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Abstract
Learning the structure of Bayesian networks from data is known to be a computationally challenging, NP-hard problem.
The literature has long investigated how to perform structure learning from data containing large numbers of variables,
following a general interest in high-dimensional applications (“small n, large p”) in systems biology and genetics. More
recently, data sets with large numbers of observations (the so-called “big data”) have become increasingly common; and these
data sets are not necessarily high-dimensional, sometimes having only a few tens of variables depending on the application.
We revisit the computational complexity of Bayesian network structure learning in this setting, showing that the common
choice of measuring it with the number of estimated local distributions leads to unrealistic time complexity estimates for
the most common class of score-based algorithms, greedy search. We then derive more accurate expressions under common
distributional assumptions. These expressions suggest that the speed of Bayesian network learning can be improved by taking
advantage of the availability of closed-form estimators for local distributions with few parents. Furthermore, we find that
using predictive instead of in-sample goodness-of-fit scores improves speed; and we confirm that it improves the accuracy of
network reconstruction as well, as previously observed by Chickering and Heckerman (Stat Comput 10: 55–62, 2000). We
demonstrate these results on large real-world environmental and epidemiological data; and on reference data sets available
from public repositories.

Keywords Bayesian networks · Structure Learning · Big Data · Computational Complexity

1 Introduction

Bayesian networks (BNs; Pearl 1988) are a class of graph-
ical models defined over a set of random variables X =
{X1, . . . , XN }, each describing some quantity of interest,
that are associated with the nodes of a directed acyclic graph
(DAG) G. (They are often referred to interchangeably.) Arcs
in G express direct dependence relationships between the
variables in X, with graphical separation in G implying con-
ditional independence in probability. As a result, G induces
the factorisation

B Marco Scutari
scutari@stats.ox.ac.uk

1 Department of Statistics, University of Oxford, 24–29 St.
Giles’, Oxford OX1 3LB, UK

2 Forecast Department, European Centre for Medium-range
Weather Forecast, Reading, UK

3 Department of Computer Science, Brunel University London,
Kingston Lane, Uxbridge, UK

P(X |G,Θ) =
N∏

i=1

P(Xi | ΠXi ,ΘXi ), (1)

in which the joint probability distribution of X (with param-
eters Θ) decomposes in one local distribution for each Xi

(with parameters ΘXi ,
⋃

X ΘXi = Θ) conditional on its par-
ents ΠXi .

While in principle there are many possible choices for the
distribution of X, the literature has focused mostly on three
cases. Discrete BNs (Heckerman et al. 1995) assume that
both X and the Xi are multinomial random variables. Local
distributions take the form

Xi | ΠXi ∼ Mul(πik | j ), πik | j = P(Xi = k | ΠXi = j);

their parameters are the conditional probabilities of Xi given
each configuration of the values of its parents, usually rep-
resented as a conditional probability table for each Xi .
Gaussian BNs (GBNs; Geiger and Heckerman 1994) model
X with a multivariate normal random variable and assume
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that the Xi are univariate normals linked by linear depen-
dencies. The parameters of the local distributions can be
equivalently written (Weatherburn 1961) as the partial Pear-
son correlations ρXi ,X j | ΠXi \X j between Xi and each parent
X j given the other parents; or as the coefficients βXi

of the
linear regression model

Xi = μXi + ΠXi βXi
+ εXi , εXi ∼ N (0, σ 2

Xi
),

so that Xi | ΠXi ∼ N (μXi + ΠXi βXi
, σ 2

Xi
). Finally, con-

ditional linear Gaussian BNs (CLGBNs; Lauritzen and
Wermuth 1989) combine discrete and continuous random
variables in a mixture model:

– discrete Xi are only allowed to have discrete parents
(denoted ΔXi ), are assumed to follow a multinomial
distribution parameterised with conditional probability
tables;

– continuous Xi are allowed to have both discrete and con-
tinuous parents (denoted ΓXi , ΔXi ∪ ΓXi = ΠXi ), and
their local distributions are

Xi | ΠXi ∼ N
(
μXi ,δXi

+ ΓXi βXi ,δXi
, σ 2

Xi ,δXi

)

which can be written as a mixture of linear regressions

Xi = μXi ,δXi
+ ΓXi βXi ,δXi

+ εXi ,δXi
,

εXi ,δXi
∼ N

(
0, σ 2

Xi ,δXi

)
,

against the continuous parents with one component for
each configuration δXi ∈ Val(ΔXi ) of the discrete par-
ents. If Xi has no discrete parents, the mixture reverts to
a single linear regression.

Other distributional assumptions, such asmixtures of trun-
cated exponentials (Moral et al. 2001) or copulas (Elidan
2010), have been proposed in the literature but have seen
less widespread adoption due to the lack of exact conditional
inference and simple closed-form estimators.

The task of learning a BN from a data set D containing n
observations is performed in two steps:

P(G,Θ |D)︸ ︷︷ ︸
learning

= P(G |D)︸ ︷︷ ︸
structure learning

· P(Θ |G,D)︸ ︷︷ ︸
parameter learning

.

Structure learning consists in finding the DAG G that
encodes the dependence structure of the data, thus maximis-
ing P(G |D) or some alternative goodness-of-fit measure;
parameter learning consists in estimating the parameters Θ

given the G obtained from structure learning. If we assume
parameters in different local distributions are independent

(Heckerman et al. 1995), we can perform parameter learning
independently for each node following (1) because

P(Θ |G,D) =
N∏

i=1

P(ΘXi | ΠXi ,D).

Furthermore, if G is sufficiently sparse each node will have
a small number of parents; and Xi | ΠXi will have a low-
dimensional parameter space, making parameter learning
computationally efficient.

On the other hand, structure learning is well known to
be both NP-hard (Chickering and Heckerman 1994) and
NP-complete (Chickering 1996), even under unrealistically
favourable conditions such as the availability of an indepen-
dence and inference oracle (Chickering et al. 2004).1 This is
despite the fact that if we take

P(G |D) ∝ P(G)P(D |G),

again following (1) we can decompose the marginal likeli-
hood P(D |G) into one component for each local distribution

P(D |G) =
∫

P(D |G,Θ)P(Θ |G) dΘ

=
N∏

i=1

∫
P(Xi | ΠXi ,ΘXi )P(ΘXi | ΠXi ) dΘXi ;

and despite the fact that each component can be writ-
ten in closed form for discrete BNs (Heckerman et al.
1995), GBNs (Geiger and Heckerman 1994) and CLGBNs
(Bøttcher 2001). The same is true if we replace P(D |G)

with frequentist goodness-of-fit scores such as BIC (Schwarz
1978), which is commonly used in structure learning because
of its simple expression:

BIC(G,Θ |D) =
N∑

i=1

log P(Xi | ΠXi ,ΘXi ) − log(n)

2
|ΘXi |.

Compared to marginal likelihoods, BIC has the advantage
that it does not depend on any hyperparameter, while con-
verging to log P(D |G) as n → ∞.

These score functions, which we will denote with
Score(G,D) in the following, have two important properties:

1 Interestingly, some relaxations of BN structure learning are not NP-
hard; see for example Claassen et al. (2013) on learning the structure
of causal networks.
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– they decompose into one component for each local dis-
tribution following (1), say

Score(G,D) =
N∑

i=1

Score(Xi ,ΠXi ,D),

thus allowing local computations (decomposability);
– they assign the same score value to DAGs that encode
the same probability distributions and can therefore be
grouped in an equivalence classes (score equivalence;
Chickering 1995).2

Structure learning via scoremaximisation is performed using
general-purpose optimisation techniques, typically heuris-
tics, adapted to take advantage of these properties to increase
the speed of structure learning. Themost common are greedy
search strategies that employ local moves designed to affect
only few local distributions, to that new candidate DAGs can
be scored without recomputing the full P(D |G). This can be
done either in the space of the DAGs with hill climbing and
tabu search (Russell and Norvig 2009), or in the space of the
equivalence classes with Greedy Equivalent Search (GES;
Chickering 2002). Other options that have been explored in
the literature are genetic algorithms (Larranaga et al. 1996)
and ant colonyoptimisation (Campos et al. 2002). Exactmax-
imisation of P(D |G) and BIC has also become feasible for
small data sets in recent years thanks to increasingly efficient
pruning of the space of the DAGs and tight bounds on the
scores (Cussens 2012; Suzuki 2017; Scanagatta et al. 2015).

In addition, we note that it is also possible to perform
structure learning using conditional independence tests to
learn conditional independence constraints fromD, and thus
identify which arcs should be included in G. The result-
ing algorithms are called constraint-based algorithms, as
opposed to the score-based algorithmswe introduced above;
for an overview and a comparison of these two approaches
see Scutari andDenis (2014). Chickering et al. (2004) proved
that constraint-based algorithms are also NP-hard for unre-
stricted DAGs; and they are in fact equivalent to score-based
algorithms given a fixed topological ordering when indepen-
dence constraints are tested with statistical tests related to
cross-entropy (Cowell 2001). For these reasons, in this paper
wewill focus only on score-based algorithmswhile recognis-
ing that a similar investigation of constraint-based algorithms
represents a promising direction for future research.

The contributions of this paper are:

1. to provide general expressions for the (time) computa-
tional complexity of the most common class of score-

2 All DAGs in the same equivalence class have the same underlying
undirected graph and v-structures (patterns of arcs like Xi → X j ←
Xk , with no arcs between Xi and Xk ).

based structure learning algorithms, greedy search, as a
function of the number of variables N , of the sample size
n, and of the number of parameters |Θ|;

2. to use these expressions to identify two simple yet effec-
tive optimisations to speed up structure learning in “big
data” settings in which n 	 N .

Both are increasingly important when using BNs in modern
machine learning applications, as data sets with large num-
bers of observations (the so-called “big data”) are becoming
as common as classic high-dimensional data (“small n, large
p”, or “small n, large N” using the notation introduced
above). The vast majority of complexity and scalability
results (Kalisch and Bühlmann 2007; Scanagatta et al. 2015)
and computational optimisations (Scutari 2017) in the liter-
ature are derived in the latter setting and implicitly assume
n 
 N ; they are not relevant in the former setting in which
n 	 N . Our contributions also complement related work on
advanced data structures for machine learning applications,
which include ADtrees (Moore and Lee 1998), frequent sets
(Goldenberg andMoore 2004) andmore recently bitmap rep-
resentations combined with radix sort (Karan et al. 2018).
Such literature develops a framework for caching sufficient
statistics, but concentrates on discrete variables, whereas we
work in amore general setting in which data can include both
discrete and continuous variables.

The material is organised as follows. In Sect. 2, we will
present in detail how greedy search can be efficiently imple-
mented thanks to the factorisation in (1), and we will derive
its computational complexity as a function N ; this result has
been mentioned in many places in the literature, but to the
best of our knowledge its derivation has not been described in
depth. In Sect. 3, we will then argue that the resulting expres-
sion does not reflect the actual computational complexity of
structure learning, particularly in a “big data” setting where
n 	 N ; and we will re-derive it in terms of n and |Θ| for
the three classes of BNs described above. In Sect. 4, we will
use this new expression to identify two optimisations that
can markedly improve the overall speed of learning GBNs
and CLGBNs by leveraging the availability of closed-form
estimates for the parameters of the local distributions and
out-of-sample goodness-of-fit scores. Finally, in Sect. 5 we
will demonstrate the improvements in speed produced by the
proposed optimisations on simulated and real-world data, as
well as their effects on the accuracy of learned structures.

2 Computational complexity of greedy
search

A state-of-the-art implementation of greedy search in the
context of BN structure learning is shown in Algorithm 1.
It consists of an initialisation phase (steps 1 and 2) followed
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Algorithm 1 Greedy Search

Input: a data setD fromX, an initial DAG G (usually the empty DAG),
a score function Score(G,D).
Output: the DAG Gmax that maximises Score(G,D).

1. Compute the score of G, SG = Score(G,D).
2. Set Smax = SG and Gmax = G.
3. Hill climbing: repeat as long as Smax increases:

(a) for every possible arc addition, deletion or reversal in Gmax
resulting in a DAG:

i. compute the score of the modified DAG G∗, SG∗ =
Score(G∗,D):

ii. if SG∗ > Smax and SG∗ > SG, set G = G∗ and SG = SG∗ .
(b) if SG > Smax , set Smax = SG and Gmax = G.

4. Tabu search: for up to t0 times:

(a) repeat step 3 but choose the DAG G with the highest SG that
has not been visited in the last t1 steps regardless of Smax ;

(b) if SG > Smax , set S0 = Smax = SG and G0 = Gmax = G and
restart the search from step 3.

5. Random restart: for up to r times, perturb Gmax with multiple arc
additions, deletions and reversals to obtain a new DAG G′ and:

(a) set S0 = Smax = SG and G0 = Gmax = G and restart the search
from step 3;

(b) if the new Gmax is the same as the previous Gmax , stop and
return Gmax .

by a hill climbing search (step 3), which is then optionally
refinedwith tabu search (step 4) and random restarts (step 5).
Minor variations of this algorithm have been used in large
parts of the literature on BN structure learning with score-
based methods (some notable examples are Heckerman et al.
1995; Tsamardinos et al. 2006; Friedman 1997).

Hill climbing uses local moves (arc additions, deletions
and reversals) to explore the neighbourhood of the current
candidate DAG Gmax in the space of all possible DAGs in
order to find the DAG G (if any) that increases the score
Score(G,D) the most over Gmax . That is, in each iteration hill
climbing tries to delete and reverse each arc in the current
optimal DAG Gmax; and to add each possible arc that is not
already present inGmax. For all the resultingDAGsG∗ that are
acyclic, hill climbing then computes SG∗ = Score(G∗,D);
cyclic graphs are discarded. The G∗ with the highest SG∗
becomes the new candidate DAG G. If that DAG has a score
SG > Smax then G becomes the new Gmax , Smax will be set to
SG, and hill climbing will move to the next iteration.

This greedy search eventually leads to a DAG Gmax that
has no neighbour with a higher score. Since hill climbing
is an optimisation heuristic, there is no theoretical guarantee
thatGmax is a globalmaximum. In fact, the space of theDAGs
grows super-exponentially in N (Harary and Palmer 1973);
hence, multiple local maxima are likely present even if the
sample size n is large. The problem may be compounded by
the existence of score-equivalent DAGs, which by definition
have the same SG for all the G falling in the same equivalence

class. However, Gillispie and Perlman (2002) have shown
that while the number of equivalence classes is of the same
order of magnitude as the space of the DAGs, most contain
few DAGs and as many as 27.4% contain just a single DAG.
This suggests that the impact of score equivalence on hill
climbing may be limited. Furthermore, greedy search can
be easily modified into GES to work directly in the space
of equivalence classes by using different set of local moves,
side-stepping this possible issue entirely.

In order to escape from local maxima, greedy search first
tries to move away from Gmax by allowing up to t0 additional
localmoves. Thesemoves necessarily produceDAGsG∗ with
SG∗ � Smax; hence, the new candidate DAGs are chosen to
have the highest SG even if SG < Smax . Furthermore, DAGs
that have been accepted as candidates in the last t1 iterations
are kept in a list (the tabu list) and are not considered again
in order to guide the search towards unexplored regions of
the space of the DAGs. This approach is called tabu search
(step 4) and was originally proposed by Glover and Laguna
(1998). If a new DAG with a score larger than Gmax is found
in the process, that DAG is taken as the new Gmax and greedy
search returns to step 3, reverting to hill climbing.

If, on the other hand, no such DAG is found then greedy
search tries again to escape the local maximum Gmax for r0
times with random non-local moves, that is, by moving to
a distant location in the space of the DAGs and starting the
greedy search again; hence, the name random restart (step 5).
The non-local moves are typically determined by applying a
batch of r1 randomly chosen local moves that substantially
alter Gmax. If the DAG that was perturbed was indeed the
global maximum, the assumption is that this second search
will also identify it as the optimal DAG, in which case the
algorithm terminates.

We will first study the (time) computational complexity
of greedy search under the assumptions that are commonly
used in the literature (see, for instance, Tsamardinos et al.
2006; Spirtes et al. 2001) for this purpose:

1. We treat the estimation of each local distribution as an
atomic O(1) operation; that is, the (time) complexity of
structure learning ismeasured by the number of estimated
local distributions.

2. Model comparisons are assumed to always add, delete
and reverse arcs correctly with respect to the underlying
true model which happens asymptotically for n → ∞
since marginal likelihoods and BIC are globally and
locally consistent (Chickering 2002).

2. The true DAG GREF is sparse and contains O(cN ) arcs,
where c is typically assumed to be between 1 and 5.

In steps 1 and 2, greedy search computes all the N local dis-
tributions for G0. In step 3, each iteration tries all possible
arc additions, deletions and reversals. Since there are

(N
2

)
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possible arcs in a DAG with N nodes, this requires O(N 2)

model comparisons. If we assume G0 is the empty DAG (that
is, a DAG with no arcs), hill climbing will gradually add
all the arcs in GREF, one in each iteration. Assuming GREF
is sparse, and assuming that arcs are removed or reversed a
negligible number of times, the overall computational com-
plexity of hill climbing is then O(cN 3) model comparisons.
Step 4 performs t0 more iterations and is therefore O(t0N 2).
Therefore, the combined time complexity of steps 3 and 4 is
O(cN 3+ t0N 2). Each of the random restarts involves chang-
ing r1 arcs, and thuswe can expect that itwill take r1 iterations
of hill climbing to go back to the same maximum, followed
by tabu search; and that happens for r0 times. Overall, this
adds O(r0(r1N 2 + t0N 2)) to the time complexity, resulting
in an overall complexity g(N ) of

O(g(N )) = O(cN 3 + t0N
2 + r0(r1N

2 + t0N
2))

= O(cN 3 + (t0 + r0(r1 + t0))N
2). (2)

The leading term is O(cN 3) for some small constant c, mak-
ing greedy search cubic in complexity.

Fortunately, the factorisation in (1) makes it possible to
recompute only one or two local distributions for each model
comparison:

– Adding or removing an arc only alters one parent set;
for instance, adding X j → Xi means that ΠXi =
ΠXi ∪ X j , and therefore P(Xi | ΠXi ) should be updated
to P(Xi | ΠXi ∪ X j ). All the other local distributions
P(Xk | ΠX j ), Xk 
= Xi are unchanged.

– Reversing an arc X j → Xi to Xi → X j means that
ΠXi = ΠXi \ X j and ΠX j = ΠX j ∪ Xi , and so both
P(Xi | ΠXi ) and P(X j | ΠX j ) should be updated.

Hence, it is possible to dramatically reduce the computational
complexity of greedy search by keeping a cache of the score
values of the N local distributions for the current Gmax

Bi = Scoremax(Xi ,Π
max
Xi

,D);

and of the N 2 − N score differences

Δi j = Smax − SG∗

= Scoremax(Xi ,Π
max
Xi

,D) − ScoreG∗(Xi ,Π
G∗
Xi

,D), i 
= j,

where Πmax
Xi

and ΠG∗
Xi

are the parents of Xi in Gmax and in
the G∗ obtained by removing (if present) or adding (if not)
X j → Xi to Gmax. Only N (for arc additions and deletions)
or 2N (for arc reversals) elements of Δ need to be actually
computed in each iteration; those corresponding to the vari-
able(s) whose parent sets were changed by the local move
produced the current Gmax in the previous iteration. After
that, all possible arc additions, deletions and reversals can be

evaluated without any further computational cost by adding
or subtracting the appropriate Δi j from the Bi . Arc rever-
sals can be handled as a combination of arc removals and
additions (e.g. reversing Xi → X j is equivalent to removing
Xi → X j and adding X j → Xi ). As a result, the over-
all computational complexity of greedy search reduces from
O(cN 3) to O(cN 2). Finally, we briefly note that score equiv-
alencemay allow further computational saving becausemany
local moves will produce new G∗ that are in the same equiva-
lence class as Gmax; and for those moves necessarilyΔi j = 0
(for arc reversals) or Δi j = Δ j i (for adding or removing
Xi → X j and X j → Xi ).

3 Revisiting computational complexity

In practice, the computational complexity of estimating a
local distribution P(Xi | ΠXi ) from data depends on three of
factors:

– the characteristics of the data themselves (the sample size
n, the number of possible values for categorical vari-
ables);

– the number of parents of Xi in the DAG, that is, |ΠXi |;
– the distributional assumptions on P(Xi | ΠXi ), which
determine the number of parameters |ΘXi |.

3.1 Computational complexity for local distributions

If n is large, or if |ΘXi | is markedly different for different Xi ,
different local distributions will take different times to learn,
violating the O(1) assumption from the previous section. In
other words, if we denote the computational complexity of
learning the local distribution of Xi as O( fΠXi

(Xi )), we find
below that O( fΠXi

(Xi )) 
= O(1).

3.1.1 Nodes in discrete BNs

In the case of discrete BNs, the conditional probabilities
πik | j associated with each Xi | ΠXi are computed from the
corresponding counts ni jk tallied from {Xi ,ΠXi }; hence,
estimating them takes O(n(1+|ΠXi |)) time. Computing the
marginals counts for each configuration of ΠXi then takes
O(|ΘXi |) time; assuming that each discrete variable takes at
most l values, then |ΘXi | � l1+|ΠXi | leading to

O( fΠXi
(Xi )) = O

(
n(1 + |ΠXi |) + l1+|ΠXi |

)
. (3)

3.1.2 Nodes in GBNs

In the case of GBNs, the regressions coefficients for Xi | ΠXi

are usually computed by applying a QR decomposition to the
augmented data matrix [1ΠXi ]:
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[1ΠXi ] = QR leading to R[μXi ,βXi
] = QT Xi

which can be solved efficiently by backward substitution
sinceR is upper-triangular. This approach is the de facto stan-
dard approach for fitting linear regression models because it
is numerically stable even in the presence of correlated ΠXi

(see Seber 2008, for details). Afterwards, we can compute the
fitted values x̂i = ΠXi β̂Xi

and the residuals Xi − x̂i to esti-
mate σ̂ 2

Xi
∝ (Xi − x̂i )T (Xi − x̂i ). The overall computational

complexity is

O( fΠXi
(Xi )) =

= O
(
n(1 + |ΠXi |)2

)

︸ ︷︷ ︸
QR decomposition

+ O
(
n(1 + |ΠXi |

)
)

︸ ︷︷ ︸
computing QT Xi

+ O
(
(1 + |ΠXi |)2

)

︸ ︷︷ ︸
backwards substitution

+ O
(
n(1 + |ΠXi |)

)
︸ ︷︷ ︸

computing x̂i

+ O (3n)︸ ︷︷ ︸
computing σ̂ 2

Xi

(4)

with leading term O((n + 1)(1 + |ΠXi |)2).

3.1.3 Nodes in CLGBNs

As for CLGBNs, the local distributions of discrete nodes are
estimated in the same way as they would be in a discrete BN.
ForGaussian nodes, a regression of Xi against the continuous
parentsΓXi is fitted from thenδXi

observations corresponding
to each configuration of the discrete parents ΔXi . Hence, the
overall computational complexity is

O( fΠXi
(Xi ))

=
∑

δXi ∈Val(ΔXi )

O
(
nδXi

(1 + |ΓXi |)2
)

+ O
(
2nδXi

(1 + |ΓXi |)
)

+ O
(
1 + |ΓXi |)2

)

+ O
(
3nδXi

)

= O
(
n(1 + |ΓXi |)2

)
+ O

(
2n(1 + |ΓXi |)

)

+ O
(
|Val(ΔXi )|(1 + |ΓXi |)2

)
+ O (3n)

= O
(
(n + l |ΔXi |)(1 + |ΓXi |)2

)

+ O
(
2n(1 + |ΓXi |)

) + O (3n) (5)

with leading term O
(
(n + l |ΔXi |)(1 + |ΓXi |)2

)
. If Xi has no

discrete parents, then (5) simplifies to (4) since |Val(ΔXi )| =
1 and nδXi

= n.

3.2 Computational complexity for the whole BN

Let’s now assume without loss of generality that the depen-
dence structure of X can be represented by a DAG G with
in-degree sequence dX1 � dX2 � . . . � dXN . For a sparse
graph containing cN arcs, this means

∑N
i=1 dXi = cN . Then

ifwemake the common choice of starting greedy search from
the empty DAG, we can rewrite (2) as

O(g(N )) = O(cN 2)

= O

⎛

⎝
N∑

i=1

dXi +1∑

j=1

N−1∑

k=1

1

⎞

⎠

=
N∑

i=1

dXi +1∑

j=1

N−1∑

k=1

O(1) = O(g(N ,d)) (6)

because:

– parents are added sequentially to each of the N nodes;
– if a node Xi has dXi parents then greedy search will per-
form dXi + 1 passes over the candidate parents;

– for each pass, N − 1 local distributions will need to be
relearned as described in Sect. 2.

The candidate parents in the (dXi + 1)th pass are evaluated
but not included in G, since no further parents are accepted
for a node after its parent set ΠXi is complete. If we drop
the assumption from Sect. 2 that each term in the expression
above is O(1), and we substitute it with the computational
complexity expressionswe derived above in this section, then
we can write

O(g(N ,d)) =
N∑

i=1

dXi +1∑

j=1

N−1∑

k=1

O( f jk(Xi )).

where O( f jk(Xi )) = O( f
Π

( j−1)
Xi

∪Xk
(Xi )), the computa-

tional complexity of learning the local distribution of Xi

conditional of j − 1 parents Π
( j)
Xi

currently in G and a new
candidate parent Xk .

3.2.1 Discrete BNs

For discrete BNs, f jk(Xi ) takes the form shown in (3) and

O(g(N ,d))

=
N∑

i=1

dXi +1∑

j=1

N−1∑

k=1

O(n(1 + j) + l1+ j )
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= O

⎛

⎝n(c + 1)(N − 1)N + n(N − 1)
N∑

i=1

dXi +1∑

j=1

j

+ (N − 1)
N∑

i=1

dXi +1∑

j=1

l1+ j

⎞

⎠

≈ O

⎛

⎝ncN 2 + nN
N∑

i=1

dXi +1∑

j=1

j + N
N∑

i=1

dXi +1∑

j=1

l1+ j

⎞

⎠

The second term is an arithmetic progression,

dXi +1∑

j=1

j = (dXi + 1)(dXi + 2)

2
;

and the third term is a geometric progression

dXi +1∑

j=1

l1+ j = l2
dXi +1∑

j=1

l j−1 = l2
ldXi +1 − 1

l − 1

leading to

O(g(N ,d))

≈ O

(
ncN 2 + nN

N∑

i=1

d2Xi

2
+ Nl2

N∑

i=1

ldXi +1 − 1

l − 1

)
.

(7)

Hence, we can see that O(g(N ,d)) increases linearly in the
sample size. If G is uniformly sparse, all dXi are bounded by
a constant b (dXi � b, c � b) and

O(g(N ,d)) ≈ O

(
N 2

[
nc + n

b2

2
+ l2

lb+1 − 1

l − 1

])
,

so the computational complexity is quadratic in N . Note that
this is a stronger sparsity assumption than

∑N
i=1 dXi = cN ,

because it bounds individual dXi instead of their sum; and
it is commonly used to make challenging learning problems
feasible (e.g. Cooper and Herskovits 1992; Friedman and
Koller 2003). If, on the other hand, G is dense and dXi =
O(N ), then c = O(N )

O(g(N ,d)) ≈ O

(
N 2

[
nc + n

N 3

2
+ l2

l N − 1

l − 1

])

and O(g(N ,d)) is more than exponential in N . In between
these two extremes, the distribution of the dXi determines
the actual computational complexity of greedy search for
a specific types of structures. For instance, if G is a scale-
free DAG (Bollobás et al. 2003) the in-degree of most nodes
will be small and we can expect a computational complexity

closer to quadratic than exponential if the probability of large
in-degrees decays quickly enough compared to N .

3.2.2 GBNs

Ifwe consider the leading termof (4),weobtain the following
expression:

O(g(N ,d))

=
N∑

i=1

dXi +1∑

j=1

N−1∑

k=1

O((n + 1)( j + 1)2)

= O

⎛

⎝(n + 1)(N − 1)
N∑

i=1

dXi +1∑

j=1

( j + 1)2

⎞

⎠

Noting the arithmetic progression

dXi +1∑

j=1

( j + 1)2 = 2d3Xi
+ 15d2Xi

+ 37dXi + 24

6

we can write

O(g(N ,d)) ≈ O

(
nN

N∑

i=1

d3Xi

3

)
,

which is again linear in n but cubic in the dXi . We note,
however, that even for dense networks (dXi = O(N )) com-
putational complexity remains polynomial

O(g(N ,d)) ≈ O

(
nN 2 N

3

3

)

which was not the case for discrete BNs. If, on the other hand
dXi � b,

O(g(N ,d)) ≈ O

(
nN 2 b

3

3

)

which is quadratic in N .

3.2.3 CLGBNs

Deriving the computational complexity for CLGBNs is more
complicated because of the heterogeneous nature of the
nodes. If we consider the leading term of (5) for a BN with
M < N Gaussian nodes and N − M multinomial nodes, we
have
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O(g(N ,d)) =
N−M∑

i=1

dXi +1∑

j=1

N−M−1∑

k=1

O( f jk(Xi ))

+
M∑

i=1

dXi +1∑

j=1

N−1∑

k=1

O( f jk(Xi )).

The first term can be computed using (7) since discrete nodes
can only have discrete parents, and thus cluster in a subgraph
of N−M nodeswhose in-degrees are completely determined
byother discrete nodes; and the sameconsiderationswemade
in Sect. 3.2.1 apply.

As for the second term, we will first assume that all Di

discrete parents of each node are added first, before any of
theGi continuous parents (dXi = Di +Gi ). Hence, we write

M∑

i=1

dXi +1∑

j=1

N−1∑

k=1

O( f jk(Xi ))

=
M∑

i=1

⎡

⎣
Di∑

j=1

N−1∑

k=1

O( f jk(Xi )) +
dXi +1∑

j=Di+1

N−1∑

k=1

O( f jk(Xi ))

⎤

⎦ .

Wefurther separate discrete and continuous nodes in the sum-
mations over the possible N − 1 candidates for inclusion or
removal from the current parent set, so that substituting (5)
we obtain

Di∑

j=1

N−1∑

k=1

O( f jk(Xi ))

=
Di∑

j=1

[
N−M∑

k=1

O( f jk(Xi )) +
M−1∑

k=1

O( f jk(Xi ))

]

=
Di∑

j=1

[
(N − M)O

(
n + l j

)
+ (M − 1)O

(
4
(
n + l j

))]

≈ O

⎛

⎝(N + 3M)

Di∑

j=1

(
n + l j

)
⎞

⎠

= O

(
(N + 3M)

(
nDi + l

l Di − 1

l − 1

))

dXi +1∑

j=Di+1

N−1∑

k=1

O( f jk(Xi ))

=
dXi +1∑

j=Di+1

[
N−M∑

k=1

O( f jk(Xi )) +
M−1∑

k=1

O( f jk(Xi ))

]

=
Gi∑

j=1

[
(N − M)O

(
n + l Di

)

+ (M − 1)O
((

n + l Di
)

(1 + j)2
) ]

≈ O

((
n + l Di

)(
Gi (N − M) + M

G3
i

3

))
.

Finally, combining all terms we obtain the following expres-
sion:

O(g(N ,d))

≈ O

(
nc(N − M)2 + n(N − M)

N−M∑

i=1

d2Xi

2

+ (N − M)l2
N−M∑

i=1

ldXi +1 − 1

l − 1

)

+
M∑

i=1

O

(
(N + 3M)

(
nDi + l

l Di − 1

l − 1

))

+
M∑

i=1

O

((
n + l Di

)(
Gi (N − M) + M

G3
i

3

))
.

While it is not possible to concisely describe the behaviour
resulting from this expression given the number of data-
dependent parameters (Di , Gi , M), we can observe that:

– O(g(N ,d)) is always linear in the sample size;
– unless the number of discrete parents is bounded for both
discrete and continuous nodes, O(g(N ,d)) is againmore
than exponential;

– if the proportion of discrete nodes is small,we can assume
that M ≈ N and O(g(N ,d)) is always polynomial.

4 Greedy search and big data

In Sect. 3, we have shown that the computational complex-
ity of greedy search scales linearly in n, so greedy search
is efficient in the sample size and it is suitable for learning
BNs from big data. However, we have also shown that dif-
ferent distributional assumptions on X and on the dXi lead
to different complexity estimates for various types of BNs.
We will now build on these results to suggest two possible
improvements to speed up greedy search.

4.1 Speeding up low-order regressions in GBNs and
CLGBNs

Firstly, we suggest that estimating local distributions with
few parents can be made more efficient; if we assume that G
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is sparse, thosemake up themajority of the local distributions
learned by greedy search and their estimation can potentially
dominate the overall computational cost of Algorithm 1. As
we can see from the summations in (6), the overall number
of learned local distributions with j parents is

N∑

i=1

1{dXi � j−1}( j) = N −
N∑

i=1

1{dXi < j−1}( j), (8)

that is, it is inversely proportional to the number of nodes for
which dXi is less than j − 1 in the DAG we are learning. If
that subset of nodes represents large fraction of the total, as is
the case for scale-free networks and for networks in which all
dXi � b, (8) suggests that a correspondingly large fraction
of the local distributions we will estimate in Algorithm 1will
have a small number j of parents. Furthermore, we find that
in our experienceBNswill typically have aweakly connected
DAG (that is, with no isolated nodes); and in this case local
distributions with j = 0, 1 will need to be learned for all
nodes, and those with j = 2 for all non-root nodes.

In the case of GBNs, local distributions for j = 0, 1, 2
parents can be estimated in closed form using simple expres-
sions as follows:

– j = 0 corresponds to trivial linear regressions of the type

Xi = μXi + εXi .

in which the only parameters are the mean and the vari-
ance of Xi .

– j = 1 corresponds to simple linear regressions of the
type

Xi = μXi + X jβX j + εXi ,

for which there are the well-known (e.g. Draper and
Smith 1998) closed-form estimates

μ̂Xi = x̄i − β̂X j x̄ j ,

β̂X j = COV(Xi , X j )

VAR(Xi )
,

σ̂ 2
Xi

= 1

n − 2
(Xi − x̂i )

T (Xi − x̂i );

where VAR(·) and COV(·, ·) are empirical variances and
covariances.

– for j = 2, we can estimate the parameters of

Xi = μXi + X jβX j + XkβXk + εXi

using their links to partial correlations:

ρXi X j | Xk = ρXi X j − ρXi XkρX j Xk√
1 − ρ2

Xi Xk

√
1 − ρ2

X j Xk

= β j

√
1 − ρ2

X j Xk√
1 − ρ2

Xi Xk

;

ρXi Xk | X j = βk

√
1 − ρ2

X j Xk√
1 − ρ2

Xi X j

;

for further details we refer the reader to Weatherburn
(1961). Simplifying these expressions leads to

β̂X j = 1

d

[
VAR(Xk)COV(Xi , X j )

− COV(X j , Xk)COV(Xi , Xk)
]
,

β̂Xk = 1

d

[
VAR(X j )COV(Xi , Xk)

− COV(X j , Xk)COV(Xi , X j )
];

with denominator

d = VAR(X j )VAR(Xk) − COV(X j , Xk).

Then, the intercept and the standard error estimates can
be computed as

μ̂Xi = x̄i − β̂X j x̄ j − β̂Xk x̄k,

σ̂ 2
Xi

= 1

n − 3
(Xi − x̂i )

T (Xi − x̂i ).

All these expressions are based on the variances and the
covariances of (Xi ,ΠXi ), and therefore can be computed in

O

(
1

2
n(1 + j)2

)

︸ ︷︷ ︸
covariance matrix of (Xi ,ΠXi )

+ O(n(1 + j))︸ ︷︷ ︸
computing x̂i

+ O(3n)︸ ︷︷ ︸
computing σ̂ 2

Xi

, (9)

This is faster than (4) for the same number of parents, albeit
in the same class of computational complexity

j From (4) From (9)

0 O(6n) O(4.5n)

1 O(9n) O(7n)

2 O(16n) O(10.5n)
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and it suggests that learning low-order local distributions in
this way can be markedly faster, thus driving down the over-
all computational complexity of greedy search without any
change in its behaviour. We also find that issues with singu-
larities and numeric stability, which are one of the reasons to
use the QR decomposition to estimate the regression coef-
ficients, are easy to diagnose using the variances and the
covariances of (Xi ,ΠXi ); and they can be resolved without
increasing computational complexity again.

As for CLGBNs, similar improvements in speed are pos-
sible for continuous nodes. Firstly, if a continuous Xi has no
discrete parents (ΔXi = ∅) then the computational complex-
ity of learning its local distribution using QR is again given
by (4) as we noted in Sect. 3.1.3; and we are in the same set-
ting we just described for GBNs. Secondly, if Xi has discrete
parents (DXi > 0) and j continuous parents (GXi = j), the
closed-form expressions above can be computed for all the
configurations of the discrete parents in

∑

δXi ∈Val(DXi )

O

(
1

2
nδXi

(1 + j)2
)

+ O(nδXi
(1 + j)) + O(3nδXi

)

= O

(
1

2
n(1 + j)2

)
+ O(n(1 + j)) + O(3n) (10)

time, which is faster than the estimator from (5):

j From (5) From (10)

0 O
(
6n + l DXi

)
O(4.5n)

1 O
(
11n + 4l DXi

)
O(7n)

2 O
(
18n + 9l DXi

)
O(10.5n)

Interestingly we note that (10) does not depend on DXi ,
unlike (5); the computational complexity of learning local
distributions with GXi � 2 does not become exponential
even if the number of discrete parents is not bounded.

4.2 Predicting is faster than learning

BNs are often implicitly formulated in a prequential setting
(Dawid 1984), in which a data setD is considered as a snap-
shot of a continuous stream of observations and BNs are
learned from that sample with a focus on predicting future
observations. Chickering and Heckerman (2000) called this
the “engineering criterion” and set

Score(G,D) = log P(X(n+1) |G,Θ,D) (11)

as the score function to select the optimal Gmax , effectively
maximising the negative cross-entropy between the “correct”
posterior distribution of X(n+1) and that determined by the
BN with DAG G. They showed that this score is consistent
and that even for finite sample sizes it produces BNs which
are at least as good as the BNs learned using the scores in
Sect. 1, which focus on fitting D well. Allen and Greiner
(2000) and later Peña et al. (2005) confirmed this fact by
embedding k-fold cross-validation into greedy search, and
obtaining both better accuracy both in prediction and network
reconstruction. In both papers, the use of cross-validationwas
motivated by the need tomake the best use of relatively small
samples, for which the computational complexity was not a
crucial issue.

However, in a big data setting it is both faster and accurate
to estimate (11) directly by splitting the data into a training
and test set and computing

Score(G,D) = log P(Dtest |G,Θ,Dtrain); (12)

that is, we learn the local distributions on Dtrain and we
estimate the probability ofDtest . As is the case formanyother
models (e.g., deep neural networks; Goodfellow et al. 2016),
we note that prediction is computationallymuch cheaper than
learning because it does not involve solving an optimisation
problem. In the case of BNs, computing (12) is:

– O(N |Dtest |) for discrete BNs, because we just have to
perform an O(1) look-up to collect the relevant condi-
tional probability for each node and observation;

– O(cN |Dtest |) for GBNs and CLGBNs, because for each
node and observation we need to compute
Π

(n+1)
Xi

β̂Xi and β̂Xi is a vector of length dXi .

In contrast, using the same number of observations for learn-
ing in GBNs and CLGBNs involves a QR decomposition to
estimate the regression coefficients of each node in both (4)
and (5); and that takes longer than linear time in N .

Hence by learning local distributions only on Dtrain we
improve the speed of structure learning because the per-
observation cost of prediction is lower than that of learning;
andDtrain will still be large enough to obtain good estimates
of their parametersΘXi . Clearly, the magnitude of the speed-
up will be determined by the proportion of D used as Dtest .
Further improvements are possible by using the closed-form
results from Sect. 4.1 to reduce the complexity of learning
local distributions on Dtrain , combining the effect of all the
optimisations proposed in this section.
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5 Benchmarking and simulations

We demonstrate the improvements in the speed of struc-
ture learning and we discussed in Sects. 4.1 and 4.2 using
the MEHRA data set from Vitolo et al. (2018), which stud-
ied 50 million observations to explore the interplay between
environmental factors, exposure levels to outdoor air pollu-
tants, and health outcomes in the English regions of the UK
between 1981 and 2014. The CLGBN learned in that paper is
shown in Fig. 1: It comprises 24 variables describing the con-
centrations of various air pollutants (O3, PM2.5, PM10, SO2,
NO2, CO) measured in 162 monitoring stations, their geo-
graphical characteristics (latitude, longitude, latitude, region
and zone type), weather (wind speed and direction, tem-
perature, rainfall, solar radiation, boundary layer height),
demography and mortality rates.

The original analysis was performed with the bnlearn
R package (Scutari 2010), and it was complicated by the
fact that many of the variables describing the pollutants had
significant amounts of missing data due to the lack of cov-

erage in particular regions and years. Therefore, Vitolo et al.
(2018) learned the BN using the Structural EM algorithm
(Friedman 1997), which is an application of the expectation-
maximisation algorithm (EM; Dempster et al. 1977) to BN
structure learning that uses hill climbing to implement the M
step.

For the purpose of this paper, and to better illustrate
the performance improvements arising from the optimisa-
tions from Sect. 4, we will generate large samples from the
CLGBN learned by Vitolo et al. (2018) to be able to control
sample size and to work with plain hill climbing on complete
data. In particular:

1. we consider sample sizes of 1, 2, 5, 10, 20 and50millions;
2. for each sample size, we generate 5 data sets from the

CLGBN;
3. for each sample, we learn back the structure of the BN

using hill climbing using various optimisations:

Fig. 1 Conditional Linear Gaussian BN from Vitolo et al. (2018). Yellow nodes are multinomial, blue nodes are Gaussian, and green nodes are
conditional linear Gaussian
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– QR: estimating all Gaussian and conditional linear
Gaussian local distributions using the QR decompo-
sition, and BIC as the score function;

– 1P: using the closed-form estimates for the local dis-
tributions that involve 0 or 1 parents, and BIC as the
score function;

– 2P: using the closed-form estimates for the local dis-
tributions that involve 0, 1 or 2 parents, and BIC as
the score functions;

– PRED: using the closed-form estimates for the local
distributions that involve 0, 1 or 2 parents for learn-
ing the local distributions on 75% of the data and
estimating (12) on the remaining 25%.

For each sample and optimisation, we run hill climbing 5
times and we average the resulting running times to reduce
the variability of each estimate. Furthermore, we measure
the accuracy of network reconstruction using the Structural
Hamming Distance (SHD; 2006), which measures the num-
ber of arcs that differ between the CPDAG representations
of the equivalence classes of two network structures. In our
case, those we learn from the simulated data and the original
network structure from Vitolo et al. (2018). All computa-
tions are performed with the bnlearn package in R 3.3.3 on
a machine with two Intel Xeon CPU E5-2690 processors (16
cores) and 384GB of RAM.

The running times for 1P, 2P and PRED, normalised using
those for QR as a baseline, are shown in Fig. 2. As expected,

sample size (in millions, log−scale)
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Fig. 2 Running times for the MEHRA data set, normalised using the
baseline implementation based on the QR decomposition (blue), for
1P (pink), 2P (green) and PRED (red). Bars represent 95% confidence
intervals. Average running times are reported for QR. (Color figure
online)

Table 1 Sums of the SHDs
between the network structures
learned by BIC, PRED and that
from Vitolo et al. (2018) for
different sample sizes n

n BIC PRED

1 11 2

2 2 1

5 0 1

10 0 0

20 0 0

50 0 0

running times decrease with the level of optimisation: 1P
(pink) is ≈ 20% faster than QR, 2P (green) is ≈ 25% faster
and PRED (red) is ≈ 60% faster, with minor variations at
different sample sizes. PRED exhibits a larger variability
because of the randomness introduced by the subsampling of
Dtest and provides smaller speed-ups for the smallest con-
sidered sample size (1 million). Furthermore, we confirm the
results from Chickering and Heckerman (2000) on network
reconstruction accuracy. In Table 1, we report the sums of the
SHDs between the network structures learned by BIC and
that from Vitolo et al. (2018), and the corresponding sum for
the networks learned using PRED, for the considered sample
sizes. Overall, we find that BIC results in 13 errors over the
30 learned DAGs, compared to 4 for (12). The difference is
quite marked for samples of size 1 million (11 errors ver-
sus 2 errors). On the other hand, neither score results in any
error for samples with more than 10 million observations,
thus confirming the consistency of PRED. Finally we con-
firm that the observed running times increase linearly in the
sample size as we show in Sect. 3.

In order to verify that these speed increases extend beyond
theMEHRA data set, we considered five other data sets from
the UCI Machine Learning Repository (Dheeru and Karra
Taniskidou 2017) and from the repository of the Data Expo-
sition Session of the Joint Statistical Meetings (JSM). These
particular data sets have been chosen because of their large
sample sizes and because they have similar characteristics
to MEHRA (continuous variables, a few discrete variables,
20-40 nodes overall; see Table 2 for details). However, since
their underlying “true DAGs” are unknown, we cannot com-
ment on the accuracy of the DAGs we learn from them. For
the same reason, we limit the density of the learned DAGs by
restricting each node to have at most 5 parents; this produces
DAGswith 2.5N to 3.5N arcs depending on the data set. The
times for 1P, 2P and PRED, again normalised by those for
QR, are shown in Fig. 3. Overall, we confirm that PRED is
≈ 60% faster on average than QR. Compared to MEHRA,
1P and 2P are to some extent slower with average speed-
ups of only ≈ 15% and ≈ 22%, respectively. However, it is
apparent by comparing Figs. 2 and 3 that the reductions in
running times are consistent over all the data sets considered
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Table 2 Data sets from the UCI
Machine Learning Repository
and the JSM Data Exposition
session, with their sample size
(n), multinomial nodes (N − M)
and Gaussian/conditional
Gaussian nodes (M)

Data n d M Reference

AIRLINE 53.6 × 106 9 19 JSM, the Data Exposition Session (2009)

GAS 4.2 × 106 0 37 UCI ML Repository, Fonollosa et al. (2015)

HEPMASS 10.5 × 106 1 28 UCI ML Repository, Baldi et al. (2016)

HIGGS 11.0 × 106 1 28 UCI ML Repository, Baldi et al. (2014)

SUSY 5.0 × 106 1 18 UCI ML Repository, Baldi et al. (2014)
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Fig. 3 Running times for the data sets in Table 2, normalised using
the baseline implementation based on the QR decomposition (blue), for
1P (pink), 2P (green) and PRED (red). Bars represent 95% confidence
intervals. Average running times are reported for QR

in this paper and hold for a wide range of sample sizes and
combinations of discrete and continuous variables.

6 Conclusions

Learning the structure of BNs from large data sets is a
computationally challenging problem. After deriving the
computational complexity of the greedy search algorithm
in closed form for discrete, Gaussian and conditional linear
Gaussian BNs, we studied the implications of the resulting
expressions in a “big data” setting where the sample size
is very large, and much larger than the number of nodes in
the BN. We found that, contrary to classic characterisations,
computational complexity strongly depends on the class of
BN being learned in addition to the sparsity of the underlying
DAG. Starting from this result, we suggested two for greedy
search with the aim to speed up the most common algorithm
used for BN structure learning. Using a large environmental

data set and five data sets from the UCI Machine Learning
Repository and the JSM Data Exposition, we show that it is
possible to reduce the running time greedy search by≈ 60%.
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