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Abstract

This work proposes a locally stabilized, forward Euler method for time domain analyses, which performs considering the relation between the adopted temporal and spatial discretizations. Here, the standard expression of the forward Euler method is considered to approximate the time derivative of the unknown variable, and the local (or element) matrices of the spatially discretized model are modified, if the stability criterion of the forward Euler method is not locally fulfilled. Thus, a locally defined, adaptive time marching methodology is provided, which has guaranteed stability, very good accuracy, and is highly versatile and effective. In the new technique, only reduced systems of equations have to be dealt with (in order to ensure stability), and iterative procedures are never required when nonlinear models are considered. Thus, the proposed methodology is very efficient. In addition, the new technique is very simple to implement and entirely automatized, requiring no decision or expertise from the user. Numerical results are presented at the end of the paper, illustrating the performance and effectiveness of the new approach.
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1. Introduction

Mathematical models describing practical heat conduction problems commonly involve transient and non-linear phenomena that require spatial and temporal discretization techniques. When the spatial discretisation is carried out by using the Finite Element Method (FEM), the resulting ordinary differential equations can then be integrated in time using time marching schemes [1, 2]. The most popular methods for solving transient finite element problems are direct integration methods, in which the time period of interest is divided into intervals and the solution is progressively computed over each interval. Direct time integration methods can be classified into two categories: implicit and explicit methods. Explicit procedures are usually preferable because of their lower computational effort; however, there are severe restrictions in their use due to stability conditions. Implicit approaches, on the other hand, can be settled unconditionally stable; however, they are characterized by higher computational costs. 

As remarked by Loureiro and Mansur [3], many procedures have been employed to improve stability and accuracy of time integration algorithms: Argyris et al. [4] used finite elements in the time domain with Hermitian shape functions to develop higher order A- and L-stable algorithms. Hairer et al. [5] and Hairer and Wanner [6] presented, in a concise manner, a set of implicit and explicit higher order Runge-Kutta methods. Moller [7] used C0-continuous polynomial time shape functions in conjunction with two distinct Petrov–Galerkin weighted residual methods to construct higher order A- and L-stable algorithms. Later on, using one of the Petrov–Galerkin formulations proposed by Moller [7], Mancuso et al. [8] generalized the formulation and established, in a unified framework, many new higher order algorithms. Mancuso and Ubertini [9] presented a set of higher order time integration methods with higher modes numerical dissipation control corresponding to the class of Nørsett approximations, which were developed by adopting the general collocation methodology. Kujawski and Wiberg [10] developed a quite general four parameter and two time level family of schemes in which a generalized least-squares time finite element procedure was used. They also pointed out that for an optimized selection of free parameters, many of the well-known time integration methods, such as the Crank–Nicolson and the backward difference methods, are found. Later, Fung [11] studied many standard least-squares procedures including the one proposed by Kujawski and Wiberg [10], and developed a novel family of higher order algorithms using a new methodology called “pseudo”-least-squares method. Recently, Loureiro and Mansur [3] proposed a time marching technique that is based on the Green’s functions of the model and Khoshghalb et al. [12] presented a three-point discretization scheme with variable time step for the time marching of parabolic partial differential equations.
The most used algorithms for transient heat conduction analysis are the Crank–Nicolson and the backward Euler (or backward difference) methods [13,14]. However, the Crank–Nicolson method can introduce spurious oscillations in the numerical response, because it is only A-stable. The backward Euler method, on the other hand, is free from oscillations, standing as a L-stable technique. In this work, the forward Euler method is considered and modified, allowing obtaining a very efficient L-stable methodology. In addition, the proposed modified procedure allows reproducing the analytical solution of the model, once single-degree-of-freedom problems are considered, so it is also very accurate.

In fact, the standard explicit forward Euler method is employed here to approximate the time derivative of the temperature field, standing as a basis for the development of the new time marching technique. Thus, its main advantages are maintained, such as avoiding solver routines (lumped matrices are considered here) and iterative procedures (when nonlinear models are analysed). In addition, its main disadvantage is eliminated, and an always-stable approach takes place here. However, in order to establish a guaranteed stable technique, some local matrices of the model are modified, and a so-called semi-explicit approach takes place. Thus, reduced systems of equations arise (which are related to the modified local matrices), and they must be dealt with by a solver routine. The unmodified matrices of the model remain providing a fully explicit approach, requiring no solver procedure. In fact, the proposed new technique can be defined as a semi-explicit/explicit approach; i.e., the method is semi-explicit regarding the solver aspect (reduced systems of equations may have to be dealt with, in the new methodology), and completely explicit regarding the nonlinear iterative process (iterative procedures are never required here).
The motivation for variable, modified time integration methods arose in part from problems where meshes include both relatively stiff and flexible subdomains (adopting a solid mechanics nomenclature). If the mesh has spatially varying properties or highly refined regions, a few stiff elements impose the use of an unduly small time step for the entire problem. This is especially restrictive considering explicit approaches. Thus, in order to achieve greater computational efficiency, one must be able to solve these subdomains or regions separately with different time steps and/or time integration schemes and then couple the solutions together. Nakshatrala et al. [15] derived a time-staggered mixed-multi-step partitioned coupling algorithm to solve nonlinear transient heat conduction that enables arbitrary time integration schemes, time steps and meshes to be used in different subdomains. In this context, their algorithm divides a large structural mesh into a number of smaller subdomains, solves the individual subdomains separately and couples the solutions, enforcing the interfacial conditions, to obtain the response to the original problem. However, these coupling procedures usually require many specifications from the user (such as the definitions of the subdomains of the model etc.) and their implementations can be quite cumbersome. As one will observe, the proposed new technique does not describe a coupling algorithm. In fact, just one time marching framework and one time step discretization are considered here (and no interface conditions have to be treated), and the resulting new formulation is extremely generic and entirely automated (requiring no decision from the user), as well as it is very easy to implement. 
The manuscript is organized as follows: (i) initially, the semi-discrete governing equations of the model are briefly presented and the proposed new time marching technique is described and discussed; (ii) in the sequence, numerical examples are considered, illustrating the effectiveness and potentialities of the new approach; (iii) in the conclusions, the several positive features of the proposed method are summarized, highlighting the suitability of the new technique to properly handle complex nonlinear heat conduction applications.
2. Modified explicit formulation
The semi-discrete nonlinear transient heat conduction equation can be written as:
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where C stands for the capacity matrix, P(t) denotes the nonlinear vector corresponding to the element internal heat fluxes, and F(t) stands for the vector of externally applied heat sources and boundary conditions. P(t) is a function of 
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 describe the temperature and its first time derivative vectors, respectively. In linear analysis, P(t) is usually represented as 
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 where K stands for the linear conductivity matrix of the model. The initial condition of the problem is given by 
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 denotes the initial temperature vector.
There are several explicit and implicit time marching techniques that have been proposed to solve equation (1), along the last decades. In general, in an explicit approach, all constitutive variables are available from computations at previous time steps and, in combination with diagonal matrices, these methods do not require the solution of any system of equations. In an implicit approach, on the other hand, the constitutive variables are expressed as functions of the current time of analysis. In this case, solver routines are necessary and, when nonlinear models are considered, the solution has to be carried out by iterative schemes (such as the Newton-Raphson algorithm, for instance), which produce a great overhead in the computational effort. In addition, these iterative procedures may cause numerical issues related to the convergence behavior. Consequently, the computational cost of an implicit analysis may significantly exceed that of an explicit solution. On the other hand, explicit approaches have restrictive limitations for the incremental time step size, due to conditional stability. These restrictions usually impose an increase in the computational cost of the analysis as well, since a higher number of time steps is then necessary to provide a solution. Moreover, this critical time step can be quite hard to estimate (if not impossible), when complex nonlinear models are considered [16,17]. 

One very well known explicit technique in the context of heat transfer analysis is the forward Euler (or forward difference) method. As previously highlighted in the introduction, this technique is considered here as a basis for the development of the proposed new time marching methodology, trying to maintain its main advantages and, at the same time, to provide an always-stable approach, eliminating its main drawback. Thus, in order to establish a guaranteed stable technique, some local matrices of the model are modified, as it is described next.

Taking into account the standard forward Euler approach, the following expressions can be established to approximate the first time derivative of the temperature field: 
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where ∆t stands for the time stepping of the analysis.

Once approximation (2) is applied to the governing equation (1), considering it locally written (the subscript e indicates that a variable is defined at an element level) and referred to a time instant n, the following solution methodology arises:
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which describes the standard forward Euler method, once 
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 is adopted. After assembling is considered, equation (3) allows computing 
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 and, consequently, the temperature vector can be evaluated as 
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As it is well known, the forward Euler approximation provides a conditionally stable technique, and its critical time stepping (
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 stands for the maximal generalized eigenvalue of the model, which is computed considering matrices K and C, in linear analysis. Thus, stability is (conservatively) ensured if the standard forward Euler approximation is applied and the 
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Therefore, the idea here is to compute the 
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where 
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 stands for a local time integration parameter. As previously remarked, equation (4a) locally replicates the standard forward Euler procedure; whereas, equation (4b) allows providing a stable formulation in case the stability criterion of the forward Euler approach is not locally fulfilled, rendering a locally stabilized formulation. In equations (4), as previously discussed, 
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As one can observe in equation (4b), in the proposed modified (or stabilized) formulation, the idea is to introduce a parameter 
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 for each element of the model (see the “element” subscript e) and modify it along the analysis (if it is the case), according to the evolution of the considered tangent nonlinear matrix (see the “tangent” superscript τ). Thus, here, the time integration parameter is entirely locally defined, considering both spatial and temporal distributions. In this work, the following expression is adopted to define 
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As it is discussed next, expression (5) is constructed so that stability is ensured and numerical oscillations are eliminated from the solution. In fact, expression (5) is formulated based on the analytical solution of the linear single degree of freedom (SDOF) problem and, consequently, good accuracy is expected considering this attribution for 
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Equations (3)-(5) define the proposed, locally formulated, time marching technique. In order to discuss the properties of the new method, the amplification factor of the discussed approach is analyzed, taking into account expression (4b). Considering expression (4a), the standard explicit forward Euler approach is replicated and its properties are not further discussed here, since they are very well known. 

Taking into account the linear SDOF model (i.e., 
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), the amplification factor of the proposed technique, considering the modified formulation, can be written as:
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where stability is guaranteed once 
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As it is well known, the exact amplification factor for the linear SDOF model is given by 
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. Thus, considering this expression for a, the proposed modified technique reproduces the analytical solution for the SDOF model. 
The above concept may be generalized, taking into account the locally defined methodology in focus, and expression (5) can then be obtained, considering an element context. It is important to observe that, taking into account an element of the adopted spatial discretization, its 
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 is always positive considering the proposed stabilized formulation, which avoids oscillations in the results. In addition, spurious high modal components decay very quickly in this case, since 
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It is important to observe that, if the tangent nonlinear conductivity matrix of the model is not updated, the time integration parameter 
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 will also not vary, and the effective matrix of the model (
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 can be updated only when necessary along the analysis and the effective matrix of the model can be computed/treated just at a few time steps, allowing a more efficient approach. In this work, a possible updating criterion is discussed for 
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, enriching the automated character of the technique and its effectiveness. In addition, once the so-called explicit elements are considered, parts of the effective matrix will be simply composed of diagonal entries, which can be easily cast out of the global system of equations, greatly reducing its dimension and the computational effort of its solution. Thus, the proposed semi-explicit analysis enables an always stable algorithm that is associated to a reduced system of equations, rendering a technique that is more efficient than standard implicit approaches. It is important to observe that this reduction of the dimension of the global system of equations is carried out here entirely automatically, just considering the purely diagonal terms of the effective matrix, without considering any pre-definition of subdomains and/or input information from the user (which, actually, may be unfeasible considering complex models). 

When nonlinear behavior is focused, considering the previously discussed SDOF model, relation (6) can be rewritten as 
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As one can observe, equation (7) represents a very simple local criterion, evaluating if updating is necessary based on the evolution of the local instantaneous degree of nonlinearity 
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. In Tab.1, the basic steps of the proposed solution algorithm are briefly summarized, taking into account nonlinear analyses. In the next section, numerical results are presented, considering computations associated to spatially discretized domains and linear and nonlinear models. 

3. Numerical applications

In this section, two numerical examples are considered, illustrating the performance of the proposed technique. In the first example, a nonlinear heat conduction model is analyzed, and the evolution of the temperature field along a stainless steel bar is studied. In the second example, linear and nonlinear models are analyzed, and the heat conduction through a square domain is focused. Results computed by the proposed new formulation are compared to those provided by the standard implicit backward Euler technique, as well as to analytical solutions, whenever possible. For the nonlinear analyses, the Newton-Raphson iterative scheme is here applied associated with the implicit backward Euler time marching technique. In this case, a tolerance of 10-5 is employed for the convergence criterion of the iterative process, taking into account both temperature and flux relative residuals. For the evaluation of errors (whenever analytical solutions are available), the L2 norm is here considered:
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where 
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 stand for the computed and the analytical temperature solutions, respectively, and N represents the total number of time steps in the analysis.  

3.1. First application
In this first application, the heat conduction trough a 5m length bar is analysed, considering the nonlinear behaviour of the model. The bar is made of AISI 304 stainless steel, which is initially at a temperature of 300 K, and it is then subjected to surface temperatures of 900 K and 300 K on its left and right boundaries, respectively. The thermal diffusivity of the stainless steel AISI 304 is a function of the temperature, and it is given by 
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. An approximate analytical solution for this transient nonlinear heat conduction model is available, and it is presented by Mustafa et al. [19]. 
For the numerical analyses, a finite element mesh with 7851 linear triangular elements is considered and three time steps are selected here, namely: (i) 
[image: image73.wmf]s

025

.

0

=

D

t

; (ii) 
[image: image74.wmf]s

05

.

0

=

D

t

; and (iii) 
[image: image75.wmf]s

1

.

0

=

D

t
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. As one can observe, the distribution described in Fig.2 (as well as all others that occur here) is intricate, and any attempt to manually define this complex configuration is unrealistic. Thus, the proposed formulation is quite versatile, allowing complex models to be automatically properly characterized. 

In Fig.3(a), relative error results (equation (8)) for the computed temperature field at 
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 (point A) are depicted, taking into account the proposed adaptive semi-explicit/explicit technique and the standard implicit backward Euler method. As one can observe, better accuracy is obtained by the proposed formulation; however, the main advantage of the new technique is its efficiency. In order to assess the efficiency of the new technique, estimates for the complexity of the time marching procedure can be considered. This can be easily carried out if only operations with a cost of at least O(η2) are taken into account, and if special matrix structures are not explored. In this case, an estimate for the number of operations considering the solver routines can be given by: 
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, where N stands for the total amount of time steps in the analysis (or iterative steps, if implicit analyses of nonlinear models are considered), and η stands for the dimension of the (reduced) effective matrix. In Fig.3(b), results related to the accuracy and computational cost of the analyses are depicted, illustrating the performance of the new technique and of the backward Euler method, for the adopted time discretizations. As one can observe, not only the new technique provides very good accuracy, but it is also very efficient. In fact, the computational cost of the solver of the proposed technique can be estimated to be less than 0.2% that of the backward Euler method, for 
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). It is important to observe that the updating of the tangent nonlinear matrices was never carried out here, considering both the proposed formulation and the implicit Euler approach. In Fig.4, time history results for the temperature field at point A are depicted, for 
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3.2. Second application

A square domain, submitted to a unit temperature field applied over its left boundary, null temperature fields applied over its bottom and right boundaries, and null fluxes prescribed over its top boundary, is analysed here. Null initial conditions are considered. The geometry of the model is defined by a unit length, and the thermal diffusivity of the medium is described by 
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A finite element mesh with 6866 linear triangular elements is considered for the spatial discretization. For the temporal discretization, a time step of 
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 is adopted. In this case, the percentage of stabilized elements obtained in the considered mesh is around 23.97%. In Fig.5, the adopted FEM mesh is depicted, along with the computed a parameters. As one can observe, a refined spatial discretization is employed at the left-bottom region of the model, once larger gradients of temperature are expected on this area. 
In Fig.6, time history results for the temperature field at point A (
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, for the backward Euler technique (i.e., 1.66 times larger than that of the new formulation). In Fig.7, the computed temperature fields along the discretized nonlinear model are depicted considering t = 0.1, further illustrating the good accuracy of the new approach.  
Once again, the computational costs of the analyses can be estimated as discussed in the first example, and this is illustrated in Fig.8. In this case, the computational cost of the solver of the new technique, taking into account the described nonlinear solution, is estimated to be less than 1% that of the implicit backward Euler approach (the average number of iterative steps, per time step, obtained by the implicit backward Euler approach is 7.42, for this application). For the linear analysis, this relation remains around 4.5%. In fact, as illustrated here, the computational cost of a nonlinear analysis by the new approach is usually considerably lower than that of a linear analysis by a standard implicit approach, highlighting the huge difference of performance of these procedures. 

As one can notice, the proposed technique combines the best of two worlds; i.e., it is able to provide stable results considering large time discretizations, allowing considering a reduced number of time steps in the analysis (as in implicit techniques), and it enables reduced solver efforts, as well as it eliminates iterative procedures when nonlinear models are considered (as in explicit techniques). In addition, it does so providing very accurate results, yielding a very effective time marching methodology.
4. Conclusions

In this work, a new time marching procedure to analyze nonlinear parabolic models is proposed. The technique can be considered a semi-explicit/explicit formulation, since it has to (eventually) deal with reduced systems of equations in order to ensure the stability of the analysis and it never requires iterative procedures in order to solve nonlinear models (as in the standard forward Euler method, the nonlinear terms can be directly computed as function of previous steps results, and there is no iteration process to determine the discussed local time integration parameter). As so, the proposed technique is very efficient, allowing very accurate results to be computed at very much reduced computational costs. In addition, the proposed methodology is completely automated, requiring no input data or expertise from the user. In fact, in order to entirely follow a completely automated concept, an updating criterion for the nonlinear tangent matrix of the method is also discussed and proposed here, enhancing the performance of the method.

The new approach is locally defined, and the effective matrix of the method is computed following the spatial and temporal characteristics of the problem. Thus, a linked formulation between the temporal and the spatial numerical discretizations takes place, allowing the time marching technique to adapt more properly to the local particularities and behaviours of the model. In fact, the time integrator parameter a is here computed based on the features of the locally adopted spatial discretization, and it may evolve its values along the analysis, if the local nonlinear tangent matrix of the model is updated. This is a very flexible approach, and it allows the technique to better respond to specific characteristics of the problem and to the evolution of its solution.
The main features of the proposed locally stabilized time domain solution can be summarized as follows: (i) it is simple; (ii) it is locally defined; (iii) it has guaranteed stability; (iv) it is an efficient non-iterative single-step procedure; (v) it provides very good accuracy; (vi) it enables algorithmic dissipation in the higher modes and avoids oscillatory responses; (vii) it considers a link between the temporal and the spatial discretizations; (viii) it stands as a single-solve framework based on reduced systems of equations; (ix) it provides an updating criterion for tangent nonlinear matrices; (x) under special conditions, it may reproduce the forward Euler method; (xi) it is entirely automatic, requiring no expertise from the user. As one can observe, the proposed technique provides several positive features, standing as a very suitable methodology to efficiently analyze nonlinear heat conduction models.
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Fig.1 – Amplification factor for the standard and the modified stabilized element.
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Fig.2 – Stabilized finite elements and their a parameters, for ∆t = 0.05s, considering the whole FEM mesh and a zoomed area (first application).
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Fig.3 – Performance of the analyses for the nonlinear stainless steel model (first application).
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Fig.4 – Computed temperatures along time at point A, for ∆t = 0.05s (first application).
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Fig.5 – Stabilized finite elements and their a parameters, considering the whole FEM mesh and a zoomed area (second application).
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Fig.6 – Computed temperatures along time at point A, considering both linear and nonlinear analyses (second application).
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Fig.7 – Computed temperatures along the discretized nonlinear model, at t = 0.1: 

(a) stabilized explicit; (b) implicit.
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Fig.8 – Performance of the analyses (second application).

Tab.1 – Algorithm for the locally stabilized explicit approach, considering nonlinear analyses 
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For each element of the spatial discretization:
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2. 
Assemble, cast out the sole diagonal entries of the effective matrix 
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3. 
Update and print computed results, go to the next time step and reinitiate the algorithm
* Corresponding author. E-mail: � HYPERLINK "mailto:delfim.soares@ufjf.edu.br" �delfim.soares@ufjf.edu.br�; Tel: +55 32 21023468.
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