varieties of uncertainties exist in the modeling 337 



parameters. The interval values of seasonal flows and the corresponding probabilities of 338 

occurrences are determined by scenario-based method for solving stochastic programming 339 

(Li and Huang, 2009). Both stream 1 and stream 2 have three streamflow levels including low, 340 

medium and high. For stream1, there are five scenarios including L1, M1, M2, M3 and H1. 341 

While for stream 2, there are ten scenarios (i.e. L1, L2, L3, M1, M2, M3, M4, H1, H2 and 342 

H3). Table 3 provides the storage capacities of reservoir 1 and reservoir 2. The total storage 343 

capacity and dead storage capacity are supposed to be normally distributed. The synthetic 344 

data is used in this study. The scenarios of storage and dead capacities of two reservoirs are 345 

generated based on the synthetic data under given marginal distributions. However, whether 346 

or not the dependence exists between data about two reservoirs is the premise of constructing 347 

the joint distribution, since percentage of synthetic data is determined by the given marginal 348 

distribution. Therefore, a rank-based coefficients of correlation method, Kendall’s tau, is 349 

applied to examine the dependence structures of storage capacities between two reservoirs. 350 

The dependences of total and dead storage capacities between two reservoirs are both strong 351 

with the value of Kendall’s tau 0.863 and 0.818, respectively. It demonstrates that there exists 352 

dependence between synthetic data of reservoirs 1 and 2. Then the joint distribution of 353 

storage capacities between two reservoirs can be modeled by copula based on the given 354 

distributions in Table 3. 355 

----------------------------- 356 

Places Table 1 to 3 here 357 

----------------------------- 358 

Moreover, the water resources system is associated with two reservoirs where interactive 359 

uncertainties exist in terms of storage capacities including total storage capacities and dead 360 

storage capacities. Therefore, a series of joint probabilities on storage capacities of two 361 

reservoirs would be considered. The joint probabilities can reflect the risk of violating the 362 

capacity constraints. For example, decreasing joint probability P  will decrease the risk for 363 



violating the water storage constraints of reservoirs 1 and 2 and will finally affect the final 364 

decision on water-allocation and flood-diversion schemes. However, the dependence 365 

structure of water storage data is usually very complex, exhibiting nonlinear features. 366 

Consequently, the copula method would be employed in this study to quantify this 367 

complicated dependence between two reservoirs. 368 

 369 

Result Analysis 370 

In this study, the copula theory is used to capture the interactions among random 371 

variables in the right-hand sides of model constraints, as expressed by Equations (29) and 372 

(30). The Archimedean copulas are employed to quantify the dependence between random 373 

variables and the most appropriate one would be chosen based on the results of 374 

goodness-of-fit, as shown in Table 4. Where ‘Maximum LL’ represents the maximum value 375 

of log-likelihood (LL); ‘Estimated parameter’ represents the copula parameter  ; and 376 

‘p-value’ represents the p-value of the Cramér von Mises statistic. The performances of joint 377 

distributions generated by different copulas are tested by Rosenblatt transformation with 378 

Cramér von Mises statistic, whose samples are derived from the specific marginal 379 

distribution of reservoir data given in Table 3. The p-values of goodness-of-fit statistics are 380 

obtained based on Monte Carlo simulation. Table 4 indicates that: (i) for total storage 381 

capacity TR  and dead storage capacity DR , the p-value of each copula stated in the study is 382 

much higher than 0.05, thus the null hypothesis is accepted, meaning that the copula function 383 

is a valid model to quantify the joint probability of TR  and DR ; (ii) the Clayton copula 384 

reaches the maximum value of LL for total storage capacity TR , and the Gumbel-Hougaard 385 

copula generates the maximum value of LL for dead storage capacity DR ; consequently, the 386 

Clayton copula is chosen to measure the dependence of total storage capacities of reservoirs 1 387 



and 2 (i.e.
1TR  and 

2TR ), and the Gumbel-Hougaard copula is chosen to measure the 388 

dependence of dead storage capacities of reservoirs 1 and 2 (i.e.
1DR  and 

2DR ). 389 

----------------------------- 390 

Place Table 4 here 391 

----------------------------- 392 

The joint cumulative distribution function (CDF) for storage capacities of reservoirs 1 393 

and 2 are presented in Fig. 2, wherein (a) shows the joint CDF for total storage capacities 394 

generated by the Clayton copula, and (b) shows the joint CDF for dead storage capacities 395 

generated by the Gumbel-Hougaard copula.  396 

----------------------------- 397 

Places Fig. 2 here 398 

----------------------------- 399 

Benefits, penalties and diversion expenditure of the water resources system are shown in 400 

Table 5, where P  denotes the joint probability of violating risk in the chance constraints of 401 

total storage capacities (i.e.
1TR  and 

2TR ); different individual probabilistic combinations for 402 

joint probability P  are expressed as 0

1p  and 0

2p ; P  denotes the joint probability of 403 

violating risk in the chance constraints of dead storage capacities (i.e. 
1DR  and 

2DR ), with 404 

different individual probabilistic combinations of 0

1p  and 0

2p . The joint probability 405 

0.05P   means the violation level for the total storage capacity of two reservoirs will less 406 

than 5%. The joint probability 0.05P   and 0.01P   mean that the violation levels for the 407 

dead storage capacity of two reservoirs will less than 5% and 1%, respectively. The value of 408 

joint probability is determined based on the significance level, which is usually set as 0.05 or 409 

0.01. The results show that the system benefit and the corresponding system penalty vary 410 

with different joint and individual probabilities of reservoir-storage capacities constraints. 411 

0

1p  and 0

2p  mean the individual probabilities of reservoir-total storage capacities, while 0

1p  412 

and 0

2p  denote the individual probabilities of reservoir-dead storage capacities.  413 



----------------------------- 414 

Place Table 5 here 415 

----------------------------- 416 

Moreover, the system benefit increases and the corresponding system penalty decreases 417 

when joint probability of 
1DR  and 

2DR  decreases for a given joint probability of 
1TR  and 418 

2TR . Among all the combinations of probabilities, the combination 5# gains the maximum 419 

system benefit $ [-5.207, 79.917] × 106. The minimum system penalty is $ [73.028, 101.185] 420 

× 106 which corresponds to the combination 6#. The condition of system benefit less than 421 

zero means loss. In other words, if the system penalty is too large to exceed the possible 422 

benefit from the water pre-allocation, system benefit may go negative. In the study, fifty 423 

scenarios are generated for water shortage given a specific probabilistic combinations of total 424 

storage capacities ( 0

1p  and 0

2p ) and probabilistic combinations of dead storage capacities 425 

( 0

1p  and 0

2p ). Fig. 3(a) gives the amount of water shortage under different scenarios to 426 

water user under combination 17#. The corresponding joint probabilities of total and dead 427 

storage capacities are 0.05P   and 0.01P  , respectively. The results show that the amount 428 

of water shortage decrease when the streamflow increase. The amounts of flood diversion 429 

under different scenarios under combination 2# are shown in Fig. 3(b). The corresponding 430 

joint probabilities of total and dead storage capacities are 0.05P   and 0.05P  , 431 

respectively. The results indicate that (i) there is no need for flood diversion under the 432 

streamflow levels L1, L2, L3, M1, M2 and M3 of stream 2; (ii) the amount of flood diversion 433 

increase when the streamflow increase. Therefore, schemes for water shortage and flood 434 

diversion should be designed under various streamflow levels and joint probabilities of 435 

storage capacities. 436 

----------------------------- 437 

Place Fig. 3 here 438 

----------------------------- 439 



Consequently, the preferences of decision makers under different probability level vary 440 

based on the trade-off among system benefit, penalty, flood diversion expenditure and risk of 441 

violating constraints. In detail, a higher joint probability of constraints leads to a higher 442 

system benefit but a higher risk of violation, vice versa. 443 

 444 

Comparison of ICSP with JCCP 445 

The study problem could also be solved through the conventional JCCP method through 446 

modeling joint probability of storage capacities of reservoirs with linear constraints (Li and 447 

Huang, 2010; Gu et al., 2013). In JCCP, the individual probabilistic combinations are set to 448 

the values adding up to the joint probability. For instance, the joint probability of total storage 449 

capacities is 0.05P  , the corresponding individual probabilistic combinations may be 450 

0

1 0.01p   and 0

2 0.04p  , 0

1 0.025p   and 0

2 0.025p  , 0

1 0.04p   and 0

2 0.01p  , and so on 451 

(Li and Huang, 2010). Fig. 4(a) shows the individual probabilistic combinations generated by 452 

ICSP and JCCP, respectively. Each probabilistic combination of constraints is enforced to be 453 

satisfied at the joint probability 0.05. It is indicated that for ICSP (1) the dependence of 454 

storage capacities between two reservoirs is nonlinear; (2) the dependence of total storage 455 

capacities between two reservoirs is different from that of dead storage capacities; (3) the 456 

individual probabilistic combinations under a specific joint probability would change as the 457 

distributions of TR  and DR  are varied. This is because the distributions of TR  and DR  458 

which act as marginal distributions in the copula function are different from each other; and 459 

the copula function for estimating joint distribution of total storage capacities is different 460 

from that of dead storage capacities. In comparison for JCCP, the graph of combinations is 461 

straight line, indicating that the relationship of water storages between reservoir 1 and 2 is 462 

linear. Moreover, the curve of individual probabilistic combinations of TR  is coincident with 463 

that of DR  in JCCP. It means that the dependence structure of total storage capacities 464 



between two reservoirs is the same as that of dead storage capacities, which is not reasonable 465 

in reality. On the other hand, there is a tributary between two reservoirs. It leads to more 466 

complicated in the water-resources system planning problem, involving the relationship 467 

between two reservoirs. Copulas can exactly model the dependence structure among random 468 

variables, which have been widely used in hydrology and water resources research (Salvadori 469 

and Michele, 2004, Genest et al., 2009). From the above discussion, the nonlinear 470 

dependence modeled by the copulas in this study may be regarded as a more accurate 471 

representation of the reality. The individual probability combinations generated by ICSP and 472 

JCCP are employed to the water resources system, respectively. Fig.4(b) compares the system 473 

benefits from the two methods. minI  and maxI  are the minimum and maximum system 474 

benefits generated by ICSP, respectively; minJ  and maxJ  are the minimum and maximum 475 

system benefits generated by JCCP, respectively. The results show that the intervals of system 476 

benefit generated by ICSP are wider than those obtained by JCCP. Although the differences in 477 

ranges are very small, it still means that there are more decision alternatives feasible for the 478 

water resources system generated by ICSP than those generated by JCCP. This is because the 479 

relationship among random variables in constraints is simulated by linear method in JCCP, 480 

leading to a narrower feasible region than the actual interval solutions. The main limitation of 481 

JCCP is its estimation of joint distribution; it can only reflect linear dependence of storage 482 

capacities between two reservoirs. This also leads to that some potential decision alternatives 483 

that are still feasible for the water resources system may be neglected. In comparison, the 484 

ICSP method proposed in this study can directly incorporate copulas within its optimization 485 

framework, thus has advantages over the JCCP in reflecting dependence (including nonlinear 486 

dependence) of storage capacities between two reservoirs. 487 

----------------------------- 488 

Place Fig. 4 here 489 

----------------------------- 490 



Compared with JCCP, ICSP can effectively tackle water resources system planning 491 

problems in real life, where dependence among random variables in the joint probabilistic 492 

constraints may be nonlinear. The conventional JCCP is to generate optimal solutions subject 493 

to the joint probability estimated by linear approach, weakening the interactions among 494 

random variables. In additional, nonlinearity leads to more complex nonlinear constraints, 495 

resulting difficulties in the solution process of the optimization model under uncertainty. As 496 

an improvement of JCCP, the ICSP method can be applied to systems with complex 497 

relationship existing among random variables. The dependence (including nonlinear 498 

dependence) is effectively estimated by copulas, making the model more practical in 499 

reflecting the real-world system. However, when many random variables in the constraints 500 

exist, a large number of calculations will have to be conducted. This is because the estimation 501 

of parameters for multivariate copula function may be inconvenient. This may lead to 502 

difficulties in its application to large-scale problems. Therefore, development of a more 503 

advanced solution algorithm for further enhancing ICSP is in demand. 504 

ICSP is applied to a synthetic water-resources system planning problem in this study. In 505 

general, real-world water-resources system planning problems are more complex than the 506 

synthetic case. However, the related parameter values including economic data, water 507 

resources availability and reservoir storages are based on information acquired from 508 

real-world studies in Gu et al (2013). Therefore, the synthetic case is sufficient to show 509 

substantive characteristics of real-world water-resources system planning problems. This 510 

study attempts to make a small improvement in theory and methods for dealing with 511 

interactions among random variables in the inexact optimization model. The proposed ICSP 512 

method can be further applied to real case studies that call for constructing joint probability in 513 

an optimization modeling framework in various planning systems. 514 

 515 



Conclusion 516 

In this study, an inexact copula-based stochastic programming (ICSP) method has been 517 

developed for tackling joint and interactive uncertainties with nonlinear dependence among 518 

random variables. The concept of copula is first introduced into the joint-probabilistic 519 

chance-constrained programming framework to reflect interactions among random variables. 520 

Archimedean copulas are applied to quantify the joint probabilities among dependent random 521 

variables in the right-hand sides of constraints. Although considering the copula relations 522 

leads to complex nonlinear constraints, these nonlinear constraints can be transformed to 523 

linear constraints by letting the random variable take a series of individual probabilistic 524 

constraints and determining the corresponding individual probabilities of constraints which 525 

are satisfied at the joint probability by copula. Then the optimization model under uncertainty 526 

can be solved by two-step solution method. 527 

A case study of water-resources system planning has been provided to illustrate the 528 

applicability of ICSP. The dependence between total storage capacities is measured by the 529 

Clayton copula, and the dependence between dead storage capacities is measured by the 530 

Gumbel-Hougaard copula. Solutions under a set of joint probabilities and individual 531 

probabilities of reservoir-storage capacity constraints can be obtained by solving a series of 532 

deterministic sub-models. Results show that the system benefit and the corresponding system 533 

penalty vary with different joint and individual probabilities of constraints. Moreover, it is 534 

found that a higher joint probability of constraints leads to a higher system benefits but a 535 

higher risk of violating, vice versa. These could bring more useful information as well as 536 



enable managers to make better decisions on the system benefit, water allocation and flood 537 

diversion. The comparison between ICSP and JCCP shows that ICSP can better reflect 538 

nonlinear dependence between random variables and the generated individual probabilistic 539 

combinations would change as the copula function and marginal distributions of variables 540 

change. However, the interaction between variables generated by JCCP is linear and would 541 

not change along with the change of distributions of variables. Furthermore, the intervals of 542 

system benefit generated by ICSP are wider than those obtained by JCCP, which means that 543 

JCCP may neglect some feasible decision alternatives for the water resources system. 544 

This study is the first attempt of introducing copula function into the inexact 545 

optimization modeling framework. It is found that the correlation between storage capacities 546 

of reservoirs is complex and nonlinear, which means that the joint probabilities and 547 

individual probabilities of reservoir-storage capacity constraints cannot be determined by a 548 

simple summation or multiplicative method. The development in the future should focus on 549 

the approximation of distributions of random variables using some reliable methods in the 550 

inexact optimization model and the variation of solution along with the continuous ranges of 551 

random variables. 552 
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Table 1 Parameter related to water users and economic data 675 

Parameters Parameters meaning Water user 

T 
(106m3) Water allocation target  3800,7800  

maxT 
(106m3) Maximum allowable water allocation 15000  

NB ($/m3) Net benefit when water demand is satisfied  0.018,0.023  

PE 
($/m3) Penalty when water is not delivered  0.070,0.084  

FC (106$/m3) Fixed expenditure for flood diversion  0.0015,0.0022  

VC ($/m3) Variable expenditure for flood diversion  0.020,0.025  

 676 

Table 2 Streamflow data under various probabilities of occurrences 677 

Streamflow level 

Probability and stream inflow of 

stream 1 

Probability and stream inflow of 

stream 2 

 
1kp  

1kq
(106m3)  

2kp  
2kq

(106m3) 

Low L1 0.15   150,550  

L1 0.05   400,850  

L2 0.05   1200,1650  

L3 0.05   2000,2450  

Medium 

M1 0.15   620,770  M1 0.15   2950,3400  

M2 0.20   850,1000  
M2 0.20   4250,4700  

M3 0.20   6050,6500  

M3 0.15   1080,1230  M4 0.15   6850,7300  

High H 0.15   1300,1700  

H1 0.05   7800,8350  

H2 0.05   8600,9050  

H3 0.05   9900,10350  

 678 

Table 3 Reservoir data 679 

 Reservoir 1 Reservoir 2 

Total storage capacity (
1TR

 and 
2TR

 (106m3))  2283.50,14.5N   2498.5,10.17N  

Dead storage (
1DR

 and 
2DR

 (106m3))  226.80,0.53N   268.20,0.60N  

Initial storage (
0

1S 
 and 

0

2S 
 (106m3))  45.40,51.20   88,96.50  



 680 

Table 4 Estimated parameter of copula and p-value of goodness-of-fit statistics 681 

Copula 
Joint distribution of TR  Joint distribution of DR  

Maximum 

LL 

Estimated 

parameters 

p-value Maximum 

LL 

Estimated 

parameters 

p-value 

Clayton 223.95 7.32 0.8144 176.76 6.15 0.4725 

Gumbel-Hougaard 164.50 3.48 0.9994 198.27 5.48 0.4915 

Ali-Mikhail-Haq 113.05 0.90 0.8634 96.17 0.99 0.2485 

 682 

 683 

Table 5 System benefits and penalties of the water resources system under different joint 684 

probabilities 685 

Combinations 

TR  DR  

System benefit 

(106$) 

System penalty 

(106$) 
Joint 

probability 

Individual 

probability 

Joint 

probability 

Individual 

probability 

P  0

1p  
0

2p  P  0

1p  
0

2p  

1# 0.05 0.0510 0.0729 0.05 0.0510 0.2609 [-5.255, 79.876] [73.028, 101.507] 

2# 0.0710 0.0851 [-5.230, 79.892] [73. 028, 101.504] 

3# 0.2609 0.0510 [-5.660, 79.883] [73. 028, 101.503] 

4# 0.01 0.0110 0.0699 [-5.217, 79.908] [73. 028, 101.189] 

5# 0.0160 0.0249 [-5.207, 79.917] [73. 028, 101.186] 

6# 0.0699 0.0110 [-5.207, 79.913] [73. 028, 101.185] 

7# 0.0560 0.0570 0.05 0.0510 0.2609 [-5.432, 79.865] [73. 028, 101.734] 

8# 0.0710 0.0851 [-5.254, 79.881] [73. 028, 101.513] 

9# 0.2609 0.0510 [-5.259, 79.872] [73. 028, 101.512] 

10# 0.01 0.0110 0.0699 [-5.241, 79.897] [73. 028, 101.198] 

11# 0.0160 0.0249 [-5.230, 79.906] [73. 028, 101.196] 

12# 0.0699 0.0110 [-5.231, 79.902] [73. 028, 101.194] 

13# 0.0729 0.0510 0.05 0.0510 0.2609 [-5.438, 79.860] [73. 028, 101.713] 

14# 0.0710 0.0851 [-5.264, 79.876] [73. 028, 101.517] 

15# 0.2609 0.0510 [-5.270, 79.867] [73. 028, 101.516] 

16# 0.01 0.0110 0.0699 [-5.251, 79.892] [73. 028, 101.202] 

17# 0.0160 0.0249 [-5.237, 79.901] [73. 028, 101.200] 

18# 0.0699 0.0110 [-5.241, 79.898] [73. 028, 101.199] 

 686 



 

Fig. 1. Principle scheme of the water resources system 
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(a) 

 

(b) 

Fig. 2. Joint CDF for storage capacities, where (a) represents joint CDF for total storage capacities; (b) 

represents joint CDF for dead storage capacities 
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(a) 

 
(b) 

Fig. 3. Water shortage and flood diversion under different scenarios, where (a) represents water 

shortage under combination 17#; (b) represents flood diversion under combination 2# 
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(a) 

 
(b) 

Fig. 4. Comparison between ICSP and JCCP, where (a) represents comparison of individual 

probabilistic combinations (joint probability = 0.05); (b) represents comparison of system benefit 

intervals 
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