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Abstract In this workwe develop a complete analyti-
cal solution for a double cantilever beam (DCB) where
the arms are modelled as Timoshenko beams, and a
bi-linear cohesive-zone model (CZM) is embedded at
the interface. The solution is given for two types of
DCB; one with prescribed rotations (with steady-state
crack propagation) and one with prescribed displace-
ment (where the crack propagation is not steady state).
Because the CZM is bi-linear, the analytical solutions
are given separately in three phases, namely (i) linear-
elastic behaviour before crack propagation, (ii) damage
growth before crack propagation and (iii) crack prop-
agation. These solutions are then used to derive the
solutions for the casewhen the interface is linear-elastic
with brittle failure (i.e. no damage growth before crack
propagation) and the case with infinitely stiff interface
with brittle failure (corresponding to linear-elastic frac-
ture mechanics (LEFM) solutions). If the DCB arms
are shear-deformable, our solution correctly captures
the fact that they will rotate at the crack tip and in front
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of it even if the interface is infinitely stiff. Expressions
defining the distribution of contact tractions at the inter-
face, as well as shear forces, bending moments and
cross-sectional rotations of the arms, at and in front
of the crack tip, are derived for a linear-elastic inter-
face with brittle failure and in the LEFM limit. For a
DCB with prescribed displacement in the LEFM limit
we also derive a closed-form expression for the crit-
ical energy release rate, Gc. This formula, compared
to the so-called ‘standard beam theory’ formula based
on the assumptions that the DCB arms are clamped at
the crack tip (and also used in standards for determin-
ing fracture toughness in mode-I delamination), has an
additional term which takes into account the rotation
at the crack tip. Additionally, we provide all the men-
tioned analytical solutions for the case when the shear
stiffness of the arms is infinitely high, which corre-
sponds to Euler–Bernoulli beam theory. In the numer-
ical examples we compare results for Euler–Beronulli
and Timoshenko beam theory and analyse the influence
of the CZM parameters.

Keywords DCB test · Mode-I delamination ·
Analytical solution · Timoshenko beam theory ·
Cohesive-zone model · Linear-elastic fracture
mechanics
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List of symbols

A Cross-sectional area of a single DCB arm
a Crack length
a0 Initial crack length
b Width of a DCB
Ci Integration constants for the undamaged

part (i = 1, . . . , 6)
C j
i Constants depending on C3, C4, ξ3 and ξ4

(i = 3, 4 and j = M, T )
Ci Integration constants for the undamaged

part that are zero because of the bound-
ary conditions for a semi-infinite DCB (i =
1, . . . , 6)

c2 function cos(Lczκξ2)

c2 function cos(Lczκξ2)

ch1 function cosh(Lczκξ1)

ch1 function cosh(Lczκξ1)

D Dirac delta
D0 A constant depending on ψ

Di Integration constants for the damaged part
(i = 1, . . . , 4)

Di j Constants for the damaged part depending
on the value of ω (i = 1, . . . , 4 and j =
1, 2)

E Young’s modulus of DCB arms
F Vertical force applied on the upper layer of

a DCB with prescribed displacement
F0 A tensile stress resultant (concentrated

force) at the crack tip for the LEFM limit
case

FE Value of the applied force computed using
Euler–Bernoulli beam theory

FL Maximum value of the applied force in the
linear-elastic phase for a DCB with pre-
scribed displacement

Fmax Maximum value of the applied load for a
DCB with prescribed displacement

FT Value of the applied force computed using
Timoshenko beam theory

Fσmax Value of the applied force computed for a
finite value of σmax

F∞ Value of the applied force for the LEFM
limit

Gc Critical energy release rate
H Heaviside function
h Depth of a single DCB arm
I Secondmoment of area of the cross-section

of a single DCB arm

Jc Critical value of the J integral
ks Shear correction coefficient
L Total length of a DCB specimen
Lcz Length of the cohesive or damage-process

zone
Lcz Maximum value of Lcz for a DCBwith pre-

scribed rotations
Lmax
cz Maximum value of Lcz for a DCBwith pre-

scribed displacement
Lmin
cz Minimum value of Lcz during crack propa-

gation for a DCB with prescribed displace-
ment

M Concentrated moment applied on a DCB
arm

M1 Bending moment in the upper DCB arm on
the part where the interface is undamaged

ML
1 LEFM limit value of M1

M2 Bending moment in the upper DCB arm on
the part where the interface is damaged

ML Maximum value of the applied moment in
the linear-elastic phase

Mmax Maximum value of the applied moment
q Distributed transverse loading along the

upper DCB arm
ri Roots of the characteristic equation for the

undamaged part (i = 1, . . . , 4)
s2 function sin(Lczκξ2)

s2 function sin(Lczκξ2)

sh1 function sinh(Lczκξ1)

sh1 function sinh(Lczκξ1)

T Shear force in the upper DCB arm
T1 Shear force in the upper DCB arm on the

part where the interface is undamaged
T L
1 LEFM limit value of T1

T2 Shear force in the upper DCB arm on the
part where the interface is damaged

ti Roots of the characteristic equation for the
damaged part (i = 1, . . . , 4)

v Transversal displacement of the upper DCB
arm

v1 Transversal displacement of the upper DCB
arm on the part where the interface is
undamaged

vL
1 LEFM limit value of v1

v2 Transversal displacement of the upper DCB
arm on the part where the interface is dam-
aged

x Co-ordinate along the interface
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Complete analytical solutions for double cantilever beam 3

x0 Co-ordinate x corresponding to zero stress
at the interface for the case of a linear-elastic
interface with brittle failure

xmin Co-ordinate x corresponding to the mini-
mum (maximum compressive) stress at the
interface for the case of a linear-elastic
interface with brittle failure

α A constant defined as α = δ0/δc
βi Constants depending on ξ j , Dkl , κ and a0

(i = 1, . . . , 8, j = 1, 2, k = 1, . . . , 4 and
l = 1, 2)

γ Shear strain in the upper DCB arm
� Prescribed crack mouth opening displace-

ment of a DCB
�a Part of the crack mouth opening displace-

ment due to bending of the arms assuming
that they are clamped at the crack tip

�δ
CT Part of the crack mouth opening displace-

ment due to the opening at the crack tip
�

ϕ
CT Part of the crack mouth opening displace-

ment due to the rotation at the crack tip
δ Relative displacement at the interface in

mode I
δ0 Linear-elastic limit value of the relative dis-

placement at the interface in mode I
δc Relative displacement at the interface corre-

sponding to the total loss of interconnection
in mode I

εr Relative error due to using Euler–Bernoulli
instead of Timoshenko beam theory

εr Relative difference between CCM and
LEFM solutions

ζi Constants depending on ω (i = 1, . . . , 4)
ζ i Constants depending on ω (i = 1, . . . , 4)
η A constant defined as η = λ/κ

ηE A constant defined as ηE = λE/κ

θ Prescribed rotation on a DCB arm
κ A constant depending on the bending stiff-

ness of DCB arms and the softening part
of the σ − δ traction-separation law of the
interface

λ A constant depending on the bending stiff-
ness of DCB arms and the linear-elastic
stiffness of the interface

λE A constant defined as λE = √
2λ/2

μ Shear modulus of DCB arms
ν Poisson’s ratio of DCB arms
ξi Constants depending on ψ (i = 1, 2)
ρi Constants defined as ρi = ζi/λ (i = 1, 2)

σ Contact traction at the interface in mode I
σ L LEFM limit value of σ

σmax Maximum value of contact tractions at the
interface in mode I

ϕ Cross-sectional rotation of the upper DCB
arm

ϕ1 Cross-sectional rotation of the upper DCB
arm on the part where the interface is
undamaged

ϕ2 Cross-sectional rotation of the upper DCB
arm on the part where the interface is dam-
aged

ϕL
1 LEFM limit value of ϕ1

χ A constant defined as χ = E I/(2μAs)

ψ A constant depending on bending and shear
stiffness of DCB arms, and κ

ω A constant depending on bending and shear
stiffness of DCB arms, and λ

List of Abbreviations

ASTM American Society for Testing andMaterials
BS British Standard
CBBM Compliance-based beam method
CBT Corrected beam theory
CCM Cohesive crack model
CZM Cohesive zone model
DCB Double cantilever beam
EBT Enhanced beam theory
ESBT Enhanced simple beam theory
FE Finite element
FEA Finite element analysis
ISO International Organization for Standardiza-

tion
LEFM Linear elastic fracture mechanics
SBT Simple beam theory
TDCB Tapered double cantilever beam

1 Introduction

Since introduced in 1960s by Dugdale (1960) and
Barenblatt (1959), the use of cohesive-zone models
(CZM) has become one of the most popular ways of
describing fracture processes within the research com-
munity (Hillerborg et al. 1976; Alfano and Crisfield
2001; Park and Paulino 2011). Nowadays CZMs are
widely implemented within the framework of finite-
element analysis (FEA) and interface elements, based

123



4 L. Škec et al.

on CZMs, can be found in element libraries of many
commercial softwares for FEA used to solve delamina-
tion/debonding problems in 2D (Alfano and Crisfield
2001) and 3D (Park and Paulino 2011). However,
because the accuracy of such computations is always
dependent on the size of the FEmesh, they can be com-
putationally demanding and suffer from convergence
problems.

One of the ways to reduce the computational cost
of the analysis was already proposed by the first and
third author and consists of using beam finite elements
instead of plane solids to model the bulk material of the
specimens in 2D analysis of delamination. The results
were presented for single-mode (I and II) and mixed-
mode delamination problems in geometrically linear
(Škec et al. 2015) and non-linear analysis (Škec and
Jelenić 2017). Compared to models which use plane
solid FEs, the computational efficiency of the beam
model was improved (the reduction of total number of
degrees of freedom can go up to 40%) without any sig-
nificant loss in the accuracy. However, the beammodel
still suffered from convergence problems and spurious
oscillations around the exact solution for cases of brit-
tle interfaces when the mesh is not sufficiently refined.
For this reason, it is always very useful when an analyt-
ical or semi-analytical solution can be found for cases
of engineering interest.

In this paper we focus on mode-I delamination and
the double cantilever beam (DCB) test, which is the
standard test for determining fracture toughness in
mode I. We use quasi-static and geometrically linear
analysis where the arms of the DCB are modelled as
Timoshenko beams and at the interface, a bi-linear
CZM is used. Since the traction–separation law at the
interface is composed of two linear parts and a final part
with zero tractions, the solution of the problem can be
obtained analytically, separately for each part of the
interface whose state falls within one of the linear parts
of the traction separation law. Because all the quantities
of the problem will be expressed exactly with no need
for discretisation, the computational cost is negligible
and the obtained solutions have no spurious oscilla-
tions, which typically occur when delamination prob-
lems are solved using FE analysis (Alfano andCrisfield
2001; Blackman et al. 2003b; Škec et al. 2015). How-
ever, the idea of using analytical solutions for a DCB is
not new and many researchers have contributed to the
field in the last 50 years.

The simplest way to analytically model a DCB
would be to assume that the arms of the specimen
act as if they were cantilever beams clamped at the
crack tip. Under this assumption, Benbow and Roesler
(1957) used Euler–Bernoulli beam theory to establish
the Griffith’s energy balance for a flat-strip specimen
where the crack gradually propagates down the middle
by holding the specimen in a state of lengthwise com-
pression. During 1960s and early 1970s, Ripling et al.
(1971) introduced the DCB and tapered double can-
tilever beam (TDCB) tests and specimens. They also
provided analytical formulae based on Irwin’s energy
approach (Irwin 1956) and Timoshenko beam theory
(assuming that the arms are clamped at the crack tip) to
compute the fracture toughness of the adhesive, which
in 1974 becamepart of theAmerican standard for deter-
mining fracture toughness of adhesive joints in mode
I. The current version of that standard, ASTM D3433-
99 (reapproved in 2012) (ASTMD3433-99 2012), still
exclusively uses the same formulae proposed inRipling
et al. (1971). The formula for the DCB used in ASTM
D3433-99 (2012) is also used in BS ISO 25217:2009
(2009), where it is called ‘simple beam theory’ (SBT).
Wewill adopt this terminology and use the term ‘simple
beam theory’ (SBT) for formulations based on simple
beam theories (Euler–Bernoulli or Timoshenko) and
the assumption that the DCB arms act as if they were
clamped at the crack tip.

However, Ripling et al. (1971) noticed that the SBT
formula gives smaller deflections than those obtained
from the experiments and they attributed it to not taking
into account the rotations of the arms which take place
at the crack tip. They also suggested that the results
could be simply corrected by increasing the measured
crack length by a fixed amount. Although they did not
propose amethod to obtain this crack length correction,
this concept was further developed by other researchers
(Blackman et al. 2003a) and became the basis for a
data reduction scheme in BS ISO 25217:2009 (2009)
called ‘corrected beam theory’ (CBT) based on Euler–
Bernoulli beam theory. de Moura et al. (2008) devel-
oped the so-called ‘compliance-based beam method’
(CBBM) where the corrected-crack-length concept
was used with Timoshenko beam theory.

Kanninen (1973) presented an analytical model for
a DCB where the upper arm was modelled as a Euler–
Bernoulli beam on elastic foundation (Winkler model),
allowing for relative displacements and rotations at the
crack tip and ahead of it. The very next year (Kan-
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Complete analytical solutions for double cantilever beam 5

ninen 1974) extended his formulation to account for
the shear deformability of the arms and rotational stiff-
ness of the interface, which was accomplished by using
Timoshenko beam theory and Pasternak elastic foun-
dation. However, Gehlen et al. (1979) (with Kanninen
as the third author) showed that the rotational stiffness
of the foundation springs is not relevant in a symmet-
rical DCB configuration. Kanninen’s model (Kanni-
nen 1974) was later extended by Williams (1989) to
account for orthotropic material behaviour. Shahani
and Forqani (2004), Shahani and Amini Fasakhodi
(2010) developed solutions for a DCB model of finite
length consisting of a Timoshenko beam lying on an
elastic Winkler foundation for the conditions of fixed
force and fixed displacement. Most of the mentioned
papers (Kanninen 1973, 1974; Gehlen et al. 1979; Sha-
hani and Forqani 2004; Shahani and Amini Fasakhodi
2010) also investigate the dynamic analysis of unsta-
ble crack propagation and arrest in a DCB test. We will
refer to the beam-on-elastic-foundation DCB models
as ‘enhanced beam theory’ (EBT) models.

In EBTmodels the interface acts elastically linear up
to a certain point where brittle failure occurs. However,
fracture processes can usually introduce a certain level
of quasi-brittle behaviour, which cannot be captured
using EBT models. It is, however, well know that the
quasi-brittle behaviour of the interface in a DCB test
has an important influence on the structural response
before the crack starts to propagate, whereas during the
crack propagation the influence of the interface ductil-
ity is negligible. One way of introducing a quasi-brittle
behaviour of the interface in the model is to use CZMs
which account for progressive softening/damage after
a certain critical value of the traction at the interface
has been reached.

Stigh (1988) developed an analytical solution for a
DCB where the arms are modelled as Euler–Bernoulli
beams and a bi-linear CZM is embedded at the inter-
face. This solution was revisited and extended to
account for a finite length of the specimen and a trape-
zoidal CZM by Dimitri et al. (2017). de Morais (2013)
proposed a solution for aDCBwith prescribed rotations
(loaded with moments) where the arms are modelled
as Timoshenko beams and a bi-linear CZM is embed-
ded at the interface. Unlike Williams (1989) who gave
the complete solution for the linear-elastic phase of the
interface behaviour, deMorais (2013) took into account
only real roots of the characteristic equation of the dif-
ferential equation of the problem.We discuss this issue

in detail in Sect. 2.2. We will refer to the models with
quasi-brittle crack as ‘cohesive crack models’ (CCM)
(Dimitri et al. 2017).

To the best of authors’ knowledge, a complete ana-
lytical solution for a DCB with arms modelled as Tim-
oshenko beams and the interface modelled using a bi-
linear CZM, which covers any of the two cases of pre-
scribed rotations and displacement, is not available in
the literature. Therefore, one aim of this paper is to fill
this gap and to show a clear relationship between SBT,
EBT and CCM solutions for a DCB for both Euler–
Bernoulli and Timoshenko beam theory.

Furthermore, reducing the general CCM solution
down to the SBT solution shows that even in the limit
case of LEFM, rotations at the crack tip and in front
of it still occur when Timoshenko beam theory is used.
Thus, the assumption made in SBT that the arms act
as if they were clamped at the crack tip is not appli-
cable even for an infinitely stiff perfectly brittle inter-
face, which is assumed in LEFM. This is somehow
an expected result since even an infinitely stiff inter-
face cannot prevent the bulk material of the arms to
deform (rotate) around the interface. However, the fact
that we can capture this behaviour using Timoshenko
beam theory, to the best of authors’ knowledge, has
not been addressed in the literature so far. More gen-
erally, a comprehensive investigation of the analytical
solutions for the LEFM limit is lacking in the litera-
ture. Thus, we call this novel approach ‘enhanced sim-
ple beam theory’ (ESBT). However, we will show that
when the shear deformability of the arms is excluded
from the model, which corresponds to Euler–Bernoulli
beam theory, ESBT is equivalent to SBT. A second aim
of this paper is to determine the interface stresses and
the stress resultant profiles in the LEFM cases. We will
also show that a novel LEFM-based formula for the
determination of the critical energy release rate, Gc,
can be derived. This formula takes into account the
rotation at the crack tip, unlike those currently avail-
able in the standards (ASTM D3433-99 2012; BS ISO
25217:2009 2009).

The outline of the paper is as follows. In Sect. 2, we
define the problem and derive the general solutions of
differential equations of the problem. In Sects. 3 and
4, we determine the integration constants for the cases
of DCB with prescribed rotations and DCB with pre-
scribed displacement, respectively. The solutions are
given in a unified and compact form, thus avoiding
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cumbersome expressions which can be often encoun-
tered in such analytical solutions.

The presented general CCM solutions (based on
Timoshenko beam theory and a bi-linear CZM at the
interface) are then used to derive solutions for dif-
ferent particular cases. EBT solutions presented in
Sect. 5 are obtained from CCM solutions by making
the interface brittle (removing the softening branch in
the traction–separation law of the interface), whereas
ESBT (LEFM-based) solutions presented in Sect. 6
are obtained from EBT solutions by letting the inter-
face stiffness go to infinity. The solutions for Euler–
Bernoulli beam theory (including CCM, EBT and SBT
solutions) given in “Appendix B” are obtained from the
Timoshenko beam theory solutions by letting the shear
stiffness become infinite.

Results obtained by means of the presented ana-
lytical solutions are studied for a number of cases,
including sensitivity analyses on the interface strength.
In particular, results for a linear interface with brittle
behaviour and in the LEFM limit are presented and
discussed in Sect. 7.3.

2 Problem description

Consider a double cantilever beam (DCB) of length L
composed of two identical arms with depth h, width b
and the initial crack length a0, as shown in Fig. 1. Each
arm is modelled as a Timoshenko beam with a linear-
elastic constitutive law, where material properties are
defined by Young’s modulus, E , and shear modulus,μ.
In a general case E and μ can have independent val-
ues, while for an isotropic material μ = 0.5E/(1+ ν),
where ν is Poisson’s ratio. Mode-I problem is con-
sidered, so that loads are applied symmetrically with
respect to the mid-plane of the interface between the
two arms. Therefore, stresses and strains in a DCB are
symmetrical with respect to the mid-plane of the inter-
face, which means that, for the sake of simplicity, only
one armcan be considered in the analysis. In the present
paper we will consider only the upper arm and assume
that the x-axis is the centroidal axis of the arm (refer-
ence axis), while y and z axes are the principal axes of
the arm’s cross section (see Fig. 1).

In our approach, Timoshenko beam theory is used
to model the DCB arms, which implies that we assume
that displacements and rotations of the arms are rel-
atively small compared to the specimen’s dimensions.

The edges of the beams (where the interface is attached)
in the general case can move both in x and y directions.
However, for our problem, which is symmetric with
respect to the mid-plane of the interface, there is no
relative displacement at the interface responsible for
mode-II delamination. This is because the upper and
the bottom arm of a DCB at the same co-ordinate x
have the same, but opposite cross-sectional rotation.
Since Timoshenko beam theory is a geometrically lin-
ear theory, all points in a single cross-section of the arm
experience the same displacement in the y-direction,
i.e. v(x, y) = v(x). Therefore, for a DCB with sym-
metrical arm deformations, opening (mode-I) relative
displacement at the interface, δ(x), corresponds to the
sum of transverse displacements of both arms. This can
be written as

δ(x) = 2 v(x), (1)

where v is the displacement of the upper arm. Note
that in Fig. 1 the origin of the co-ordinate system is
positioned at the crack tip, which means that at the
left-hand end of the specimen x = −a0.

The two types of tests we investigate in this paper
are the DCB with prescribed rotations, θ , and the DCB
with prescribed displacement, �, as shown in Fig. 1.
In the first case the crack propagates with a constant
cohesive zone length (i.e. crack propagation is steady-
state) (Suo et al. 1992; Škec et al. 2018), the cohesive
zone being where softening/damage of the interface
takes place. In the second case the crack propagation is
not steady-state, but it tends to being so in the limit of
infinitely long cracks, i.e. as a → ∞, where a denotes
the crack length. Complete solutions for both cases are
given in Sects. 3 and 4, respectively.

For the interface we use a bi-linear CZM consist-
ing of a linear-elastic branch and a linear softening
branch, followed by zero tractions for relative displace-
ments greater than the critical value δc, as shown on
the right-hand side in Fig. 2. Here we emphasise that
CCM solutions presented in this paper are not general
solutions valid for any shape of the traction–separation
law of the CZM, but are only valid when the interface
behaviour can be assumed as bi-linear with progressive
damage. Thus, for a bi-linear CZM law the solution
will be obtained for three different phases in the crack
propagation process, which is explained in detail in the
following subsection.
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Complete analytical solutions for double cantilever beam 7

Fig. 1 DCB with a
prescribed rotations and b
prescribed displacement

2.1 Three-phase solution

In order to solve the problemof aDCBwith an interface
with embedded bi-linear CZM, the usual approach is
to develop solutions for three different phases (Stigh
1988; de Morais 2013; Dimitri et al. 2017) which are
namely: (i) linear-elastic behaviour, (ii) damage growth
before crack propagation and (iii) crack propagation.
The solution for each of these phases is derived in detail
in the following sections according to Fig. 2, where
only the upper half of the beam is shown. The origin of
the co-ordinate system is in the left-most undamaged
point for every phase, and it is moving to the right-
hand side as the damage at the interface increases and
the crack propagates. Transversal displacements of the
upper arm are denoted by v1(x) for x > 0 and by v2(x)
otherwise for reasons which will be explained in Sect.
2.2.

2.1.1 Linear-elastic behaviour

In this phase the entire DCB acts as a linear-elastic
body, which means that besides the DCB arms (with a
linear-elastic constitutive law), the interface behaviour
is linear-elastic, too. For all points at the interface
undergoing separation (including points A and B in
Fig. 2a), δ(x) < δ0 and σ(x) < σmax , where δ0 and
σmax are linear-elastic limit values of the separation δ

and the traction σ on the interface, respectively. This
alsomeans that, as long as δ(x) < δ0 andσ(x) < σmax ,
no energy dissipation (damage) at the interface occurs
and the initial (undeformed and undamaged) configu-
ration can be recovered if the load is removed. Once at

the crack tip δ(0) = δ0, we enter a new phase where
damage at the interface starts to develop. This phase is
explained in the following section.

It is well known that a zone of compressive stresses
(σ(x) < 0, resulting in δ(x) < 0) ahead of the crack tip
exists in a DCB (Alfano and Crisfield 2001; de Morais
2015; Dimitri et al. 2017). However, our CZM assumes
that in compression no softening (or damage) occurs,
and the behaviour is still linear elastic. In Fig. 2a we
can see that point C experiences negative (compres-
sive) contact tractions and negative relative displace-
ments at the interface. For a zero-thickness adhesive
layer this results in a non-physical overlapping of the
arms, which in our model is allowed and does not cre-
ate any additional stresses. But because the interface
thickness in our model does not influence the results
(although it is well know that in reality a different thick-
ness of the same adhesive results in a different struc-
tural behaviour) and we can assume that the interface is
sufficiently thick to prevent the arms coming in direct
contact.

2.1.2 Damage growth before crack propagation

In this phase, the interface can be divided in two zones.
In the first zone, just ahead of the crack tip, damage
is developing (although the crack is still not propagat-
ing) and δ(x) ∈ [δ0, δc), where x ∈ (−Lcz, 0]. In the
second zone interface behaviour is again linear-elastic,
i.e. δ(x) < δ0, where x > 0. Note that according to
Fig. 2b, x = −Lcz corresponds to the initial crack tip
and x = 0 corresponds to the point where the first and
the second zone meet. In this phase, the damage builds
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8 L. Škec et al.

Fig. 2 Three phases of the problem solution with the deformed
shape of the interface (shaded in grey) given on the left-hand
side, and the position of characteristic points (A, B and C) in the

σ − δ diagram given on the right-hand side. Point A represents
the initial crack tip (a = a0) in a and b, and the crack tip at any
position where a > a0 in c

up with loading and Lcz increases from 0 (correspond-
ing to δ(−Lcz) = δ(0) = δ0) to a certain limit value
(corresponding to δ(−Lcz) = δc) at which the crack
begins to propagate. Note that, according to Fig. 2b,
the σ −δ relationship in the first zone is also linear, but
with softening (damage).

2.1.3 Crack propagation

This phase is similar to the previous phase (Sect. 2.1.2)
with the difference that here the relative displace-
ment at the current crack tip, δ(−Lcz) = δc, remains
unchanged during the whole phase. For a DCB with
prescribed rotations the cohesive zone length remains
constant for any position of the crack (steady-state
crack propagation), while for a DCB with prescribed

displacement the cohesive zone length will change
(non-steady-state crack propagation). Thus, when the
crack propagation is steady state the deformed shape
of the interface shown in Fig. 2c, and the contact trac-
tion distribution over the interface, σ(x), simply trans-
late to the right-hand side. This is why point A in Fig.
2c is the point at the interface where the crack tip is
currently located. When the crack propagation is not
steady-state, we still have δ(−Lcz) = δc and δ(0) = δ0
for any position of the crack tip, but the deformed
shape and the contact traction distribution at the inter-
face (including Lcz) change as the crack propagates.
The part of the interface which has been completely
damaged (σ(x) = 0) is excluded from the domain of
the solution for v2(x) and becomes a part of the DCB
arm.
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Complete analytical solutions for double cantilever beam 9

2.2 Solutions of differential equations of the problem

The differential equation of the Timoshenko beam
reads

vIV(x) − 1

E I
q(x) + 1

μAs
q ′′(x) = 0, (2)

where E I is the bending stiffness (with secondmoment
of area I = b h3/12), μAs is the shear stiffness (with
corrected shear area As = b h ks , where ks is the shear
correction coefficient) and q(x) is distributed trans-
verse load along the beam axis, assumed to be positive
when pointing upwards. Furthermore, in accordance
with the co-ordinate system from Fig. 1, we have

q(x) = T ′(x), (3)

ϕ(x) = v′(x) + γ (x) = v′(x) + T (x)

μAs
, (4)

where T (x), γ (x) and ϕ(x) are the shear force, shear
strains and cross-sectional rotation, respectively. We
assume that the self-weight of the DCB arms is negli-
gible compared to the magnitude of the external forces
or moments acting on the DCB. Therefore, only con-
tact tractions will act on the arms as a distributed load,
and thus

q(x) = −b σ(x), (5)

where the negative sign appears because positive (ten-
sile) contact tractions at the upper arm are pointed
downwards. The part of the DCB arms separated by the
initial crack, orwhere the interface has been completely
damaged, is excluded from the domain of the solution
v(x). However, the moment or the force applied at the
point of the prescribed rotationor displacement, respec-
tively, (which is outside of the mentioned domain) are
taken into account via the boundary conditions at the
crack tip. This will be explained in detail in the follow-
ing sections.

We define σ(x) according to the traction–separation
law of the CZM. Thus, in our case we will define σ(x)
separately for the linear-elastic (δ(x) ≤ δ0) and for the
linear softening part (δ0 < δ(x) ≤ δc) as

σ(x) =

⎧
⎪⎨

⎪⎩

σmax
δ(x)

δ0
, if δ(x) ≤ δ0,

σmax
δc − δ(x)

δc − δ0
, if δ0 < δ(x) ≤ δc.

(6)

Substituting (6) in (5) and then in (2) and taking into
account (1) we obtain two differential equations

vIV(x) − 2 ω λ2 v′′(x)

+ λ4 v(x) = 0, if v(x) ≤ δ0

2
, (7)

vIV(x) + 2 ψκ2 v′′(x) − κ4v(x)

+ κ4 δc

2
= 0, if

δ0

2
< v(x) ≤ δc

2
, (8)

where

λ = 4

√
2 b σmax

E I δ0
, ω = E I

μAs

λ2

2
, (9)

κ = 4

√
2 b σmax

E I (δc − δ0)
, ψ = E I

μAs

κ2

2
. (10)

Equation (7) is used in all phases on the undamaged
part of the interface (x ≥ 0), while Eq. (8) is used only
in phases 2 and 3 on the damaged part of the interface
(x ∈ [−Lcz, 0)). We will denote the solutions of Eqs.
(7) and (8) by v1(x) and v2(x), respectively, and derive
them in the following sections.

2.2.1 Solution on the undamaged part of the interface

Assuming the solution of Eq. (7) in a form v1(x) =
er x , where r is a constant, results in a characteristic
equation with four roots, namely

r1 = λ ζ1, r2 = −λ ζ1, r3 = λ ζ2, r4 = −λ ζ2,

(11)

where

ζ1 =
√

ω +
√

ω2 − 1, ζ2 =
√

ω −
√

ω2 − 1. (12)

Since ω ≥ 0, we will have all real roots for ω > 1,
all complex roots for ω < 1 and multiple real roots for
ω = 1. For each of these cases, we can now give:

1. The solution of Eq. (7) for ω > 1:

v1(x) = e−λζ1xC1 + e−λζ2xC2 + eλζ1xC1

+ eλζ2xC2, x ≥ 0, (13)

where C1,C2,C1 andC2 are integration constants.
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10 L. Škec et al.

2. The solution of Eq. (7) for ω < 1:

v1(x) = e−λζ3x [sin(λ ζ4 x)C3 + cos(λ ζ4 x)C4]

+ eλζ3x
[
sin(λ ζ4 x)C3 + cos(λ ζ4 x)C4

]
, x ≥ 0,

(14)

where

ζ3 =
√
1 + ω

2
, ζ4 =

√
1 − ω

2
, (15)

and C3, C4, C3 and C4 are integration constants.
Note that because of

ζ1 ζ2 = 1, and (ζ1 + ζ2)
2 = 2(ω + 1), (16)

we have

ζ3 = ζ1 + ζ2

2
, ζ4 = i

ζ2 − ζ1

2
. (17)

3. The solution of Eq. (7) for ω = 1:

v1(x) = e−λx (C5 + C6 x) + eλx (C5

+C6 x), x ≥ 0, (18)

where C5,C6,C5 and C6 are integration constants.

In our approach we will assume that during crack
propagation the crack tip is always sufficiently distant
from the right-hand end of the DCB, in a way that
any boundary conditions at the right-hand end (free
or clamped) do not influence the results. This is equiv-
alent to assuming a semi-infinite DCB. Therefore the
domain of the undamaged part of the interfacewill have
boundary conditions at x = 0 and x = ∞, where we
can write:

v1(∞) = 0, ϕ1(∞) = 0, (19)

where ϕ1(x) is the cross-sectional rotation on the
undamaged part of the interface. According to Tim-
oshenko beam theory ϕ1(x) = v′

1(x) + T1(x)/μAs ,
where T1(x) is the cross-sectional shear force on the
undamaged part of the interface. Because T1(∞) = 0,
applying boundary conditions (19) to solutions (13),
(14) and (18) gives Ci = 0, where i = 1, . . . , 6. Thus,
the solution of Eq. (7) for a semi-infinite DCB can be
written in a general form as

v1(x) =
⎧
⎨

⎩

e−λζ1xC1 + e−λζ2xC2, for ω > 1,
e−λζ3x [sin(λ ζ4 x)C3 + cos(λ ζ4 x)C4] , for ω < 1,
e−λx (C5 + x C6), for ω = 1,

(20)

where x ≥ 0.

Remark 2.1 For the sake of simplicity and because of
the extreme unlikelihood that the value ω = 1 occurs
in a real case, the solutions in the following sections
are given only for the cases when ω > 1 and ω < 1.
However, the results for ω = 1 are given separately
in “Appendix A” for completeness. In the numerical
examples presented in Sect. 7 we will show that, unlike
stated in de Morais (2015), all solutions from Eq. (20)
are possible for realistic values of geometrical and
material properties of a DCB. 	


2.2.2 Solution on the damaged part of the interface

Assuming the solution of Eq. (8) in a form v2(x) = etx ,
where t is a constant, results in a characteristic equation
with four roots, namely

t1 = κ ξ1, t2 = −κ ξ1, t3 = i κ ξ2, t4 = −i κ ξ2, (21)

where

ξ1 =
√

−ψ +
√

ψ2 + 1, ξ2 =
√

ψ +
√

ψ2 + 1.

(22)

Since ξ1 and ξ2 are real for any value of ψ , roots t1
and t2 are always real, whereas t3 and t4 are always
imaginary. Thus, the solution of Eq. (8) can be written
as

v2(x) = sin(κ ξ2 x)D1 + cos(κ ξ2 x)D2

+ sinh(κ ξ1 x)D3 + cosh(κ ξ1 x)D4 + δc

2
,

(23)

for x ∈ [−Lcz, 0], where Di , i = 1, . . . , 4 are integra-
tion constants.

In the following sections, the problem is solved and
the integration constants are determined for each phase
for aDCBwith either prescribed rotations or prescribed
displacement.

3 DCB with prescribed rotations

Consider a DCBwith prescribed rotations as illustrated
in Fig. 1a. At the left-hand end of each arm an equal, but
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Complete analytical solutions for double cantilever beam 11

opposite rotation θ is prescribed, causing the opening of
the DCB along the interface due to equal, but opposite
concentrated moments, M acting at the point of the
prescribed rotation. This implies that the disconnected
parts of the DCB arms are in pure bending and the
shear force at the crack tip is zero during all phases.
Each of the three solution phases is derived in detail in
the following sections.

3.1 Linear-elastic phase

Using (4), (5) and (6), we can express the cross-
sectional bending moment, M1(x) and shear force,
T1(x), in the upper DCB arm as:

M1(x) = E I ϕ′
1(x) = E I

[

v′′
1 (x) − b σ(x)

μAs

]

= E I
[
v′′
1 (x) − 2 ω λ2 v1(x)

]
, (24)

T1(x) = M′
1(x) = E I

[
v′′′
1 (x) − 2 ω λ2v′

1(x)
]
,

(25)

where index 1 refers to the solution of Eq. (7), i.e. linear
elastic behaviour. Using solutions (20), Eqs. (24) and
(25) can be written as

M1(x) =
{−E I λ2

(
e−λζ1xC1 ζ 2

2 + e−λζ2xC2 ζ 2
1

)
, for ω > 1,

E I λ2 e−λζ3x
[
sin(λ ζ4 x)CM

3 + cos(λ ζ4 x)CM
4

]
, for ω < 1,

(26)

T1(x) =
{
E I λ3

(
e−λζ1xC1 ζ2 + e−λζ2xC2 ζ1

)
, for ω > 1,

E I λ3 e−λζ3x
[
sin(λ ζ4 x)CT

3 + cos(λ ζ4 x)CT
4

]
, for ω < 1,

(27)

where

CM
3 = C3(ζ

2
4 − ζ 2

3 ) + 2 C4 ζ3 ζ4,

CM
4 = −2 C3 ζ3 ζ4 + C3(ζ

2
4 − ζ 2

3 ), (28)

CT
3 = C3 ζ3 − C4 ζ4,

CT
4 = C3 ζ4 + C4 ζ3. (29)

Please recall that the solutions for the case whenω = 1
are given in “Appendix A”. Using expressions (26) and
(27), from the following boundary conditions at the
crack tip:

M1(0) = M, T1(0) = 0, (30)

we obtain

C1 = M

E I λ2(1 − ζ 2
2 )

, C2 = M

E I λ2(1 − ζ 2
1 )

, (31)

for ω > 1, and

C3 = − M ζ3

E I λ2 ζ4
, C4 = M

E I λ2
, (32)

for ω < 1.
The transition from the linear-elastic phase to the

phase of damage growth before crack propagation, is
defined by the condition

v1(0) = δ0

2
, (33)

for both ω > 1 and ω < 1 one has

v1(0) = C1 + C2 = C4 = M

E I λ2
. (34)

Hence, the moment ML , leading to the transition from
the first phase (linear-elastic behaviour) to the second
phase (damage growth before crack propagation) reads

ML = E I δ0 λ2

2
, (35)

for any value of ω (including ω = 1, as reported in
“Appendix A”).

The relative displacement of the DCB arms at the
point of application of the moment (crack mouth open-
ing displacement) is computed as

� = �a + �
ϕ
CT + �δ

CT , (36)

where

�a = 2
M a20
2 E I

, (37)

�
ϕ
CT = −2 ϕ1(0) a0 = −2

[

v′
1(0) + T1(0)

μAs

]

a0

= −2 v′
1(0) a0, (38)
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12 L. Škec et al.

�δ
CT = 2 v1(0), (39)

are the crack mouth opening displacements due to
bending of the arms behind the crack tip, rotation of
the crack tip and opening at the crack tip, respectively.
Note that displacement � is the total opening of the
crackmouth, and it takes into account both arms, which
is why factor 2 is used in expressions (37)–(39). Equa-
tion (36) can be now rewritten as

�(M) = 2

[
M a20
2 E I

− v′
1(0)a0 + v1(0)

]

, M ≤ ML ,

(40)

where v1(0) is defined in (34) and v′
1(0) can be obtained

from (20) as

v′
1(0) = −λ(ζ1 C1 + ζ2 C2) = λ(ζ4 C3 − ζ3 C4)

= −M
√
2(1 + ω)

E I λ
, (41)

in which the final expression is valid for any value of
ω. It follows that

�(M)

= M a20
E I

[

1 + 2
√
2(1 + ω)

a0 λ
+ 2

a20λ
2

]

, M ≤ ML ,

(42)

is obviously linear for any value ofω (includingω = 1,
as reported in “Appendix A”).

We will use Eq. (36) as a general solution for the
crack mouth opening displacement of a DCB, which
is valid for all three solutions phases, not only for a
DCB with prescribed rotations. However, in general
�a ,�

ϕ
CT and�δ

CT are computed differently each time.
The final forms of functions v1(x), v′

1(x), ϕ1(x),
M1(x), T1(x) and σ(x) for this phase are given in
“Appendix E.1”.

3.2 Phase of damage growth before crack propagation

In this phase, a cohesive (or damage-process) zone is
developing in front of the crack tip. As already men-
tioned, for the cohesive zone (x ∈ [−Lcz, 0]) we use
the solution (23), whereas for the zone of linear-elastic
behaviour (x ≥ 0) we use the solution (20).

There are six constants to determine, two for the
undamaged part (C1 and C2 if ω > 1, or C3 and C4 if

ω < 1) and four for the damaged part (D1, . . . , D4) in
order to obtain the complete solution. First, from

v1(0) = δ0

2
, (43)

we obtain

C1 + C2 = C4 = δ0

2
. (44)

We then impose the continuity conditions at the origin
of the co-ordinate system:

v1(0) = v2(0), ϕ1(0) = ϕ2(0), M1(0) = M2(0),

T1(0) = T2(0), (45)

where ϕ2(x) is the cross-sectional rotation on the dam-
aged part of the interface,M1(x) and T1(x) are defined
according to (26) and (27), respectively, and

M2(x) = E I ϕ′
2(x)

= E I

[

v′′
2 (x) + 2 ψ κ2

(

v2(x) − δc

2

)]

,

(46)

T2(x) = M′
2(x) = E I

[
v′′′
2 (x) + 2 ψ κ2v′

2(x)
]
,

(47)

are the cross-sectional bending moment and the shear
force on the damaged part of the interface, respectively.
Using the solution (23) these expressions can bewritten
as

M2(x) = E I κ2 {−ξ21 [sin(κ ξ2 x)D1 + cos(κ ξ2 x)D2]

+ ξ22 [sinh(κ ξ1 x)D3 + cosh(κ ξ1 x)D4]
}
, (48)

T2(x) = E I κ3 {−ξ1 [cos(κ ξ2 x)D1 − sin(κ ξ2 x)D2]

+ ξ2 [cosh(κ ξ1 x)D3 + sinh(κ ξ1 x)D4]} , (49)

where the property ξ1 ξ2 = 1 is used to simplify the
expressions. Note also that, because ϕ2(x) = v′

2(x) +
T2(x)/μAs and T1(0) = T2(0), the condition ϕ1(0) =
ϕ2(0) can bewritten as v′

1(0) = v′
2(0). From conditions

(45) we can then express constants Di (i = 1, . . . , 4),
in terms of C2 for ω > 1 or C3 for ω < 1 in the
following general form

Di (Lcz) = Di1 + C j (Lcz) Di2

D0
, i = 1, . . . , 4, (50)

where j = 2 for ω > 1 and j = 3 for ω < 1, Di1

and Di2 are constants depending on the value of ω, as
explained below, and

D0 = 2(ξ21 + ξ22 ) ≡ 4(ψ2 + 1). (51)
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Complete analytical solutions for double cantilever beam 13

As indicated in (50) and explained later, Di and C j are
not true constants, but parameters depending on Lcz . If
we set

ζ 1 =
{√

ω + √
ω2 − 1, if ω > 1

0, otherwise
,

ζ 2 =
{√

ω − √
ω2 − 1, if ω > 1

0, otherwise
,

ζ 3 =
⎧
⎨

⎩

√
1 + ω

2
, if ω < 1

0, otherwise
,

ζ 4 =
⎧
⎨

⎩

√
1 − ω

2
, if ω < 1

0, otherwise
, (52)

the values of the constants Di1 and Di2 (i = 1, . . . , 4)
are the following:

D11 = −δ0 η ξ1

[
ζ 1(ξ

2
2 + η2 ζ

2
2) + ζ 3(ξ

2
2 + η2)

]
,

D12 = 2 η ξ1(ξ
2
2 − η2)(ζ 1 − ζ 2 + ζ 4),

D21 = δ0 η2(ζ
2
2 + ζ

2
3 − ζ

2
4 − η2 ξ22 ),

D22 = 2 η2(ζ
2
1 − ζ

2
2 + 2 ζ 3 ζ 4),

D31 = −δ0 η ξ2

[
ζ 1(ξ

2
1 − η2 ζ

2
2) + ζ 3(ξ

2
1 − η2)

]
,

D32 = 2 η ξ2(ξ
2
1 + η2)(ζ 1 − ζ 2 + ζ 4),

D41 = −δ0 η2(ζ
2
2 + ζ

2
3 − ζ

2
4 + η2 ξ21 ),

D42 = −D22, (53)

with η = λ/κ . Parameter C j (Lcz) is determined from
the last (sixth) remaining boundary condition

T2(−Lcz) = 0, (54)

as

C j (Lcz) = −ξ1
[
D21 s2(Lcz) + D11 c2(Lcz)

] + ξ2
[
D41 sh1(Lcz) − D31 ch1(Lcz)

]

ξ1
[
D22 s2(Lcz) + D12 c2(Lcz)

] + ξ2
[
D42 sh1(Lcz) − D32 ch1(Lcz)

] , (55)

where j = 2, 3 and

s2(Lcz) = sin(Lcz κ ξ2), c2(Lcz) = cos(Lcz κ ξ2),

sh1(Lcz) = sinh(Lcz κ ξ1), ch1(Lcz) = cosh(Lcz κ ξ1).

(56)

To summarise, parameters Di (Lcz) needed to define
displacement field (23) within the damaged zone are

determined from (50) for any value of ω, where
C j (Lcz) is computed from (55). For ω > 1, C2(Lcz)

is defined according to (55) ( j = 2) and C1(Lcz) is
obtained from (44) as C1(Lcz) = δ0/2−C2(Lcz). For
ω < 1, C3(Lcz) is computed from (55) ( j = 3) and,
according to (44), C4 = δ0/2 for any value of Lcz .

The value of the applied moment M is increasing
during this phase and Lcz is strictly increasing with
increasing M . Hence, M will also depend on Lcz . This
function, M(Lcz), can be obtained from the following
condition

M(Lcz) = M2(−Lcz), (57)

with M2(−Lcz) computed from (48). Obviously, Lcz

and M(Lcz) can increase only up to a certain limit after
which the crack begins to propagate and we enter the
third phase of the solution. The crack starts to propagate
as soon as the relative opening at the crack tip reaches
the critical value δc or

v2(−Lcz) = δc

2
. (58)

This condition represents a highly non-linear equa-
tion in terms of Lcz , which contains trigonometric and
hyperbolic functions, and cannot be solved in a closed
form. Thus, a numerical solver is needed and in the
present work we use a simple Newton-Raphson itera-
tive procedure (more information regarding the numer-
ical solver is given in Sect. 7). We will denote the solu-
tion of (58) as Lcz and the maximum applied moment
by Mmax = M(Lcz).

According to (36), where �a can be still defined
according to (37), but now

�
ϕ
CT = −2 v′

2(−Lcz) a0, (59)

�δ
CT = 2 v2(−Lcz), (60)

the crack mouth opening can be computed as

�(Lcz) = 2

[
M(Lcz) a20

2 E I

− v′
2(−Lcz) a0 + v2(−Lcz)

]
, Lcz ∈ [0, Lcz], (61)

where v2(−Lcz) and v′
2(−Lcz) are evaluated from (23)

at the co-ordinate x = −Lcz .
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14 L. Škec et al.

3.3 Crack propagation phase

In the previous phase (damage growth before crack
propagation) the applied moment is increasing from
ML to M(Lcz) = Mmax . Since for a DCB with pre-
scribed rotations there is no shear force at the crack tip
during all phases, itmeans that only the appliedmoment
M (same at the crack tip as at the point of application) is
responsible for crack propagation. Obviously, the crack
will propagate when the applied moment reaches the
value Mmax and this value will not change as the crack
propagates. A constant value of Mmax during crack
propagation implies that the boundary conditions at the
crack tip remain constant and that Lcz = Lcz , during
crack propagation. This kind of behaviour is known as
‘steady-state crack propagation’. Thus, unlike in the
previous phase, in this phase Lcz is not a variable.

The interface is again divided in two domains, the
undamaged one (x ≥ 0), where function v1(x) is
defined according to (20), and the damaged one (x ∈
[−Lcz, 0]), where function v2(x) is defined according
to (23). Continuity conditions (45) still apply and con-
stants Di are now obtained as

Di = Di1 + C j Di2

D0
, i = 1, . . . , 4, j = 2, 3, (62)

which is similar, but not equivalent to (50), because Di

andC j are now true constants and not functions of Lcz .
On the other hand, constants D0, Di1 and Di2 are still
defined according to (51) and (53). Constant C j is now
determined from the condition

v2(−Lcz) = δc

2
(63)

as

C j = D11 s2 − D21 c2 + D31 sh1 − D41 ch1
−D12 s2 + D22 c2 − D32 sh1 + D42 ch1

, (64)

where j = 2, 3 and

s2 = s2(Lcz) = sin(Lcz κ ξ2),

c2 = c2(Lcz) = cos(Lcz κ ξ2),

sh1 = sh1(Lcz) = sinh(Lcz κ ξ1),

ch1 = ch1(Lcz) = cosh(Lcz κ ξ1). (65)

To summarise, constants Di (i = 1, . . . , 4) are
determined from (62) for any value of ω. For ω > 1,
C2 = C j , where C j is defined in (64) and C1 =
δ0/2 − C2, according to (44). For ω < 1, C3 = C j ,

where C j is defined in (64) and C4 = δ0/2, according
to (44).

Since in the crack propagation phase the applied
moment remains constant, it can be computed from
(57) as Mmax = M(Lcz). Crack mouth opening can be
then computed as

�(a) = 2

[
Mmax a2

2 E I
− v′

2(−Lcz)a

+ v2(−Lcz)
]
, a ≥ a0, (66)

where, theoretically, the value of a can go to infinity.
Note also that v2(−Lcz) and v′

2(−Lcz) are constants
and thus the function �(a) in this phase is quadratic.
Because in this phase M does not change, � does not
depend on M and we cannot define �(M).

4 DCB with prescribed displacement

In this section we consider a DCB with prescribed dis-
placement where, according to Fig. 1b, at the left-hand
end the bottom arm is pinned, whereas the upper arm is
pulled upwards. In order to prescribe a displacement�
at the left-hand side of the upper arm, a vertical force
F must be applied at the same place and in the same
direction. Thus, unlike in the case of a DCB with pre-
scribed rotations, at the cracked portion of a DCB with
prescribed displacement there is bending and shear in
the arms, which will make the problem slightly more
complex. Furthermore, because the crack propagation
in the case of a DCB with prescribed displacement is
not steady-state (Lcz changes during crack propaga-
tion), the solution for the third phase (crack propaga-
tion) will be also more complex, compared to the case
of DCBwith a prescribed rotations where Lcz = Lcz is
constant during crack propagation. Each phase of the
solution is explained in detail in following sections.

4.1 Linear-elastic phase

In this phase the boundary conditions at the crack tip
read

M1(0) = F a0, T1(0) = F, (67)

from which, using (26) and (27), constants

C1 = F(ζ1 + a0 λ)

E I λ3(1 − ζ 2
2 )

, C2 = F(ζ2 + a0 λ)

E I λ3(1 − ζ 2
1 )

, (68)
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for ω > 1 and

C3 = − F(ζ 2
3 − ζ 2

4 + a0 λ ζ3)

E I λ3 ζ4
,

C4 = F(a0 λ + 2 ζ3)

E I λ3
, (69)

for ω < 1 are determined. The limit value of the force,
FL , at which damage starts to develop at the interface
is obtained from condition (33), which gives

v1(0) = F

E I λ3

(
a0 λ + √

2(ω + 1)
)

= δ0

2
, (70)

so that

FL = E I δ0 λ3

2
(
a0 λ + √

2(1 + ω)
) . (71)

Note that a real value of FL is obtained for any value
of ω (including ω = 1, as reported in “Appendix A”).
The same applies to v1(0) in (70).

The prescribed displacement is in this case equal to
the crackmouth opening�, whichwe define according
to (36), where now we have

�a = 2

(
F a30
3 E I

+ F a0
μAs

)

, (72)

�
ϕ
CT = −2 ϕ1(0) a0 = −2 a0

[

v′
1(0) + F

μAs

]

, (73)

�δ
CT = 2 v1(0). (74)

The crack mouth opening displacement can be then
written as

�(F) = 2

[
F a30
3 E I

− v′
1(0) a0 + v1(0)

]

, F ≤ FL ,

(75)

where v1(0) is defined in (70) and

v′
1(0) = − F

E I λ2

(
2 ω + 1 + a0 λ

√
2(1 + ω)

)
. (76)

Note that although the terms responsible for shear
deformations in (72) and (73) cancel out in (75), shear
deformability is taken into account through ω in (70)
and (76). Equation (76) is valid for any value of ω

(including ω = 1, as reported in “Appendix A”). Equa-
tion (75) can be finally written as

�(F) = 2 F a30
3 E I

{

1 + 3
√
2(1 + ω)

(a0λ)3

[√
2(1 + ω)a0 λ

+ (a0 λ)2 + 1
]}

, F ≤ FL . (77)

The final forms of functions v1(x), v′
1(x), ϕ1(x),

M1(x), T1(x) and σ(x) for this phase are given in
“Appendix E.2”.

4.2 Phase of damage growth before crack propagation

In this phase, we divide the interface into the undam-
aged domain (x ≥ 0) and the damaged domain (x ∈
[−Lcz, 0]), and continuity conditions (45) between the
two still apply. Using these conditions and condition
(43) we can again define parameters Di (Lcz), where
i = 1, . . . , 4, using (50) and constantsC1 andC4 using
(44). However, solution (55) for parameters C j (Lcz),
where j = 2, 3, is no longer valid because the boundary
condition (54) in the case of prescribed displacement
becomes

T2(−Lcz) = F(Lcz), (78)

which cannot give us the solution for C j (Lcz) because
the function F(Lcz) is yet unknown. An additional
boundary condition

M2(−Lcz) = F(Lcz) a0, (79)

gives

F(Lcz) = M(Lcz)

a0
, (80)

whereM(Lcz) is defined in (57). Now, using (80), from
(78) it follows that

C j (Lcz)

= β1 s2(Lcz) + β2 c2(Lcz) + β3 sh1(Lcz) + β4 ch1(Lcz)

β5 s2(Lcz) + β6 c2(Lcz) + β7 sh1(Lcz) + β8 ch1(Lcz)
,

(81)

where j = 2, 3 and

β1 = ξ21 (D11 + a0 κ ξ2 D21)

β2 = ξ21 (−D21 + a0 κ ξ2 D11),

β3 = ξ22 (−D31 + a0 κ ξ1 D41)

β4 = ξ22 (D41 − a0 κ ξ1 D31),

β5 = −ξ21 (D12 + a0 κ ξ2 D22)

β6 = ξ21 (D22 − a0 κ ξ2 D12),

β7 = ξ22 (D32 − a0 κ ξ1 D42)

β8 = ξ22 (−D42 + a0 κ ξ1 D32). (82)

Let us recall that, because of definitions (52) and
(53), solution (81) for C j (Lcz) automatically returns
the value of C2(Lcz) for ω > 1 and C3(Lcz) for
ω < 1. Thus, in the case when ω > 1 we compute
C2(Lcz) from (81) and then C1(Lcz) follows from (44)
as C1(Lcz) = δ0/2−C2(Lcz). For ω < 1 we compute
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C3(Lcz) from (81), whereas C4 is defined in (44) as
C4 = δ0/2. Using solution (81), from (50) we can then
obtain parameters Di (Lcz), where i = 1, . . . , 4, which
are needed to compute M(Lcz) (see (57)) and finally
F(Lcz) according to (80).

As explained in Sect. 3.2, in this phase Lcz grows
from0 to a value corresponding to the initiation of crack
propagation, i.e. transition to the third phase. This is a
maximum value for Lcz , because during crack propa-
gation Lcz decreases and asymptotically tends to amin-

imum value when a → ∞, as is discussed in the next
section. Therefore, this initial maximum value of Lcz

at the initiation of crack propagation will be denoted by
Lmax
cz . In order to obtain this value, the same approach

as for a DCB with prescribed rotations is followed, i.e.
condition (58) is imposed. This is again a highly non-
linear equation in terms of Lcz , which is solved numer-
ically (in our approach Newton-Raphson procedure is
used).

The prescribed displacement in the second phase can
be computed as

�(Lcz) = 2

[
F(Lcz) a30
3 E I

− v′
2(−Lcz) a0

+ v2(−Lcz)

]

, Lcz ∈ [0, Lmax
cz ], (83)

where v2(−Lcz) and v′
2(−Lcz) are evaluated using (23)

at the co-ordinate x = −Lcz .

4.3 Crack propagation phase

As previously mentioned, in the case of a DCB with
prescribed displacement, the cohesive zone length
decreases during crack propagation from Lmax

cz asymp-
totically approaching a lower limit value Lmin

cz . This
means that the crack propagation is not steady state,
but it approaches steady state for infinitely long cracks
(Dimitri et al. 2017). Because Lmin

cz corresponds to a
steady-state crack propagation, it must have the same
value as Lcz found in the identical DCB loaded with
prescribed rotations,where crack propagation is always
steady state, i.e. Lmin

cz = Lcz . Note that both Lmax
cz

and Lmin
cz are obtained by numerically solving Eq. (58),

where constants Di (i = 1, . . . , 4) in (23) in the former
case are computed using (81) in (50), whereas in the
latter case they are computed using (55) in (50).

Continuity conditions (45) and condition (43) are
still valid in the third phase, which gives us solution
(50). From the condition

v2(−Lcz) = δc

2
, (84)

we obtain

C j (Lcz) = D11 s2(Lcz) − D21 c2(Lcz) + D31 sh1(Lcz) − D41 ch1(Lcz)

−D12 s2(Lcz) + D22 c2(Lcz) − D32 sh1(Lcz) + D42 ch1(Lcz)
, (85)

where j = 2, 3. Note that this expression is different
from (64) because here Lcz is a variable.

Function F(Lcz) is obtained from conditions (78)
and (49). Note that a is also a function of Lcz , i.e.
a = a(Lcz), and can be determined from the condition

M2(−Lcz) = F(Lcz) a(Lcz), (86)

which gives

a(Lcz) = M(Lcz)

F(Lcz)
, (87)

where M(Lcz) and F(Lcz) are defined according (57)
and (78), respectively.

Prescribed displacement can be now expressed as a
function of Lcz as

�(Lcz) = 2

[
F(Lcz) a(Lcz)

3

3 E I
− v′

2(−Lcz) a(Lcz)

+ v2(−Lcz)

]

, Lcz ∈ [Lmin
cz , Lmax

cz ], (88)

where v2(−Lcz) and v′
2(−Lcz) are evaluated using (23)

at the co-ordinate x = −Lcz .

Remark 4.1 Solutions developed in Sects. 3 and 4
(based on Timoshenko beam theory) represent general
solutions from which we can easily derive three other
particular cases, for DCBs with either rotations or dis-
placement prescribed:

1. Solutions for Euler–Bernoulli beam theory. These
solutions are obtained by simply letting the shear
modulus μ → ∞ and are presented in “Appendix
B”.

2. Solutions for a linear-elastic interface with brittle
failure. These solutions, presented in Sect. 5 for
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Timoshenko beam theory and in “Appendix C” for
Euler–Bernoulli beam theory, are obtained by let-
ting δc → δ0, which means that there is no damage
before crack propagation, i.e. only the first and the
third solution phases remain.

3. LEFM solutions. These solutions, given both for
Timoshenko beam theory in Sect. 6 and Euler–
Bernoulli beam theory in “Appendix C”, are obtai-
ned from the solutions for a linear-elasticCZMwith
brittle failure by letting δ0 → 0.

	

5 Analytical solutions for a DCB with
linear-elastic interface with brittle failure (EBT)

Here we assume that the interface behaves as linear-
elastic up to a certain point after which brittle failure
(instantaneous loss of cohesion) occurs. In our model,
this is achieved by setting δ0 = δc, which removes the
softening branch in σ −δ diagram shown in Fig. 2. This
also means that the second part of the solution (dam-
age growth before crack propagation) does not exist
and that Lcz = 0 during crack propagation.

Referring to Sect. 2.2, we can now rewrite Eq. (6) as

σ(x) =
⎧
⎨

⎩

σmax
δ(x)

δ0
, if δ(x) < δ0,

0, otherwise.
(89)

Solutions (20) for v1(x), as well as definitions (9), (12)
and (15) for λ, ω and ζi (i = 1, . . . , 4) are still valid.
Solution (23) for v2(x) is no longer applicable because
Lcz = 0.

We will now derive the solution for a DCB with a
brittle interface, first for a DCB with prescribed rota-
tions and then for a DCBwith prescribed displacement.

5.1 DCB with prescribed rotations

The first (linear-elastic) phase of the solution presented
in Sect. 3.1 applies completely to the case of linear-
elastic interface with brittle failure. Thus, no modifi-
cations in the expressions presented in Sect. 3.1 are
needed.Moreover, this phase can be now called ‘linear-
elastic behaviour before crack propagation.’ The crack
mouthopeningdisplacement in the phase of crackprop-
agation now reads

�(a) = Mmax a2

E I

[

1 + 2
√
2(1 + ω)

a λ
+ 2

a2λ2

]

, a ≥ a0,

(90)

where Mmax is the value of the applied moment when
the crack starts to propagate corresponding to ML

defined in (35).
Since for a linear-elastic interface with brittle failure

the critical energy release rate, Gc, can be written as

Gc = σmax δ0

2
, (91)

we can rewrite Eq. (9)1 as

λ = 4

√
4 b Gc

E I δ20
, (92)

and from (35) obtain

Mmax = √
E I b Gc, (93)

which is equivalent to the well-known formula

Gc = M2
max

b E I
, (94)

used to compute Gc (or the critical value of the J inte-
gral, Jc) for a DCB with prescribed rotations (Rice
1968; Freiman et al. 1973; Suo et al. 1992; Sørensen
et al. 1996). Note that Mmax and Gc are independent
of the beam theory used, i.e. the shear deformability of
the arms does not influence their values.

5.2 DCB with prescribed displacement

For a DCB with prescribed displacement the first part
of the solution presented in Sect. 4.1 is entirely valid in
the case when the interface is linear-elastic with brittle
failure. The peak load at the point when the crack starts
to propagate, Fmax , corresponds to FL defined in (71),
from where by substituting (9) and (92) it follows that

Fmax =
√
E I b Gc

a0 +
√

2
λ2

+ E I
μAs

. (95)

For the crack propagation phase we have

�(a)=2
F(a) a3

3 E I

{

1 + 3
√
2(1 + ω)

(aλ)3

[√
2(1 + ω)a λ

+ (a λ)2 + 1
]}

, a ≥ a0, (96)

where

F(a) =
√
E I b Gc

a +
√

2
λ2

+ E I
μAs

≡ λ
√
E I b Gc

aλ + √
2(1 + ω)

. (97)
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Remark 5.1 Note that presented solutions in terms of
the applied load and the crack mouth opening displace-
ment of a DCB with either prescribed rotations or pre-
scribed displacement for the case of a linear-elastic
interface with a brittle failure (EBT) are valid for all
values of ω (ω < 1, ω = 1 and ω > 1). 	


6 LEFM solutions for a DCB with prescribed
rotations and a DCB with prescribed
displacement: enhanced simple beam theory
(ESBT)

The presented model for a linear-elastic interface with
a brittle crack still allows some opening at the interface
in the linear-elastic range before crack starts to propa-
gate (δ(x) < δ0). If this initial linear-elastic behaviour
is excluded from the model by letting δ0 → 0, while
keeping Gc constant (which also results in σmax →
∞), we obtain solutions equivalent to those given by
linear-elastic fracture mechanics (LEFM). However,
we will not a-priori assume that the DCB arms act as
if they were clamped at the crack tip, which is usually
done in the SBTapproach. In thiswaywewill show that
in the limit case of LEFM the arms rotate at the crack
tip and in front of it (even though their centre-lines
there remain straight), which means that the clamped
conditions at the crack tip cannot be obtained even
for an infinitely stiff perfectly brittle interface. This is
due exclusively to the shear deformability of the arms,
which is accounted for in Timoshenko beam theory. For
Euler–Bernoulli beam theory, the limit case of LEFM
indeed corresponds to SBT and the arms do not rotate at
the crack tip and in front of it. Thus, for our LEFM-limit
solution for Timoshenko beam theorywewill adopt the
term ‘enhanced simple beam theory’ (ESBT). In the
following subsections we will present only the final
results for a DCB with prescribed rotations and a DCB
with prescribed displacement, respectively, while the
complete derivation is given in “Appendix E”.

6.1 DCB with prescribed rotations

As shown in “Appendix E”, in the limit case of LEFM
for any x ≥ 0 we have

vL
1 (x) = 0 (98)

v′L
1 (x) = M√

E I μAs
(H(x) − 1), (99)

ϕL
1 (x) = − M√

E I μAs
e−

√
μAs
E I x

, (100)

σ L(x) = −M μAs

b E I
e−

√
μAs
E I x + M

b

√
μAs

E I
D(x),

(101)

T L
1 (x) = −M

√
μAs

E I

[

e−
√

μAs
E I x + (H(x) − 1)

]

,

(102)

M1(x) = Me−
√

μAs
E I x

, (103)

where D(x) is the Dirac distribution centred at zero
(whichmeans that, rigorously speaking, the stress is not
a ‘proper’ function but a generalised one), andH(x) is
the Heaviside function defined by:

H(x) =
{
0 for x ≤ 0,
1 for x > 0.

(104)

From the above expressionswecan see that, although
there are no relative displacements at the crack tip and
in front of it (v1(x) = 0 for any x ≥ 0), rotations
at the crack tip and in front of it are still allowed to
occur when Timoshenko beam theory is used. On the
one hand, this result is expected, because it is intu-
itive that the independence of rotation and deflection in
Timoshenko beam theory allows this theory to capture
the deformation in front of the crack tip, which occurs
also in the LEFM limit. This is in contrast with Euler–
Bernoulli theory (see “Appendix E.3”), for which the
absence of displacements also means a zero rotation
and, ultimately, no deformation in front of the crack tip,
but also with the widely used assumption, made in the
SBT, that the arms of aDCBact as if theywere clamped
at the crack tip. In otherwords, to the best of the authors’
knowledge, the ability of Timoshenko’s beam theory to
capture the crack tip rotation also in the LEFM limit has
not been explored so far, although something similar
was done in EBT for a linear elastic interfacewith finite
stiffness and brittle failure (Kanninen 1973; Williams
1989). This is why we call our approach ESBT.

Moreover, because the DCB arms deform (rotate) in
front of crack tip, contact tractions at the interface, as
well as the shear forces and bending moments in the
arms, appear in front of the crack tip, with an expo-
nential decay as x → ∞. We can notice that at the
crack tip there is a jump in the shear force (from 0 to
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−M
√

μAs/E I ) which corresponds to a transition in
the bending moment diagram from the constant value
M in the cracked portion of the arms to the function
(103) in front of the crack tip. This implies that in the
limit case of LEFM there is a concentrated transversal
cohesive force exchanged at the crack tip, so that the
interface stress is the sum of a compressive smooth part
and the Dirac distribution centred at zero. Because at
the crack tip the cross-sectional rotations of the arms
must be continuous and there is a jump in the shear
force in the arms, the function v′

1(x) is also discontin-
uous due to ϕ1(x) = v′

1(x) + T1(x)/μAs .
Expressions (98)–(103) are valid only for the phase

of linear-elastic behaviour before crack propagation.
However, analogous expressions for the phase of crack
propagation can be obtained simply by substituting M
with Mmax . Finally, according to (40), we can express
the crack mouth opening displacement as

�(M) = M a20
E I

(

1 + 2

a0

√
E I

μAs

)

,

before crack propagation (M ≤ Mmax ),

(105)

�(a) = Mmax a2

E I

(

1 + 2

a

√
E I

μAs

)

,

during crack propagation (a ≥ a0), (106)

where Mmax is defined in (93) and the second term
in the parentheses in both expressions represents the
rotation of the arms at the crack tip.

6.2 DCB with prescribed displacement

As shown in “Appendix E”, in the limit case of LEFM
for any x ≥ 0 we have

vL
1 (x) = 0, (107)

v′L
1 (x) =

(
F

μAs
+ F a0√

E I μAs

)

(H(x) − 1) (108)

ϕL
1 (x) = − F a0√

E I μAs
e−

√
μAs
E I x

, (109)

σ L(x) = − F a0 μAs

b E I
e−

√
μAs
E I x

+ F

b

(

1 + a0

√
μAs

E I

)

D(x), (110)

T L
1 (x) = −F a0

√
μAs

E I

[

e−
√

μAs
E I x + (H(x) − 1)

]

− F(H(x) − 1), (111)

ML
1 (x) = F a0 e

−
√

μAs
E I x

, (112)

where again we see that even in the limit case of LEFM
the arms rotate at and in front of the crack tipwhenTim-
oshenko beam theory is used. The discussion regarding
Eqs. (98)–(103) also applies here, with the only differ-
ence that for aDCBwith prescribed displacement in the
cracked portion of the arms we have a constant shear
force and a linear distribution of bending moments.

Note that expressions (107)–(112) are valid only for
the phase of linear-elastic behaviour before crack prop-
agation. However, analogous expressions for the crack
propagation phase can be obtained by substituting F
with F(a) (defined in (116)) and a0 with a.

The crackmouth opening displacement before crack
propagation follows from (75) as

�(F) = 2 F a30
3 E I

(

1 + 3

a20

E I

μAs

+ 3

a0

√
E I

μAs

)

, F ≤ Fmax , (113)

where from (95) we have

Fmax =
√
E I b Gc

a0 +
√

E I
μAs

. (114)

During crack propagation the crackmouth opening dis-
placement is given by

�(a) = 2 F(a) a3

3 E I

(

1 + 3

a2
E I

μAs

+ 3

a

√
E I

μAs

)

, a ≥ a0, (115)

where from (97) we have

F(a) =
√
E I b Gc

a +
√

E I
μAs

. (116)

Note that in (113) and (115) the term outside the paren-
theses represents the arm deflection due to bending
according to Euler–Bernoulli beam theory, the second
term in the parentheses is due to shear deformability
of the arm, while the third term in the parentheses rep-
resents the influence of the rotation of the arms at the
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crack tip. From (116) we can obtain the critical energy
release rate of a Timoshenko DCBwith prescribed dis-
placement as

Gc = F2

b

(
a2

E I
+ 1

μAs
+ 2 a√

E I μAs

)

, (117)

where, for the sake of simplicity, we denote F(a) sim-
ply by F . Usually in the SBT solution (Ripling et al.
1971; ASTM D3433-99 2012; BS ISO 25217:2009
2009), only the first two terms in expression (117) are
taken into account because it is assumed that the DCB
arms are clamped at the crack tip. The third therm in
(117), which takes into account the rotation at the crack
tip, to the best of authors’ knowledge, has not been
recognised so far for the limit case of LEFM. Equation
(117) represents the ESBT expression for Gc.

Remark 6.1 In “Appendix E.3” we show that if Euler–
Bernoulli beam theory is used, there are no cross-
sectional rotations, shear forces or bendingmoments of
the arms in front of the crack tip. However, singularity
of contact tractions at the interface, as well as disconti-
nuity of the shear stresses and bending moments in the
arms, take place at the crack tip. These conditions are
equivalent to clamping DCB arms at the crack tip and
explain why the formulae obtained for the limit case of
LEFM in “Appendix D” indeed correspond to widely
used formulae in SBT. 	


7 Numerical examples

In this section, for a DCB with a bi-linear CZM at
the interface, the analytical solutions derived in this
paper usingTimoshenko beam theorywill be compared
to the numerical results obtained with an equivalent
finite-element (FE) model, in which the same beam
theory and CZM are used (Škec et al. 2015), and to
the Euler–Bernoulli beam theory analytical solutions
derived in “Appendix B”. The latter will allow us to
investigate the influence of shear deformability of DCB
arms on the results. LEFM solutions obtained in Sect.
6 will also be presented as limit cases for a brittle inter-
face.

Referring to Fig. 1, we consider a DCB with dimen-
sions h = 6 mm, b = 25 mm and a0 = 30 mm.
In the present analytical solution, the length of the
specimen is assumed to be infinite (L = ∞), i.e. the
crack is always sufficiently distant from the right-hand
(non-loaded) end of the DCB. Material data for the

DCB arms and the interface used in numerical exam-
ples is presented in Table 1, where it can be noted that
the maximum contact traction σmax is varied between
7.5 and 120 MPa, while keeping the area under the
traction–separation law, �, constant. This gives us 5
cases of different brittleness of the interface, where
σmax = 7.5 MPa represents an extremely ductile case
and σmax = 120 MPa an extremely brittle case. Ratio
α = δ0/δc is kept constant in the first set of examples
(α = 0.01 for all cases), whereas in the last example
is varied. Values of E and ν for the DCB arms pre-
sented in Table 1 correspond to aluminum, the shear
modulus μ is calculated as for an isotropic material,
i.e. μ = 0.5E/(1 + ν), and for the rectangular cross-
section considered, ks = 5/6.

The numerical model used is the multi-layer beam
model presented in Škec et al. (2015) where we assume
a total length of the specimen L = 200 mm. A total
number of 2000 2-node Timoshenko beam elements
are distributed evenly over the upper half of the DCB,
meaning that the element length is 0.1 mm. Such a
fine mesh is used to eliminate or at least minimise the
influence of discretisation-caused spurious oscillations
on the results (Alfano and Crisfield 2001; Škec et al.
2015). A 4-node interface element is attached to every
beam FE from x = a0 to x = L making a total of 1700
interface elements. The solution is obtained using dis-
placement control and Newton-Raphson iterative pro-
cedure. Because our numerical model has 4002 degrees
of freedom (one transverse displacement and one cross-
sectional rotation per node), in each iteration of each
increment, 4002 linear equations are solved in order
to obtain the cross-head displacement. In our analyt-
ical solution, we obtain the cross-head displacement
from a single closed-form solution. The same applies
to any other quantity we want to obtain. Furthermore,
all analytical solutions, unlike the numerical ones, are
perfectly smooth.

It is worth noting that the values reported in
Table 1 according to (9)2 for σmax = {7.5, 15, 30, 60,
120} MPa give ω = {0.32, 0.64, 1.28, 2.57, 5.13}.
Thus, we can deduce that in real-life applications both
ω < 1 and ω > 1 are possible and therefore the ana-
lytical solution should account for both cases.

In the following sections we will present the results
for the DCB first with prescribed rotations and then
with prescribed displacement.
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Table 1 Material data used in the numerical examples. Except in the last example, α = 0.01

E (GPa) ν (–) ks (–) � (N/mm) σmax (MPa) δc (mm) δ0 (mm)

70 1/3 5/6 1 {7.5, 15, 30, 60, 120} 2 �/σmax α δc

Fig. 3 Crack mouth opening displacement–applied moment
(�−M) graph for a DCB with prescribed rotations: a range
of interest, b zoom. A comparison between Timoshenko and

Euler–Bernoulli beam theory for different values of σmax , where
σmax = ∞ represents the LEFM solution

7.1 DCB with prescribed rotations

In Fig. 3, the reactionmoment,M , is plotted against the
crack mouth opening displacement, �. From Fig. 3b,
which is the zoom of Fig. 3a, we can first observe that
the results for Timoshenko beam theory from the ana-
lytical and the FE model perfectly match, as expected.
We can also note that the results approach the LEFM
solution, which is obtained from our model by letting
δ0 → 0 and σmax → ∞ (as shown in Sect. 5.1), as
σmax increases. The same behaviour can be observed
whenEuler–Bernoulli beam theory is used.Differences
between Timoshenko and Euler–Bernoulli beam theo-
ries are more pronounced for higher values of σmax and
especially for the LEFM solution.

From Fig. 4a it can be clearly seen that the crack
will start to propagate sooner (i.e. for smaller crack
mouth opening displacements) when the interface is
more brittle. The numerical model again agrees per-
fectly with the analytical solution, and there are some
differences between Euler–Bernoulli and Timoshenko

beam theory, which again become more significant as
σmax increases.

In Fig. 4b we can finally compare the cohesive
zone lengths, Lcz , for Timoshenko andEuler–Bernoulli
beam theories. As expected, Lcz , which is highly influ-
enced by the value of σmax , remains constant during
crack propagation. Differences between Timoshenko
and Euler–Bernoulli beam theory solutions are now
even more pronounced, especially for more brittle
cases. Again, the numerical results match perfectly
with those obtained from the analytical solution for
Timoshenko beam theory.

7.2 DCB with prescribed displacement

In this section, the same geometrical and material data
as in Sect. 7.1 is used for the case of a DCB with pre-
scribed displacement. We present a comparison of the
solution fromSect. 4 for Timoshenko beam theorywith
the analogous solution for Euler–Bernoulli beam the-
ory (presented in “Appendix B.2”) and the LEFM solu-
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Fig. 4 a Crack mouth opening displacement–crack length
(�−a) graph and b crack length–cohesive zone length (a−Lcz)
graph for a DCB with prescribed rotations. A comparison

between Timoshenko and Euler–Bernoulli beam theory for dif-
ferent values of σmax , where σmax = ∞ represents the LEFM
solution

tion.This is donebycomparing thevalues of the applied
force, F , computed for each model at the same value
of the crack mouth opening displacement, �. Recall
that in Sects. 4.2 and 4.3, in the solution phases which
include damage, we have defined all quantities as func-
tions of Lcz . Therefore, once the limit values Lmax

cz and
Lmin
cz have been obtained numerically, a series of suit-

able values of Lcz can be chosen for the second and the
third phase and the solution of the problem is obtained
analytically in a closed form. On the other hand, for
the purpose of the present rigorous numerical com-
parison, it is necessary to express these quantities in
terms of �. However, deriving functions F(�), a(�)

and Lcz(�) from expressions given Sects. 4.2 and 4.3
is impossible, because the functional dependence on
Lcz is highly non-linear. Thus, values of F , a and Lcz

for a certain value of � are determined numerically
usingNewton–Raphsonprocedure.This computational
effort is still negligible in comparison with the standard
FEA because we only need to solve a single non-linear
equation for each increment of �.

In Fig. 5, the reaction force, F , is plotted against the
prescribed crack mouth opening displacement, �, for
different values of σmax . Both Timoshenko and Euler–
Bernoulli beam theories are used.We can see that σmax

has a considerable influence on the results in the first

twophases (before crack starts to propagate), especially
in the second phase, when the stiffness of the DCB pro-
gressively decreases as damage is developing in front
of the crack tip. This also results in a reduction of the
peak force. In Fig. 5b it can again be seen that differ-
ences between Timoshenko and Euler–Bernoulli beam
theory become more pronounced as σmax increases,
i.e. the interface becomes more brittle. Results from
the FE model based on the Timoshenko beam theory
perfectly match the results obtained from the analyti-
cal solution. In the third phase (crack propagation) all
curves are extremely close, but they do not coincide
perfectly. This is better shown in Fig. 6a, where it can
be noted that the differences of the results in the crack
propagation phase indeed exist, but they are too small
to be appreciated on a normal scale.

In fact, a simple argument explains why the curve
corresponding to a finite value of σmax must lie above
the LEFM solution after a point which coincides with
the start of crack propagation. For finite values of σmax ,
the gradual development of the cohesive zone ahead of
the initial crack tip, before the crack starts propagating,
is responsible for the nonlinear deviation of the load-
displacement curve from the initial straight line of the
LEFMsolution, culminating in the rounded part so that,
the lower σmax , the lesser the peak load with respect to
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Fig. 5 Crack mouth opening displacement–applied force
(�−F) graph for a DCB with prescribed displacement: a range
of interest, b zoom. A comparison between Timoshenko and

Euler–Bernoulli beam theory for different values of σmax , where
σmax = ∞ represents the LEFM solution

Fig. 6 Comparison of a �−F data during crack propagation (a closer look) and b relative errors when using Euler–Bernoulli instead
of Timoshenko beam theory for different values of σmax

the theoretical peak load predicted by LEFM. In terms
of energy, this means that, in the case of a finite value
of σmax , before the crack starts propagating, less exter-
nal work is performed by the external force, F , than
for the LEFM case. However, once the DCB is com-
pletely separated, the total amount of external work
must be equal to the interface area times the area under
the traction–separation law, that is the work of separa-
tion,�. Therefore, for aDCBwith an infinite length, the
only way that the total external work spent is the same

for the two cases is that, for a finite value of σmax , the
curve lies above the case for σmax → ∞ during crack
propagation, so that the increase in external work in
this part of the curve compensates the lower amount of
external work before crack propagation.

We can define a relative error due to using Euler–
Bernoulli instead of Timoshenko beam theory as

εr = |FT − FE |
FT

, (118)
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where, for the same value of σmax , FT and FE are the
values of the applied force F at the same � computed
using Timoshenko and Euler–Bernoulli beam theory,
respectively. By comparing Fig. 6b with Fig. 5b, we
can see that this error has the highest values in the first
(linear-elastic) phase. During the second phase the rel-
ative error decreases, and the higher the strength σmax

the more rapid the reduction in the error. In the third
phase, the error is negligible.

We can also compare the relative differences in the
results with respect to LEFM solutions by introducing
factor εr defined by:

εr = | F∞ − Fσmax |
F∞

, (119)

where Fσmax and F∞ are the values of the applied
force F computed for the same crack mouth open-
ing displacement for different values of σmax and for
σmax = ∞, respectively. We can compute εr sepa-
rately for Timoshenko and Euler–Bernoulli beam the-
ory. These results are presented in Fig. 7 for Timo-
shenko beam theory and Fig. 8 for Euler–Bernoulli
beam theory. As expected, the highest values of the
relative differences are obtained for more ductile inter-
faces (with smallerσmax ). However, themost important
result is that these relative differences are extremely
small during the crack propagation phase for both beam
theories. This means that the most important parame-
ter in the CZM,�, can be computed accurately enough
using F − � data in the crack propagation phase and
the simple LEFM formula (D.7), derived in “Appendix
D” and based on Euler–Bernoulli beam theory assum-
ing that � = Gc. This is because we have already
demonstrated that the differences in the F − � curves
computed with Timoshenko and Euler–Bernoulli beam
theories are negligible in the crack propagation phase
(see Fig. 6b) for the case under examination. However,
we have to keep in mind that for anisotropic materials
(such as composites), where the shear modulus can be
significantly smaller than Young’s modulus, the differ-
ences between the results obtained with Timoshenko
and Euler–Bernoulli beam theory could be more pro-
nounced.

In Fig. 5 we noted that σmax significantly influ-
ences the peak load reached before the crack starts to
propagate and dictates how far from brittle behaviour
(LEFM) the considered CZM solution is. However,
changing the ratio, α, between δ0 and δc has a notice-
able influence on the results, too.Wewill assume that α
can vary between a value very close to 0 (meaning that

δ0 is almost negligible compared to δc) and 1 (meaning
that δ0 = δc). The latter case, which is covered in Sect.
5.2, implies that we have a linear-elastic behaviour at
the interface up to δ0 (or δc) followed by brittle failure
(leading to Lcz = 0).

In Figs. 9 and 10we can see that increasingα reduces
the stiffness of the interface. For α = 1 the phase of
damage growth before the crack tip does not exist and
the behaviour before crack propagation is linear-elastic.
We can see that the influence of α on the results is more
pronounced for σmax = 7.5 MPa than for σmax = 120
MPa, because, for the same �, smaller σmax results
in larger δc. It can be noted, however, that α does not
significantly influence the value of the peak force, espe-
cially for the brittle case.

7.3 Behaviour in front of the crack tip for a DCB with
linear-elastic interface with brittle crack and in the
limit case of LEFM

In Sect. 6 (see also “Appendix E”) we showed that in
the limit case of LEFM stresses and strains are found
in front of the crack tip when Timoshenko beam theory
is used to model the arms. In “Appendix E.3” we show
that this is not the case when Euler–Bernoulli beam
theory is used to model the arms. In this section, using
the same geometrical and material data for the bulk
material as in the previous examples, we will show that
the behaviour of a DCB with a linear-elastic interface
with brittle crack approaches the behaviour described
in Sect. 6 for the limit case of LEFM as the stiffness of
the interface increases. We will consider only the case
of a DCB with prescribed displacement and investi-
gate the case when the crack starts to propagate, which
means that in Eqs. (107)–(112) we use F(a) (defined
in (116)) and a instead of F and a0. However, in this
example we will assume that a = a0 = 30 mm, which
means that we will investigate the case when the crack
starts to propagate from its initial position. Note that,
because the crack propagation for a DCB with pre-
scribed displacement is not steady state, the presented
results would change for a > a0, eventually approach-
ing the steady-state solutions for a → ∞. These solu-
tions are given by Eqs. (98)–(103) for a DCB with pre-
scribed rotations (where Mmax should be used instead
of M for the crack propagation phase).

In this example we are again assuming that � = 1
N/mm, where � = σmax δ0/2. The values of σmax
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Fig. 7 Timoshenko beam theory. Relative differences between the values of the force F computed for a finite value of σmax and for
σmax = ∞ (LEFM solution): a crack initiation, b crack propagation

Fig. 8 Euler–Bernoulli beam theory. Relative differences between the values of the force F computed for a finite value of σmax and
for σmax = ∞ (LEFM solution): a crack initiation, b crack propagation

are varied according to σmax = 10i MPa, where i =
0, 1, 2, 3, 4, and the values of δ0 follow from δ0 =
2 �/σmax .

In Fig. 11a we see that the cross-sectional rotations
of the upper arm in front of the crack tip, ϕ1(x), reduce
as the interface becomes stiffer, but for the limit case of
LEFM, instead of approaching zero, they approach the
limit values given by function (109). According to this
formula, the rotation at the crack tip for the limit case
of LEFM is ϕ(0) = − 0.0025 rad. In Fig. 11b we see
how the contact tractions at the crack tip (σ(0) = σmax )

increase for higher values of σmax and tends to ∞ in
the LEFM limit. In front of the crack tip, there is a
distribution of compressive stresses which in the limit
case of LEFM converges to the curve given by Eq.
(110) according to which limx→0+ σ(x) = − 105.98
MPa.This shows that the area of tensile stresses reduces
to zero, while the stress at x = 0 tends to infinity. It
is shown in “Appendix E” that the resultant of these
tensile stresses tends to a finite value. In other words,
in the LEFM limit, a Dirac distribution centred at the
crack tip is found.
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Fig. 9 The influence of α = δ0/δc on the � − F results for σmax = 7.5 MPa: a range of interest, b a closer look

Fig. 10 The influence of α = δ0/δc on the � − F results for σmax = 120 MPa: a range of interest, b a closer look

Figure 12 shows the distribution of shear forces
in the upper arm in front of the crack tip, T1(x).
We can see that for higher values of the stiffness the
force rapidly drops from the positive value T1(0) =
F(a) to a negative value. In the limit case of LEFM,
according to (111), a discontinuity is found between
limx→0− T1(x) = F(a) and limx→0+ T1(x) =
−8209.26 N. In Fig. 12b, the distribution of bending
moments in the upper arm in front of the crack tip,
M1(x), is shown. At the crack tip M1(x) = F(0)a,
which for the limit case of LEFM, according to (112),
isM1(0) = 25435.47 Nmm.

It is worth noting that using Euler–Bernoulli beam
theory in the limit case of LEFM we have ϕ1(x) =
σ(x) = T1(x) = M1(x) = 0 for x > 0, but ϕ1(0) =
0, σ(0) = ∞, T1(0) = F(a) and M1(0) = F(a)a at
the crack tip (x = 0).

8 Conclusions

In this paper we have derived complete analytical solu-
tions for DCB specimens where the arms are modelled
using simple beam theories (Timoshenko or Euler–
Bernoulli). At the interface, three differentmodels have
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Fig. 11 Distribution of: a cross-section rotations of the upper
arm, ϕ1(x) and b contact tractions at the interface, σ(x), in front
the crack tip for aDCBwith prescribed displacement and a linear-

elastic interface with a brittle crack for different values of σmax .
The presented results correspond to the start of the crack propa-
gation from the initial crack (a = a0 = 30 mm)

Fig. 12 Distribution of: a shear forces, T1(x) and b bending
moments,M1(x), in the upper arm in front of the crack tip for a
DCB with prescribed displacement and a linear-elastic interface

with a brittle crack for different values of σmax . The presented
results correspond to the start of the crack propagation from the
initial position (a = a0 = 30 mm)

been assumed: (i) a quasi-brittle bi-linear CZM, (ii) a
liner-elastic CZM with brittle failure and (iii) a per-
fectly brittle and infinitely stiff interface (correspond-
ing to LEFM solutions). The models obtained for each
mentioned type of interface are called ‘cohesive crack
model’ (CCM), ‘enhanced beam theory’ (EBT) and

‘enhanced simple beam theory’ (ESBT), respectively.
In our approach EBT solutions are obtained fromCCM
solutions by removing the softening branch (responsi-
ble for progressive damage) from theCZM.From there,
ESBT solutions can be obtained by letting the interface
stiffness go to infinity. We have introduced a new term
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ESBT because we show that in the limit case of LEFM,
EBTmodel does not correspond to ‘standard beam the-
ory’ (SBT) model where the DCB arms act as if they
were clamped at the crack tip. In ESBT, the arms are
allowed to rotate at and in front of the crack tip, which is
due exclusively to the shear deformability of the arms.
This is why for the case when the arms are not shear-
deformable (Euler–Bernoulli beam theory), ESBT cor-
responds to SBT. We have also derived the CCM, EBT
and SBT solutions for the case when Euler–Bernoulli
beam theory is used to model the arms by simply let-
ting the shear stiffness of the arms go to infinity. All the
mentioned solutions are derived for two different types
ofDCB: onewith prescribed rotations andonewith pre-
scribed displacement. The presented solutions allow us
to easily compute the crack mouth opening displace-
ment, applied load (moment or force), contact tractions
at the interface, displacement and rotations of the arms
ahead of the crack tip, and shear forces and bending
moments in the arms for different DCB models.

The main novel contributions of the paper are as
follows:

1. The complete analytical solutions given in a uni-
fied and compact form for DCBs (either with pre-
scribed rotations or prescribed displacement) with
a bi-linear CZM at the interface.

2. The complete analytical solutions given in a unified
and compact form for DCBs (either with prescribed
rotations or prescribed displacement) with linear-
elastic interface with brittle failure. It is shown that
such EBT solutions, compared to CMM solutions,
are very accurate in the phase of crack propagation.
However, they are not able to capture the quasi-
brittle behaviour before crack propagation.

3. The solutions for the limit case of LEFM which,
in the case of Timoshenko beam theory (ESBT),
show that at and in front of the crack tip the
arms are allowed to rotate even if the interface is
infinitely stiff. This implies that Timoshenko beam
theory is, in a way, capable of capturing the realis-
tic behaviour of the DCB in front of the crack tip
and that the widely used assumption that in LEFM
the arms act as if they were clamped at the crack is
not necessary. However, we show that this assump-
tion is still valid when the arms are modelled as
Euler–Bernoulli beams.

4. An expression for the critical energy release rate,
Gc, for a DCBwith prescribed displacement is pro-

posed, which, to the best of authors’ knowledge,
is original. This expression, compared to the for-
mula derived under the assumption that the arms
are clamped at the crack tip, has an additional term
which is dependent on the shear deformability of
the arms and accounts for the rotations of the arms
at the crack tip. If the arms are non-deformable in
shear (Euler–Bernoulli beam theory), the expres-
sion for Gc corresponds to the one obtained under
the assumptions that the arms are clamped at the
crack tip.

Future work will include the assessment of the accu-
racy of the formula for Gc which in LEFM limit case
takes into account the rotations of the arms at the crack
tip. Similar analyses have been already done by Biel
and Stigh (2008) and the authors of the present work
(Škec et al. 2018). Based on the data obtained from the
experiments or more sophisticated numerical models,
our intention is to compare the accuracy of this formula
with formulae from BS ISO 25217:2009 (2009).

It is also worth noting that, using the approach pre-
sented in this paper, obtaining the analytical solution
for a DCB with trapezoidal CZM at the interface using
the Timoshenko beam theory to model the arms should
be straight-forward and will also be covered in future
work.

Free software made available

All the results are implemented in a software appli-
cation with a user-friendly graphic interface where
Euler–Bernoulli or Timoshenko beam theory for the
arms and CCM, EBT or ESBT models for the inter-
face can be selected. Results of the analysis can be
plotted and exported. Because the computations are
based on the presented analytical solutions, the results
in our software are obtained instantaneously, even on
a regular laptop computer. The software is free and
can be downloaded at http://dx.doi.org/10.17633/rd.
brunel.7223795.

Supplementary data

Supplementary material related to this article can be
found online at http://dx.doi.org/10.17633/rd.brunel.
7212218.
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Appendix A: Solutions for Timoshenko beam
theory when ω = 1

Appendix A.1: DCB with prescribed rotations

In the phase of linear-elastic behaviour, Eqs. (24) and
(25) become

M1(x) = E I
[
v′′
1 (x) − 2 λ2 v1(x)

]
, (A.1)

T1(x) = E I
[
v′′′
1 (x) − 2 λ2 v′

1(x)
]
, (A.2)

which, after substituting (20) for the case when ω = 1,
gives

M1(x) = −E I λ2 e−λx
[

C5 + C6

(

x + 2

λ

)]

,

(A.3)

T1(x) = E I λ3 e−λx
[

C5 + C6

(

x + 1

λ

)]

. (A.4)

From here, using the boundary conditions (30) we
obtain

C5 = M

E I λ2
, C6 = − M

E I λ
. (A.5)

From boundary condition (33) it follows that

v1(0) = C5 = M

E I λ2
, (A.6)

which is the same result obtained in (34) for ω > 1
and ω < 1. This means that the moment ML can be
expressed using (35) for any value of ω (including
ω = 1). Because

v′
1(0) = C6 − λ C5 = − 2 M

E I λ
, (A.7)

is equivalent to setting ω = 1 in (41), Eq. (42) is valid
for any value of ω, and for ω = 1 it can be written as

�(M) = M a20
E I

[

1 + 4

a0 λ
+ 2

(a0 λ)2

]

, M ≤ ML . (A.8)

In the phase of damage growth before crack propa-
gation, from boundary condition (43) we obtain

C5 = δc

2
. (A.9)

From the continuity conditions (45) we obtain

Di (Lcz) = Di1 + C6(Lcz) Di2

D0
, i = 1, . . . , 4, (A.10)

where the constants Di1 and Di2 read

D11 = −δ0 η ξ1(ξ
2
2 + η2), D12 = 2

ξ1

κ
(ξ22 − η2),

D21 = δ0 η2(1 − η2 ξ22 ), D22 = 4
η

κ
,

D31 = −δ0 η ξ2(ξ
2
1 − η2), D32 = 2

ξ2

κ
(ξ21 + η2),

D41 = −δ0 η2(1 + η2 ξ21 ), D42 = −D22. (A.11)

Parameter C6(Lcz) is defined as for C j (Lcz) in (55).
Expressions (57) for M(Lcz) and (61) for �(Lcz) are
valid also for ω = 1.

In the phase of crack propagation, constant C5 is
still obtained from (A.9) and constants Di from the
expression analogous to (62), i.e.

Di = Di1 + C6 Di2

D0
, i = 1, . . . , 4, (A.12)

where C6 is defined as for C j in (64). The crack mouth
opening displacement �(a) is computed according to
(66).

Appendix A.2: DCB with prescribed displacement

Using expressions (A.1) and (A.2), fromboundary con-
ditions (67) we obtain

C5 = F(a0 λ + 2)

E I λ3
, C6 = − F(a0 λ + 1)

E I λ2
. (A.13)

From boundary condition (33) we obtain

v1(0) = C5 = F(a0 λ + 2)

E I λ3
, (A.14)

which gives as the limit value of the force

FL = E I δ0 λ3

2(a0 λ + 2)
. (A.15)

123

http://creativecommons.org/licenses/by/4.0/


30 L. Škec et al.

The latter result implies that Eq. (71) is valid also for
the case when ω = 1. Furthermore, (A.14) and

v′
1(0) = − F(2 a0 λ + 3)

E I λ2
(A.16)

show that expressions (70) and (76) are valid also for
ω = 1. Thus, the crack mouth opening can be com-
puted according to (77) as

�(F) = 2 F a30
3 E I

[

1 + 6 (a0 λ + 1)2

(a0λ)3

]

, F ≤ FL . (A.17)

For the second phase of the solution we again obtain
(A.9) and (A.10) from condition (43) and the continu-
ity conditions (45), respectively. Constant C6(Lcz) is
defined as for C j (Lcz) in (81), where the definitions
(A.11) for constants Di1 and Di2 (i = 1, . . . , 4) must
be used.We can express F(Lcz) using (80) and�(Lcz)

using (83).
For the phase of crack propagation we compute Di

(i = 1, . . . , 4) according to (A.12), where C6(Lcz) is
computed asC j (Lcz) in (85)with definitions (A.11) for
constants Di1 and Di2 (i = 1, . . . , 4). Constant C5 is
still defined according to (A.9). Functions F(Lcz) and
a(Lcz) are computed from (78) and (87), respectively.
Finally, �(Lcz) can be computed from (88).

Appendix B: Solutions for Euler–Bernoulli beam
theory

In this section, we will assume that DCB arms are
shear-undeformable by letting μ → ∞. This will sim-
ply transform solutions for Timoshenko beam theory
presented in Sects. 3 and 4 into solutions for Euler–
Bernoulli beam theory.

According to (9)2 and (10)2, in the limit of μ → ∞
both ω and ψ tend to 0. This means that on the undam-
aged part of the interface the solution will be defined
as for the case when ω < 1 in Sect. 2.2.1. Setting ω =
ψ = 0, from (15) and (22), respectively, we now obtain

ζ3 = ζ4 =
√
2

2
, and ξ1 = ξ2 = 1. (B.1)

The displacements of the upper arm on the undam-
aged and damaged part of the interface read

v1(x) = e−λE x [sin(λE x)C3

+ cos(λE x)C4] , for x ≥ 0, (B.2)

v2(x) = sin(κ x)D1 + cos(κ x)D2 + sinh(κ x)D3

+ cosh(κ x)D4 + δc

2
, for x ∈ [−Lcz, 0], (B.3)

respectively, where λE = √
2λ/2. Definitions (B.2)

and (B.3) are now used to solve the problems of a DCB
with either rotations or displacement prescribed.

Appendix B.1: DCB with prescribed rotations

The three-phase solution procedure reported in Sect. 3
is followed. For the liner-elastic phase we have

C3 = −C4, C4 = M

E Iλ2
= M

2 E I λ2E
(B.4)

and

ML = E I δ0 λ2

2
= E I δ0 λ2E . (B.5)

The crack mouth opening displacement in the linear-
elastic phase can be expressed using (42) as

�(M) = M a20
E I

(

1 + 1

a0 λE

)2

, M ≤ ML . (B.6)

For the phase of damage growth before crack prop-
agation, we use (50) to determine constants Di (i =
1, . . . , 4), where now C j (Lcz) = C3(Lcz). From (44)
we know that

C4 = δ0

2
. (B.7)

By taking into account (B.1), from (51) we get

D0 = 4, (B.8)

and from (53)

D11 = − δ0 ηE (1 + 2 η2E ), D12 =2 ηE (1 − 2 η2E ),

D21 = − 4 δ0 η4E , D22 =4 η2E ,

D31 = − δ0 ηE (1 − 2 η2E ), D32 =2 ηE (1 + 2 η2E ),

D41 =D21, D42 = − D22, (B.9)

where ηE = λE/κ . Constant C3(Lcz) is expressed
from (55) for j = 3 and it reads

C3(Lcz) = −D21 sin(κ Lcz) + D11 cos(κ Lcz) + D41 sinh(κ Lcz) − D31 cosh(κ Lcz)

D22 sin(κ Lcz) + D12 cos(κ Lcz) + D42 sinh(κ Lcz) − D32 cosh(κ Lcz)
. (B.10)

Equations (57) and (48) give the solution for M(Lcz)

which is then used to numerically compute the value of
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Lcz from Eq. (58) so that Mmax = M(Lcz). The crack
mouth opening displacement in the second phase is
computed from (61), where v2(Lcz) and v′

2(Lcz) are
obtained from (B.3).

In the third phase we obtain constants Di (i =
1, . . . , 4) from (62) by using expressions (B.8) and
(B.9) for D0, Di1 and Di2 and assuming that now
C j = C3. Equation (64) now becomes

C3 = D11 sin(κ Lcz) − D21 cos(κ Lcz) + D31 sinh(κ Lcz) − D41 cosh(κ Lcz)

−D12 sin(κ Lcz) + D22 cos(κ Lcz) − D32 sinh(κ Lcz) + D42 cosh(κ Lcz)
. (B.11)

The crack mouth opening displacement in the phase of
crack propagation is computed according to (66).

Appendix B.2: DCB with prescribed displacement

In the linear-elastic phase constants (69) for the solu-
tion (B.2) become

C3 = − F a0
2 E I λ2E

, C4 = F(a0 λE + 1)

2 E Iλ3E
. (B.12)

From (71) we obtain

FL = E I δ0 λ3E

1 + a0 λE
. (B.13)

The crack mouth opening displacement is obtained
from (77) as

�(F) = 2
F a30
3 E I

{

1 + 3

2(a0λE )3
[2 a0 λE

+ 2(a0 λE )2 + 1
]}

, F ≤ FL . (B.14)

In the second phase, we define Di (Lcz) (i =
1, . . . , 4) according to (50), where we use (B.8) and
(B.9) and assume that C j (Lcz) = C3(Lcz). The latter
is defined according to (81) as

C3(Lcz) = β1 sin(κ Lcz) + β2 cos(κ Lcz) + β3 sinh(κ Lcz) + β4 cosh(κ Lcz)

β5 sin(κ Lcz) + β6 cos(κ Lcz) + β7 sinh(κ Lcz) + β8 cosh(κ Lcz)
, (B.15)

where

β1 = D11 + a0 κ D21, β2 = −D21 + a0 κ D11,

β3 = −D31 + a0 κ D41, β4 = D41 − a0 κ D31,

β5 = −D12 − a0 κ D22, β6 = D22 − a0 κ D12,

β7 = D32 − a0 κ D42, β8 = −D42 + a0 κ D32,

(B.16)

with constants Di1 and Di2 (i = 1, . . . , 4) defined
in (B.9). F(Lcz) is computed according to (80), where
M(Lcz) is defined in (57). The limit value Lmax

cz is deter-
mined from Eq. (58) which is solved numerically. The
crack mouth opening displacement is computed from
(83).

In the third phase we use (85) to express C3(Lcz) as

C3(Lcz) = D11 sin(κ Lcz) − D21 cos(κ Lcz) + D31 sinh(κ Lcz) − D41 cosh(κ Lcz)

−D12 sin(κ Lcz) + D22 cos(κ Lcz) − D32 sinh(κ Lcz) + D42 cosh(κ Lcz)
, (B.17)

where Di1 and Di2 (i = 1, . . . , 4) are defined in (B.9).
Function F(Lcz) is obtained from condition (78) and
(49), whereas a(Lcz) is expressed using (87). Finally,
the crack mouth opening displacement for the third
phase can be computed according to (88).

Appendix C: Euler–Bernoulli beam theory solu-
tions for a DCB with linear-elastic interface with
brittle failure (EBT)

Appendix C.1: DCB with prescribed rotations

In the linear-elastic phase before crack propagation
we compute the crack mouth opening displacement
according to (B.6), whereas for the crack propagation
phase we have
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�(a) = Mmax a2

E I

(

1 + 1

a λE

)2

, a ≥ a0, (C.1)

where Mmax is defined in (93).

Appendix C.2: DCB with prescribed displacement

The crack mouth opening displacement in the linear-
elastic phase before crack propagation is computed
according to (B.14). The peak load, as defined in (95),
now becomes

Fmax =
√
E I b Gc

a0 + 1
λE

. (C.2)

In the crack propagation phase, the crack mouth open-
ing displacement is computed as

�(a) = 2
F(a) a3

3 E I

{

1 + 3

2(a λE )3
[2 a λE

+2(a λE )2 + 1
]}

, a ≥ a0, (C.3)

where according to (97) we now have

F(a) =
√
E I b Gc

a + 1
λE

. (C.4)

Appendix D: LEFM solutions for a DCB using
Euler–Bernoulli beam theory (SBT)

Appendix D.1: DCB with prescribed rotations

Letting μ → ∞ in (105) and (106), or λE → ∞
in (B.6) and (C.1), results in the following expressions
for the crackmouth opening displacement when Euler–
Bernoulli beam theory is used:

�(M) = M a20
E I

,

before crack propagation (M ≤ Mmax ),

(D.1)

�(a) = Mmax a2

E I
,

during crack propagation (a ≥ a0), (D.2)

where Mmax is defined in (93). In contrast to formu-
lae (105) and (106), where Timoshenko beam theory
is used, from these expressions, it is obvious that for
Euler–Bernoulli beam theory the arms of a DCB in the
limit case of LEFM indeed act as if they were clamped
at the crack tip.

Appendix D.2: DCB with prescribed displacement

By letting μ → ∞ in (113) and (115), or λE → ∞ in
(B.14) and (C.3), we can derive the expressions for the
crackmouth opening displacement for Euler–Bernoulli
beam theory as

�(F) = 2 F a30
3 E I

,

before crack propagation (F ≤ Fmax ), (D.3)

�(a) = 2 F(a) a3

3 E I
,

during crack propagation (a ≥ a0), (D.4)

where

Fmax =
√
E I b Gc

a0
and F(a) =

√
E I b Gc

a
.

(D.5)

The last expression gives the widely used LEFM for-
mula for Gc in the case of a DCB with prescribed dis-
placement

Gc = F2 a2

b E I
, (D.6)

where again, for the sake of simplicity, we replace F(a)

simply by F . By combining (D.4) and (D.6) we get

Gc = F2

b E I

(
3 E I �

2 F

) 2
3 = 3

√

9 �2 F4

4 b3 E I
. (D.7)

This formula requires the knowledge (experimental
measurement) of only � and F , whereas the knowl-
edge of the crack length a is not relevant. Note that
expression for Gc according to Timoshenko beam the-
ory which requires the knowledge of only � and F
can be derived, too, by combining (117) and (115), but
this procedure is less-straight forward and it requires
solving of a cubic equation. This result is not reported
for the sake of simplicity and because in Sect. 7.2 we
demonstrate that sufficiently accurate calculation ofGc

can be accomplished using formula (D.7).

Appendix E: Expressions of v1, v′
1, ϕ1, σ , T1 and

M1 for the limit case of LEFM

We already mentioned that for the limit case of LEFM
δ0 = δc → 0 and σmax → ∞, which results in λ → ∞
and ω → ∞. This means that only the solution for
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v1(x) when ω > 1 (see (20)) is considered in the limit
case of LEFM, i.e.

v1(x) = e−λζ1x C1 + e−λζ2x C2. (E.1)

ConstantsC1 andC2 are defined according to (31) for a
DCBwith prescribed rotations, or according to (68) for
a DCB with prescribed displacement. In the following
subsections we will present the limit (LEFM) values of
functions v1, v′

1, ϕ1, σ , T1 and M1 for both cases.

Appendix E.1: DCB with prescribed rotations

Substituting (31) for C1 and C2 in (E.1) results in

v1(x) = M

E I λ2

(
e−λζ1x

1 − ζ 2
2

+ e−λζ2x

1 − ζ 2
1

)

= M

E I λ2(ζ1 − ζ2)

(
ζ1 e

−λζ1x − ζ2 e
−λζ2x

)
, (E.2)

where the relation ζ1ζ2 = 1 is used to simplify the
expression. If we introduce the following notation

ρ1 = ζ1/λ =
√

χ +
√

χ2 − 1/λ4, (E.3)

ρ2 = ζ2/λ =
√

χ −
√

χ2 − 1/λ4, (E.4)

where χ = E I/(2μAs), we can rewrite (E.2) as

v1(x) = M

E I λ2(ρ1 − ρ2)

(
ρ1 e

−λ2ρ1x − ρ2 e
−λ2ρ2x

)
. (E.5)

Multiplying (E.3) and (E.4) and because ζ1ζ2 = 1, one
then has that λ2ρ2 = 1/ρ1, so that we can write:

v1(x) = M

E I λ2(ρ1 − ρ2)

(
ρ1 e

−λ2ρ1x − ρ2 e
− x

ρ1

)
. (E.6)

Note that in the exponent of the second term in
the parenthesis we avoid λ2ρ2 and use 1/ρ1 instead
because

lim
λ→∞ ρ1 = √

2χ =
√

E I

μAs
, and lim

λ→∞ ρ2 = 0, (E.7)

show that the limit value of λ2ρ2, unlike 1/ρ1, is less
convenient for computer implementation. From (E.6)
it then follows that

lim
λ→∞ v1(x) = 0, for x ≥ 0. (E.8)

According to (89) we can write

σ(x) = σmax

δ0
δ(x) = 2 σmax

δ0
v1(x), (E.9)

which after substituting (E.6) and using definition (9)1
for λ becomes

σ(x) =
M

(
λ2 ρ2

1 e−λ2ρ1x − e
− x

ρ1

)

b
(
ρ2
1 − 1

λ2

) . (E.10)

Therefore, we have σ(0) = Mλ2/b and
σ L(0) = lim

λ→∞ σ(0) = ∞, (E.11)

whereas

σ L(x) = lim
λ→∞ σ(x)

= −M μAs

b E I
e−

√
μAs
E I x

, for x > 0, (E.12)

from which it follows that

σ L(0+) = −M μAs

b E I
. (E.13)

From (E.10) it can be shown that the interface stress
profile for finite values of λ starts from a positive
value at x = 0, decreases to zero at a coordinate x =
x0 = ln(ρ1/ρ2)/

[
λ2(ρ1 − ρ2)

]
, continues decreasing

to a minimum, negative value, at a coordinate xmin =
2x0, and then remains negative, but also increases
and approaches zero asymptotically for x → ∞. For
λ → ∞, x0 → 0 and xmin → 0. Stress profiles for dif-
ferent values of λ are reported in Fig. 11b. Note that the
integral of the stress profile σ L(x) in (E.12) is finite:
∫ ∞

0+
σ L(x)dx = −M

b

√
μAs

E I
(E.14)

and therefore, for the vertical equilibrium to be satis-

fied the resultant F0 = b lim
c→0

c∫

0
σ L(x)dx of the infinite

stress σ L(0) in (E.11) must be finite:

F0 + b
∫ ∞

0+
σ L (x)dx = 0 �⇒ F0 = M

√
μAs

E I
, (E.15)

where F0 is a tensile concentrated force at the crack
tip pointing downwards. Hence, the LEFM-limit stress
profile, σ L , is not a proper function but a generalised
one, which is the sum of (E.12) and of F0/bmultiplied
by a Dirac distribution D centred at zero:

σ L(x) = −M μAs

b E I
e−

√
μAs
E I x

+M

b

√
μAs

E I
D(x), for x ≥ 0. (E.16)

Thus, according to (5), we can define the distribution
of loads on the upper layer in the limit case of LEFM as

qL(x) = −σ L(x) b = M μAs

E I
e−

√
μAs
E I x
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− M

√
μAs

E I
D(x), for x ≥ 0. (E.17)

Because T ′
1 (x) = q(x), we can write

T L
1 (x) =

∫

qL (x)dx + c1

= − M

√
μAs

E I
e−

√
μAs
E I x − M

√
μAs

E I
H(x) + c1,(E.18)

where

H(x) =
{
0 for x = 0,
1 for x > 0,

(E.19)

is Heaviside (step) function and c1 is an integration
constant. Note that H(x) is dimensionless, whereas
the dimension of D(x) is the inverse of a length.
Using the boundary condition T L

1 (0) = 0, we obtain
c1 = F0 = M

√
μAs/E I , so that

T L
1 (x) = −M

√
μAs

E I

[

e−
√

μAs
E I x

+ (H(x) − 1)] , for x ≥ 0, (E.20)

Because T1(x) = M′
1(x), it follows that the distribu-

tion of bending moments on the upper layer for the
limit case of LEFM reads

ML
1 (x) =

∫

T L
1 (x)dx = Me−

√
μAs
E I x

−M

√
μAs

E I

∫

(H(x) − 1)dx + c2, (E.21)

where c2 is an integration constants. Because
∫
(H(x)−

1)dx = 0 for any x ≥ 0, conditionML
1 (0) = M gives

c2 = 0, and we finally have

ML
1 (x) = Me−

√
μAs
E I x

, for x ≥ 0. (E.22)

Note that, as expected, T L
1 (∞) = ML

1 (∞) = 0.
From (E.6) we can obtain

v′
1(x) = −

M
(
ρ2
1 e−λ2ρ1x − ρ2

2 e
− x

ρ1

)

E I (ρ1 − ρ2)
, (E.23)

which gives

v′
1(0) = −M(ρ1 + ρ2)

E I
, and

v′L
1 (0) = lim

λ→∞ v′
1(0) = − M√

E I μAs
. (E.24)

The value of v′
1(x) for the limit case of LEFM can be

obtained from (E.23) as

v′L
1 (x) = lim

λ→∞ v′
1(x) = 0, for x > 0, (E.25)

which, because v′L
1 (0) is defined in (E.24), shows that

the function v′L(x) has a discontinuity at the crack tip
(x = 0), too. Thus, we can write

v′L
1 (x) = M√

E I μAs
(H(x) − 1), for x ≥ 0. (E.26)

Finally, from ϕ1(x) = v′
1(x)+T1(x)/μAs for the limit

case of LEFM we can obtain

ϕL
1 (x) = − M√

E I μAs
e−

√
μAs
E I x

, for x ≥ 0, (E.27)

which gives the rotation of the upper layer at the crack
tip ϕL

1 (0) = −M/
√
E I μAs .

Appendix E.2: DCB with prescribed displacement

Substituting (68) in (E.1) gives

v1(x) = F

E I λ3(ζ1 − ζ2)

[
ζ1(ζ1 + a0 λ)e−λζ1x

− ζ2(ζ2 + a0 λ)e−λζ2x
]
, (E.28)

or

v1(x) = F

E I λ2(ρ1 − ρ2)

[
ρ1(ρ1 + a0)e

−λ2ρ1x

− ρ2(ρ2 + a0)e
− x

ρ1

]
. (E.29)

Using (E.9) we can obtain

σ(x) = F

b (ρ1 − ρ2)

(
ρ1 + a0

ρ2
e−λ2ρ1x

− ρ2 + a0
ρ1

e
− x

ρ1

)

, (E.30)

from which it follows that

σ(0) = F λ2

b
(a0 + ρ1 + ρ2) and

σ L(0) = lim
λ→∞ σ(0) = ∞, (E.31)

whereas

σ L(x) = lim
λ→∞ σ(x)

= − F a0 μAs

b E I
e−

√
μAs
E I x

, for x > 0, (E.32)

so that

σ L(0+) = − F a0 μAs

b E I
. (E.33)

The interface stress profile is now very similar to the
one defined in (E.12) for the case of a DCB with pre-
scribed rotations. It can be shown that for (E.32) zero
stress and minimum stress correspond to
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x0 = 1

λ2(ρ1 − ρ2)
ln

ρ1(a0 + ρ1)

ρ2(a0 + ρ2)
, and

xmin = 1

λ2(ρ1 − ρ2)
ln

ρ2
1 (a0 + ρ1)

ρ2
2 (a0 + ρ2)

, (E.34)

respectively, where as λ → ∞, both x0 → 0 and
xmin → 0. Considering that Fa0 in (E.33) and M
in (E.13) both come from the same moment bound-
ary condition - (30)1 for the case of prescribed rota-
tions and (67)1 for the prescribed displacement - these
two results are obviously the same, i.e. σ L(0+) =
−μAsM1(0)/(bE I ). Again, in the limit case where
λ → ∞, the resultant of the tensile stresses at the
interface tends to a finite limit value F0. The integral
of the limit stress profile σ L(x) in (E.32) has a finite
value which reads
∫ ∞

0+
σ L(x)dx = − F a0

b

√
μAs

E I
, (E.35)

and therefore, for the vertical equilibriumof the top arm

to be satisfied the resultant F0 = b lim
c→0

c∫

0
σ L(x)dx of

σ L(0) in (E.31) must be finite:

−F + F0 + b
∫ ∞

0
σ L(x)dx = 0

�⇒ F0 = F

(

1 + a0

√
μAs

E I

)

, (E.36)

where F0 is a tensile concentrated force at the crack
tip pointing downwards. Note that using (30) and (67),
(E.15) and (E.36) may be uniquely expressed as F0 =
T1(0) + M1(0)

√
μAs/E I . Thus, similar as in (E.16),

we can write

σ L (x) = − F a0 μAs

b E I
e−

√
μAs
E I x

+ F

b

(

1 + a0

√
μAs

E I

)

D(x), for x ≥ 0, (E.37)

and from there qL(x) = −σ L(x) b gives

qL (x) = F a0 μAs

E I
e−

√
μAs
E I x

−F

(

1 + a0

√
μAs

E I

)

D(x), for x ≥ 0. (E.38)

We can then write

T L
1 (x) =

∫

qL(x)dx + c1 = −F a0

√
μAs

E I
e−

√
μAs
E I x

− F

(

1 + a0

√
μAs

E I

)

H(x) + c1. (E.39)

From T L
1 (0) = 0 we obtain c1 = F0 = F(1 +

a0
√

μAs/E I ) so that

T L
1 (x) = −F a0

√
μAs

E I

[

e−
√

μAs
E I x + (H(x) − 1)

]

− F(H(x) − 1), for x ≥ 0. (E.40)

From here, by taking into account that
∫
(H(x) −

1)dx = 0 for any x ≥ 0, we obtain

ML
1 (x) =

∫

T L
1 (x)dx = F a0 e

−
√

μAs
E I x

, (E.41)

where the integration constant c2 vanishes due to
ML

1 (0) = Fa0. Note that, as expected, T L
1 (∞) =

ML
1 (∞) = 0.
From (E.29) we can obtain

v′
1(x)

= −
F
[
ρ2
1 (ρ1 + a0)e−λ2ρ1x − ρ2

2 (ρ2 + a0)e
− x

ρ1

]

E I (ρ1 − ρ2)
, (E.42)

which gives

v′
1(0) = − F

E I

[
E I

μAs
+ 1

λ2
+ a0(ρ1 + ρ2)

]

, (E.43)

and

v′L
1 (0) = lim

λ→∞ v′
1(0) = − F

μAs
− F a0√

E I μAs
. (E.44)

The value of v′
1(x) for the limit case of LEFM is

obtained from (E.42) as

v′L
1 (x) = lim

λ→∞ v′
1(x) = 0, for x > 0, (E.45)

which shows that the function v′L
1 (x) has a discontinu-

ity at the crack tip (x = 0). Thus, we can write

v′L
1 (x) =

(
F

μAs
+ F a0√

E I μAs

)

×(H(x) − 1), for x ≥ 0. (E.46)

We can finally obtain

ϕL
1 (x) = v′L

1 + T L
1 (x)

μAs

= − F a0√
E I μAs

e−
√

μAs
E I x

, for x ≥ 0, (E.47)

where the rotation of the upper layer at the crack tip is
ϕL
1 (0) = −Fa0/

√
E IμAs .
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Appendix E.3: Euler–Bernoulli beam theory

In the limit case of LEFM for Euler–Bernoulli beam
theory (μ → ∞) Eqs. (98)–(103) for a DCB with pre-
scribed rotations become

vL
1 (x) = v′L

1 (x) = ϕL
1 (x) = T L

1 (x) = 0, (E.48)

σ L(x) = D(x), (E.49)

ML
1 (x) = M(1 − H(x)). (E.50)

Equations (107)–(112) for a DCB with prescribed dis-
placement become

vL
1 (x) = v′L

1 (x) = ϕL
1 (x) = 0, (E.51)

σ L(x) = D(x), (E.52)

T L
1 (x) = F (1 − H(x)), (E.53)

ML
1 (x) = F a0(1 − H(x)). (E.54)

These expressions confirm that the DCB arms do not
deform at and in front of the crack tip when they
are modelled as Euler–Bernoulli beams. Analogous
expressions for the phase of crack propagation could
be obtained by substitutingM withMmax , F with F(a)

and a0 with a.
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