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Distributed Set-Membership Filtering for Multirate
Systems Under the Round-Robin Scheduling

Over Sensor Networks
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Abstract—In this paper, the distributed set-membership
filtering problem is dealt with for a class of time-varying multi-
rate systems in sensor networks with the communication protocol.
For relieving the communication burden, the round-Robin (RR)
protocol is exploited to orchestrate the transmission order, under
which each sensor node only broadcasts partial information to
both the corresponding local filter and its neighboring nodes. In
order to meet the practical transmission requirements as well as
reduce communication cost, the multirate strategy is proposed to
govern the sampling/update rate of the plant, the sensors, and the
filters. By means of the lifting technique, the augmented filter-
ing error system is established with a unified sampling rate. The
main purpose of the addressed filtering problem is to design a set
of distributed filters such that, in the simultaneous presence of
the RR transmission protocol, the multirate mechanism, and the
bounded noises, there exists a certain ellipsoid that includes all
possible error states at each time instant. Then, the desired dis-
tributed filter gains are obtained by minimizing such an ellipsoid
in the sense of the minimum trace of the weighted matrix. The
proposed resource-efficient filtering algorithm is of a recursive
form, thereby facilitating the online implementation. A numeri-
cal simulation example is given to demonstrate the effectiveness
of the proposed protocol-based distributed filter design method.

Index Terms—Distributed filtering, multirate mechanism,
round-Robin (RR) protocol, sensor networks, set-membership
filtering.

I. INTRODUCTION

OVER the last few years, the filtering or state estimation
problem has gained increasing research attention due
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to its promising application prospects in areas of signal pro-
cessing and control engineering, and a variety of filter design
schemes have been reported in [3], [6], [14], [22], and [35].
Among others, the Kalman filtering algorithm and its variants
(e.g., extended Kalman filtering and unscented Kalman filter-
ing algorithms) have proven to be powerful tools for tackling
the control/filtering problems where the noises are assumed to
be Gaussian. Such a Gaussianity assumption is, unfortunately,
a bit too restrictive owing to the fact that many kinds of noises
are either deterministic or random but with non-Gaussian
statistics. As such, the robust and/or H∞ filtering approaches
have been developed to cope with the non-Gaussian noises
entering into the target plant and the observation model
(see [9], [23], [30], [39]). It should be pointed out that, when
considering the filtering issue with bounded noises confined
to certain ellipsoids, the set-membership filtering serves as
a well-appreciated robust filtering scheme ensuring the error
states to be included in certain optimized ellipsoids with 100%
confidence [10], [15], [17], [34], [45].

These days, the sensor network is undergoing a notable
surge in popularity due primarily to its attractive character-
istics, such as low cost and high scalability [13]. Typical
applications of sensor networks include the health monitor-
ing [33] and the forest fire detection for large-scale complex
environment [37]. In this context, the so-called distributed fil-
tering/estimation strategy, whose aim is to achieve the desired
estimation performance in a collaborative manner, has drawn
considerable research attention with a great deal of results
available in the literature. Compared to the centralized scheme,
a distinctive feature of the distributed strategy, as summa-
rized in [7], is the dramatic improvement in the reliability
(against the sensor failures) and efficiency (upon compu-
tation and communication capabilities). Up to now, some
widely used distributed filtering schemes include the dis-
tributed H∞ filtering, the distributed Kalman filtering, the
distributed set-membership filtering, as well as the distributed
moving-horizon filtering (see [2], [4], [16], [20], [26], [38]).
Note that, in contrast with the fruitful results on Kalman-
type filtering strategies, little attention has been paid to the
distributed set-membership filtering issue despite its com-
pelling advantage in dealing with bounded noises residing
within prescribed ellipsoids, and this motivates our current
investigation.

Typically, a sensor network consists of plenty of spatially
distributed sensor nodes that have the capability of collecting
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and processing data as well as communicating with neighbor-
ing nodes according to a given topology. A well-recognized
weakness of the sensor networks is that each sensor node has
limited sensing/communication range resulting from its limited
power storage capacity, and it thus makes practical sense to
develop certain energy-efficient distributed filtering schemes.
For example, for the purpose of reducing the frequency of data
transmission, the event-based distributed filtering scheme has
already been preferred and adopted in industry, see [8], [20]
for some representative works. Another well-known energy-
saving way is to employ appropriate data scheduling strategies
in order to reduce communication traffic. By now, several
commonly employed communication protocols have been suc-
cessfully applied to the networked control systems (NCSs) to
schedule the data transmission. These protocols include, but
are not limited to, the try-once-discard (TOD) protocol, the
round-Robin (RR) protocol, and the stochastic communication
(SC) protocol [5], [19], [24], [25], [36], [44], [45].

Compared with the TOD protocol and the SC protocol
where the transmission node is dynamically selected, the
RR protocol is considered to be a kind of static schedul-
ing protocols, under which the transmission order is given in
advance following a circular manner. On account of its peri-
odic property, a common method for analyzing/synthesizing
the NCSs scheduled by the RR protocol is to transform
the original system into a periodic switching system. Using
this transformation method, the RR-protocol-based state esti-
mation problem has been discussed in [29] for a group of
discrete-time genetic regulatory networks and in [28] for a
class of discrete-time nonlinear singularly perturbed complex
networks. Nevertheless, when it comes to the time-varying
systems, the method for periodic switching systems is no
longer effective due mainly to the time-varying behaviors.
Consequently, it is of both theoretical importance and prac-
tical significance to seek an efficient approach that is capable
of characterizing the impact from the periodic property of the
RR protocol on the control/filtering performance for the time-
varying systems, and this gives rise to another motivation for
this paper.

In order to facilitate the data transmission in a networked
environment, the physical signals of interest are always sub-
jected to A/D and D/A conversions. Generally speaking,
frequent conversions might improve the system performance
to an extent at the expense of the resource/cost. However,
from a practical point of view, it is sometimes unnecessary
or even impossible to sample/update all the different kinds
of signals at the same rate. As such, instead of using the
traditional synchronous sampling/update mechanism, it seems
natural to develop the so-called multirate strategy, whose
underlying idea is to adopt different sampling/update rates for
different components (e.g., sensor, filter, controller, and actu-
ator) while ensuring the desired system performance. Such
a multirate scheme has been widely recognized in research
communities and successfully deployed in industrial practice
(see [11], [12], [18], [27], [41]–[43]). In particular, the lifting
technique proposed in [21] has played a vital role in pro-
moting the multirate schemes by transforming the multirate
system into an equivalent linear time-invariant system with a

unified sampling period. However, to the best of our knowl-
edge, the multirate strategy has not gained adequate research
attention for the set-membership filtering problem, and such
a gap arouses us to look into the influence from the multiple
rates onto the filter performance over a sensor network.

Motivated by the above discussion, in this paper, we proceed
to launch an investigation on the distributed set-membership
filtering problem for a class of time-varying systems in the
simultaneous presence of the RR transmission protocol and
the multirate mechanism. The main challenges stem from the
following four aspects.

1) For the RR transmission protocol, traditional methods
for periodic switching systems are not applicable to the
time-varying systems and, therefore, the first challenge
is to seek an effective methodology to reveal the impact
from the RR protocol on the filtering performance over
a finite horizon.

2) In sensor networks, the communication topology is pre-
set according to the specific task and, consequently, the
second challenge is to ensure that the introduced RR
protocol will not change the fixed topology structure.

3) It is quite general for the plant, the sensors, and the
filters to be governed by different sampling/update rates.
Hence, the third challenge is how to transform such a
multirate system into a single-rate one.

4) Due to the existence of the RR protocol and the mul-
tirate strategy, how to construct an effective filter to
subtly coordinate these two kinds of transmission rules
constitutes the fourth challenge.

In response to the aforementioned four challenges, the
primary contributions of this paper can be highlighted as
follows.

1) The multirate strategy is, for the first time, considered
for the distributed set-membership filtering problem.

2) With the help of the lifting technique combined with the
zero-order holder (ZOH) strategy, the impact from both
the multirate scheme and the RR protocol is explicitly
reflected in the distributed filter design.

3) A series of optimized ellipsoids in the sense of the min-
imum trace of the weighted matrix is obtained by solv-
ing the optimization problems with certain inequality
constraints.

The outline of this paper is as follows. Section II formu-
lates the multirate systems under consideration, gives a novel
description of the RR protocol and develops a time-varying
distributed filter. In Section III, by means of the recursive lin-
ear matrix inequality (RLMI) technique, sufficient conditions
are derived to guarantee the existence of the desired distributed
filters for different filtering error constraints. Then, a set of
optimized ellipsoids is derived by solving some optimization
problems with matrix inequality constraints. Section IV pro-
vides a numerical simulation to show the validity of the
proposed filter design algorithm. Section V concludes this
paper.

Notations: The notation used here is fairly standard except
where otherwise stated. R

n and R
m×n denote, respectively,

the n-dimensional Euclidean space and the set of all m × n
real matrices. For a matrix M, MT, and M−1 represent
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the transpose and the inverse of matrix M, respectively.
The notation X ≥ Y (X > Y) with X and Y being the
symmetric matrices means that X − Y is non-negative defi-
nite (positive definite). trace(X) denotes the trace of square
matrix X. diag{A1, A2, . . . , An} represents a block diagonal
matrix whose elements are matrices A1, A2, . . . , An. I stands
for the identity matrix of compatible dimension. In denotes an
n-dimensional column vector with all entries 1. The notation
“mod(a, b)” represents the remainder of diving an integer a by
a positive integer b. col{x1, . . . , xn} denotes the column vector
[xT

1 , . . . , xT
n ]T. ⊗ denotes the Kronecker product.

II. PROBLEM FORMULATION

Consider a sensor network whose topology is represented
by a directed graph G = {V, E, A} with the set of nodes
V = {1, . . . , N}, the set of edges E ⊆ V × V, and a weighted
adjacency matrix A = [aij] with non-negative adjacency ele-
ments aij. An edge of A is denoted by (i, j). The adjacency
elements associated with the edges of the graph are positive,
that is, aij > 0 ⇔ (i, j) ∈ E. Moreover, we assume aii = 1
for all i ∈ V and, therefore, (i, i) can be regarded as an addi-
tional edge. The set of all neighbors of node i is defined as
Ni � {j ∈ V : (i, j) ∈ E}.

Consider the system described by the following dynamics:

x(ki+1) = A(ki)x(ki) + B(ki)w(ki) (1)

where x(ki) ∈ R
nx is the state vector; A(ki) and B(ki) are

the known time-varying matrices with appropriate dimensions;
hp � ki+1 −ki (∀i = 0, 1, . . .) denotes the update period of the
plant (1) with k0 = 0; and w(ki) is the process noise belonging
to the following ellipsoidal set:

W(ki) �
{

w(ki) ∈ R
nw |wT(ki)Q

−1(ki)w(ki) ≤ 1
}

(2)

with Q(ki) being a given positive definite matrix sequence.
The measurement model of the jth sensor node with the

timescale ti is described by

yj(ti) = Cj(ti)x(ti) + Dj(ti)v(ti) (3)

where yj(ti) ∈ R
ny is the measurement output; Cj(ti) and Dj(ti)

are the known time-varying matrices with appropriate dimen-
sions; hm � ti+1 − ti (∀i = 0, 1, . . .) is the sampling period
of sensors with t0 = 0; and v(ti) is the measurement noise
confined to the following ellipsoidal set:

V(ti) �
{

v(ti) ∈ R
nv |vT(ti)R

−1(ti)v(ti) ≤ 1
}

(4)

with R(ti) being a given positive definite matrix sequence.

A. Round-Robin Communication Protocol

In this paper, we focus on the distributed filtering problem
over sensor networks with the RR protocol as depicted in
Fig. 1. For the underlying sensor network, each sensor node is
capable of computing and communicating with its neighboring
nodes. However, as mentioned in [40], frequent communica-
tions among sensors occupy most of the energy of sensors.
Therefore, from the perspective of reducing unnecessary com-
munication traffic, the RR protocol is adopted during data

Fig. 1. Block diagram of sensor networks with the limited communication
capacity.

interactions from each sensor node to both the correspond-
ing local filter and its neighbors. In this case, at each time
instant, only partial information of each node is transmitted
according to the RR protocol.

Assume that the measurement information obtained from
each sensor node consists of ny data packets. Denote by
θ r(ti) ∈ R � {1, . . . , ny} the selected data packet from sensor
node r at time ti. Then, recalling the periodic property of the
RR protocol, θ r(ti) is iteratively determined by

θ r(ti) =
{

ny, i = 0
mod

(
i − 1, ny

)+ 1, otherwise.
(5)

Next, denote by ȳj(ti) ∈ R
ny the measurement signal after

being transmitted and define the matrix �i = diag{δ(i −
1), δ(i − 2), . . . , δ(i − ny)} ∈ R

ny×ny, ∀i ∈ R. By recurring
to the ZOHs, ȳj(ti) is characterized by a sequence of delayed
measurements with the following form:

ȳj(ti) =
ny−1∑
l=0

�θ j(ti−l)
yj(ti−l). (6)

Here, θ j(ti−l) = l when i−l < 0 and ȳj(ti) = yj(0) when i ≤ 0,
where yj(0) is the initial measurement output. Especially, let
x(ti) � x(0) for i ≤ 0 with x(0) being the initial state.

Remark 1: From (6), the actual measurement signal after
scheduling by the RR protocol is formulated by a sequence
of time-delayed measurement outputs. Different from the peri-
odic switching system method adopted in [29] and [44], the
model proposed, in this paper, reflects the periodic feature
of the RR protocol in a more concise way, where the main
advantage lies in its applicability for the time-varying systems.
Moreover, based on such a model, the existing theoretical tools
related to the time-delay systems can be directly exploited to
deal with the analysis/design issues of the filtering algorithm.

B. Multirate Scheme

For the sake of respecting physical restrictions on different
devices (e.g., sensor, filter, controller, and actuator), the mul-
tirate sampling/update scheme is discussed here. To be more
specific, it is assumed that the update period of the filters (to
be designed in the sequel) is defined as hf � Ti+1 − Ti (∀i =
0, 1, . . .) with T0 = 0. The relationship among hp, hm, and hf

is hf = ahp and hm = bhf , where a and b are positive integers.
Fig. 2 provides an illustration of the multirate scheme among
different devices.
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Fig. 2. Multirate mechanism for the plant, the filters, and the sensors with
a = b = 2.

By means of the lifting technique, we derive the following
system state equation with the timescale Ti:

x(Ti+1) = Aa(Ti)x(Ti) + Ba(Ti)wa(Ti) (7)

where, for j = 1, . . . , a − 1

Aa(Ti) =
a∏

j=1

A(Ti+1 − jhp)

wa(Ti) = col
{
w(Ti), w(Ti + hp), . . . , w(Ti + (a − 1)hp)

}

Ba(Ti) = [�B1(Ti) . . . �Ba−1(Ti) B(Ti + (a − 1)hp)
]

�Bj(Ti) =
a−j∏
s=1

A(Ti+1 − shp)B(Ti + (j − 1)hp).

Then, the system state equation can be further reformulated
with the timescale ti

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(ti+1) = Āb(ti)x(ti) + B̄(1)
b (ti)w̄b(ti)

x(ti+1 − hf ) = Āb−1(ti)x(ti) + B̄(2)
b−1(ti)w̄b−1(ti)

...

x(ti + 2hf ) = Ā2(ti)x(ti) + B̄(b−1)
2 (ti)w̄2(ti)

x(ti + hf ) = Ā1(ti)x(ti) + B̄(b)
1 (ti)w̄1(ti)

(8)

where, for m = 1, . . . , b and j = 1, . . . , m − 1

Āb−m+1(ti) =
b∏

s=m

Aa
(
ti+1 − shf

)

w̄m(ti) = col
{
wa(ti), . . . , wa

(
ti + (m − 1)hf

)}

B̄(l)
m (ti) =

{
Ba(ti), m = 1, l = b

B̌(l)
m (ti), m = 2, . . . , b, l = b − m + 1

�B(l)
j (ti) =

b−j∏
s=l

Aa
(
ti+1 − shf

)
Ba
(
ti + (j − 1)hf

)

B̌(l)
m (ti) =

[�B(l)
1 (ti) . . . �B(l)

m−1(ti) Ba
(
ti + (m − 1)hf

)]
.

For notational simplicity, we define

x̆(ti) = col
{
x(ti), x

(
ti − hf

)
, . . . , x

(
ti − (b − 1)hf

)}

w̄(ti) = col{w̄b(ti), w̄b−1(ti), . . . , w̄1(ti)}
Ă(ti) = col

{�Ab(ti), �Ab−1(ti), . . . , �A1(ti)
}

B̆(ti) = diag
{

B̄(1)
b (ti), B̄(2)

b−1(ti), . . . , B̄(b)
1 (ti)

}

�Aj(ti) = colT

⎧
⎨
⎩ĀT

j (ti), 0, . . . , 0︸ ︷︷ ︸
b−1

⎫
⎬
⎭, j = 1, . . . , b

C̄r(ti) =
⎡
⎣Cr(ti), 0, . . . , 0︸ ︷︷ ︸

b−1

⎤
⎦, r = 1, . . . , N.

Consequently, we have the following compact form:

x̆(ti+1) = Ă(ti)x̆(ti) + B̆(ti)w̄(ti). (9)

In this paper, we construct the following RR-protocol-based
time-varying distributed filter:

x̂j(ti+1) = Ă(ti)x̂j(ti) +
∑
r∈Nj

ajrLjr(ti)

×
⎛
⎝ȳr(ti) −

ny−1∑
l=0

�θ r(ti−l)C̄r(ti−l)x̂r(ti−l)

⎞
⎠ (10)

where x̂j(ti) ∈ R
bnx is the estimate of x̆(ti) by the jth sensor

node, and x̂j(ti) � x̂j(0) for i ≤ 0, j = 1, . . . , N with x̂j(0)

being the known initial estimation, as well as Ljr(ti) ∈ R
bnx×ny

is the filter gain to be determined.
Remark 2: In this paper, the multirate scheme is consid-

ered for the distributed set-membership filtering problem. To
be more specific, we assume that the update period of the
filter is the integer multiples of that of the plant, that is,
hf = ahp, and the sampling period of the measurement output
(also called the transmission period) is the integer multiples
of the update period of the filter, that is, hm = bhf . As we
know, the lifting technique is an effective method to transform
a multirate system into a corresponding single-rate system. To
this end, by successively using such a technique, the update
period of the plant is first transformed into that of the fil-
ter, i.e., (7), and then transformed into the sampling period of
the sensor, i.e., (8). Subsequently, by resorting to the augmen-
tation method, the transformed system (9) is obtained with
the largest period, that is, the sensor sampling period. On the
other hand, it can be observed from (10) that, at those non-
sampling instants, the filter input will hold the last value by
the ZOH strategy and, therefore, the difficulty caused by the
asynchronous sampling/update is successfully eliminated. In
addition, an implicit fact that should be stressed is that, due
primarily to the decrease of the communication frequency, the
energy of the sensor nodes is significantly saved.

In what follows, denoting ej(ti) � x̆(ti) − x̂j(ti), we have:

ej(ti+1) = Ă(ti)ej(ti) + B̆(ti)w̄(ti)

−
∑
r∈Nj

ny−1∑
l=0

ajrLjr(ti)�θ r(ti−l)C̄r(ti−l)er(ti−l)

−
∑
r∈Nj

ny−1∑
l=0

ajrLjr(ti)�θ r(ti−l)Dr(ti−l)v(ti−l).

(11)

Assumption 1: The initial filtering error satisfies the follow-
ing condition:

ϕj(0) � ej(0)eT
j (0) ≤ P(0), j = 1, . . . , N (12)

with P(0) being a given positive definite matrix.
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The main objectives of this paper are threefold.
1) Establish sufficient conditions for the existence of the

filter gains {Ljr(ti)}i≥0 in (10) such that the filtering
error system (11) satisfies the following P(ti)-dependent
constraint over the finite-horizon [t0 tM]:

ϕj(ti) � ej(ti)e
T
j (ti) ≤ P(ti), j = 1, . . . , N (13)

where {P(ti)}i>0 is a positive definite matrix sequence
to be determined.

2) Under the constraint condition (13), at each time instant
ti, an optimized ellipsoid is obtained by minimizing the
following objective function:

f (P(ti)) = ω1P11(ti) + · · · + ωcPcc(ti) (14)

where c � bnx, Pjj(ti) is the jth diagonal element of
P(ti) and ωj stands for the weighted coefficient satisfying
ωj > 0 and

∑c
j=1 ωj = 1.

3) The results obtained from the objectives 1) and 2)
are further generalized to the case with respect to the
weighted average filtering error.

Remark 3: Along the similar line of [15] and [23], the
objective function (14) lays stress on the importance of the
state-vector entry of interest. This means that, if the jth state
component plays a crucial role in a specific filtering task, a
larger weighted coefficient ωj should be selected. In particular,
letting wj = (1/c) (j = 1, . . . , c), the objective function (14)
can degenerate into trace(P), which illustrates that our results
are more general.

III. PROTOCOL-BASED DISTRIBUTED SET-MEMBERSHIP

FILTER DESIGN

In this section, by applying the RLMI technique, suffi-
cient conditions are first derived such that the filtering error
satisfies the P(ti)-dependent constraint and the weighted aver-
age filtering error constraint, respectively. Then, by solving
optimization problems, a set of optimized ellipsoids contain-
ing all possible system states is recursively obtained and the
desired distributed filter gains are parameterized.

A. Distributed Filter Design With the P(ti)-Dependent
Constraint

To simplify the notations, we define

e(ti) = col{e1(ti), . . . , eN(ti)}
A(ti) = IN ⊗ Ă(ti), L(ti) = [ajrLjr(ti)]N×N

C(ti) = diag
{
C̄1(ti), . . . , C̄N(ti)

}

�̄θ(ti) = diag
{
�θ1(ti), . . . , �θN (ti)

}

B(ti) = col
{
B̆(ti), . . . , B̆(ti)

}

D(ti) = col{D1(ti), . . . , DN(ti)}.
With the defined notations, the filtering error dynamics can

be expressed in the following compact form:

e(ti+1) = A(ti)e(ti) − L(ti)

ny−1∑
l=0

�̄θ(ti−l)C(ti−l)e(ti−l)

− L(ti)

ny−1∑
l=0

�̄θ(ti−l)D(ti−l)v(ti−l) + B(ti)w̄(ti).

(15)

Bearing in mind the fact that ajr = 0 (if r /∈ Nj), it
is obvious that L(ti) is a sparse matrix with the following
expression:

L(ti) ∈ Hbnx×ny (16)

where Hbnx×ny � {H̄ = [Hjr] ∈ R
bnxN×nyN |Hjr ∈

R
bnx×ny, Hjr = 0 if r /∈ Nj}.
The following theorem is provided to establish a sufficient

condition to satisfy the P(ti)-dependent index (13).
Theorem 1: Consider the system (1), the RR protocol (6),

and the distributed filter (10). Let the sequence of the positive
definite matrices P(ti) be given. The filtering error constraint
condition (13) is achieved if there exist a sequence of real
matrices {L(ti)}i≥0 ∈ Hbnx×ny and the sequences of pos-
itive scalars {εr,j(ti)}{j=1,...,N, r∈R, i≥0}, {εs(ti)}{s=1,...,ab, i≥0}
and {λr(ti)}{r∈R, i≥0} satisfying the following N RLMIs for
j = 1, . . . , N:

[−
(ti) ∗
Ij�(ti) −P(ti+1)

]
< 0 (17)

where, for q = 2, . . . , ny


(ti) = diag

⎧⎨
⎩ϒ1(ti),

N∑
j=1

ε1,j(ti)IT
j Ij, . . . ,

N∑
j=1

εny,j(ti)IT
j

× Ij, ε1(ti)Q
−1(ti), . . . , εa(ti)Q

−1(ti + (a − 1)hp)

λ1(ti)R
−1(ti), . . . , λny(ti)R

−1(ti−ny+1)

⎫
⎬
⎭

ϒ1(ti) = 1 −
N∑

j=1

ny∑
q=1

εq,j(ti) −
b−1∑
r=0

a(b−r)∑
s=1

εs(ti) −
ny∑

l=1

λl(ti)

Ij =
⎡
⎢⎣0bnx . . . 0bnx︸ ︷︷ ︸

j−1

Ibnx 0bnx . . . 0bnx︸ ︷︷ ︸
N−j

⎤
⎥⎦

�(ti) = [
0 �1(ti) �2(ti) . . . �ny(ti) B(ti) 1(ti)

2(ti) . . . ny(ti)
]

�1(ti) = (A(ti) − L(ti)�̄θ(ti)C(ti)
)
(IN ⊗ E(ti))

�q(ti) = −L(ti)�̄θ(ti−q+1)C(ti−q+1)
(
IN ⊗ E(ti−q+1)

)

1(ti) = −L(ti)�̄θ(ti)D(ti)

q(ti) = −L(ti)�̄θ(ti−q+1)D(ti−q+1).

Proof: It is easy to see that, if ϕj(ti) ≤ P(ti), there exists a
vector zj(ti) ∈ R

bnx satisfying

zT
j (ti)zj(ti) ≤ 1 (18)

such that

ej(ti) = E(ti)zj(ti) (19)

with E(ti) being a factorization of P(ti), that is, P(ti) =
E(ti)ET(ti).
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By denoting z(ti) � col{z1(ti), . . . , zN(ti)}, (19) can be
readily rewritten as

e(ti) = (IN ⊗ E(ti))z(ti). (20)

Defining ξ(ti) � [1 zT(ti) zT(ti−1) . . . zT(ti−ny+1)

w̄T(ti) vT(ti) vT(ti−1) . . . vT(ti−ny+1)]T, we have

e(ti+1) = �(ti)ξ(ti). (21)

Furthermore, according to (2), (4), and (18), the following
constraint conditions should be satisfied:

⎧⎨
⎩

zT(ti−r)IT
j Ijz(ti−r) ≤ 1

wT(ti + shp)Q−1(ti + shp)w(ti + shp) ≤ 1
vT(ti−r)R−1(ti−r)v(ti−r) ≤ 1

(22)

for j = 1, . . . , N, s = 0, . . . , ab − 1, and r = 0, 1, . . . , ny − 1.
By some simple operations, (22) can be further written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξT(ti)�1,jξ(ti) ≤ 0
...

ξT(ti)�ny,jξ(ti) ≤ 0
ξT(ti)�̃1(ti)ξ(ti) ≤ 0

...

ξT(ti)�̃ā(ti)ξ(ti) ≤ 0
ξT(ti)�̄1(ti)ξ(ti) ≤ 0

...

ξT(ti)�̄ny(ti)ξ(ti) ≤ 0

(23)

where ā(ab(b + 1)/2), for q = 2, . . . , ny and s = 1, . . . , ā

�1,j = diag

⎧⎪⎨
⎪⎩

−1, IT
j Ij, 0, . . . , 0︸ ︷︷ ︸

ny−1

, 0, . . . , 0︸ ︷︷ ︸
ā+ny

⎫⎪⎬
⎪⎭

�q,j = diag

⎧⎪⎨
⎪⎩

−1, 0, . . . , 0︸ ︷︷ ︸
q−1

, IT
j Ij, 0, . . . , 0︸ ︷︷ ︸

ny−q

, 0, . . . , 0︸ ︷︷ ︸
ā+ny

⎫⎪⎬
⎪⎭

�̃1(ti) = diag

⎧⎪⎨
⎪⎩

−1, 0, . . . , 0︸ ︷︷ ︸
ny

, Q−1(ti), 0, . . . , 0︸ ︷︷ ︸
ny+ā−1

⎫⎪⎬
⎪⎭

�̃s(ti) = diag

⎧
⎪⎨
⎪⎩

−1, 0, . . . , 0︸ ︷︷ ︸
ny+s−1

, Q−1(ti + t̄hp), 0, . . . , 0︸ ︷︷ ︸
ny+ā−s

⎫
⎪⎬
⎪⎭

t̄ =
{

s − 1, 1 ≤ s ≤ ab
s − z(r) − 1, z(r) < s ≤ z(r + 1)

z(r) = a

(
rb −

r−1∑
i=0

i

)
, r = 1, . . . , b − 1

�̄1(ti) = diag

⎧⎪⎨
⎪⎩

−1, 0, . . . , 0︸ ︷︷ ︸
ny+ā

, R−1(ti), 0 . . . , 0︸ ︷︷ ︸
ny−1

⎫⎪⎬
⎪⎭

�̄q(ti) = diag

⎧⎪⎨
⎪⎩

−1, 0, . . . , 0︸ ︷︷ ︸
ny+ā+q−1

, R−1(ti−q+1), 0, . . . , 0︸ ︷︷ ︸
ny−q

⎫⎪⎬
⎪⎭

.

It follows readily from (21) that, at time instant ti+1, the
constraint condition (13) can be written as:

eT
j (ti+1)P

−1(ti+1)ej(ti+1)

= eT(ti+1)IT
j P−1(ti+1)Ije(ti+1)

= ξT(ti)�
T(ti)IT

j P−1(ti+1)Ij�(ti)ξ(ti)

≤ 1 (24)

for j = 1, . . . , N. Based on the definition of the ξ(ti), the
above inequality can be further expressed as

ξT(ti)�
T(ti)IT

j P−1(ti+1)Ij�(ti)ξ(ti)

− ξT(ti)diag

⎧
⎪⎨
⎪⎩

1, 0, . . . , 0︸ ︷︷ ︸
2ny+ā

⎫
⎪⎬
⎪⎭

ξ(ti) ≤ 0. (25)

By virtue of the S-procedure [1], [20] and taking account of
the special structure of w̄(ti), (25) is satisfied if the following
inequality holds for j = 1, . . . , N:

ξT(ti)�
T(ti)IT

j P−1(ti+1)Ij�(ti)ξ(ti)

− ξT(ti)diag{1, 0, . . . , 0}ξ(ti)

−
N∑

j=1

ε1,j(ti)ξ
T(ti)�1,jξ(ti)

...

−
N∑

j=1

εny,j(ti)ξ
T(ti)�ny,jξ(ti)

− ε1(ti)ξ
T(ti)�̃1(ti)ξ(ti) · · · − εa(ti)ξ

T(ti)�̃ā(ti)ξ(ti)

− λ1(ti)ξ
T(ti)�̄1(ti)ξ(ti) · · · − λny(ti)ξ

T(ti)�̄ny(ti)ξ(ti)

≤ 0 (26)

where, for εt̃(ti) (1 ≤ t̃ ≤ ab), the subscript t̃ is denoted as
t̃ = t̄ + 1 with t̄ being defined in (23).

After performing some simple matrix operations, (26) can
be further ensured by the following matrix inequality:

�T(ti)IT
j P−1(ti+1)Ij�(ti) − 
(ti) ≤ 0. (27)

In addition, by using Schur complement lemma [1], the
inequality (27) holds if and only if (17) holds. Therefore, the
proof is now complete.

B. Distributed Filter Design With the Weighted Average
Filtering Error Constraint

In many application domains, in order to better achieve the
filtering performance, we are more interested in the informa-
tion from all local sensors rather than the individual sensor.
Therefore, based on the results obtained in the previous
section, a weighted average method is adopted to fuse the
estimates from all local filters.

To begin with, we define

x̄(ti) �
N∑

j=1

γjx̂j(ti) (28)
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where γj (j = 1, . . . , N) are the weighting coefficients
with respect to the corresponding sensor nodes and satisfy∑N

j=1 γj = 1.
Denoting � � diag{γ1, . . . , γN}, we obtain the following

weighted average filtering error:

η(ti) � x̆(ti) − x̄(ti)

= ((IT
N�) ⊗ Ibnx

)
e(ti). (29)

Assumption 2: The initial weighted average filtering error
possesses the following constraint:

π(0) � η(0)ηT(0) ≤ Y(0) (30)

where Y(0) is a given positive definite matrix.
Next, we shall design the distributed filter (10) such that,

for the weighted average filtering error (29), the following
Y(ti)-dependent constraint is satisfied over the finite-horizon
[t0 tM]:

π(ti) � η(ti)η
T(ti) ≤ Y(ti) (31)

where {Y(ti)}i>0 is a positive definite matrix sequence to be
determined.

Theorem 2: Consider the discrete time-varying system (1)
and the distributed filter (10). Let the sequence of the positive
definite matrices Y(ti) be given. The filtering error constraint
condition (31) is achieved if there exist a sequence of real
matrices {L(ti)}{i≥0} ∈ Hbnx×ny and the sequences of pos-
itive scalars {εr,j(ti)}{j=1,...,N, r∈R, i≥0}, {εs(ti)}{s=1,...,ab, i≥0},
and {λr(ti)}{r∈R, i≥0} satisfying the following RLMI:

[ −
(ti) ∗(
(IT

N�) ⊗ Ibnx

)
�(ti) −Y(ti+1)

]
< 0. (32)

Proof: The proof of Theorem 2 is similar to that of
Theorem 1 and thus is skipped here.

C. Two Optimization Problems

Having established sufficient conditions to ensure the
desired filtering performance for different filtering error con-
straints, the corresponding optimization problems are then
proposed to obtain the optimized ellipsoid by minimizing the
objective function (14).

Corollary 1: Consider the system (1), the RR protocol (6),
and the distributed filter (10). A sequence of minimized
{P(ti)}i≥0 is guaranteed if there exist a sequence of real
matrices {L(ti)}i≥0 ∈ Hbnx×ny and the sequences of pos-
itive scalars {εr,j(ti)}{j=1,...,N, r∈R, i≥0}, {εs(ti)}{s=1,...,ab, i≥0}
and {λr(ti)}{r∈R, i≥0} such that the following optimization
problem:

OP1: min f (P(ti)) (33)

is solvable subject to the constraint condition (17).
Corollary 2: Consider the system (1), the RR protocol (6),

and the distributed filter (10). A sequence of minimized
{Y(ti)}i≥0 is guaranteed if there exist a sequence of real
matrix {L(ti)}i≥0 ∈ Hbnx×ny and the sequences of posi-
tive scalars {εr,j(ti)}{j=1,...,N, r∈R, i≥0}, {εs(ti)}{s=1,...,ab, i≥0}

Algorithm 1 RR-Protocol-Based Distributed Set-Membership
Filtering Algorithm

Step 0. Initialize the parameters P(0), x(0) and x̂j(0) (j =
1, . . . , N) such that the initial constraint condition
(12) (or (30)) is satisfied. Set i = 0 and the maximum
step M.

Step 1. Based on P(tj) = E(tj)ET(tj) (or Y(tj) = E(tj)ET(tj)),
calculate matrix factorizations E(tj) for i− (ny −1) ≤
j ≤ i.

Step 2. Solving optimization problem OP1 or OP2 accord-
ing to the RR scheduling protocol, the filter
parameters Ljr(ti) and positive definite matrices
P(ti+1) (or (Y(ti+1))) can be obtained, respectively.
Then, x̂j(ti+1) (j = 1, . . . , N) can be computed by
(10).

Step 3. Set i = i + 1. If i > M stop, else jump to Step 1.

and {λr(ti)}{r∈R, i≥0} such that the following optimization
problem:

OP2: min f (Y(ti)) (34)

is solvable subject to the constraint condition (32).
After obtaining the optimization problems OP1 and OP2, we

summarize the following RR-protocol-based distributed set-
membership filtering algorithm (Algorithm 1).

Remark 4: It is observed from the optimization problem
OP1 (OP2) that the distributed filter design issue is solved
under the performance requirement that the filtering error
(the weighted average filtering error) is confined to an opti-
mized upper bound. Moreover, from Algorithm 1, all important
factors contributing to the complexities on the filter design
have been covered, which include: 1) time-varying param-
eters of the system; 2) topology structure of the wireless
sensor network; 3) the period of the RR protocol; and 4) the
individual sampling/update periods of different devices.

Remark 5: Compared with the existing literature, there are
three distinguishing features of the filtering problem addressed
in this paper.

1) The RR protocol is introduced during the data transmis-
sion from each sensor node to both the corresponding
local filter and its neighbors, thereby reducing the data
collisions resulting from the limited network resources.

2) The multirate strategy is employed to govern differ-
ent sampling/update rates of the plant, the sensors, and
the filters in order to fulfill the physical limitation and
engineering specifications.

3) The set-membership filtering scheme is carried out to
ensure all possible states confined into the optimized
ellipsoidal sets under the bounded noises.

IV. ILLUSTRATIVE EXAMPLE

In this section, we shall display the effectiveness of the filter
design scheme proposed in this paper via a numerical example.

Consider the sensor network (with three nodes) whose
topology structure is denoted by a directed graph G =
{V, E, A} with the set of nodes V = {1, 2, 3}, set of edges
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TABLE I
FILTER PARAMETERS FOR THE SENSOR NODE 1

TABLE II
FILTER PARAMETERS FOR THE SENSOR NODE 2

TABLE III
FILTER PARAMETERS FOR THE SENSOR NODE 3

E = {(1, 1), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3)}, and the adja-
cency matrix A = [aij]3×3, where adjacency elements aij = 1
when (i, j) ∈ E; otherwise, aij = 0.

The discrete time-varying system considered here is given
by the following form over a prescribed finite horizon
i ∈ [0, 18]:

x(ki+1) = A(ki)x(ki) + B(ki)w(ki)

with x(ki) = [x1(ki) x2(ki)
]T and

A(ki) =
[

1.19 + 0.2 sin(10ki) 0.25
−0.1 + cos(2ki) 0.16

]

B(ki) =
[

0.13 + 0.2 sin(10ki)

0.15 − 0.2 cos(2ki)

]
.

Moreover, the sensor model (3) is governed by the following
parameters:

C1(ti) =
[

9 + 0.3 cos(1 − 2ti) 0
0 1.8 − 0.1 cos(3ti)

]

C2(ti) =
[

10 + 0.23 cos(1 − 2ti) 0
0 2 − 0.05 cos(3ti)

]

C3(ti) =
[

8 + 0.1 cos(1 − 2ti) 0
0 2.5 − 0.1 cos(3ti)

]

and

D1(ti) =
[

0.12
0.17 + 0.27 cos(ti)

]

Fig. 3. State x1 and its estimates with a = b = 2.

Fig. 4. State x2 and its estimates with a = b = 2.

D2(ti) =
[

0.1
0.12 + 0.27 cos(ti)

]

D3(ti) =
[

0.1
0.17 + 0.27 cos(ti)

]
.

The process noise and the measurement noise are selected
as w(ki) = 0.13 sin(−ki) and v(ti) = −0.12 sin(−ti), whose
corresponding weighted matrices are denoted as Q(ki) = 10
and R(ti) = 10, respectively. The initial states are x(0) =
[0.15 0.16]T, x̂1(0) = [0.125 0]T, x̂2(0) = [0.115 0]T,
and x̂3(0) = [0.12 0]T. The optimization problem (33) is
recursively solved by means of the MATLAB LMI toolbox
(YALMIP 3.0) with weighted coefficients wj = (1/c) (j =
1, . . . , c). The desired distributed filter parameters are shown
in Tables I–III with respect to the directed graph G for the
sampling/update rates a = b = 2.

Simulation results are given in Figs. 3–8. For the case
of the sampling/update rates a = b = 2, Figs. 3 and 4
plot the true states and their estimates for sensor nodes 1–3,
respectively. Figs. 5 and 6 depict the filtering errors of dif-
ferent sensor nodes and their common upper bounds where
e(i)

j (i = 1, 2; j = 1, 2, 3) denote the ith component of the
filtering error associated with the sensor node j. Figs. 7 and
8 reveal the impact from the different sampling/update rates
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Fig. 5. Filtering errors e(1)
j (j = 1, 2, 3) and their common upper bound P11.

Fig. 6. Filtering errors e(2)
j (j = 1, 2, 3) and their common upper bound P22.

Fig. 7. Comparisons of the upper bound P11 with different sam-
pling/update rates.

on the upper bounds of the filtering errors. It implies that,
with the increase of the sampling/update period, the filtering
performance degrades to a certain extent and this coincides
with the reality. As a result, the simulation results illustrate the
effectiveness of the proposed RR-protocol-based distributed
filtering algorithm.

Fig. 8. Comparisons of the upper bound P22 with different sam-
pling/update rates.

V. CONCLUSION

This paper has studied the distributed set-membership fil-
tering problem for a class of time-varying multirate systems
with the RR communication protocol. Under such a commu-
nication protocol, the actual signal received by the filter has
been characterized by a sequence of delayed measurements.
Moreover, the multirate strategy has been considered to gov-
ern the sampling/update rate of the plant, the sensors, and
the filters. By virtue of the RLMI technique, sufficient con-
ditions have been derived to guarantee the existence of the
distributed set-membership filters in the simultaneous presence
of the multirate sampling/update strategy and the RR protocol.
By solving optimization problems with certain inequality con-
straints, a set of the optimized ellipsoids has been obtained in
the sense of the minimum weighted matrix trace. A numerical
simulation has been provided to demonstrate the feasibil-
ity of the proposed protocol-based distributed filter design
algorithm. Further research topics include the extension of
our results to more complex systems, such as a class of
nonlinear systems [27], [31]; time-delay systems [29]; and
state-saturated systems [32].
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