
A Novel Reinforcement Learning Algorithm for Virtual

Network Embedding

Haipeng Yaoa,∗, Xu Chena, Maozhen Lib, Peiying Zhanga, Luyao Wangc

aState Key Lab. of Networking and Switching Tech., Beijing Univ. of Posts and Telecom.,

P.R. China
bDepartment of Electronic and Computer Engineering, Brunel University London,

Uxbridge, UB8 3PH, UK
cBeijing Advanced Innovation Center for Future Internet Technology, Beijing University of

Technology, Beijing, P.R. China

Abstract

Network virtualization enables the share of a physical network among multiple

virtual networks. Virtual network embedding determines the effectiveness of

utilization of network resources. Traditional heuristic mapping algorithms fol-

low static procedures, thus cannot be optimized automatically, leading to sub-

optimal ranking and embedding decisions. To solve this problem, we introduce

a reinforcement learning method to virtual network embedding. In this paper,

we design and implement a policy network based on reinforcement learning to

make node mapping decisions. We use policy gradient to achieve optimization

automatically by training the policy network with the historical data based on

virtual network requests. To the best of our knowledge, this work is the first to

utilize historical requests data to optimize network embedding automatically.

The performance of the proposed embedding algorithm is evaluated in compar-

ison with two other algorithms which use artificial rules based on node ranking.

Simulation results show that our reinforcement learning is able to learn from

historical requests and outperforms the other two embedding algorithms.
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1. Introduction

The combination of network virtualization and software defined networks is

considered as the foundation towards the next generation of Internet architec-

ture [1, 2]. Network virtualization enables the coexistence of multiple hetero-

geneous virtual networks on a shared network [3, 4, 5, 6]. For Internet Service5

Providers (ISPs), it enables new business models of hosting multiple concurrent

network services on their infrastructures. Decisions for embedding are chal-

lenging problems for ISPs since it determines the effectiveness of utilization of

network resources. A sub-optimal embedding algorithm will decrease the overall

capacity of the infrastructure and lead to cost of revenue for ISPs. A virtual10

network consists of several virtual nodes (e.g. virtual routers), connected by

a set of virtual links. The purpose of virtual network embedding is to map

virtual networks to a shared physical network while providing the requests with

adequate computing and bandwidth resources.

However, the virtual network embedding problem has been proved to be NP-15

hard [7]. As a result, a large number of heuristic algorithms have been proposed

[8, 9, 10, 11], but most of them rely on artificial rules to rank nodes or make

mapping decisions. The parameters in these algorithms are always fixed and

cannot be optimized, making the embedding decisions sub-optimally. On the

other hand, in prior works, the information about substrate network and the20

knowledge about virtual network embedding hidden in historical network re-

quest data have always been overlooked. Historical network requests are a good

representation of temporal distribution and resource demands in the future.

In recent years, big data, machine learning and artificial intelligence have

exciting breakthroughs achieving state of the art results such as natural lan-25

guage understanding and object detection. Machine learning algorithms process

a large amount of data collected during a period and automatically learn the

statistical information from the data to give classification or prediction. Rein-

forcement learning, as a widely-used technique in machine learning, has shown

a great potential in dealing with complex tasks, e.g., game of go [12], or com-30
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plicated control tasks such as auto-driving and video games [13]. The goal of

a reinforcement learning system (or an agent) is to learn better policies for se-

quential decision making problems with an optimal cumulative future reward

signal [14].

In this paper, we introduce reinforcement learning into the problem of virtu-35

al network embedding to optimize the node mapping process. Similar to earlier

works [8, 9], our work is based on the assumption that all network requests

follow an invariable distribution. We divide our network request data into a

training set and a testing set, to train our reinforcement learning agent (RLA)

and evaluate its performance respectively. We devise an artificial neural net-40

work called policy network as the RLA, which observes the status of substrate

network and outputs node mapping results. We train the policy network with

historical network request data using policy gradient through back propagation.

An exploration strategy is applied in the training stage to find better solutions,

and a greedy strategy is applied in evaluation to fully evaluate the effectiveness45

of the RLA. Extensive simulations show that the RLA is able to extract knowl-

edge from historical data and generalize it to incoming requests. To the best of

our knowledge, this work is the first to utilize historical network requests data

and policy network based reinforcement learning to optimize virtual network

embedding automatically. The RLA outperforms two representative embedding50

algorithms based on node ranking in increasing long-term average revenue and

acceptance ratio, while making a better utilization of network resources.

The rest of this paper is organized as follows. We present related works in

Section 2. Section 3 gives a detailed introduction about the virtual network

embedding problem and our network model. The design and implementation of55

the reinforcement learning agent together with its training and testing process

are shown in Section 4. In Section 5, we evaluate the performance of the RLA,

and we conclude this paper in Section 6.
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2. Related Work

Virtual network embedding involves two stages - node mapping and link60

mapping. Some works, e.g., [10, 11], solve the problem using a one-stage ap-

proach and assign virtual nodes and links coordinately using linear programming

or mixed integer programming(MIP). For example, a rounding-based approach

is applied in R-ViNE and D-ViNE algorithms [10] to achieve a linear program-

ming relaxation of the MIP. However, these methods demand certain additional65

constraints such as location requirements to extend the network topology to

an augmented graph so that the computing space can be greatly reduced. In

other works [8, 9, 15], node mapping and link mapping are solved independent-

ly. Firstly, the substrate nodes are ranked based on their availability measured

with certain rules. Then, a greedy node mapping strategy is applied where70

the priority of mapping is decided by rank results. Substrate nodes with more

available resources will be considered first in the node mapping stage. Finally,

the virtual links are mapped to the shortest path that has enough bandwidth

resources between fixed nodes. Yu et al. [8] focus on path splitting and migra-

tion in link mapping problem, which means a virtual link may be mapped to75

several substrate links and existing link mapping may change according to the

condition of substrate network. However, those approaches require the support

of the substrate network and might not be available. Inspired by PageRank

[16] that ranks the relative importance of Web pages, the authors of [9] pro-

posed an algorithm based on Markov random walk to solve the problem of node80

ranking and mapping. The availability of each substrate node as well as its

neighbors is considered in node ranking. However, the node ranking methods

mentioned above follow invariable procedures. Thus no automatic optimization

can be performed, which leads to sub-optimal ranking and embedding results.

Furthermore, the updating process of node ranking takes a rather long time85

to run and may not converge. The aforementioned virtual network embedding

algorithms are carried out in a centralized manner, which means that a central-

ized controller is responsible for gathering information about substrate network
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and making mapping decisions. In [17], a multi-agent based approach and a

distributed protocol are proposed to ensure distributed negotiation and syn-90

chronization between substrate nodes. In addition, many works [18, 19] also

consider the energy efficiency of VNE.

Haeri and Trajkovi [20] combined reinforcement learning and virtual network

embedding. But different from our work, they employ the Markov decision pro-

cess to solve the node mapping problem and use Monte-Carlo tree search (MCT-95

S) as action policies. As a result, the MCTS has to be applied every time when

a virtual request arrives, which requires a great amount of computing power

and makes it less time-efficient. The works presented in [21, 22] also employ

reinforcement learning. However, they focus on the dynamic resource manage-

ment among virtual networks. Mijumbi et al. [21] applied a q-learning based100

reinforcement learning agent to build a decentralized resource management sys-

tem, which takes the role to increase or decrease the resources allocated to a

certain virtual network. Mijumbi et al. [23] employed an artificial network to

make resources reallocation decisions and train the network with a q-table from

reference [21]. In [22], a reinforcement learning based neuro-fuzzy algorithm is105

proposed. The aforementioned works apply machine learning and reinforcement

learning approaches to achieving autonomous resource management in virtual

networks. In our work, we utilize similar techniques, but mainly aim to im-

prove the efficiency of virtual network embedding instead of dynamic resource

management among virtual networks.110

3. Network Modelling

In this Section, we present a network model and formulate the virtual net-

work embedding problem with description of its components. The notations

used in this section are shown in Table 1.

Figure 1 shows the mapping process of two different virtual network re-115

quests. A substrate network is represented as an undirected graph GS =

(NS , LS, AS
N , AS

L), where NS denotes the set of all the substrate nodes, LS
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GS Substrate network

NS Nodes of substrate network

LS Links of substrate network

AS
N Node attribute of substrate network

AS
L Link attribute of substrate network

GV Virtual network of a certain virtual request

NV Nodes of a virtual network

LV Links of a virtual network

AV
N Constraints of substrate nodes

AV
L Constraints of substrate nodes

Table 1: Frequently used Notations.

denotes the set of all the substrate links, AS
N and AS

L stand for the attributes of

substrate nodes and links respectively. In consistency with earlier works[8, 9], in

this paper we consider computing capability as node attribute and bandwidth120

capacity as link attribute. Let PS denote the set of all the loop-free paths in

substrate network. Figure 1(c) shows an example of a substrate network, where

a circle denotes a substrate node, and a line connecting two circles denotes a sub-

strate link. The number in a square box denotes the CPU(computing) capacity

of that node, and the number next to a substrate link denotes the bandwidth125

of that link.
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Figure.1 An example of virtual network embedding.

Similarly, we also use an undirected graph GV = (NV , LV , CV
N , CV

L ) to de-

scribe a virtual network request, where NV denotes the set of all the virtual

nodes in the request, LV denotes the set of all the virtual links in the request,

CV
N and CV

L stand for the constrains of virtual nodes and links respectively. To130

map a virtual node to a substrate node, the computing capacity of the substrate

node must be higher than that is required by the virtual node. To map a virtual

link to a set of substrate links, the bandwidth of each substrate link must be

higher than that is required by the virtual link. Figure 1(a) and (b) show two

different virtual requests. Additionally, we use t to denote the arrival time of a135

virtual request, and use td to denote the duration of the virtual request.

When a virtual request arrives, the objective is to find a solution to allocate

different kinds of resources in the substrate network to the request while satisfy-

ing the requirements of the request. If such a solution exists, then the mapping

process will be executed, and the request will be accepted. Otherwise the re-140

quest will be rejected or delayed. The virtual network embedding process can

be formulated as a mapping M from GV to GS : GV (NV , LV ) → GS(N ′, P ′),
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where N ′ ⊂ NS, P ′ ⊂ PS .

The main goal of virtual network embedding is to accept as many requests

as possible to achieve maximum revenue for an ISP, when the arrival of virtual145

network requests follows an unknown distribution of time and unknown resource

requirements. Consequently, the embedding algorithm must produce efficient

mapping decisions within an acceptable period. As shown in Figure 1, virtual

nodes a and b in request 1 are mapped to substrate nodes E and G respectively,

and virtual nodes c, d and e in request 2 are mapped to substrate nodes A, C150

and D respectively. Note that the embedding result of request 1 is not optimal.

For example, the cost of bandwidth in the substrate network can be significantly

reduced by moving a to F.

To determine the performance of embedding algorithms, most works use

certain metrics such as a long-term average revenue, a long-term acceptance155

ratio, and a long-term revenue to cost ratio. The revenue measures the profit of

an ISP for accepting a certain virtual request, and it depends on the amount of

requested resources and the duration of it. Similar to the earlier works presented

in [8, 9], we define the revenue of accepting a virtual network request as follows:

R(Gv, t, td) = td · [
∑

nV ∈NV

CPU(nV ) +
∑

lV ∈NV

BW (lV )] (1)

Where CPU(nV ) and BW (lV ) denote the computing resource that a virtual160

node nV requires and the bandwidth resource that a virtual link lV requires

respectively. As shown in the formula, virtual requests having more resources

requirements or lasting longer have more revenue.

The cost function measures the efficiency of utilizing substrate network re-

sources. We define the cost of accepting a virtual request as follows:165

C(Gv, t, td) = td · [
∑

lV ∈NV

∑

lV ∈NV

BW (lV )] (2)

Where P(l
V )′ denotes the set of substrate links where virtual link lV is em-

bedded. C(GV , t, td) computes the actual consumption of bandwidth resource

for embedding request GV . When accepting a virtual request, the CPU con-
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sumption is always fixed, but the bandwidth consumption may vary depending

on the performance of embedding algorithm discussed above.170

Following the works presented in [8, 9], we use a long-term average revenue

to evaluate the overall performance of our embedding method defined as:

lim
T→∞

∑T

t=0 R(Gv, t, td)

T
(3)

Where T is the time elapsed. A higher long-term average revenue leads to

a higher profit for the ISP. Another important metric to evaluate the mapping

algorithm is a long-term acceptance ratio, which means the ratio of accepted175

requests to the total number of requests arrived. A higher long-term acceptance

ratio means the proposed algorithm manages to serve more virtual requests.

Finally, a better utilization of substrate network resources would lead to a

high long-term average revenue with comparatively low cost of substrate net-

work. The long-term revenue to cost ratio, defined as follows, measures the180

utilization of substrate network resources:

lim
T→∞

∑T

t=0 R(Gv, t, td)∑T

t=0 C(Gv, t, td)
(4)

A higher long-term revenue to cost ratio shows that the proposed algorithm is

able to generate more profit with a comparatively less cost to network resources.

We will use these metrics mentioned above to evaluate the performance of

our embedding method in the following sections.185

4. Embedding Algorithm

In this section, we present the details of the proposed policy network based

reinforcement learning algorithm. Specifically, we apply the reinforcement learn-

ing agent in the node mapping stage to derive the probabilities of choosing nodes.

The agent takes a feature matrix extracted from the substrate network as input,190

and makes decisions based on a policy network which is trained from historical

data.
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4.1. Feature Extraction

Every substrate node has several attributes, such as CPU capacity and the

total amount of bandwidth of the adjacent links. A thorough knowledge of195

substrate network is crucial for the reinforcement learning agent to establish a

basic understanding of its state and generate efficient mapping. To facilitate

the agent to choose the substrate nodes, we need to extract features of each

substrate node and use them as input to the policy network.

We extract four features for each substrate node listed as follows:200

• Computing capacity (CPU): The CPU capacity of a substrate node nS

has a large impact on its availability. The substrate nodes with a higher

computing capacity are likely to host more virtual nodes.

• Degree (DEG): The degree of a substrate node nS indicates the number of

links connected to it. A substrate node with more adjacent links is more205

likely to find paths to other substrate nodes.

• Sum of bandwidth (SUM (BW )): Every substrate node is connected to a

set of links. A substrate node nS has a sum of bandwidth resources of its

neighboring links:

SUM (BW )(nS) =
∑

lS∈L(nS)

BW (lS) (5)

Where L(nS) is the neighboring links of nS and BW (lS) is the bandwidth210

resource of a substrate link lS . When a substrate node has access to more

bandwidth, mapping a virtual node to it may lead to better link mapping

options.

• Average distance to other host nodes AV G(DST ): When mapping a virtual

node, we also take into consideration the positions where other virtual215

nodes in the same request are mapped. By choosing a substrate node

close to those already mapped, the cost of substrate link bandwidth can

be reduced. We measure the distance between two substrate nodes in
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terms of the number of links along the shortest path. The shortest path is

computed following the FloydWarshall algorithm[24]. We take an average220

of the distance from a substrate node nS to another host nodes ÑS for

the same request:

AV G(DST )(nS) =

∑
ñS∈ÑS DST (nS, ñS)

|ÑS |+ 1
(6)

where DST (nS, ñS) is the distance from node ns to node ñS .

In fact, the features that we can extract from the substrate nodes would be

far more than listed above. More features would bring more information about225

the substrate network which leads to a better performance of the learning agent.

It should be noted that extracting more features from the substrate network

adds complexity in computation.

After extracting the features of the kth substrate node nS
k , we take their

normalized values and concatenate them into a feature vector vk:230

vk = (CPU(nS
k ), DEG(nS

k ), SUM (BW )(nS
k ), AV G(DST )(nS

k ))
T (7)

The purpose of normalization is to accelerate the training process and enable

the agent to converge quickly. We concatenate all feature vectors of substrate

nodes to produce a feature matrix Mf where each row is a feature vector of a

certain substrate node:

Mf = (v1, v2 · · · v|NS|)
T (8)

The feature matrix serves as an input to the learning agent. The feature235

matrix is updated along with the changing substrate network from time to

time.

4.2. Policy Network

In this work, we implemented an artificial neural network called policy net-

work as the learning agent. It takes the feature matrix as input and outputs240

the probabilities of mapping virtual nodes to substrate nodes.
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For simplicity, we build a simple policy network with basic elements of an

artificial neural network as shown in Figure 2. The policy network contains an

input layer, a convolutional layer, a softmax layer and finally a node filter. For

each virtual node that requires a mapping, we use the policy network to choose245

a substrate node for it.

Figure.2 Policy network.

At the input layer, we compute the feature matrix and deliver it to the policy

network. The policy network then passes the input feature matrix into a convo-

lutional layer with one convolution kernel, where the policy network evaluates

the resources of each substrate node. The convolutional layer performs a con-250

volution operation on the input to produce a vector representing the available

resources of each node:

hc
k = ω · vk + b (9)

where hc
k is the kth output of the convolutional layer, is the convolution

kernel weight vector, and b is bias.

Then the vector is transmitted to a softmax layer to produce a probability255

for each node which indicates the likelihood of yielding a better result if mapping

a virtual node to it. For the kth node, the probability pk is computed as:

pk =
eh

c

k

∑
i e

hc

i

(10)

The softmax function is a generalization of the logistic regression. It turns

the n-dimensional vector into real values between 0 and 1 that add up to 1.

The output of the softmax function indicates a probability distribution over n260

different possible mappings. Some of the nodes are not able to host the virtual
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node in concern because they do not have enough computing resources. We add

a filter to choose a set of candidate nodes with enough CPU capacities.

4.3. Training and Testing

We first randomly initialize the parameters in the policy network, and train265

it for several epochs. For every virtual node in each iteration, a feature ma-

trix is extracted from the substrate network which serve as input to the policy

network. The policy network outputs a set of available substrate nodes as well

as a probability for each node. The probability of each node represents the

likelihood that mapping a virtual node to it will yield a better result. In the270

training stage, we cannot simply select the node with a maximal probability

as the host because that the model is randomly initialized, which means the

output could be biased and better solutions might exist. In other words, we

need to reach a balance between the exploration of better solutions and the

exploitation of current model. To this end, we generate a sample from the set275

of available substrate nodes according to their probability distribution that the

policy network outputs, and select a node as the host. We repeat this process

until all the virtual nodes in a virtual request are assigned and proceed to link

mapping. If no substrate node is available, the mapping fails due to a lack of

resources. For link mapping, we apply a breadth-first search to find the shortest280

paths between each pair of nodes.

In supervised learning, each piece of data in the training set corresponds

to a label indicating the desired output of the model. With each output from

model and the corresponding label, a loss value is computed which measures the

deviation between them. The loss value for each piece of data in the training set285

sums up to an aggregated loss value, and the training stage aims to minimize the

aggregated loss value. However, in reinforcement learning tasks such as virtual

network embedding, data in the training set does not have corresponding labels.

The learning agent relies on reward signals to know if it is working properly. A

big reward signal informs the learning agent that its current action is effective290

and should be continued. A small reward signal or even a negative reward
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signal shows that the current action is erroneous and should be adjusted. The

choice of reward is critical in reinforcement learning as it directly influences the

training process and determines the final policy. Here, we use the revenue to

cost ratio of a single virtual request as the reward for every virtual node in this295

request because this metric represents the utilization efficiency of the substrate

resources. Then we apply policy gradient method to train the policy network.

The actual implementation of the proposed algorithm is non-trivial since we

cannot provide each output with a label. As a result, we temporarily consider

every decision that the agent makes to be correct by introducing a hand-crafted300

label into our policy network. Assume that we choose the ith node, then the

hand-crafted label in policy network would be a vector y filled with zeros except

the ith position which is one. Then we calculate the cross-entropy loss:

L(y,p) = −
∑

i

yilog(pi) (11)

Where yi and pi are the ith element of hand-crafted label and the output of

policy network respectively. We use backpropagation to compute the gradients305

of parameters in the policy network. Since we use hand-crafted label, we stack

the gradients gf rather than applying them immediately. If our algorithm fails

to embed a virtual request, the corresponding stacked gradients will be aborted

since we cannot determine the reward signal. If a virtual request has been

successfully mapped, we compute its revenue to cost ratio as a reward r. Then310

we multiply the stacked gradients by using the reward and an adjustable learning

rate α to achieve the final gradients:

g = α · r · gf (12)

The learning rate α is introduced to control the magnitude of gradients and

the computation speed of training. If the gradients are too large, the model

becomes unstable and may not improve through the training process. On the315

other hand, too small gradients make training extremely slow. Therefore the

learning rate needs to be tuned carefully. It can be observed from Eq. (12)

larger rewards make the corresponding gradients more significant than small
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ones. As a result, the choices that lead to larger rewards have larger impact on

the learning agent, making it more prone to make similar decisions. When we320

stack a batch of gradients, we apply them to parameters and update the policy

network. There are two reasons for batch updating - one is that parameter

updating normally takes a long time, but doing that in batches speeds up this

process. Another reason is that batch updating averages over the gradients and

is more stable. The training process is shown in Algorithm 1. Lines 7-10 show325

node mapping stage where we compute the gradients in line 10, lines 11-13 show

the link mapping stage.

In the testing stage, we apply a greedy strategy where we directly choose the

node with the highest probability as the host. The testing algorithm is shown

in Algorithm 2.330

5. Evaluation

We conducted a number of simulation tests to evaluate the performance of

the proposed reinforcement learning algorithm and compared with other em-

bedding algorithms.

We employed GT-ITM tool [25] to generate a substrate network with 100335

nodes and approximately 550 links, which is about a middle-sized ISP. The

computing capacity of every substrate node is a real number that follows a

uniform distribution between 50 and 100, and the bandwidth of every link is

a real number that follows a uniform distribution between 20 and 50, which is

similar to parameters presented in related work [8, 9].340

We also generated a number of virtual requests, each with 2 to 10 virtual

nodes. The computing capacity requirement of every virtual node followed a

uniform distribution between 0 and 50 units. The bandwidth requirement of

every virtual link follows a uniform distribution between 0 and 50 units. Virtual

nodes were connected with a probability of 0.5 forming an average of n(n−1)
4345

virtual links, where n is the number of nodes. The virtual requests arrived

following a Poisson distribution with an average of 4 requests over 100 time
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Algorithm 1 Training process.

Input: Number of epochs, numEpoch; Learning rate, α; Training set;

Output: Trained parameters in policy network;

1: Initialize all the parameters in policy network;

2: while iteration < numEpoch do

3: for req ∈ trainingSet do

4: counter=0;

5: for node ∈ req do

6: Mf=getFeatureMatrix();

7: p=policyNet.getOutput(Mf ) //Get the probability distribution

from policy network;

8: host=sample(p) //Sample from the probability distribution to

choose a node as host;

9: computeGradient(host);

10: end for

11: if isMapped(∀ node ∈ req) then

12: bfsLinkMap(req);

13: end if

14: if isMapped(∀ node ∈ req, ∀ link ∈ req) then

15: reward=revToCost(req) //Compute revenue to cost ratio;

16: multiplyGradient(reward, α) //Compute the final gradients;

17: else

18: clear the stacked gradients;

19: end if

20: ++counter;

21: if counter reach the batch size then

22: apply gradients to parameters;

23: counter=0;

24: end if

25: end for

26: ++iteration;

27: end while
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Algorithm 2 Testing process.

Input: testing set;

Output: long-term average revenue, acceptance ratio, long-term revenue to

cost ratio;

1: Initialize all the parameters in policy network;

2: for req ∈ testSet do

3: for node ∈ req do

4: Mf=getFeatureMatrix();

5: host=maxProbablity(p) //Greedy strategy;

6: end for

7: bfsLinkMap(req);

8: if isMapped(∀ node ∈ req, ∀ link ∈ req) then

9: signal(SUCCESS);

10: end if

11: end for

units. The duration of every requests followed an exponential distribution with

an average of 1000 time units. We generate a timeline that lasted around 50000

time units containing about 2000 requests. We divided the requests equally into350

two sets - training set and testing set.

We employed TensorFlow [26] to build the policy network. We first assem-

bled the layers mentioned in Section 4 and followed a normal distribution to

initialize their parameters. Then we defined a tensor for gradient of every train-

ing step using the compute gradients method of stochastic gradient descent [27]355

optimizer. When doing batch updates, we added all the gradients for each pa-

rameter and multiply them by a reward, and called the apply gradients method

of SGD optimizer to update all parameters in policy network. We train our a-

gent for 100 epochs using gradient descent with a learning rate of 0.005. The

batch size was set to 100 which means the parameters are updated every 100360

requests.
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5.1. Effectiveness of Reinforcement Learning

Compared to supervised learning, reinforcement learning has proven to be

hard to train. It may take a very long time for the learning agent to stabilize,

especially for a complicated problem such as virtual network embedding. We365

run the learning agent on the training data set for 100 epochs and observe it-

s performance. Figure 3(a) shows the change of a long-term average revenue,

the acceptance ratio and a long-term revenue to cost ratio during the training

process. In the very beginning, the learning agent performs poorly because all

the parameters in the policy network are initialized randomly. As the training370

goes, the random sampling allows the learning agent to explore different possi-

bilities. The learning agent may find a good solution occasionally and receive a

great reward which helps the policy network to learn to make better decisions.

Consequently, the performance starts to get better, proving the effectiveness of

reinforcement learning on the task. The exploration strategy sometimes leads375

our agent into bad choices causing a fluctuation in its performance as the train-

ing proceeds. But such cases will lead to small rewards and have small impact

on the learning agent. In the later stage of training process, the performance

stopped improving due to the limited capacity of functional complexity that

the policy network can handle. Eventually the learning agent reaches a certain380

point, and the performance stabilizes in a range. Figure 3(b) shows the cross-

entropy loss during the training process. Clearly, the loss decreases through the

training stage and eventually starts to stabilize in the last 10 epochs.
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Figure.3 Training process.

The result shows that the proposed reinforcement learning based algorithm

is getting better performance as the training goes, which means the learning385

agent can adapt itself to training data.

We have proved that the reinforcement learning method can improve the

performance of the learning agent on training set. But it is still unclear if the

learning agent actually learns how to optimize node mapping, or simply adjusts

to existing data. In order to test the generalization ability of the learning390

agent, we separated a testing data set that consisted of different requests from

the training set and run the learning agent on it.

Different from the training process, we run the learning agent without a

random sampling and applied a greedy strategy to choose a node with the

maximal probability. The performance over time on the testing data set is395

shown in Figure 4. We compare the learning agent with another two rule-based

node ranking algorithms. The first one is a baseline algorithm proposed in [8]

using equation:

H(nS) = CPU(nS)
∑

lS∈L(nS)

BW (LS) (13)

to rank substrate nodes, where H(ns) measures the availability of substrate

node ns. The other is proposed in [9] using NodeRank algorithm to measure400

the importance of nodes. All the three methods followed the same breadth-first

search link mapping algorithm. We measured the performance of these methods
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with three metrics mentioned in Section 3 - a long-term average revenue, an

acceptance ratio and a long-term revenue to cost ratio.
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Figure.4 Performance on testing set.

At the beginning, the performance of all the three algorithms on a long-405

term average revenue and an acceptance ratio decrease because the amount

of resources of the substrate network decreases as more requests arrive. The

long-term revenue to cost ratio is stable because it is irrelevant to the amount

of available resources. Then the performance of all algorithms on all metrics

starts to stabilize because the resources of the substrate network is depleted.410

The results in Figure 4 show that the learning agent outperforms the other

two algorithms in all the three metrics. The training data set and testing data

set consist of different requests, but the learning agent is able to perform well

on both data sets. The conclusion is that the learning agent does not simply

adjust itself to the training set, rather it is actually capable of generalizing from415

the training process to acquire knowledge about the substrate network and node

mapping. Note that the performance improved evidently compared to the result

on the training data set, because the exploration in training process may lead

to bad embedding results.

5.2. Stress tests.420

We further expanded our experiments by increasing resource demands to

examine the performance of the proposed algorithm under more stress. By

doing this we also expected to find the circumstances where our algorithm is

robust.

Figure 5(a) shows the performances of the three algorithms when we dou-425
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bled the CPU requirements of the virtual nodes. Figure 5(b) shows the results

when the bandwidth of virtual links were uniformly distributed between 25 and

50 units. As shown in Figure 5, the proposed reinforcement learning based al-

gorithm performs better in the later circumstance, and outperforms the other

two methods against the three metrics. In the computing-intensive environment430

however, the proposed algorithm achieves similar performance to the other two

methods in terms of a long-term revenue to cost ratio while getting better results

in the long-term average revenue and acceptance ratio. The proposed reinforce-

ment learning based algorithm works in node mapping phase, but larger CPU

requirements means less nodes with enough computing resource to choose from,435

which leads to relatively worse performance in computing-intensive environ-

ment. The conclusion is that the proposed algorithm can achieve comparatively

better performance for bandwidth-intensive requests rather than computing-

intensive ones.
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(a) Performance In a computing-intensive environment.
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Figure.5 Stress tests.
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6. Conclusions440

In this paper, we have presented a novel virtual network embedding based on

reinforcement learning. The embedding is conducted through a training process

using historical data rather than relies on any hand-crafted rules. Simulation

results showed that the reinforcement learning agent outperformed two existing

algorithms.445

In future works, we will extract more features for each substrate node to

form a more complex feature matrix, and verify the effectiveness of each fea-

ture. Meanwhile, we will make efforts to build more complex structure for the

policy network to expand its capacity of functional complexity by increasing

the number of layers or neurons of each layer. We will also investigate the use450

of the connection matrix of the substrate network instead of using extracted

feature matrix as input for the policy network to provide more information for

the learning agent.
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