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Abstract: Origami has provided various interesting applications in science and engineering. Appropriate 

representations and evaluation on crease patterns play an important role in developing an innovative origami 

structure with desired characteristics. However, this is generally a challenge encountered by scientists and 

engineers who introduce origami into various fields. As most practical origami structures contain repeated unit 

cells, graph products provide a suitable choice for the formation of crease patterns. Here, we will employ 

undirected and directed graph products as a tool for the representation of crease patterns and their corresponding 

truss frameworks of origami structures. Given that an origami crease pattern can be considered to be a set of 

directionless crease lines which satisfy the foldability condition, we demonstrate that the pattern can be exactly 

expressed by a specific graph product of independent graphs. It turns out that this integrated 

geometric-graph-theoretic method can be effectively implemented in the formation of different crease patterns, 

and provide suitable numbering of nodes and elements. Furthermore, the presented method is useful in 

constructing the involved matrices and models of origami structures, and thus enhances configuration processing 

for geometric, kinematic or mechanical analysis on origami structures. 
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Introduction 

Origami is the art of folding 2D materials, such as a flat sheet of paper, into 3D objects with desired shapes. 

Since early 1980s, origami has evolved into a fertile scientific field connecting diverse disciplines, creating an 

enormous variety of new designs with various applications. In recent years, innovative engineering research and 

mathematical studies have promoted the rapid development of origami as an emerging research field. In 

particular, the interesting mechanical properties of origami structures have attracted the interest of 

mathematicians, engineers and scientists [1-5]. For instance, the structural stiffness and geometric shape-shifting 

properties of some origami structures have attracted considerable attention, be it in fashion, architecture, 

medicine, or engineering, from airbags to flexible electronics to deployable space structures [1, 6, 7]. Notable 

theoretical progress has been made in the fields related to origami including tree theory, computational origami 

theory, optimization methods for rigid origami, and geometric mechanics of origami structures [8]. 

Recently, using origami techniques, reprogrammable structures have been developed from 2D sheets through 

folding along well-designed creases. A significant advantage of origami-inspired structures is enhanced 

flexibility in performance, because their properties are neatly coupled to an alterable crease pattern [3]. 

Origami-inspired structures with the periodic Miura pattern and the non-periodic Resch pattern have been 

studied [9]. It has been shown that the Miura fold pattern has a negative in-plane Poisson’s ratio. Wei et al. [8] 

have shown that the in-plane and out-of-plane Poisson’s ratios are equal in magnitude, but opposite in sign, 

independent of material properties. In addition, the strong load bearing capability of the Resch pattern has been 

demonstrated and attributed to the unique way of folding. Kuribayashi et al. [10] introduced the six-fold origami 

pattern into biomedical engineering and proposed an origami-inspired stent graft. Hunt et al. [11] studied the 

buckling mechanism of a thin cylindrical shell under torsion and presented origami patterns with twist buckling. 

Also, they investigated the critical buckling loads and buckling mechanisms of the equivalent truss models. 
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It is worth noting that, either designing a new pattern or investigating specific features of these origami-inspired 

structures, modeling and involved analysis on the structures are necessary. Thus, configuration processing (or 

pre-processing) for origami structures is important. Nevertheless, during geometric, kinematic or mechanical 

analysis, the configuration processing for a large-scale structure is usually tedious and time-consuming. Limited 

studies have been presented for providing powerful and integrated configuration processing methods for these 

innovative structures. Kaveh and Koohestani [12, 13] have developed graph-theoretical methods for the 

formation of structural configurations and numerical models. Thereafter, a submodel could be expressed in 

algebraic forms and different functions could be utilized for the formation of the entire structural model, where 

the functions mainly contain rotations, translations, reflections and projections, or a combination of these 

operations. Because many properties of original models can be evaluated by considering those of their 

submodels (or generators), complex computations can be greatly simplified [14, 15]. As most practical origami 

structures contain repeated unit cells, graph products provide a suitable choice for the formation of crease 

patterns and structural models. The degree-4 rigid origami known as the Miura pattern is a classic flat-foldable 

tessellation which retains a single degree-of-freedom during the folding process. In fact, the secret of the 

intriguing properties of a folded origami model largely relies on the design of an appropriate crease pattern on 

the 2D sheet. However, most geometric parameters such as coordinates of the vertices, angles between edge lines 

and the lengths of edges, which are not important in graph theory, have not been integrated into a conventional 

graph-theoretic approach. On the contrary, these geometric parameters are very important in the developability, 

flat-foldability, or rigid-foldability of an origami pattern, and thus they should be somehow incorporated.  

Here, an integrated geometric-graph-theoretic framework will be proposed for origami patterns and their 

corresponding truss frameworks, to include both geometry and connectivity in the mathematical notation. A 

significance of this work is that we employ some undirected and directed graph products to represent crease 
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patterns of origami structures and equivalent pin-jointed structures, to enhance configuration processing for 

geometric, kinematic or mechanical analysis on origami structures. The weights of nodes and edge lines assigned 

to the subgraphs are used to describe the geometric configuration of the origami patterns. Appropriate element 

ordering and nodal numbering, and efficient computations and expressions for involved matrices of the origami 

structures can be obtained using this geometric-graph-theoretic approach. 

The content of this work is as follows. Section 2 describes different types of graph products for representing 

crease patterns. Then, in Section 3, a series of origami patterns are represented by undirected or directed graph 

products, to verify the effectiveness of the proposed method. Finally, conclusions are given in Section 4. 

Graph Products for the Representation of Crease Patterns 

Given that an origami crease pattern can be considered to be a set of directionless crease lines which satisfy the 

foldability condition [16, 17], here we demonstrate that the pattern can be exactly expressed by a specific graph 

product of independent graphs. By definition, a graph S consists of a set of nodes (or vertices) N(S), and a set of 

members (or edges) M(S) [18]. A relation of incidence for the nodes and members of a graph is denoted by an 

adjacency matrix A(S). The matrix A(S) of an undirected graph with n nodes is an n n  symmetric matrix, 

whose entry Aij(S) in the ith row and jth column is given by 

  
1 if node  is connected to node  by a member

S
0 otherwise

ij

i j 


A  (1) 

A graph is called to be a directed graph, provided that orientations are assigned to its members [14]. Then, a 

modified adjacency matrix  SA  for this directed graph with n nodes can be defined as 

  
1 if node  is connected to node  and directed from node  to node  

S
0 otherwise

ij

i j i j 


A  (2) 

In Eq. (2), the marix  SA  is an n n  nonsymmetric matrix. 
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Cartesian product of undirected graphs  

Many origami structures with degree-4 vertices (e.g., the Miura-ori) have symmetric patterns and thus can be 

considered to be the Cartesian product of simple graphs K and H, expressed as K□H. In fact, the Cartesian 

product of subgraphs K and H can be formed by taking copies of H for all the nodes of K and joining these 

copies [13, 18, 19]. By using the Boolean operation for the Cartesian product, we can denote the corresponding 

adjacency matrix A(K□H) as 

 A(K□H) = (K) (H)
h kn nA I I A    (3) 

in which 
knI  is the k kn n  identity matrix, kn  is the number of nodes of the graph K, 

hnI  is the h hn n  

identity matrix, hn  is the number of nodes of the graph H, and   describes the Kronecker product of the 

matrices. For example, the Cartesian product of two simple graphs K=P2 and H=P3 (Fig. 1a-b) is illustrated in 

Fig. 1(c). Note that a graph P is known as a path graph whose nodes and members lie on a single straight line 

[19]. Consequently, the adjacency matrix A(K□H) for the generated graph shown in Fig. 1(c) can be directly 

computed from Eq. (3), given by 

 A(K□H)=
1 0 0 0 1 0

0 1 1 0
0 1 0 1 0 1

1 0 0 1
0 0 1 0 1 0

   
                  

   

0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 1 0
0 1 0 1 0 1
0 0 1 0 1 0

 
 
 
 
 
 
  

 (4) 

 

Figure 1  The Cartesian product and strong Cartesian product of two simple graphs 

Strong Cartesian product of undirected graphs 

The strong Cartesian product of two undirected graphs K and H is given by K⊠H [20], which is another type of 

Boolean operation. The nodes of graph K are denoted by , (K)k ki j N , and a member (K)k ki j M  if it is 
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connected by two nodes ki  and kj . Similarly, we denote that a member (H)h hi j M  is connected by two 

nodes , (H)h hi j N  of graph H. Then, for different nodes ( , )k hi i i  and ( , )k hj j j  of the strong Cartesian 

product K⊠H, it satisfies 

 Nodes i and j are connected by a member 

if , and (H)

elseif , and (K)

elseif (K), and (H)

k k h h

h h k k

k k h h

i j i j

i j i j

i j i j

M

M

M M

 
  


 

 (5) 

In Eq. (5), the nodes ( , ), ( , ) (K) (H)k h k hi i i j j j N N    . Thus, the adjacency matrix A(K⊠H) of the strong 

Cartesian product is computed by 

 A(K⊠H) = (K) (H) (K) (H)
h kn nA I I A A A      (6) 

For example, Fig. 1(d) plots the strong Cartesian product of the above-mentioned graphs K=P2 and H=P3. In this 

figure, the diagonal members exist because the third condition in Eq. (5) is satisfied. In fact, the involved 

adjacency matrix A(K⊠H) for the graph shown in Fig. 1(d) can be obtained from Eq. (3), written as 

 A(K⊠H)=
1 0 0 0 1 0 0 1 0

0 1 1 0 0 1
0 1 0 1 0 1 1 0 1

1 0 0 1 1 0
0 0 1 0 1 0 0 1 0

     
                              

     

0 1 0 1 1 0
1 0 1 1 1 1
0 1 0 0 1 1
1 1 0 0 1 0
1 1 1 1 0 1
0 1 1 0 1 0

 
 
 
 
 
 
  

 (7) 

Directed graph products 

Type I directed graph product, which is denoted by 1( )  and proposed by Kaveh and Koohestani [13], is 

utilized to generate triangular patterns for multi-fold origami. For two directed graphs K and H, any two nodes 

( , )k hi i i  and ( , )k hj j j  are connected if one of these six conditions holds: (i) k ki j , (H)h hi j M ; (ii) 

k ki j , (H)h hj i M ; (iii) h hi j , (K)k ki j M ; (iv) h hi j , (K)k kj i M ; (v) (K)k ki j M , (H)h hi j M ; 

(vi) (K)k kj i M , (H)h hj i M . It should be noted that, for directed graphs, (K)k ki j M  holds if and only if 

node ki  is connected to node kj  and directed from node ki  to node kj . 

To effectively generate the directed products of graphs K and H, we can also concern the corresponding 

adjacency matrix A(K 1( ) H), given by 
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 A(K 1( ) H) =
T T

(K) (H) (K) (H) (K) (H)
h kn nA I I A A A A A        (8) 

where (K)A  and (H)A  denote the adjacency matrices of undirected graphs of K and H, and (K)A  and 

(H)A  can be obtained from Eq. (2). Some examples of this product are plotted in Fig. 2, whereas the graphs S1, 

S2 and S3 are directed graphs. The member 23 of the directed graphs S2 and S3 in Fig. 2(b-c) has opposite 

directions, which indicates the manner for generating the diagonal members. 

 

Figure 2  Type I directed graph products of several graphs S1, S2 and S3 

Algebraic weighted graphs  

Graph products can generate tessellations with new connectivity [13, 15]. However, certain geometric 

parameters such as angles between edge lines and the lengths of edges, which are not important in graph theory, 

have not been integrated into a conventional graph-theoretic approach [21-23]. In fact, these parameters are 

important in the developability, flat-foldability, or rigid-foldability of an origami pattern [24-26], and thus they 

should be somehow incorporated. 

In this case, an integrated geometric-graph-theoretic framework is proposed, to include both geometry and 

connectivity in the mathematical notation. Weighted graphs, which may be either directed or undirected, are 

utilized to incorporate the lengths of crease lines. In other words, each edge of a graph is associated with a 

numerical value, called a weight [22]. Then, an entry Aij(S) in the ith row and jth column of a weighted graph S 

is defined as follows 
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  
if node  is connected to node  by a member

S
0 otherwise

ij

ij

l i j
A

 


 (9) 

where ijl  denotes the length of the involved crease line. To effectively distinguish the directions of the creases 

for an origami crease pattern, 1   in Eq. (9) is denoted for a mountain fold, while 1    for a valley fold. 

For a non-weighted graph ijl  should be replaced by unity. Thereafter, Eq. (9) reduces to either Eq. (1) or Eq. 

(2). In addition, zero weights should be assigned to the members which need to be removed. In practice, the sum 

of absolute weights of a graph can be a measure of the complexity of crease processing. 

Furthermore, a turning angle between two adjacent edge lines is defined as the weight of the common node, to 

describe the 2D geometric configuration of the subgraphs of an origami pattern. That is, the i-th entry Ni(S) of a 

weighted graph S in 2D space is defined as 

  Si iN   (10) 

where the turning angle 180 180i      is the directed angle (the counterclockwise direction is positive [27]) 

from vector 1N Ni i-


 to vector 1N Ni i+


. The notation in Eq. (10) is specifically for path graphs and a general 

2D graph, because it can neatly describe the orientation of the graph in 2D space. Note that the turning angles 

i  of the two endpoints of an unclosed graph can be evaluated with respect to +x axis. 

In more general cases, nodal coordinates should be associated with a specific node to accurately describe the 

origami pattern and its subgraphs in 3D space. Then, the i-th entry Ni(S) of a weighted graph S in 3D space is 

defined as 

    TSi i i ix y zN   (11) 

where xi, yi, and zi denote the coordinates of node i in 3D space. 

Further operations employed for graph products  

We have introduced several types of undirected/directed graph products, which are capable of generating a series 

of origami patterns. Nevertheless, other operations can be further employed to enhance this capability. These 
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additional operations include intersection (e.g., 21S S ), ring sum (e.g., 21S S ) and union (e.g., 21S S ). They 

are useful for subtracting or adding groups of nodes and/or members. Furthermore, we can define other 

operations to strengthen these capabilities for the formation of complicated origami patterns. Complementary 

examples will be presented in the next section. 

Note that the operands are assumed to have the same number of nodes. Then, the involved matrices of the 

resulted graph can be easily computed from the matrices of the operands. Moreover, a node should be deleted, on 

condition that it is left non-connected to the other nodes [18]. 

Examples of Origami Structures 

In this section, different types of origami structures are developed using the introduced integrated 

geometric-graph-theoretic framework. 

Crease pattern and truss framework of the Miura-ori 

Figure 3(a) shows the crease pattern of the Miura-ori with 6 6  basic units. In fact, it can be generated from the 

Cartesian product of a straight line P13 and a piecewise parallel polylines G1. As the acute angle and edge lengths 

of the parallelogram for the basic unit in the presented example are respectively 0 70    and h vl l l  , the 

turning angle between the adjacent edge lines of graph G1 is 0(180 2 ) 40i        . All the members of 

graphs P13 and G1 have the same length, l. Moreover, the truss framework corresponding to the Miura-ori, shown 

in Fig. 3(b), is the strong Cartesian product of graphs P13 and G1. This origami-based truss structure has 169 

nodes and 600 truss members. First-order analysis shows that this equivalent truss structure is both kinematically 

and statically indeterminate, as the rank of the corresponding 507 600´  equilibrium matrix is 456. Acc
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                       (a) P13□G1                                (b) P13G1 

Figure 3  Crease pattern and truss framework of the Miura-ori, respectively, denoted by: (a) the Cartesian 

product, and (b) the strong Cartesian product of two graphs 

Numerical simulation on these origami structures is also performed, to predict the folding motion. Note that the 

origami model shown in Fig. 3(a) is kinematically investigated using the internal mechanism mode extracted 

from the equilibrium matrix and the nonlinear prediction-correction method [28, 29]. Besides, the equivalent 

truss model shown in Fig. 3(b) is analyzed using ABAQUS, whereas each vertex denotes pin-joint node and each 

member is simulated by a three-node quadratic displacement truss element (to avoid the instability and 

undesirable deflection of the truss member) [29]. Displacement-based static analysis is utilized for following the 

folding process, and the geometric nonlinearity is considered. Figure 4 shows typical configurations of the 

origami model and the corresponding truss framework during transformations. Both structures exhibit similar 

configurations and transformations during the folding process. Note that the folding is verified to be feasible and 

approximately rigid-foldable, as the maximum strain of the truss members is less than -31.5 10´  along the 

whole process. This rigid-folding behavior is in good agreement with the results reported by recent studies [17, 

29, 30]. Thus, both structural models can simulate the single degree-of-freedom folding behavior of the Miura 

origami tessellation. Importantly, this Miura-ori structure shows satisfactory folding ratio, whereas the ratio of 
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the folded area to the unfolded one is about 0.0451. 

 

Figure 4  Rigid folding of an origami model with Miura pattern 

Representation of different degree-4 origami structures 

The design of appropriate crease patterns is the first step in the development of innovative origami structures 

with desired characteristics. However, generally this is a challenge encountered by not only origami artists, but 

also by scientists and engineers who exploit origami patterns in various fields (Tachi [9]; Sareh and Guest [17]). 

In fact, an integrated mathematical framework for the development of such patterns can be useful as a 

representational tool, and can inform computer programs generating structural concepts. Here, some degree-4 

origami patterns different from the classical Miura-ori are represented by the Cartesian products of different 

undirected graphs (Fig. 5). 
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(a) G2□G3                                       (b) G4□G5 

Figure 5  Crease patterns of two different degree-4 origami patterns obtained from the Cartesian products of 

appropriate subgraphs 

The subgraphs G2 and G3 shown in Fig. 5(a) are the longitudinal and transverse polylines [16, 17, 31] of the 

origami tessellations, respectively, where 2( ) 30i G    , 3( ) 60i G    , and the length (weight) of each edge 

line is ijl l= . As the corresponding Cartesian product contains only two types of four-fold vertices, it allows us 

to determine the flat-foldability in a much easier way. Interestingly, this graph product, which is taken as a 

modified Miura origami, has been verified to be flat-foldable [25, 31]. As expected, the angles at each four-fold 

vertex satisfy the following condition 

 
4

1

360i
i




  , and 1 3 2 4 180          (12) 

Eq. (12) can guarantee the local flat-foldability for each vertex of a four-fold origami pattern [25, 31], and it is a 

necessary condition for the global foldability [32, 33]. For instance, the four angles illustrated in Fig. 5(a) are 

respectively 1 135   , 2 75   , 3 45   , and 4 105   . Note that the truss structure for this model can be 

directly obtained from the strong Cartesian product of graphs G2 and G3. 

On the other hand, our method can be extended to represent various four-fold origami patterns. Fig. 5(b) shows a 

more general four-fold origami model than the Miura-ori. It is obtained from the Cartesian product of the graphs 

G4 and G5, which are two arbitrary polylines. On condition that the rigid-foldability or the flat-foldability of the 

structure is guaranteed by the reported foldability conditions [25, 31, 32], the proposed method provides an 
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effective way for developing different four-fold origami structures. For example, as far as the local 

flat-foldability of the origami pattern shown in Fig. 5(b) is concerned, only the angles associated with a small 

number of vertices need to be evaluated by Eq. (12), because the origami pattern obtained from subgraphs 

contain periodic cells and limited types of vertices. On the contrary, all vertices should be generally evaluated by 

conventional methods.  

Furthermore, Figure 6 shows distribution patterns of nonzero entries (i.e., nz) of involved matrices for the 

four-fold origami shown in Fig. 5(a). For instance, the equilibrium matrix H in Fig. 6(d) is utilized to describe 

the balance between the internal forces of the members and the external loads [34]. The left zero space of H 

contains internal mechanism modes, which can effectively predict the motion of a foldable structure [29, 35]. In 

Fig. 6, the symbol · is utilized to indicate a non-zero entry. 

 

Figure 6  Distribution patterns of nonzero entries of involved matrices for the four-fold origami shown in Fig. 

5(a): (a-c) adjacency matrices of the subgraphs G2, G3, and the graph product G2□G3, (d) equilibrium matrix of 

the equivalent truss framework denoted by the strong Cartesian product G2G3 

It is important to point out that, the involved matrices of the origami models can be evaluated from those of the 

subgraphs in a much easier manner [12, 15]. For example, the adjacency matrix shown in Fig. 6(c) exhibits a 
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good matrix form and significant regularity. It can be effectively computed from the matrices of the generators 

of the graph, which are shown in Fig. 6(a-b). In addition, Fig. 6(d) describes the equilibrium matrix of the 

equivalent truss framework denoted by the strong Cartesian product G2G3. Recall that this matrix has a less 

profile and better distributions of nonzero entries, compared with conventional sparse matrices. This is because 

graph products for origami structures provide an appropriate element ordering and nodal numbering, which can 

reduce the profile of involved matrices [12, 13]. Thus, equilibrium matrices, stiffness matrices and other 

involved matrices can have better forms and numerical properties. 

Kinematic analysis shows that this 198 215´  equilibrium matrix is severely singular. Thus, in the unfolded 

state, the truss structure of the origami pattern has up to 63 internal mechanism modes, whereas six rigid-body 

motions have been excluded. As a result, because of potential singularity [28, 36-38], it is difficult to fold the 

origami structures from the fully deployed state along the ideal motion path. 

Six-fold origami patterns based on directed graph products 

As shown in Fig. 7, two different types of six-fold origami models are generated using the directed graph 

products described in the previous section. Fig. 7(a) plots an origami with Kresling pattern [11], [39]. 

Interestingly, it comes from the type I product of two directed graphs 91:8 )
D P（

 and 91:8 )
D G（

, which indicate 

that the members 1-8 of both directed graphs P9 and G9 with 9 nodes are in positive directions. In this study, the 

notations 
1: 2( , , : )d

ni j k t k
D P+ -  and 

1: 2( , , : )d
ni j k t k

D G+ -  describe directed path and directed subgraph with n nodes, whereas 

member i, is double, member j is in positive direction and member k1 to k2 with increment t, are in negative 

direction [13]. Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Mechanical Design. Received September 29, 2018;
Accepted manuscript posted January 17, 2019. doi:10.1115/1.4042791
Copyright © 2019 by ASME

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 03/03/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

(a) Kresling pattern                         (b) Waterbomb pattern 

Figure 7  Crease patterns of a six-fold origami expressed by directed graph products and further operations 

In Fig. 7(b), two directed graph products S1 and S2 depict two origami patterns with twist buckling modes [11], 

given by 

 3 1 71:2 ) 1:2:5 ,2:2:6 )1 ( )D P D PS   
（ （

, and 3 1 71:2 ) 1:2:5 ,2:2:6 )2 ( )D P D PS   
（ （

 (13) 

where 31:2 )
D P（

 and 31:2 )
D P（

 respectively denote the members 1-2 of the graphs P3 are in positive and negative 

directions, and the vertical graph 71:2:5 ,2:2:6 )
D P （

 in Fig. 7(b) denotes that the members 1, 3, and 5 are in positive 

directions and the members 2, 4, and 6 are in negative directions. As the directions of the horizontal graphs are 

different, the diagonal members in the generated patterns are different. Moreover, we utilize the operator for the 

ring sum of the directed graph products S1 and S2. As a result, a different type of origami model with Waterbomb 

pattern (Chen et al. [7]; Kuribayashi et al. [22]) is developed. As shown in Fig. 7(b), the intersecting line of the 

two graphs and the involved nodes have been removed. 

Notably, by combining with cycles, weighted graphs and subgraphs, we can develop crease patterns for 3D 

origami structures with complex geometry. As shown in Fig. 8, crease patterns of cylinders associated with the 

Kresling pattern are studied. 
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Figure 8  Cylinders expressed by directed graph products of weighted graphs in 3D space: (a) a directed cycle 

61:6
D C+  and its modified adjacency matrix  6CA ; (b) a weighted graph 51:4

D C+  in 3D space; (c) a typical 

cylinder obtained by 6 1 51:6 1:4
( )D C D P+ +´ ; (d) a twisted cylinder with the Kresling pattern generated by 

6 1 51:6 1:4
( )D C D G+ +´  

Conventional cylinders such as the one shown in Fig. 8(c) can be directly generated from the directed cycle and 

path graphs, given by 

 6 1 51:6 1:4
( )S D C D P    (14) 

where the geometry of the graphs is not integrated. In fact, as shown in Fig. 8(d), a specific cylinder with the 

Kresling pattern can be obtained by twisting a conventional thin cylinder [11, 39, 40]. It retains cyclic symmetry 

[41, 42], and keeps equivalent under proper rotations along the principal axis. Its crease pattern can be accurately 

established by 

 6 1 51:6 1:4
( )S D C D G    (15) 

where the subgraph 5G  is a directed weight graph in 3D space. Based on Eq. (11), the coordinates of each node 

of the graph are wriiten as  

      T T

5 cos( ) sin( ) ( 1)i i i i t tG x y z r i i r i i i hN       , [1, 5]iÎ  (16) 
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where r is the radius of the cylinder, t  is the twisted angle between the layers of the cylinder, h is the height of 

one layer, and they satisfy [40] 

 tan( )th r   (17) 

In Eq. (17),   is the angle between the weighted graph shown in Fig. 8(b) and the horizontal plane, and 

indicates the twisted state of the cylinder with the Kresling pattern [40]. For instance, 0   when the cylinder 

is folded. It is important to point out that Eq. (17) is based on infinitesimal bar stretching assumption (i.e., 

undeformed bar length is utilized to describe the global geometry of the structure). 

Based on the graph product computed by Eq. (15) and the FEM analysis using ABAQUS, the equivalent truss 

framework of the twisted cylinder with the Kresling pattern (see Fig. 8d) is investigated to study the deformation 

process. Figure 9 illustrates four typical configurations of the cylinder in the deformation process, where 

1000mmr =  and 1200mmh =  at the initial configuration. It shows that this cylinder can be fully folded from 

the initial configuration, where the bar members get stresses when deformed. Notably, the deformation process 

agrees well with the results presented by Cai et al. [40]. Therefore, the proposed graph products provide a good 

choice for numerical models or finite element modeling of the origami structures. 

       

Figure 9  Deformation process of truss framework of a cylinder with the Kresling pattern 

Conclusions and Discussions 

Using undirected and directed graph products, we can describe a large variety of origami patterns (e.g., the 

Miura pattern, different four-fold patterns, Kresling pattern, and Waterbomb pattern), and easily construct the 

involved matrices and simplified structural models of these structures. On the basis of the graph products and the 

properties of their generators, the topological properties of origami models can be evaluated in a much easier 
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manner. For example, the adjacency matrices of the models can be computed from those of their generators. 

Furthermore, the presented method can be extended to the formation of other types of structures and their 

numerical models. Using different operators of graph products, we can obtain the compact representation of 

origami structures with complex patterns. More importantly, because the graph products and their operators 

introduced in this study are systematic, computer programs would be easily generated and exploited. Admittedly, 

the origami patterns described by the present approach are somewhat periodic. Robust methods for more 

general patterns with complex geometries or non-periodic characters should be concerned in the future study. 
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