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Abstract: The high solubility of urea in water and its consequent leaching into the soil adversely
prevents its full assimilation by plants. An improved slow-release process could effectively minimise
the loss of fertilizer material and thus mitigate the associated environmental pollution. In this
study, the effects of the operational variables on the efficiency of the urea coating process in a rotary
pan have been systematically analysed. A mixture of gypsum-sulphur was used as the coating
material with refined water as a binder. In order to comprehensively investigate the impact of
each process variable on the efficiency and any potential interactions between them, the effects of
particle size, coating material percentage, rotational speed of the pan, spray flow rate and the amount
of sprayed water were investigated and analysed via a central composite design of experiments
(DoE). The second-order polynomial model provided the best correlation for the experimental data.
The predictive model was then used to estimate the efficiency of the coated urea as a function of the
statistically-significant variables. The results revealed an increase in the efficiency of the coated urea
from 22% to 35% (i.e., ~59%) when prepared under the optimum process conditions.
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1. Introduction

Urea fertilizer, one of the most commonly-used nitrogenous fertilizers, has been widely used in
agricultural applications owing to its high nitrogen content, low cost and relative abundance. However,
the high water solubility of urea also portrays an impactful downside in the form of consequential
environmental pollution (i.e., ammonia & nitrous oxide). It may also result in the contamination of
underground drinking water resources via the leaching of nitrogen in form of nitrates.

A significant amount of research has been centred on finding ways to control and minimise the
loss of nitrogen. So far, there have been four main approaches to achieving this: (1) the use of the
slightly soluble materials such as urea formaldehyde [1–3]; (2) the use of materials for deep placement
such as urea super granules (USG) [4,5]; (3) the use of urease and nitrification inhibitors [6,7] and (4) the
use of fertilizers coated with semi-permeable or impermeable layers [8,9].

The use of coated urea to control nitrogen release has been investigated in the literature [10,11].
Various types of coated urea and processes have been reported which not only optimise the release of
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chemicals but also enhance the handling and storage of the materials. The initial work at Tennessee
Valley Authority (TVA) resulted in the development of an economical, technically- feasible production
of sulphur-coated fertilizers [12]. Rindt, Blouin, and Getzinger (1968) continued the studies on sulphur
coating of urea and developed an industrial batch process [13]. The coating process equipment
consisted of a rotary pan in which the urea granules were sprayed with sulphur, an electrically heated
sulphur melt pot and air-atomizing nozzle for spraying sulphur and a second pan in which the wax
sealant and conditioner were applied to the sulphur-coated granules. The TVA then developed the first
continuous coating process of urea with sulphur in a rotary drum [14]. The operational parameters of
the rotary drum were optimised by Shirley & Meline (1975) to improve the efficiency of the nitrogen
release from the sulphur coated-urea [15]. In 1978, Meisen and Mathur investigated the use of spouted
beds for the manufacture of sulphur-coated urea owing to its successful application in the production
of pharmaceutical tablets [16]. In the following decade, Salman analysed the dissolution rate of coated
urea with polyethylene, produced in a modified fluidized bed [8,17]. In order to devise a solution
for caking and dustiness problems in the storage, handling and shipping of sulphur-coated urea,
Gullett, Simmons and Lee (1991) used a bench-scale rotary pan for the sulphur coating of urea-clay [18].
Later on, the fluidized bed Wurster column was used to apply polymeric topcoats on the sulphur
coating in order to manufacture controlled-release fertilizer products [19]. Choi and Meisen developed
two mathematical models for shallow spouted beds to predict the distribution of coating material
(sulphur) on urea particles [20]. A two-dimensional spouted bed was also employed in the analysis
of the surface quality of sulphur-coated urea [21]. Donida and Sandra studied the effects of the
operational variables on particle growth in a conventional spouted bed [22]. Modified sulphur with
dicyclopentadien (DCPD) was used by Liu et al. (2008) to increase the strength and abrasion resistance
of the controlled-release urea in a fluidized bed coater [23]. The influence of operational parameters on
particle growth was also analysed for urea coating in a spouted bed by Rosa & Rocha [24]. Lignin-based
biodegradable controlled-release urea was developed by Mulder et al. in a pan coater [25]. In the
meantime, Lan et al. (2011) designed an experimental rig in order to investigate the effects of key
factors involved in the coating process using a Wurster fluidized bed [26]. Qin et al. employed the
response surface method (RSM) to study and optimize the synthesis process conditions of slow-release
nitrogen fertilizer [27]. Later, Pursell et al. (2012) studied biopolymer coating in order to synthesise
controlled-release fertilizers in a bench-scale rotary drum [28]. More recently, the application of
the response surface method (RSM) to identify the optimal process parameters in the synthesis of
urea-formaldehyde fertilizers was reported by Guo et al. [29].

In the present study, a rotary pan has been selected due to its versatility, flexibility, large
throughputs and its ability to handle a wide range of particles to study the effects of process variables
on the efficiency of the synthesised coated urea. The individual and inter-variable interaction effects
were systematically analysed via a central composite design of experiments (DoE). Optimum process
envelopes and a predictive model were generated using RSM.

2. Experimental Procedures

2.1. Materials and Related Analysis

Commercial urea particles (1 mm—4 mm in size with a nitrogen content of 46%) were supplied
by Petronas Agrenas. Figure 1 shows the particle size distribution for the urea granules. The gypsum
powder and sulphur were used as the coating materials. The coating provides the nutrients needed to
supply the plants. By using gypsum, the nitrogen utilization percentage increases from 33%—38%
to around 60% [30]. Sulphur is an essential element for growth and physiological functioning of
plants [31]. Commercial gypsum and sulphur were purchased from Siam Gypsum Plaster L.P.
(Bangkok, Thailand) and Palm Brand (National Establishment for Agricultural and Industrial Sulphur,
Saudi Arabia). All other chemicals and reagents used in this study were purchased from Merck and
Systerm. The quantitative analysis of the released urea was completed using a high-performance
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liquid chromatograph (HPLC) with acetonitrile (HPLC grade, Friendeman Schmidt) in a 10:90 ratio
and with distilled water as the mobile phase.

Energies 2018, 11, x 3 of 17 

 

Merck and Systerm. The quantitative analysis of the released urea was completed using a high-
performance liquid chromatograph (HPLC) with acetonitrile (HPLC grade, Friendeman Schmidt) in 
a 10:90 ratio and with distilled water as the mobile phase. 

 
Figure 1. Particle size distribution of urea. 

2.2. Coating Process 

The coating process employed in this work has been adopted from our previous work on 
gypsum-dolomite coated urea [32]. A stainless steel rotary pan (60 cm in diameter and 12 cm in pan 
height) (Figure 2) was used to coat the urea particles. Urea granules, previously sieved to 2.8 mm and 
3.3 mm in diameter, were weighed and fed into the rotary pan. The coating materials were first 
weighed separately before they were mixed. The mixture was then ground to produce a fine powder. 
In all experiments, the ratio of the coating material was adjusted at 50% sulphur and 50% gypsum 
and was kept constant for the duration of the coating process. The amount of urea and coating 
material charged to the hopper was a function of the coating percentage and the available bed in the 
rotary pan (i.e. loading). After blending the urea granules and the coating material in the rotary pan, 
water mist was introduced into the bed surface. These steps were repeated until all of the urea and 
the coating material were completely used. Finally, the coated urea granules were placed on a 
vibration tray where they were dried with a small fan and then collected for analysis. 

2.3. Analysis of Urea Dissolution  

A sample of the granules (50 g) was placed in a sealed Erlenmeyer flask filled with water (250 
ml). The Erlenmeyer flask was then placed in an incubator and agitated for 300 minutes. The 
temperature and rotation speed were set at 30 °C and 100 rpm, respectively. The extracted samples 
were diluted tenfold with distilled water, and subsequently analysed via HPLC to measure the urea 
concentration. A known volume of the diluted samples (20 µL) was injected into a LiChroCART 250-
4,6 Pureser STAR column mounted on the HPLC (Shimadzu LC20AT-Prominence, Japan), equipped 
with a UV-Vis detector. The oven temperature was set and kept at 30 °C with the wavelength fixed 
at 210 nm.  

The HPLC was calibrated to measure the urea concentration (Equation (1) with R2 = 0.99833)  

51.20426uC e x−= ×  (1) 

where x is the peak area (×106) (at a retention time of 2.7 min) and Cu is the concentration of urea (mg 
l-1). 

The efficiency of coating (Equation (2)), defined as a comparison of the undissolved urea in 
coated samples against the raw urea, was calculated based on the formula: 

Figure 1. Particle size distribution of urea.

2.2. Coating Process

The coating process employed in this work has been adopted from our previous work on
gypsum-dolomite coated urea [32]. A stainless steel rotary pan (60 cm in diameter and 12 cm in
pan height) (Figure 2) was used to coat the urea particles. Urea granules, previously sieved to 2.8 mm
and 3.3 mm in diameter, were weighed and fed into the rotary pan. The coating materials were first
weighed separately before they were mixed. The mixture was then ground to produce a fine powder.
In all experiments, the ratio of the coating material was adjusted at 50% sulphur and 50% gypsum and
was kept constant for the duration of the coating process. The amount of urea and coating material
charged to the hopper was a function of the coating percentage and the available bed in the rotary pan
(i.e., loading). After blending the urea granules and the coating material in the rotary pan, water mist
was introduced into the bed surface. These steps were repeated until all of the urea and the coating
material were completely used. Finally, the coated urea granules were placed on a vibration tray where
they were dried with a small fan and then collected for analysis.
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2.3. Analysis of Urea Dissolution

A sample of the granules (50 g) was placed in a sealed Erlenmeyer flask filled with water (250 ml).
The Erlenmeyer flask was then placed in an incubator and agitated for 300 minutes. The temperature
and rotation speed were set at 30 ◦C and 100 rpm, respectively. The extracted samples were diluted
tenfold with distilled water, and subsequently analysed via HPLC to measure the urea concentration.
A known volume of the diluted samples (20 µL) was injected into a LiChroCART 250-4,6 Pureser
STAR column mounted on the HPLC (Shimadzu LC20AT-Prominence, Japan), equipped with a UV-Vis
detector. The oven temperature was set and kept at 30 ◦C with the wavelength fixed at 210 nm.

The HPLC was calibrated to measure the urea concentration (Equation (1) with R2 = 0.99833)

Cu = 1.20426e−5 × x (1)

where x is the peak area (×106) (at a retention time of 2.7 min) and Cu is the concentration of urea (mg L−1).
The efficiency of coating (Equation (2)), defined as a comparison of the undissolved urea in coated

samples against the raw urea, was calculated based on the formula:

Coating e f f iciency (%) =

1 −
Ccu

1−(p/100)

C∞

× 100 (2)

where Ccu is the concentration of the coated urea (mg L−1) with urea completely dissolved in water
(after 300 minutes of the experimental trial) and p is the coating percentage of urea granules.

2.4. Experimental Design

The optimization study was carried out using a fractional factorial design of experiments
(DoE) with five factors and three levels, corresponding to a total number of 48 experimental trials.
The fractional factorial design, comprising 42 factorial points and six centre points, was generated
using the Design-Expert 7 statistical software. The associated response surface model is described by
Equation (3). The corresponding variables and their corresponding levels selected for this study are
represented in Table 1.

Y = β0 +
5

∑
i=1

βiXi +
5

∑
i=1

βiiX2
i +

4

∑
i=1

5

∑
j=i+1

βijXiXj + ε (3)

where Y (efficiency %) represents the response variable, β0 is a constant, βi represents the coefficients
of the linear parameters, xi represents the variables, βii represents the coefficients of the quadratic
parameters, βij represents the coefficients of the interaction parameters and ε is the residual associated
with the experimental trials.

Table 1. Variables and their levels employed in the central composite design.

Variables Units
Coded Level of Variables

−1 0 +1

Particle size (X1) mm 2.80 3.10 3.35
Coating percentage (X2) % 15 20 25

Pan speed (X3) rpm 8 12 16
Spray flow rate (X4) g/min 50 75 100

Spray water (X5) % 1.4 1.5 1.6
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2.5. Characterization Method

The surface morphology of the coated sample before and after process optimization was studied
on a scanning electron microscope (Hitachi Co., Japan, model No. S3400N). In this study, the specific
surface area and the pore size distribution of the three samples (urea, coated urea before and after
optimization) were measured on a nitrogen adsorption/desorption instrument (Micromeritics (USA))
at 77 K. Prior to the experiments, the samples were degassed at 50 ◦C under vacuum. The BET
surface area and the full adsorption isotherms were measured for all samples according to the
Brunauer-Emmett-Teller (BET) method. The pore size distribution was calculated using the non-local
density functional theory (NLDFT) method.

3. Results and Discussion

3.1. Normality Tests

The normality graph representing the experimental data in this work is illustrated in Figure 3.
The graph confirms that the efficiency of the coating distribution of gypsum-sulphur coated urea is
normal (i.e., p-value > 0.05). This confirms that the analysis of variance (ANOVA) for this data set
can be now performed. Table 2 shows the descriptive statistics to examine the skewness and kurtosis
values for the five variables at three levels. The results show that skewness varies between −0.059 and
−1.108 (the acceptable range of normality is between −2.0 and +2.0) [33]. The values of kurtosis falls
between −0.015 and +4.020 (the acceptable range of normality is between −5.0 and +5.0). Based on the
above, the skewness and kurtosis values confirm a normal distribution of the experime ntal data in
this work.
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Table 2. Descriptive statistics to check the skewness and kurtosis values for five variables.

Descriptive
Statistics

Particle Size (mm) Coating (%) Pan Speed (rpm) Spray Flow Rate (g/min) Spray Water (%)

−1 0 +1 −1 0 +1 −1 0 +1 −1 0 +1 −1 0 +1

Skewness −0.447 −0.740 −0.059 −0.638 −0.779 0.429 0.150 −1.108 −0.226 −0.601 −0.780 0.194 −0.365 −0.780 −0.128
Kurtosis 0.177 3.902 −0.819 0.556 2.571 −1.278 −1.123 4.020 −0.269 −0.015 2.584 −0.079 −0.238 2.584 −0.091

3.2. Analysis of Variance (ANOVA)

ANOVA was employed to identify and isolate the significant parameters impacting the efficiency
of the process among the studied parameters (i.e., particle size, urea coating percentage, spayed water
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quantity, rotation speed of the pan, pan inclination, pan loading and spray flow rate). The independent
variables, their levels, the associated experimental results and the predictive values of the efficiency of
the gypsum-sulphur coated urea are shown in Table 3.

Table 3. Central composite design matrix (coded), the actual and the predicted values of the model
describing the efficiency for the gypsum-sulphur coated urea.

Run X1 X2 X3 X4 X5
Efficiency %

Actual Predicted

1 2.8 15 8 50 1.4 27.271 27.014
2 3.35 15 8 50 1.4 26.155 26.628
3 2.8 25 8 50 1.4 28.268 28.998
4 3.35 25 8 50 1.4 28.101 28.351
5 2.8 15 16 50 1.4 27.479 27.292
6 3.35 15 16 50 1.4 22.536 22.575
7 2.8 25 16 50 1.4 32.036 31.930
8 3.35 25 16 50 1.4 27.235 26.951
9 2.8 15 8 100 1.4 26.573 26.678

10 3.35 15 8 100 1.4 26.953 26.781
11 2.8 25 8 100 1.4 28.973 28.654
12 3.35 25 8 100 1.4 27.073 27.081
13 2.8 15 16 100 1.4 27.324 26.956
14 3.35 15 16 100 1.4 22.262 22.727
15 2.8 25 16 100 1.4 32.478 31.585
16 3.35 25 16 100 1.4 25.136 25.681
17 2.8 15 8 50 1.6 28.327 28.408
18 3.35 15 8 50 1.6 28.187 28.023
19 2.8 25 8 50 1.6 29.136 28.288
20 3.35 25 8 50 1.6 27.523 27.642
21 2.8 15 16 50 1.6 28.477 28.687
22 3.35 15 16 50 1.6 24.510 23.970
23 2.8 25 16 50 1.6 31.233 31.220
24 3.35 25 16 50 1.6 26.600 26.241
25 2.8 15 8 100 1.6 28.102 28.073
26 3.35 15 8 100 1.6 28.651 28.175
27 2.8 25 8 100 1.6 27.893 27.944
28 3.35 25 8 100 1.6 26.969 26.371
29 2.8 15 16 100 1.6 27.988 28.351
30 3.35 15 16 100 1.6 23.903 24.122
31 2.8 25 16 100 1.6 29.725 30.875
32 3.35 25 16 100 1.6 24.974 24.971
33 2.8 20 12 75 1.5 32.843 33.175
34 3.35 20 12 75 1.5 29.909 30.384
35 3.08 15 12 75 1.5 31.163 31.503
36 3.08 25 12 75 1.5 32.601 33.273
37 3.08 20 8 75 1.5 31.517 32.669
38 3.08 20 16 75 1.5 32.238 32.108
39 3.08 20 12 50 1.5 29.036 29.891
40 3.08 20 12 100 1.5 29.489 29.441
41 3.08 20 12 75 1.4 30.603 30.573
42 3.08 20 12 75 1.6 30.080 30.916
43 3.08 20 12 75 1.5 33.601 32.388
44 3.08 20 12 75 1.5 31.276 32.388
45 3.08 20 12 75 1.5 32.043 32.388
46 3.08 20 12 75 1.5 34.809 32.388
47 3.08 20 12 75 1.5 32.894 32.388
48 3.08 20 12 75 1.5 33.352 32.388

X1= particle size (mm), X2= coating percentage (%), X3= pan speed (rpm), X4= spray flow rate (g/min) and X5=
spray water (%).

Four different descriptive models and their corresponding R2 values are shown in Table 4.
By fitting the experimental data to these four models (i.e., linear, 2FI, quadratic and cubic) and



Processes 2019, 7, 125 7 of 16

the subsequent analysis of variance, it is realised that the efficiency of the coating is most accurately
described by a quadratic model. The ANOVA results for gypsum-sulphur-coated urea is given in
Table 5. The model’s F-value of 41.58 suggests a significant model. It is also seen that there exists
a significantly low chance of only 0.01% that the model’s F-value can be due to the presence of
statistical noise. The coefficient of determination (R2) of the model is calculated to be 0.9512, suggesting
that 95.12% of the variability in the response can be well explained by the model itself. Therefore,
the R2-value reflects a very good fit between the experimental and the predicted numerical figures
(Figure 4). The adjusted determination coefficient (adjusted R2 = 0.9283) satisfactorily confirms the
significance of the model. The Coefficient of Variation (CV)—defined as the ratio of the standard
error of estimate to the mean value of the observed response (as a percentage)—is a measure of the
reproducibility of the model. A lower value of the coefficient variation (i.e., CV = 2.70%) shows a
high degree of accuracy and a good level of reliability of the experimental values [34]. The model also
shows an adequate accuracy measured for the signal-to-noise ratio (i.e., 23.753). This model can be
used to navigate through the design space.

Table 4. Model summary statistics.

Source Standard
Deviation

R-Squared Adjusted
R-Squared

Predicted
PRESS * Remarks

R-Squared

Linear 2.68 0.2462 0.1565 0.0686 371.66 -
2FI 2.71 0.4117 0.1359 0.0854 433.09 -

Quadratic 0.81 0.9552 0.9220 0.8942 42.21 Suggested
Cubic 1.05 0.9671 0.8711 0.3186 125.14 Aliased

* PRESS is Predicted Residual Error of Sum of Squares.

Table 5. Analysis of Variance (ANOVA) and R-Squared of gypsum-sulphur coated urea.

Source Sum of Squares Degree of Freedom Mean Square F Value p-Value

Model 379.56 15 25.30 41.58 <0.0001 a

Residual 19.47 32 0.61 - -
Lack of fit 11.82 27 0.44 0.29 0.9855 b

Pure error 7.66 5 1.53 - -
Corrected total 399.03 47 - - -

R-Squared 0.9512 Standard Deviation 0.78
Adjusted R2 0.9283 Coefficient of variation % 2.70

Adequate Precision 23.753 PRESS 35.22
a Model F-value is significant at “Prob > F” less than 0.05. b Lack of Fit value is not significant relative to pure error.
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Figure 4. Scatter plot of predicted efficiency% value versus the actual efficiency% value from central
composite design for gypsum-sulphur coated urea.
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Regression was employed to fit the quadratic model to the experimental data and to calculate the
terms embedded in the model (Table 6). p-values are statistically used to evaluate the significance of
each variable. They also reveal the existence (or lack of) as well as the level of interactions between the
independent variables [35]. The p-values in this study are found to be < 0.05, highlighting significant
model terms. Based on the statistical analyses (Table 6), three linear coefficient terms (i.e., particle
size (X1), coating percentage (X2) and pan speed (X3)) were shown to be significant terms resulting in
an accurate descriptive model. The negative values of the coefficient estimates denote the negative
influence of parameters on the coating. It is observed that the linear coefficients of the model for the
particle size (X1), pan speed (X3) and the spray flow rate (X4) demonstrate negative effects. This can be
due to the fact that higher rotational speeds produce a centrifugal force sufficient to hold the powder
of coating materials to the wall of the pan coater, and therefore adversely impact the efficiency of the
mixing process [36]. At higher flow rates, the granules’ surface moisture increases compared to the
lower spraying rates. The drying of the coating layer was therefore prolonged, and subsequently the
surface was significantly more coarse compared to when lower spray rates were employed. The results
are consistent with those reported by Obara and McGinity (1995), stating that a high spray rate of
coating could result in the over-wetting of the tablet surface and the formation of an uneven film
during the drying phase [37]. Besides, it was observed that particle size has a significant effect on the
efficiency of the coating. Indeed, despite the negative values, urea particle size has a critical impact on
the coating efficiency.

Table 6. Analysis of variance (ANOVA) and the regression coefficients of gypsum-sulphur coated urea.

Source Coefficient
Estimate

Sum of
Squares

Degree of
Freedom

Mean
Square F Value p-Value

Prob > F

Intercept 32.39 - 1 - - -
X1 1.40 66.23 1 66.23 108.84 < 0.0001
X2 0.89 26.63 1 26.63 43.77 < 0.0001
X3 −0.28 2.68 1 2.68 4.40 0.0440
X4 −0.22 1.72 1 1.72 2.82 0.1027
X5 0.17 1.00 1 1.00 1.64 0.2097

X1 X2 −0.24 1.88 1 1.88 3.08 0.0887
X1 X3 −1.08 37.53 1 37.53 61.67 < 0.0001
X1 X4 −0.05 0.10 1 0.10 0.16 0.6938
X2 X3 0.66 14.08 1 14.08 23.13 < 0.0001
X2 X4 −0.18 1.02 1 1.02 1.68 0.2037
X2 X5 −0.53 8.86 1 8.86 14.56 0.0006
X1

2 −0.61 1.07 1 1.07 1.76 0.1943
X4

2 −2.72 21.40 1 21.40 35.17 < 0.0001
X5

2 −1.64 7.80 1 7.80 12.82 0.0011
X1 X2 X4 −0.18 1.00 1 1.00 1.64 0.2094

X1 = particle size (mm), X2 = coating percentage (%), X3 = pan speed (rpm), X4 = spray flow rate (g/min) and X5 =
spray water (%).

After the elimination of the insignificant terms, the optimum model, capable of accurately
predicting the efficiency% of the gypsum-sulphur coated urea, is reduced to:

Y = 32.39 − 1.40X1 +0.89X2 − 0.28X3 − 0.22X4 + 0.17X5 − 0.24X1X2 − 1.08X1X3

−0.055X1X4 + 0.66X2X3 − 0.18X2X4 − 0.53X2X5 − 0.61X2
1

−2.72X2
4 − 1.64X2

5 − 0.18X1X2X4

(4)

where Y is the efficiency% of coating and X1, X2, X3, X4 and X5 represent the urea particle size (mm),
coating percentage, pan speed (rpm), spray flow rate (g/min) and spray water percentage, respectively.
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3.3. Interaction Effects between the Process Variables

Equation (4) suggests that the interactions between the variables have significant effects on the
efficiency of the coating. Figures 5–10 show the effects of different coating variables on the efficiency
of the coated samples. Figure 5 demonstrates the effects of the particle size and coating percentage on
the efficiency of the gypsum-sulphur-coated urea. The response surface describing the interactions
between the particle size and the coating percentage was generated with a constant pan speed of
12 rpm, a spray flow rate of 75 g/min and 1.5% sprayed water. The increase in the efficiency of the
coating with an increased coating percentage can be due to an increase in the available sites on the
surface of the particles, which in turn increases the coating uniformity. The larger particles are expected
to have a shorter circulation path in the bed due to their larger mass, and therefore are not carried
all the way to the top of the rotary pan. Since these particles may not reach to the top of the pan,
they would have a higher chance of exposure to the coating. With an increase in the urea particle size
to 3.35 mm, the internal porosity increases, which in turn results in a reduction in the efficiency of the
coating [38].
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The effect of the particle size and the pan speed on the efficiency of gypsum-sulphur-coated urea
is shown in Figure 6. The response surface showing the interaction between the particle size and the
pan speed is generated with a constant coating percentage of 20%, a spray flow rate of 75 g/min and
1.5% sprayed water. The results show that an increase in the rotation speed of the pan improves the
efficiency of the coating using small particles. However, an optimum point of efficiency is evidently
observed for a particle size of 2.80 mm and at a higher rotation speed (i.e., 16 rpm).
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Figure 7 shows the combined effects of the spray flow rate and the particle size on the efficiency
of the coated urea. It is seen that with an increase in the spray flow rate, the coating efficiency initially
increases by 33%. This is however followed by a subsequent drop in the efficiency. The results
herein are consistent with those reported by Tzika (2003) where medium spray rates were employed,
the produced coatings were considerably denser, and therefore a slower release rate of the fertilizer
from the coated granules was observed [39]. For any given particle size between 2.80 mm and 3.35 mm,
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the efficiency of the coating process improves with an increase in the spray flow rate up to 75 g/min.
Any further increase in the spray flow rate up to 100 g/min results in a decrease in the efficiency of the
coating process. Figure 8 shows the response surfaces, the combined effects of the coating percentage
and the rotational speed of the pan on the efficiency of the coating process for a particle size of 3 mm,
a spray flow rate of 75 g/min and 1.5% sprayed water. Figure 8 indicates that with an increase in the
coating percentage and the pan speed, the efficiency of the coating process will increase.

The response surface for the combined effect of the coating percentage and the spray flow rate
is shown in Figure 9. The response surface was produced with a constant pan speed of 12 rpm,
a particle size of 3 mm and 1.5% sprayed water. The results indicate that an increase in the coating
percentage enhances the efficiency of the coating process. However, an optimum point for the coating
process is clearly observed with a coating percentage of 25 %. For any given coating percentage (15%
to 25%), the efficiency of the coating process increases with an increase in the spray flow rate up
to 75 g/min. Any further increase in the spray flow rate (<100 g/min) results in a decrease in the
efficiency of the coating process. An increase in the flow rate or the overall mixing within the bed
will have an adverse impact on the process, translating into a less uniform coating distribution [40].
Tzika (2013) observed that when high spray rates were employed, the coating layer became too porous,
leading to an unwanted high release rate of the fertilizer from the coated granules [39]. The interactive
effects between the coating percentage and the amount of sprayed water are graphically illustrated in
Figure 10. The response surface for this interaction is generated with a constant pan speed of 12 rpm,
a particle size of 3 mm and a spray flow rate of 75 g/min. It is seen that an increase in the coating
percentage enhances the efficiency of the coated urea. However, an optimum point of coating is seen
corresponding to the maximum amount of coating (i.e., 25%). For any given coating percentage (15%
to 25%), the efficiency of the coating process is improved with an increase in the amount of water to
1.5%. Any additional increase in the sprayed water to 1.6% results in a drop in the efficiency of the
coating process.Energies 2018, 11, x 12 of 17 
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3.4. Response Surface and Process Optimisation

The effects of the five independent variables (i.e., particle size, coating percentage, pan speed,
spray flow rate and sprayed water) on the mean predicted values of the efficiency of the coating process
are shown in Table 7. For this purpose, RSM with a central composite design (CCD) was employed
to pinpoint the optimum process conditions. Controlled experiments were then conducted under
these optimum conditions. The experimental datasets were next compared against the model-based
predictive values. Based on the generated RSM, the optimum process conditions corresponding to
an optimum process performance are found to be: a particle size of 2.80 mm, a coating percentage
of 25%, a pan speed of 16 rpm, a spray flow rate of 73.00 g/min and a sprayed water percentage
of 1.50%. The coating of the urea demonstrated a reasonable percentage of efficiency (i.e., 34.56%).
This verified the predictability of the model with a comparison of the experimental values against the
predicted figures (i.e., 35.79%), implying that the RSM-based empirical model can adequately describe
the relationship between the independent variables and the target response and therefore, successfully
reveal the optimum process conditions.

Table 7. Optimum condition derived by the RSM for the gypsum-sulphur coated urea.

Optimal condition Efficiency %

X1 X2 X3 X4 X5 Actual Predicted Relative Deviation

2.80 25.00 16.00 73.00 1.50 34.56 35.79 3.44

X1 = particle size (mm), X2 = coating percentage (%), X3 = pan speed (rpm), X4 = spray flow rate (g/min) and X5 =
spray water (%).

3.5. Structural Properties of the Coated Urea

The surface morphologies of the coated urea (the non-optimum and the optimum samples) are
shown in Figure 11a,b, respectively. There is a significant difference in the surface morphologies of the
two sample layers. In addition, the surface layers reveal the various states (i.e. the crystalline structure
and compactness) for the two samples. It is seen that the porous non-optimum sample possesses a
crystalline structure with a significant distribution of rhombic and hexagonal shape crystals. However,
the optimum sample reveals a compact surface with a uniform monolithic structure. Ayub et al.
(2001) reported a uniform film of sulphur coating forming on urea granules prepared in a spouted
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bed. As shown in Figure 11a, the gypsum-sulphur coating demonstrates an intact porous structural
network. This enables a very fast absorption of water into the matrix of the gypsum-sulphur due
to the porosity of the surface. Therefore, the coating facilitates the release of urea into the solvent.
The optimization of the coating process led to a reduction in urea release; the coating process was
improved by approximately 13% by tuning the particle size, coating percentage, pan speed, spray flow
rate and the amount of sprayed water (Figure 11b). By applying the optimized process variables to
manufacture the coated urea, a good dispersion of sulphur particles in the gypsum matrix caused
a reduction in the number of the microscopic pores, forming a uniform coating layer covering the
urea particles.
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The study of nitrogen adsorption/desorption isotherms is a standard method to investigate the
surface characteristics of adsorbents. During this study, a type III-category isotherm was observed
indicating the formation of multi-layered coated urea (optimum coated urea) (Figure 12). The BET
surface areas of the three samples (urea, non-optimum coated urea and the optimum coated urea)
were measured to be 3.5397 m2/g, 1.8238 m2/g and 1.7048 m2/g, respectively. The surface area of the
urea was much larger than that of the coated urea, which corresponds to the high dissolution rate.
Figure 13 shows the pore size distribution plot for the three samples (urea, non-optimum coated urea
and optimum coated urea). The pore sizes are distributed between 40 nm and 65 nm for both the urea
and the coated urea samples. In comparison, the optimum coated sample has a smaller pore volume,
indicating a more compact structure associated with the coated urea. This results in a decreased water
permeation, and consequently a higher coating efficiency. The total pore volume is calculated based on
the single point total pore volume method at a relative pressure of 0.98. Table 8 shows the calculated
values for the structural properties of the urea and the coated urea. The optimum coated urea has a
smaller total pore volume, resulting in an improved efficiency.

Table 8. Structural properties of the urea and the optimum coated urea.

Sample Total Surface Area
(m2/g)

Total Pore Volume
(cm3/g)

Average Pore Diameter
(nm)

Urea 3.5397 0.173146 57.4
Non-optimum coated urea 1.8238 0.162450 58.2

Optimum coated urea 1.7048 0.147391 53.7
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4. Conclusions

Coating processes result in an alteration of the physical properties of the surface of urea, and
therefore the efficiency of its application. In this study we successfully improved the efficiency of
the manufacturing process of the coated urea. We employed a systematic approach in order to study,
identify and evaluate the significant variables together with any hidden interactions that can potentially
impact the efficiency of coated urea by employing a central composite DoE. The statistical insights
were then used to model the manufacturing process, and therefore facilitate its systematic optimisation.
It is realised that the urea particle size has a critical effect on the efficiency of gypsum-sulphur-coated
urea. The optimal conditions for the coating process analysed are found to be a particle size of 2.80 mm,
a coating percentage of 25%, a pan rotational speed of 16 rpm, a spray flow rate of 53 g/min and
a 1.50% sprayed water. The response surface method was used to pinpoint the optimum operating
envelope corresponding to an enhanced efficiency of 35%.
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