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Abstract 

Biological monitoring of radiation exposure relies heavily on the quantification of 

chromosome aberrations such as dicentrics and reciprocal translocations in the peripheral 

blood lymphocytes of exposed and potentially exposed subjects. The differences in the 

spatial deposition of energy and the quality of damage initially induced between individual 

low and high-linear energy transfer (LET) radiation tracks are known to impact dramatically 

on the type and complexity of chromosome aberration induced. Over the years, researchers 

have proposed numerous cytogenetic markers and signatures based on these differences 

with the aim of biologically discriminating exposure to radiation of varying qualities. 

Complex chromosome aberrations are a broad classification of aberration types that are 

known to be characteristically induced after low doses of high-LET. The mechanistic basis for 

complex aberration formation and the potential applicability of these complex aberration 

products as LET-specific biomarkers are considered.  
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Introduction 

The potential health risks of exposure to ionising radiation can be estimated from 

individualised biological assessments of dose. Some prior knowledge as to the radiation 

quality and conditions of exposure are necessary if these estimates are to be robust, as 

biological effect is influenced by linear energy transfer (LET) and dose-rate in addition to 

dose. In unknown or mixed dose exposure scenarios this may not always be the case. For 

instance, uncertainties in estimating cancer risks from the neutron component for A-bomb 

survivors, the potential for internal radionuclide contamination for nuclear workers and 

from nuclear fallout and, in assessing risks for medical workers exposed to radioactive 

isotopes [1, 2]. Expressed in units of keV/m, LET specifies the average energy transferred 

per unit length of the track and correspondingly differentiates sparsely (e.g. x-rays, -rays) 

from densely (e.g. α-particles, neutrons) ionising radiations as low and high-LET radiation 

respectively. Medical radiological workers represent an increasingly large population who 

are occupationally exposed to varying low doses of high-LET exposures over the course of 

their working lives, potentially combined with low-LET radiation and chemical clastogens [3]. 

The risks for adverse health from such low dose chronic exposures however remains a 

matter of debate. Accordingly, there is a need to identify and monitor those who have been 

exposed to different qualities (LET) of radiation. This is also relevant for the growing number 

of patients receiving repeated low dose diagnostic radiation exposures of varying quality.  

Current biological monitoring relies heavily on the quantification of chromosome 

aberrations which are detected using various means in the peripheral blood lymphocytes 

(PBL) of exposed subjects and include dicentrics, reciprocal translocations, micronuclei and 

sister chromatic exchanges [4]. Indeed, the induction of simple dicentrics and reciprocal 



4 
 

translocations by low-LET radiation and their application as bio-dosimeters are very well 

characterized [5, 6]. The purpose of this article is to provide a general overview of radiation-

induced chromosome aberrations with a focus on the types most commonly seen after 

exposure to high-LET radiation, to examine potential mechanisms of formation and their 

applicability as LET-specific biomarkers. 

 

Dicentrics and reciprocal translocations are the ‘gold’ standard for bio-dosimetry  

Ionising radiation is extremely effective in inducing structural chromosome aberrations. The 

mechanism for induction is not fully understood, but is generally accepted to conform to a 

model of ‘breakage-first’ followed by ‘reunion’ [7, 8]. According to this model, radiation 

produces a ‘break’ that results in the complete severance of the chromosome backbone 

resulting in ‘ends’ that are free to move. Based on pair-wise interactions, these ‘ends’ then 

have three different fates: ‘restitution’ to produce a cytologically normal chromosome, 

‘remain open’ and be observed as a broken chromosome or to ‘illegitimately re-join’ with 

other broken ends and produce visible structural aberrations. At the time of proposing this 

model, the structure of DNA and the tertiary organisation of chromatin was not known, yet 

it remains the most widely held theory of chromosome aberration formation today. DNA 

double strand breaks (DSB) of varying complexity are an important class of damage induced 

after exposure to ionising radiation and are considered to be the critical lesion in this 

process [9-11]. In effect, radiation-induced DSB represent ‘break ends’ and chromosome 

exchanges are one consequence of the cell’s attempts to repair this damage.  

Structural chromosome-type aberrations can be broadly classified into two different groups. 

The symmetrical (or stable) types and the asymmetrical (or unstable) types, with stability 
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being defined as the ability of the rearranged chromosome to proceed through mitosis with 

no loss (or gain) of chromosome material. Stable structural chromosome aberrations include 

reciprocal translocations and insertions or inversions that result in monocentric rearranged 

chromosomes, while unstable aberrations include dicentric chromosomes, fragments and 

rings (Figure 1). Studies have shown that although the chance of forming a reciprocal 

translocation is equal to the formation of a dicentric plus acentric fragment [12], there is a 

bias for the formation of acentric rings (intra-arm event) compared to centric rings (inter-

arm event) [13-16]. In other words, the mechanism of exchange between chromosomes is 

the same and the distribution of the centromere within the exchange is random, but the 

proximity of breaks relative to each other will influence their chance of repair [17].  

      

 

 

 

 

 

 

Figure 1: Cartoons depicting structural exchange formation. (A) Two breaks in two 

chromosomes can ‘restitute’ to form cytologically normal chromosomes or, incorrectly 

repair as a symmetrical reciprocal translocation (upper) or asymmetrical dicentric 

chromosome with associated acentric fragment (lower).  (B) Insertions can arise when 

multiple breaks producing cytologically visible (~10Mb) sections of chromatin ‘rejoin’ with 

one or more than one different chromosomes. 

B A 
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The aberration of choice for bio-dosimetry has historically been unstable types because of 

the ease of visualisation using basic solid-staining techniques. Dicentric chromosomes occur 

at a very low level in un-irradiated persons (<0.001) [4] and increase in a linear [18] or 

linear-quadratic manner [19] after exposure to high or low-LET radiation respectively. Thus, 

estimates of whole-body dose can be determined from the PBL dicentric frequency [20]. 

Due to their unstable nature, the initially-induced dicentric frequency will reduce with time 

after exposure with a half-life of ~2-3 years [21] meaning dicentrics are useful for recent 

exposures only. In-homogeneity in exposure, rate and different qualities of radiation can 

also introduce errors in dose estimations.  

In situ hybridisation (ISH) was first developed in 1969 by Gall and Pardue [22]. Over the 

years ISH has been revolutionised through (1) improvements in ‘fixation’ techniques to 

maintain the tertiary structure of metaphase chromosomes, (2) the ability to ‘sort’ 

individual chromosomes for efficient labelling with multiple, spectrally distinct, fluorophores 

[23-25] and, (3) the advancement in fluorescence microscopy and image processing 

software. Fluorescence ISH (FISH) whole chromosome labelling has progressed from 

‘painting’ individual chromosomes the same colour [26], to painting two or three different 

chromosomes the same or different colours, to painting all the human chromosomes 

different colours [27, 28]. Stable reciprocal translocations can now be detected with 

efficiency after exposures of ~50-100mGy or greater and correlated with radiation exposure 

in the distant past [29-32]. Provided these aberrations are not accompanied by additional 

unstable elements in the damaged cell, then reciprocal translocations will persist with a 

half-life of ~ 6 years for the life-time of the mature PBL, after which time the observed 

frequency will reflect the frequency of occurrence in precursor haemopoietic stem cells 

[33]. Thus, FISH-based quantification of reciprocal translocations is currently the ‘gold’ 
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standard for retrospective dosimetry [5]. Reciprocal translocations are not exclusively 

induced by exposure to radiation however and are accumulated throughout the human life-

time [34-36]. Accordingly, the lowest cumulative dose detectable above this background is 

strongly influenced by age and inter-individual variation within human populations. 

Estimates show this to increase linearly at a rate of 1.8mGy/year and 15.9mGy/year from 

20-69 years for acute and chronic exposures respectively [37]. 

 

High-LET radiation efficiently induces complex chromosome exchanges  

Although widely observed in solid tumours [38], complex chromosome aberrations were, 

until the advent of FISH, regarded as rare events after exposure to ionising radiation and not 

considered relevant in the assessment of radiobiological effects. Defined as any exchange 

that involves three or more breaks in two or more chromosomes [39, 40], complex 

aberration induction is now established as being strongly dependent on dose in the low-LET 

range [41, 42] but largely independent of dose when the LET is >100 keV/m. This has been 

shown for -particles [43-47], neutrons [48-50] and heavy ions [51-53]. Further, as the LET 

increases from ~100 - >1000 keV/m, the frequency and complexity of the complex 

aberrations induced, also increases [45]. In addition to this, certain rearrangements that had 

previously been classified as simple reciprocal translocations or dicentrics (maximum of two 

breaks in two chromosomes) [40] have since been shown to be ‘hidden’ complex 

aberrations [39, 54, 55]. As the number of chromosomes capable of being differentially 

painted by FISH increased to that achieved with multiplex-FISH (M-FISH) or spectral 

karyotyping (SKY) (24-colour karyotyping), then the effectiveness of detecting additional 

complexity has also increased [56, 57] (Figure 2).  
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Figure 2: Cartoons depicting (A) stable transmissible complex involving 4 different 

chromosomes which have incorrectly repaired in a non-reciprocal manner to form 4 

rearranged monocentric chromosomes and (B) non-transmissible complex involving 4 

different chromosomes which have rearranged in a manner that both forms three visible 

insertions, dicentric and acetric elements. 

 

Aberration complexity is not just a function of LET but is intimately associated with the 

qualitative structure of the radiation track [58-60]. Densely ionising radiation such as high-

LET -particles induce clustered complex DSB along the whole length of the particle track, in 

contrast to low-LET radiations which produce much more spatially distributed damage [61-

65]. Furthermore, the range and dimensions of for example, a 5 MeV -particle typically has 

limited penetrance (40 m) and little maximum radial spread (~0.1 m), with ~90% of 

energy deposited within 10 nm of the particle’s path. Consequently, a high-LET -particle is 

only capable of intersecting with a very small fraction of the total cell volume, which if by 

chance is intersected, will almost never be intersected by another track even for very high 

exposures [66]. Yet, -particles and other types of densely ionizing radiation, have been 

shown in vitro to be very efficient in inducing high frequencies of complex aberrations that 

commonly involve three, but can be up to seven, different chromosomes [56, 67], in 

addition to intra-chromosomal events [68-70]. 

A B 
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To explain how such aberrations may be formed, a model was proposed based on 

theoretical ‘re-joining’ cycles [12, 54, 56] whereby complex exchanges arise through the 

sequential linking of smaller, independent exchanges [71] inferring that aberrations of 

increasing complexity are cumulative products of multiple, localised rearrangements [58, 

67]. This implies that aberration complexity also correlates with the number of different 

chromosome territories intersected by each track, meaning the geometry of the nucleus 

influences the aberration type induced. Indeed a reduced frequency and a reduced 

complexity of complex exchanges are observed in ellipsoid cells compared to spherical cells 

[72, 73] with variations depending upon the angle of particle trajectory through ellipsoid 

cells [74].  

Therefore at low dose, LET and track structure dictate the spatial and temporal proximity of 

initially-induced lesions, on a DNA, chromatin and nucleus-wide basis which, in turn, 

influences the aberration type or ‘pattern’ most likely to be resolved in the following 

metaphase [60].  

 

Chromosome insertions as stable indicators of high-LET radiation   

An important class of complex aberration is the chromosomal insertion (Figures 1-3). 

Mechanistically, insertions are characteristic of low doses of high- (but not low-) LET 

radiation due the proximity of lesions induced [44, 45, 49, 50, 57]. Further, insertions are 

commonly regarded as stable complex events since they can be defined as the cytologically-

visible (>10Mb) product of an interstitial deletion and its subsequent ‘insertion’ into a 

different chromosome or chromosome region. Accordingly, insertions have been proposed 

as stable indicators of past exposure to high-LET radiation [43, 44, 49, 75]. Similarly, Brenner 
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and colleagues argue that large (>6MB) stable intra-chromosomal (inversions/deletions) to 

be preferentially induced by -particles and neutrons citing their usefulness as long-lived 

LET biomarkers. However, insertions are now being resolved as being part of much larger, 

mostly, unstable complex rearrangements when visualised by M-FISH (Figure 2), in keeping 

with those previously described, meaning the potential transmissibility of these insertions is 

much lower than previously thought [43, 57]. This is reflected by the low relative proportion 

of complex aberrations which are classified as being of the transmissible-type and the low 

estimated frequency of damaged, but stable cells [76-78]. Accordingly, insertions are 

characteristic features of both stable and unstable complex aberrations induced after 

exposure to high-LET radiation. 

 

       

Figure 3: (A) M-FISH karyotype and (B) cartoon showing transmissible complex exchange 

involving chromosomes 2, 4 and 17. A section of chromosome 4 can be seen as an insertion 

incorrectly re-joined between the terminal end of chromosome 17 and chromosome 2. 
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Signatures of high-LET radiation 

Various researchers have, over the years, proposed candidate ‘signatures’ of high-LET 

radiation exposure based on the differences in radiation track structure and the proximity 

basis of exchange formation as outlined above. The first signature to be proposed was the F-

ratio [79] which predicts a low ratio of inter-chromosome to intra-chromosome exchanges, 

on the assumption that high-LET radiation is more likely to result in more intra-

chromosomal than inter-chromosomal changes, in comparison to low-LET radiation. In a 

similar vein the H-ratio [15] translates to a bias for the formation of intra-arm intra-changes 

rather than inter-chromosomal exchanges and, the I-ratio [75] as stable inter-chromosome 

exchanges rather than stable intra-chromosome exchanges, after exposure to high-LET 

radiation. The C-ratio (complex: simple exchanges) derives from the arguments already 

presented in this article.  

The potential application of such ratios in vivo is complicated however due to a number of 

factors including inter-individual differences in the ‘background’ frequency of inter-

chromosome exchanges within populations [34-36, 80, 81]. Further, although complex 

aberrations are the predominant exchange type induced in PBL after high-LET radiation, this 

is not at the exclusion of simple exchanges also being formed [82-84].  A proportion of these 

simples will be stable reciprocal translocations, both capable of being transmitted to 

progeny cells [85, 86] and, being indistinguishable from those induced by low-LET radiation.   
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Complexity per se as an indicator of high-LET radiation 

Complexity is the major cytogenetic feature of high-LET radiation. Differing staining and 

painting techniques, depending on their resolution, will reveal different elements of the 

total damage in each cell. The likelihood that even quite subtle (apparently) stable damage 

(for example an insertion or intra-chromosome exchange) [69, 70], is part of a larger 

complex event that will ultimately be lethal to the cell, is expected to be high, with clear 

implications for applicability as retrospective markers of exposure. 

That said, heavily damaged cells revealed as unstable (and stable) complex aberrations, 

have been shown to be long lived in vivo many years after exposure. For instance, PBL 

sampled from retired workers chronically exposed to internalised plutonium (α-particle 

emitter) (estimated effective doses to the bone marrow in excess of 200mSv) contained 

significantly elevated frequencies of complex chromosome exchanges, of which ~20-50% 

were classified as transmissible (Figure 3) most likely resulting from dose to the red bone 

marrow [83]. The remaining non-transmissible (unstable) complexes are thought to 

represent mature T-cells which remain in their 1st interphase for months or even years after 

irradiation, until sampled and artificially stimulated to divide in culture. The biological 

reason for this long-term survival of such heavily damaged PBLs is unclear. However, similar 

observations, at varying frequencies, have been reported elsewhere including in plutonium 

workers [87-90], thorotrast patients [85, 91], veterans of nuclear testing [92], A-bomb 

survivors [93], astronauts and patients receiving carbon therapy [81]. Interestingly, Hande et 

al [79] found a significant correlation with estimated plutonium dose to the bone marrow 

(from ~500mGy) and yield of complex aberrations suggesting quantification could 

potentially be used for dose reconstruction. T-cell life-span and immunological status will 
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clearly influence the frequency of detection of any chromosome aberration, but for chronic 

internal exposures, complex aberrations will be induced for the biological and physical 

lifetime of the radionuclide. As an example, plutonium can remain in the lymph nodes for 

many years [94] and similar to radium-223, another -particle emitter used in targeted 

radiotherapy, is deposited on the bone surface meaning both PBL and progenitor cells in the 

bone marrow may be ‘hit’ by an -particle.  

The bio-distribution of other radionuclides such as iodine-131 will vary and unlike external 

low-LET radiation, will result in inhomogeneity of dose which complicates assessment [95]. 

Further, in vivo, cells will be exposed to a spectrum of energies and therefore a spectrum of 

LETs which will influence the proportion of simple exchanges induced [84]. A linear dose 

response for the low yield of reciprocal translocations detected in stable cells was seen at -

particle doses of greater than 50mGy in vitro [96]. Curwen et al [75] go on to show the 

validity of using this to estimate -particle dose in a small number of plutonium workers 

who also exhibited complex aberrations.  

Overall therefore, it seems appropriate that complex chromosome aberrations per se should 

be explored further as indicators of high-LET exposure irrespective of their long-term 

stability and that their utility as a biomarker of high-LET exposure is used together with 

reciprocal translocation yields, particularly where internal contamination is known or 

suspected.  
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Conclusion 

The quantification of simple reciprocal translocations or dicentrics for individual assessment 

of dose is well established for low-LET exposures and is being used to better understand 

radiobiological effects of low doses of radiation, including that received from diagnostic CT 

scans and by radiation medical workers [1, 2, 97-100]. For the past twenty years, 

researchers have sought to build on this and verify cytogenetic markers that discriminate 

varying qualities (LET) of radiation and through their application, identify individuals 

exposed to mixed or unknown exposures. All are rooted in a mechanistic understanding of 

the distinct differences in spatial deposition and of the quality of damage, initially induced 

between individual low and high-LET radiation tracks and how this relates to the complexity 

of chromosome aberration resolved using different techniques. The specificity of complex 

aberration formation after low doses of high-LET radiation coupled with the knowledge they 

occur rarely in the normal population, promotes complex chromosome aberrations to be 

essential indicators for this purpose. Their application is tempered however, by their low 

frequency of occurrence relative to reciprocal translocations in vivo, their unstable nature 

through cell division and by the requirement for expensive and labour-intensive techniques 

to fully resolve each damaged cell. Further and larger studies exploring the patterns of 

complexity and the frequencies of occurrence in different high-LET exposed population 

groups is necessary therefore before we can fully assess the practical usefulness of complex 

chromosome aberrations as biomarkers of high-LET exposure. 

Structural chromosome aberrations as biomarkers of exposure have been discussed. 

Chromosome aberrations are also key biomarkers of radiation sensitivity [100] and, are 

proposed as important indicators of cancer risk [101, 102]. Accordingly, the detailed 
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quantification of the entire chromosome aberration burden can provide information on 

dose and disease risk for each individual (which may alter over time), providing more insight 

on variations in response and outcome within populations. 
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