
TO APPEAR IN OCEAN MODELLING 2018, https://doi.org/10.1016/j.ocemod.2018.10.008 

1 
 

 1 

ON THE RESONANT HYDROELASTIC BEHAVIOUR OF 2 

ICE SHELVES 3 

 4 

Theodosios K Papathanasiou
1
, Angeliki E Karperaki

2
 and Kostas A Belibassakis

2
 5 

1
Department of Civil and Environmental Engineering, Brunel University London, 6 

Uxbridge UB8 3PH, UK 7 
2
School of Naval Architecture and Marine Engineering, National Technical 8 

University of Athens, Zografos, 15773, Greece 9 
 10 

 11 

ABSTRACT 12 

Rhythmic hydroelastic oscillations of ice shelves are a key mechanism believed to 13 

affect several phenomena observed in Polar Regions, such as the disintegration of ice 14 

shelves due to ocean wave impact or even the formation of localised distinctive 15 

atmospheric waves. The fundamental and lower hydroelastic modes of an ice-16 

shelf/sub-ice-shelf cavity configuration can be studied by coupling shallow water 17 

theory and flexure dynamics of a slender, floating, cantilever beam. A crucial aspect 18 

of the analysis is the selection of appropriate boundary conditions at the grounding 19 

line of the ice shelf and at the freely floating end. The present study aims to determine 20 

appropriate and realistic homogeneous boundary conditions for eigenproblems of 21 

resonant ice-shelf vibrations. Through the formulation and solution of a wave impact 22 

Reflection-Transmission problem, frequencies that maximise specific norms of the 23 

ice-shelf response are identified. It is established that homogeneous conditions on the 24 

sub-ice-shelf cavity wave potential value, applied at the front of an ice-shelf, produce 25 

eigenfrequencies that in general match the norm maximisation frequencies. The 26 

methodology is employed for the prediction of characteristic periods of the Ross and 27 

Larsen C ice shelves. 28 
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1.  INTRODUCTION 36 

The interaction of ocean waves with ice shelves and ice tongues is considered a key 37 
mechanism that affects several phenomena observed in Polar Regions. Waves from 38 
the open ocean propagate towards the ice shelves through the Marginal Ice Zone 39 
(MIZ) and wave energy, eventually reaching the ice shelves, could be responsible for 40 

catastrophic large-scale disintegration events, as recently presented and discussed by 41 
Massom et al (2018). The energy carried by ocean waves also contributes to the 42 
breaking of sea ice (Montiel and Squire 2017), inducing greater lateral melt and more 43 
vigorous stirring of the upper ocean from air drag and floe motion (Zhang et al., 44 
2015). The feedback between wave-induced sea ice breakup and melt in polar regions 45 

is demonstrated by Roach et al. (2018) using images from drifting buoys. Typically, 46 
regional sea ice loss in the MIZ, could result in increased wave energy eventually 47 
reaching the ice shelves. The above processes could further result in the rise of sea 48 
water level, coastal erosion and acceleration of global warming effects (Thomson et 49 

al. 2016). Notably, a new satellite mission (SKIM) has been proposed by Ardhuin et 50 
al. (2017) for measuring currents, ice drift and waves providing enhanced quality data 51 
worldwide including Arctic and Antarctic marginal seas. 52 

 53 

Numerous studies on the stability 54 

and disintegration of ice shelves 55 

focus on vibrations due to the 56 

action of sea swell (Bromirski et 57 

al., 2010). This type of periodic, 58 

long wave action can induce 59 

intense flexural stress fields inside 60 

a floating bulk of ice and might 61 

thus lead to the expansion of pre-62 

existing rifts (Bromirski et al., 63 

2010; Holdsworth, 1969; 64 

Sergienko, 2010; Squire and 65 

Williams, 2008; Vinogradov and 66 

Holdsworth, 1985).  The impact of 67 

tsunami and infra-gravity waves 68 

has also been identified as a 69 

possible source of iceberg calving 70 

and potential ice shelf collapse events (Bromirski and Stephen, 2012; Bromirski et al., 71 

2010, 2015, 2017; Brunt et al., 2011). In Brunt et al. (2011), evidence supports the 72 

claim that the calving of the Sultzberg Ice Shelf (SIS) in 2011 is triggered by the 73 

tsunami generated by the Tohoku earthquake in Japan. Attempts to model the 74 

hydroelastic response of ice shelves and ice tongues under long wave excitation have 75 

been made by many authors. A dynamic finite element model simulating long wave 76 

impact on a floating cantilever representing the SIS has been presented by 77 

Papathanasiou et al. (2015). 78 

Figure 1. Image of Antarctica, displaying the 

four largest ice shelves and the location of 

McMurdo station.  
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Vibrations of ice shelves might also be related to the presence of persistent 79 

atmospheric waves in the Antarctic region. These localised atmospheric waves, 80 

observed at McMurdo (Fig. 1), have periods ranging between 3 to 10 hours (Chen et 81 

al., 2016). The origin of such waves might be attributed to the fundamental and low-82 

order modes of the Ross Ice-Shelf resonant vibration, as discussed by Godin and 83 

Zabotin (2016). Insight into the complex phenomena of ice shelf resonant, flexural 84 

response can be gained from mathematical modelling, accounting for the hydroelastic 85 

interactions of ice shelves while retaining a simple form of the governing equations. 86 

The large span of ice shelves and ice tongues, along with the non-dispersive nature of 87 

very long water waves provide a basis for the development of such models. Indeed, 88 

several authors have employed these assumptions and developed models based on the 89 

Kirchhoff approximation for thin plates, interacting with long ocean waves (e.g. 90 

Godin and Zabotin, 2016; Meylan et al. 2017; Papathanasiou et al. 2015; Sergienko, 91 

2010, 2013, 2017). 92 

An efficient coupled hydroelastic model for the estimation of eigenfrequencies and 93 

normal modes of a resonating ice-shelf/sub-ice-shelf cavity system was proposed by 94 

Sergienko (2013). Subsequently, Meylan et al. (2017) presented a correction for the 95 

complex roots of the characteristic equation in Sergienko’s model and reported 96 

differences between the former results and the outputs of their proposed scheme. 97 

These differences manifest primarily in the first two eigenfrequencies (longer periods) 98 

and less in higher-order modes. In both Sergienko (2013) and Meylan et al. (2017) it 99 

was assumed that, at resonance conditions, no mass transport occurs through the 100 

vertical interface of the ice-shelf and the open sea. This assumption leads to zero 101 

velocity or equivalently zero velocity potential gradient at the interface. 102 

On a different front, the analysis of harbour resonances is a problem in the core of 103 

coastal engineering and bears similarities with the analysis of ice-shelf resonant 104 

vibration modelling. This is because specific boundary conditions have to be applied 105 

at the interface between the region of interest (ice shelf or harbour) and the open sea. 106 

It is customary in the analysis of harbour resonances to assume that a nodal line exists 107 

at the harbour opening. This implies that the upper surface elevation, or equivalently 108 

in shallow water theory, the velocity potential is zero on the ficticious line. However, 109 

this condition is only approximate and, depending on the geometric characteristics of 110 

the harbour, the actual nodal line might be located slightly outside the harbour 111 

opening; see Rabonivitch (2009) and the references therein. The purpose of this study 112 

is to investigate the effect of this boundary condition at the interface between the 113 

ocean and the ice shelf. It is expected that the resulting eigenperiods and eigenmodes 114 

will be significantly different than those corresponding to the zero velocity condition 115 

(no flux).  116 

Furthermore, this study aims to determine which boundary condition at the interface, 117 

zero velocity potential or zero velocity potential gradient is more appropriate. In order 118 

to do that, the problem of ice-shelf vibrations, due to long wave impact, will be 119 

analysed from a different perspective. In particular, the matching boundary conditions 120 
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imposing continuity for the velocity potential function and its normal derivative will 121 

be applied at the interface between the edge of the ice shelf and the open ocean. These 122 

interface conditions have been used by several authors including Papathanasiou et al. 123 

(2015), Godin and Zabotin (2016) and Ilyas et al. (2018). The key concepts of the 124 

proposed methodology are: (a) apply general interface conditions (instead of 125 

boundary conditions) at the ice shelf/ocean interface and analyse ice shelf vibrations 126 

as a Reflection-Transmission problem. That is, to analyse the magnitude of the 127 

reflected wave at the ice shelf front and the response generated by the amount of 128 

energy actually entering the ice shelf/sub ice shelf cavity region. (b) In this setting, 129 

identify frequencies (characteristic frequencies) that maximise certain norms of the 130 

response and (c) compare them with the eigenfrequencies corresponding to different 131 

boundary conditions at the sub-ice-shelf cavity/ocean interface. The present analysis 132 

verifies that the use of the zero velocity potential condition at the front of the ice shelf 133 

produces much larger eigenperiods. Furthermore it indicates that the zero velocity 134 

potential condition is more appropriate (at least for the fundamental and lower 135 

resonant modes), as it maximises several norms of the ice shelf response. 136 

The present paper is structured as follows. In Section 2, the governing equations of 137 

the ice-shelf/sub-ice-shelf cavity system are presented. Subsequently, in Section 3, the 138 

ice shelf hydroelastic vibrations are initially modelled as a wave Reflection-139 

Transmission problem. For the solution of the above problem, the variational 140 

formulation of the governing equations is presented and the hydroelastic finite 141 

elements developed in Papathanasiou et al. (2014) are employed. The aim is to predict 142 

the characteristic periods dictated by the response of the system, and the maximisation 143 

of certain response norms. Next, in Section 4 the eigenvalue problems corresponding 144 

to each of the homogeneous boundary conditions imposed at the open end of the 145 

cavity are considered. In Section 5 the eigenperiods of the numerically solved 146 

problems are shown to correspond to either maxima or minima of the Reflection-147 

Transmission problem solution when seen as a function of the forcing wave period. 148 

Several cases of large and smaller ice shelves are analysed, including also the Coriolis 149 

effects of ice shelves in polar regions. It is demonstrated that the employment of the 150 

zero velocity potential condition at the ice-shelf front provides good predictions 151 

concerning the characteristic frequencies of the system. Finally in Section 6, the 152 

applicability of some simple approximation formulas for the eigenperiods of ice 153 

shelves are assessed. 154 

 155 

 156 

 157 

 158 

 159 

 160 

 161 

 162 
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2. GOVERNING EQUATIONS 163 

The present study focuses on the response of ice shelves to long wave forcing and the 164 

possibility of long period, resonant vibrations of the ice-shelf/ice-shelf cavity system. 165 

A schematic representation of the considered configuration is shown in Fig. 2. To 166 

facilitate the analysis, monochromatic waves and uniform conditions along the y  axis 167 

will be considered. Water waves of large wavelength, compared to the depth of the 168 

basin, can be efficiently modelled using the linearised shallow water equations. Thus 169 

the equations, governing the evolution of small amplitude, long waves are,  170 

 171 

 172 

Figure 2. Definition of basic geometry for the ice-shelf/ice-shelf-cavity configuration 173 

and wave impact phenomena for the adopted model. 174 

 175 

    0t x y
bu bv    ,                                         (1) 176 

0t xu fv g   ,                                              (2) 177 

0t yv fu g   ,                                              (3) 178 

where  , u , v  represent the upper surface elevation, the horizontal velocity along the 179 

x  and y  axes respectively. The bathymetry function is denoted by b  while f , g  180 

denote the Coriolis frequency and the acceleration of gravity respectively.   181 

Assuming uniform conditions along the y  direction and employing the velocity 182 

potential  , such that xu   , the three equations reduce to one equation for the 183 

velocity potential  184 

  2 0tt x x
gb f      .                                     (4)  185 

The nondimensional variables /x x L , /t t g L , 1/2 3/2g L    , are introduced, 186 

L  being the length of the ice shelf. Using the nondimensional variables and assuming 187 
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time periodic solutions of the form ( ) i tx e  ,  Eq. (4) can be written (after dropping 188 

tildes) as 189 

   2 2 0x x
B F      ,                                       (5)  190 

where the nondimensional angular frequency /L g  , and the nondimensional 191 

Coriolis frequency /F f L g , appear. For constant bathymetry B and constant 192 

Coriolis frequency F , the general solution of  Eq. (5), assuming a wave of unit 193 

amplitude propagating towards the ice-shelf is 194 

2 2 2 2

( ) exp exp
F F

x i x R i x
B B

      
      

   
   

,                        (6) 195 

where R  represents the amplitude of the reflected wave by the ice-shelf. Since the 196 
incoming wave has amplitude equal to one, R  coincides with the reflection 197 
coefficient of the system (see also Fig. 2).  The above equations are applicable only 198 
for frequency Ω above the cut-off frequency F, since propagating waves cannot be  199 

defined in the water subregion  for  F  .
 

200 
 201 

The model proposed by Sergienko (2013) will be used for the hydroelastic vibrations 202 

of ice shelves. Due to the very large span of ice shelves, compared to their thickness, 203 

thin plate models can be employed as a first approximation. The density of ice is 204 

denoted as i  and that of water as w . The deflection of the ice shelf, coinciding with 205 

the water elevation inside the cavity region is denoted as ( ) i tx e  , and the velocity 206 

potential of the water in the cavity is  ( ) i tx e  . Using the same nondimensional 207 

variables as before, the continuity equation for the fluid motion inside the ice-shelf 208 

cavity is 209 

   0x x
i B M     .                                           (7) 210 

where /B b L  and i

w

h
M

L




 , h  being the ice shelf thickness. In the 211 

nondimensional setting adopted, the ice shelf extends from 1x    to 0x  . The 212 

transition from land to the ocean, that defines the grounding line, takes place in a 213 

finite region and is not pointwise (Fricker and Padman, 2006). This region termed the 214 

‘hinge zone’ ranges typically from approximately 1 to 10 km. For ice-shelves with 215 

large lengths the transition will be assumed to occur only at point 1x   . Away from 216 

the hinge zone, the hydrostatic equilibrium (Archimedes principle) produces a depth 217 

reduction equal to the draft of the ice shelf /i wd h   , hence the ice shelf cavity 218 

depth in the nondimensional setting becomes / /B M b L d L   .   219 

The dynamic equation governing the vibrations of the ice shelf reads 220 
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    22 1 / 0xx xx
M K i F           ,                           (8) 221 

and expresses the conservation of linear momentum for the ice shelf. The 222 

nondimensional flexural rigidity K  that appears in Eq. (8) is defined as 223 
3

2 412(1 ) w

Eh
K

v gL



, where E is Young modulus, and ν Poisson’s ratio. The same 224 

equation (including the Coriolis effect) has been derived by Sturova (2007) for the 225 

study of fluid oscillations in ice-covered, closed basins.  The main aim of this work is 226 

to determine appropriate simplified conditions at the ice-shelf-cavity/open sea 227 

interface able to provide good prediction of the resonant frequencies. As a first step, 228 

results are presented and discussed without the effect of the Coriolis acceleration, and 229 

thus, 0F   will be considered in the first part of the present analysis. In this specific 230 

case  the above Eqs.(7) and (8) reduce to the ones already employed for studying ice 231 

shelf vibrations by Sergienko (2013) and Meylan et al. (2017). However, the inclusion 232 

of Coriolis effects in the model, is expected to produce signifficant changes of the ice-233 

shelf/sub-ice-shelf-cavity system eigenperiods, especially near the polar regions; see 234 

Godin and Zabotin (2016, Sec.5). This effect will be further illustrated in Sections 5.2 235 

and 5.3 for specific sites in the Antarctic. Following the works of Sergienko (2013) 236 

and Meylan et al. (2017), the ice shelf will be assumed to be clamped at one edge. 237 

Furthermore, the bedrock below the ice shelf at 1x    will be assumed impregnable 238 

and thus the velocity of the fluid motion will be set to zero at this point. It is thus 239 

0  , 0x   and 0x    at 1x   .                                   (9) 240 

At the free end of the ice shelf, no bending moment and no shear force conditions 241 

imply that 242 

0xx   and 0xxx  , at 0x  .                                      (10)    243 

It remains to define conditions for the flow velocity at 0x  . In the most general 244 

setting, interface conditions, expressing conservation of mass and momentum should 245 

be applied. For the shallow water model adopted, these can be written as 246 

    and [ ] x xB M B    , at 0x                             (11)    247 

The above interface conditions are compatible with the formulation of a Reflection-248 

Transmission problem and will be considered in the following section. However, the 249 

problem of resonant vibrations can be formulated as an eigenvalue problem as well. In 250 

that case, one of the two following conditions needs to be applied instead of Eq. (11): 251 

(i) the Dirichlet condition (0) 0   or (ii) the Neumann condition 0x  . These 252 

conditions will be considered in Section 4.  253 

REMARK: 1. It is evident that at 1x    , a fully reflective boundary is assumed. In 254 

more realistic situations, a part of the hydroelastic wave from the ice-shelf/cavity 255 
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region is expected to be transmitted as a purely flexural wave, considering the ice-256 

shelf/soil as a beam on an elastic foundation. However, the stiffness of the soil is 257 

typically very large and the transmitted flexural wave is expected to be of low 258 

amplitude. 259 

REMARK 2. The present ideal hydroelastic model is based on the shallow water 260 
equations, Eqs. (1-3), in the presence of an elastic floating plate as a termination 261 
upper boundary. Extensions of the present model could be considered by coupling it 262 
with atmospheric baroclinic model in the upper half space, in conjunction with 263 
matching conditions at the floating plate, with application to the study of resonant 264 

vibrations of large ice shelves and the induced atmospheric perturbations. The latter 265 
are shown to be important, especially concerning the fundamental and low-order 266 
resonances of large ice shelves, by Godin and Zabotin (2016). Also, the present 267 
system does not account for damping due to dissipation (MacAyeal et al.,2015). 268 
These effects in modeling real inhomogeneous ice shelves will be studied in future 269 

work. 270 
 271 
 272 

 273 

 274 
 275 

 276 
 277 
 278 

 279 
 280 

 281 
 282 

 283 
 284 

 285 
 286 
 287 
 288 

 289 
 290 
 291 
 292 
 293 

 294 
 295 
 296 

 297 
 298 
 299 
 300 

 301 
 302 
 303 

 304 
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3.  ICE-SHELF RESPONSE AS A REFLECTION-TRANSMISSION PROBLEM 305 

In this section, the resonant vibrations of an ice shelf under the action of long ocean 306 

waves will be studied as a Reflection-Transmission problem (Fig. 2). A wave field of 307 

the form (6) will be assumed at the open sea region and interface conditions 308 

expressing the conservation of mass and momentum will be applied at the interface 309 

with the floating ice-shelf. In that manner, the flexural vibrations of the ice-shelf will 310 

be studied as a function of the impacting wave characteristics. The solution will be 311 

pursued through the discretisation of the variational form of the problem, using high-312 

order finite elements. The variational form for the above system (Eqs. 7-8) with the 313 

Coriolis effect  is 314 

   

  

0 0 0 02

111 1

0 02

1 1

( ) ( ) ( ) ( )

1 / 0,

xx xx xx x xxx
M x v dx K x v dx v K x v K x

v dx i F v dx

   



 

 

      

      

 

 
           (12) 315 

and 316 

   
0 0 0

11 1
( ) ( ) ( ) ( ) 0x x xi w dx B x M x w dx w B x M x

 
           .        (13)  317 

where ,v w  are appropriate weight functions while the overbar denotes the complex 318 

conjugate. Using the homogeneous boundary conditions at the grounding line 319 

1
0

x



 , 

1
0x x




 , 
1

0x x
  , the zero bending moment and shear force 320 

conditions at the free edge of the ice-shelf 
0

0xx x
K


 ,  

0
0xx x x

K

 , as well as the 321 

interface conditions (11), Eqs. (12) and (13) become 322 

0 0 0 0
2

1 1 1 1
( ) ( ) 0xx xxM x v dx K x v dx v dx i v dx  

   
           ,         (14) 323 

and 324 

 
0 0

01 1
( ) ( ) (0) (0) 0x x x x

i w dx B x M x w dx w B
 

         ,            (15) 325 

respectively. 326 

Since (0) 1R    and  
2 2

0
1

(0)
x x

F
i R

B

 
   , testing  Eq. (14) with v  , and 327 

Eq. (15) with w   ,  and adding we obtain 328 

 

    

2
2 2

2

2 2 022

1

2 02 2 2

1
/ (0) 1 1 ,

xx LL L

x
L

M K i dx

B M i F dx i F B R R

    







      

           




      (16) 329 

 330 
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where 2

02

1L
q qqdx


  . Energy conservation and the fact that 1x    is assumed to be 331 

a fully reflective boundary, imply that the reflection coefficient has measure equal to 332 

one, i.e. 
2

1RR R  . It is then 333 

 

 

2
2 2

2

2 2 022

1

2 02 2 2

1
/ 2 (0) Im( ) ,

xx LL L

x
L

M K i dx

B M i F dx F B R

    







      

         




                   (17) 334 

Using Eq. (7), the Green-Gauss theorem and the interface conditions, it is 335 

        

   
2

2

0 0

1 1

2
2 2 2 2

2
2 2

2 (0)(1 ) 1 (0)(1 ) 1

2 4 (0) Im( ) ,

x xx x

x
L

x
L

i dx B M B M dx

B M i F B R R i F B R R

B M B F R

 
 

         

             

     

 

 336 

and 337 

 

      

   

2

2

02

1

22 2 2 2

22 2 2 2

/

/ / (0) 1 1

/ 2 / (0) Im( ) .

x
L

x
L

i F dx

F B M i F F B R R

F B M F F B R




   

          

       



     338 

Using the above in Eq. (17) the latter becomes (since x u  ): 339 

   

  

  

2
2 2 2

2 2 22 22

3/2
2

1 /

2 1 / (0) Im( ) 0.

xx LL L L
K M F B M u

F B R

        

    

           (18) 340 

The normed quantities appearing in Eq. (18) define a form of potential-kinetic energy 341 

difference in the ice-shelf/ice-shelf cavity system for any given frequency as 342 

     

    2
2 2 2

2 2 22 22 1 /xx LL L L
K M F B Mu            .      (19) 343 

This energy difference is balanced by the term   
3/2

2
2 1 / (0) Im( )F B R   , such 344 

that the total energy of the system ice-shelf/ocean is conserved in this model. The 345 

above result is examined as a possible indicator of the resonant frequencies of the 346 

considered hydroelastic system. It will be shown in the examples presented in Sec.5 347 

that the ( )   zero values agree well with the eigenfrequencies of the ice-shelf/ice-348 

shelf-cavity configuration calculated by using two different types of simplified 349 

homogeneous boundary conditions at the cavity-ocean basin interface, namely 350 
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(0) 0   or 
0

0x x
  . Furthermore, it will be demonstrated that the former Dirichlet 351 

condition provides reasonable predictions of the characteristic periods of the system. 352 

The hydroelastic finite element HELFEM(4,5) is employed for the solution of the 353 
resulting Reflection-Transmission variational problem (Papathanasiou et al., 2014).  354 
Based on the increased degree of interpolation of the above element, the convergence 355 

properties of the present numerical scheme are very good.  Denoting by ( 1,0; )kH   356 

the space of complex functions with Lebesgue square integrable thk  derivative, 357 

defined in the interval ( 1,0) , the variational problem can be formulated as follows: 358 

 For each  , find R  and  2 ( 1,0; ) : (0) (0) 0xH      , 359 

1( 1,0; )H   such that for all v V  and w W  it is  360 

  
 

0 0 22

1 1

0 0 0

1 1 1

2 2 2 2

( ) 1 /

( ) ( ) ( )

(0) (0) ,

xx xx x x

M x v dx i v F w dx

K x v dx v dx B x M x w dx

i B F R i B F

 

 

 

  

       
 

     

     

 

  
          

(20) 361 

 and  362 

 (0) 1R   .                                                    (21) 363 

 Representing the vector of unknowns inside an element  i  as 364 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) 1 2 3 1 2 3 1 2 3 4 5

i i i i i i i i i i i

i x x xU              ,     (22) 365 

the global finite element matrix equation is 366 

2 * 2 2 2 2

2 2 2 2 2 2(0) (0)

TF F

RF i B F i B F

          
    
             

K C M B BU

B
,            (23) 367 

where, for a total of N  finite elements it is 
(1) (2) ( 1) ( )...

T

N NU U U U
   U ,   368 

0 0 0 0 ... 0 0 (0)i B  
 

B , with 
*

B  denoting the conjugate transpose 369 

and 
T

B  the transpose. Matrices , ,K C M  are produced by the discretisation of the 370 

terms:  371 

 
0 0 0

1 1 1
( ) ( ) ( )xx xx x xK x v dx v dx B x M x w dx 

  
      ,  

0 2

1
( 1 / )i v F w dx



   
   

372 

and 
0

1
( )M x v dx

 , respectively.       373 

 374 

 375 
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4. ICE SHELF RESONANCES USING EIGENANALYSIS 376 

To analyse the resonant vibrations of an ice-shelf/sub-ice-shelf cavity system as an 377 

eigenvalue problem, homogeneous conditions at the water interface between the open 378 

ocean and the ice shelf cavity are applied, i.e. (0) 0   or (0) 0x  . Using the latter 379 

Dirichlet or Neumann conditions in  Eqs. (11)  and (6) it is 380 

(0) 1 0 1R R       , or                                      (24) 381 

 
2 2

0
1 1

(0)
x x

F
i R R

B

 
     .                                  (25) 382 

Condition (25) is the one employed by Sergienko (2013) and Meylan et al. (2017) for 383 

the study of normal modes of ice shelves. Sergienko (2013) justifies this selection 384 

based on the argument that no mass exchange must occur between the water in the 385 

cavity and the open ocean during the resonant vibrations of the ice shelf. Note that in 386 

both cases 1R    and 1R   it is, 387 

  

  

2
2 2 2

2 2 22 22

3/2
2

1 /

2 1 / (0) Im( ) 0.

xx LL L L
K M F B M u

F B R

        

     

                (26) 388 

The objective of this section is to formulate both eigenvalue problems, in order to 389 

compare the eigenperiods with the characteristic periods obtained by the response of 390 

the ice shelf when the more realistic interface conditions are applied. The solution of 391 

the eigenvalue problems corresponding to conditions (24) or (25), can be performed 392 

analytically, or obtained numerically by means of the finite element method. The 393 

advantage of finite elements is that it can handle problems with variable seabed 394 

topography or ice-shelf thickness as well. 395 

REMARK: In the examined shallow-water hydroelastic case, contrary to the case of a 396 

shallow basin without ice cover, the condition (0) 0   does not imply that the 397 

elevation/ice-shelf-deflection is zero at this point. It is noted that when 1R   , we have   398 

2 2

0

(0)(0)
(0) 2

(0) (0) (0) (0)
x x

BB
u i F

B M B M
    

 
.                    (27)    399 

This velocity corresponds to the maximum amplitude out-charge (towards the water 400 

region) or in-charge (towards the hydroelastic region) flow values attained. 401 

 402 

 403 

 404 

 405 
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5. NUMERICAL RESULTS AND APPLICATIONS 406 

Several cases will be presented and discussed in this section. First, two illustrative 407 

examples will be considered, for an ice shelf of relatively large length 150 km  and 408 

shorter one with length 50 km . In both cases, the depth of the oceanic basin at the free 409 

end of the ice-shelf is 500b m , while the ice shelf thickness is 300h m . The 410 

ice/water density ratio is / 0.9i w    and the Young’s modulus of ice is taken as 411 

11E GPa . This value is used by Meylan et al. (2017) and is close to the range 8-10 412 

GPa, which Schulson and Duval (2009) predicted by lab experiments. It should be 413 

noted that smaller values of Young’s modulus ( 1GPa ) have been also used by 414 

several authors, e.g. Vaughan (1995). A more detailed discussion regarding Young’s 415 

modulus values for ice shelves can be found in Lescarmontier et al. (2012) and Lee et 416 

al. (2018). In all cases, it is expected that Young’s modulus values will not affect the 417 

hydroelastic response of large ice-shelves significantly, at least when the fundamental 418 

and lower modes are considered (Godin and Zabotin, 2016).  419 

The response of the ice shelf will be evaluated using the potential energy norm 420 

 2
2

1/222

xxE L L
K    ,                                            (28) 421 

and the Chebyshev (maximum) type norm 422 

0 0xxC C
K  ,                                               (29) 423 

where 0 [ 1,0]max xC
q q  . The norm in Eq. (28) represents the potential energy of 424 

the ice shelf. In particular, the second term is the strain energy. The norm in Eq. (29) 425 

combines the maximum value of the deflection and the maximum value of the 426 

bending moment (in the non-dimensional setting). 427 

These two norms will be calculated using the solution of the Reflection-Transmission 428 

problem and will be plotted against the period of the impacting waves. Along with 429 

these two norms, the eigenperiods of the ice-shelf/cavity system DT , as predicted 430 

using the Dirichlet condition ( 0) 0x   , and NT  as predicted using the 431 

homogeneous Neumann condition 
0

0x x
  , will be plotted. The objective is to 432 

examine whether DT  or NT  better predict the local maxima of the ice shelf response, 433 

especially as the principal (low-order) modes are concerned. Since we are interested 434 

in long wave forcing, only the first 20 characteristic periods will be examined at this 435 

stage. In all cases, 500 hydroelastic elements were used and convergence for the first 436 

100 modes for meshes with more than 300 has been verified using extensive 437 

numerical experiments. 438 

Next, the effects of main geometrical parameters on the first two characteristic 439 

periods will be examined and the predictive capability of simplified Dirichlet 440 
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boundary conditions at the ice-water interface will be demonstrated. Finally, the 441 

present model will be applied to the cases of simplified models of the Ross and 442 

Larsen C Ice Shelves, examining also the effect of Coriolis frequency on the resonant 443 

frequencies for these Antarctic regions. 444 

5.1  Illustrative Examples 445 

a. Ice shelf with length 150L km . 446 

A relatively large ice shelf of length 150L km  is examined first. The ice shelf 447 

response, along with the DT  and NT  eigenperiods are plotted in Fig. 3 as a function of 448 

the wave forcing period. The thick blue line corresponds to the ice shelf potential 449 

energy norm and the thick red line corresponds to norm defined by Eq. (29). The 450 

eigenperiods DT  are depicted using thick, continuous vertical lines and the 451 

eigenperiods NT  using thin, dashed vertical lines. 452 

 453 

Figure 3. Response of an ice shelf with length150 km  measured in the potential 454 

energy norm 
E

  (blue line) and a maximum type norm (red line), as a function of 455 

the period of the incoming waves. Horizontal axis is in logarithmic scale. The first 20 456 

eigenperiods corresponding to homogeneous Dirichlet (thick, black vertical lines) and 457 

homogeneous Neumann (dashed, black vertical lines) conditions are also plotted. 458 

 459 

This is expected since the energy flow to the ice-shelf/cavity system has been found to 460 

be proportional to Im( )R . The latter is proportional to the frequency of the 461 

impacting wave and also contains the oscillatory term 1 Im( ) 1,R    which creates 462 

several local maxima and minima in the response indicators. For higher frequency the 463 
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energy norm exhibits a more regular behaviour than Chebyshev (maximum) type 464 

norm. Examining the relation between the eigenperiods of the system and the 465 

response, quantified by the potential energy norm, it is evident that DT  values 466 

correspond to local maxima locations of the response, while NT  values correspond to 467 

locations of local minima. This interesting observation holds for the first eigenperiods 468 

and is verified by the response in the maximum type norm as well. The approximation 469 

of the first local maximum by DT  (zoom box in Fig. 3) is not as accurate as that 470 

corresponding to the following peaks of the response. Still, the DT  value provides a 471 

considerably better approximation than NT . In the case of the maximum type norm 472 

(red line), the response pattern becomes more irregular for periods less than 473 

approximately 20 min (indicated by a vertical arrow in Fig.3). For higher modes, NT  474 

values coincide with localised maxima of small amplitude, but again the highest local 475 

peaks are determined by eigenperiods calculated using the Dirichlet condition 0  . 476 

In Fig. 4 the real and imaginary part of the reflection coefficient, as computed using 477 

the finite element method is depicted. The results shown verify that eigenperiods DT  478 

(vertical solid black lines) are characterised by Re( ) 1R    and eigenperiods NT  479 

(vertical dashed black lines) correspond to Re( ) 1R  . 480 

 481 

Figure 4. Ice-shelf with length 150 km . Real and imaginary part of the reflection 482 

coefficient R . (c) The energy difference   as a function of the incoming wave 483 

period. Horizontal axis is in logarithmic scale. 484 

In both cases, DT  and NT  it is Im( ) 0R  . The ( )T -term defined in Eq. (19) is 485 

plotted in Fig. 4(c) as a function of the period of the incoming waves. The 486 

eigenperiods DT  and NT  are plotted again as vertical lines. The horizontal axis is in 487 

logarithmic scale. The local minima, corresponding to zero values of this quantity 488 
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predict all the eigenperiods whether homogeneous Dirichlet or Neumann conditions 489 

are employed. This is compatible with the fact that at these periods it is Im( ) 0R   490 

and no energy enters or leaves the ice-shelf region, according to the energy balance in 491 

Eq. (18). 492 

Finally, the response of the ice-shelf, as predicted by the reflection-transmission 493 

model for forcing periods, corresponding to the first three predictions of Dirichlet and 494 

Neumann models, is shown in Fig. 5. The left column presents the real part and the 495 

right column the imaginary part of the normalised upper surface elevation 496 

0* T/ max ( )
C

    , where the maximum in the denominator is taken over the 497 

range of periods examined. As expected, the response becomes more oscillatory as the 498 

period of the incoming waves drops. The interesting observation is that when the 499 

forcing corresponds to a DT  eigenperiod, the amplitude of the real part is several 500 

orders of magnitude larger than the amplitude of the imaginary part. Conversely, 501 

when the forcing corresponds to NT  eigenperiods, the situation is reversed and it is the 502 

amplitude of the imaginary part that is several orders of magnitude larger.  503 

 504 

Figure 5. Ice-shelf with length 150 km . Real (left column) and imaginary (right 505 

column) part of the ice-shelf deflection as predicted by the reflection-transmission 506 

model. The wave forcing period corresponds to the first three Dirichlet and Neumann 507 

eigenperiods. Note the alternating difference in amplitude scales between the real and 508 

imaginary parts of the response. 509 

b. Ice shelf with length 50L km  510 

In this example, a smaller ice shelf, with length 50L km , is studied. Figure 6 511 

depicts the response of this ice shelf using the same quantities and definitions as 512 

before. The spectrum of the shorter ice shelf is of course shifted to lower periods. 513 
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Again, in the case of the shorter ice-shelf, the DT  values correlate better that NT  with 514 

the local maxima of the ice-shelf response. However, this good correlation is only 515 

observed for the first 10 eigenperiods (when the potential energy norm is considered). 516 

The deviation between the DT  values and the peaks of the maximum type norm 517 

occurs after the sixth eigenperiod. For larger eigenperiods, the NT  eigenvalues appear 518 

to correspond to local minima locations of the potential energy norm. It can thus be 519 

stated that the use of the Dirichlet condition 0   at the free end is preferable. 520 

It is furthermore interesting to note that for small period values the DT  values 521 

approximate again better the norm peaks. However, in these shorter wavelengths, the 522 

gaps defined by the succession of DT  and NT  values become narrower, and both 523 

eigenvalue models are ultimately expected to provide good approximation provided 524 

that the long wave assumption still holds. 525 

Again, the approximation of the first local maximum by DT  (zoom box in Fig. 6) is 526 

not as accurate as that corresponding to the following peaks of the response. Still, it 527 

provides a much better prediction of the first peak in the potential norm response than 528 

the first NT  eigenperiod.  529 

Figure 7 depicts the real and imaginary part of the reflection coefficient, as computed 530 

using the finite element method. The ( )T -term defined in Eq. (19) is plotted in Fig. 531 

4(c) as a function of the period of the incoming waves. Again, the minimisation of 532 

this quantity holds for both DT  and NT  eigenperiods, where the value attained is zero, 533 

according the prediction of Eq. (18). Finally, the theoretical prediction that DT  values 534 

correspond to Re( ) 1R    and NT  values correspond to Re( ) 1R  , while in both 535 

cases it is Im( ) 0R  , is verified by the numerical results for the reflection coefficient 536 

shown in Fig.  7.   537 

The deflection of the ice-shelf, as predicted by the reflection-transmission model for 538 

forcing periods corresponding to the first three predictions of Dirichlet and Neumann 539 

models is shown in Fig. 8. Again the real part (left column) and the imaginary part 540 

(right column) of the normalised upper surface elevation 0* T/ max ( )
C

    , is 541 

plotted. 542 
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 543 

Figure 6. Response of an ice shelf with length 50 km  measured in the potential energy 544 

norm 
E

  (blue line) and a maximum type norm (red line), as a function of the period 545 

of the incoming waves. The first twenty eigenperiods corresponding to homogeneous 546 

Dirichlet (thick, black vertical lines) and homogeneous Neumann (dashed, black 547 

vertical lines) conditions for the velocity potential are also plotted. 548 

 549 

Figure 7. Ice-shelf with length 50 km . (a) The quotient Q  of an as a function of 550 

incoming waves period. (b). Real and imaginary part of the reflection coefficient R   551 

Horizontal axis is in logarithmic scale. 552 
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 553 

Figure 8. Ice-shelf with length 50 km . Real (left column) and imaginary (right 554 

column) part of the ice-shelf deflection as predicted by the reflection-transmission 555 

model. The wave forcing period corresponds to the first three Dirichlet and Neumann 556 

eigenperiods. Note the alternating difference in amplitude scales between the real and 557 

imaginary parts of the response. 558 

Similarly to the case 150L km , when the forcing corresponds to a DT  eigenperiod, 559 

the amplitude of the real part is several orders of magnitude larger than the amplitude 560 

of the imaginary part. Conversely, when the forcing corresponds to NT  eigenperiods, 561 

the situation is reversed and it is the amplitude of the imaginary part that is several 562 

orders of magnitude larger. 563 

 564 

5.2  Systematic investigation of the main geometrical parameters 565 

In Fig.9 results from systematic investigation are presented in order to illustrate the 566 

effects of main geometrical parameters, as the ice shelf length, its thickness and the 567 

water depth, on the predicted eigensolution, in the case of an ice shelf – water system. 568 

In particular, contour plots of  the first and second characteristic periods are  shown 569 

(in non-dimensional form 
3

1,210 /T L g
)  with respect to ice-shelf length over water 570 

depth /L b   ranging from 50 to 500, and thickness ratio /h b   taking values from 0.1 571 

to 0.6, respectively. For calculations, the ice/water density ratio considered is 572 

/ 0.9i w    and the Young’s modulus of ice is 11GPaE  while the water depth is 573 

set to 500m. Results obtained by the maximization of the considered norms are shown 574 

by solid lines, while predictions based on the application of Dirichlet boundary 575 

condition are plotted by using dashed lines.  576 
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 577 

 578 

Figure 9. Effect of geometrical parameters on the 1
st
 and 2

nd
 characteristic periods. 579 

Solid line present solution based on the max norm, Dashed lines indicate predictions 580 

by means of eigenvalue analysis using Dirichlet boundary conditions. 581 

In general, Dirichlet boundary conditions are capable of providing quite reasonable 582 

predictions of the most important first two characteristic periods. Differences reaching 583 

10-15% with the values obtained by the maximization of responses by the considered 584 

norms are observed, especially as the ice shelf thickness and length substantially 585 

increase. Also, we note that as the mode index increases the observed differences 586 

become smaller. Finally, a trend is observed concerning the characteristic periods 587 

corresponding to maximum responses, since they appear to switch between Dirichlet 588 

eigenperiods as the thickness ratio varies. This feature could be due to fuzziness of 589 

maximum responses concerning the first modes (see also Fig.3), and is left to be more 590 

thoroughly investigated in future work. 591 
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5.3 A model for the Ross Ice Shelf  592 

The response of an ice shelf with length 550L km  and thickness 300h m  will be 593 

studied. These values have also been used by Godin and Zabotin (2016) to analyse the 594 

eigenperiods of the Ross Ice Shelf. The bathymetric profile described by Fretwell et 595 

al. (2013) and also depicted in Brominski et al. (2015) for a cross section of the ice-596 

shelf-water cavity geometry along a transect approximately orthogonal to the Ross Ice 597 

Shelf front will be used. In particular, the depth profile will be set to 598 

2 6

( ) 700 10000 1
x x

b x m
L L

   
     

   
,                                   (30) 599 

which yields a reasonable approximation of the variable seabed topography. A 600 

satellite image of the Ross Ice Shelf is shown in Fig. 10(a), with the considered cross-601 

section denoted by a thick green line. Figure 10(b) shows the basic geometry and 602 

seabed topography characteristics of the model. A more sophisticated model of the 603 

Ross Ice Shelf  has been recently presented by Sergienko (2017). 604 

  
Figure 10. (a) The Ross Ice Shelf. (b) Approximation of the ice shelf and cavity 605 

seabed topography along a transect (see also Brominski et al. 2015). 606 

The ice shelf response in the potential energy and maximum type norm is shown in 607 

Fig. 11. The first 20 eigenperiods DT  and NT  are also plotted. Again the local maxima 608 

of the response coincide with the eigenperiods DT . The largest eigenperiod 609 

1 9.60DT hours  is approximately twice the corresponding one 1 4.99NT hours . The 610 

value 1 9.60DT hours  is very close to the value 9.8hours  obtained by Godin and 611 

Zabotin (2016). In the latter work it is pointed out that this resonance value is very 612 

close to the largest period of the persistent atmospheric waves observed in  the Ross 613 

Ice Shelf region ( 10hours ) and the very interesting theory that the two phenomena 614 

could  be interrelated is proposed. 615 

In their analysis Godin and Zabotin (2016) used a constant bathymetry profile. In 616 

order to derive a homogenised environment for the present hydroelastic analysis, the 617 

mean depth 618 
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 
0

6 2

1
700 10000 (1 ) 660.32x x dx m


   ,                                (31) 619 

will be considered. Keeping all other parameters the same and solving for the constant 620 

depth 660mb m  the response depicted in Fig. 12 occurs. In this case, the first 621 

observed characteristic periods, indicated by the maxima of the norms (Eqs. 28 and 622 

29) are approximately: 8.00, 3.05, 1.92 hours. It is observed that the relative 623 

difference between the eigenperiods predicted by the variable bathymetry and 624 

constant bathymetry (based on the mean depth) is small. Regarding the first 50 625 

modes, the relative difference between the two models is always less than 2.5% with 626 

the largest deviations appearing in the first two modes. Based on the above results, the 627 

approximate use of an averaged depth in cases characterised by mild seabed variations 628 

is expected to provide reasonably good approximations. 629 

Next, in Fig.13, the Coriolis effect on the calculated characteristic periods is presented 630 

for the above constant depth idealized model of the Ross Ice Shelf. We consider a 631 

mean value of Coriolis frequency, which at latitude 80deg South is estimated to be 632 
41.432 10 / secrad  (corresponding to 12.2 hours). The changes are substantial and 633 

the first three resonant characteristic periods (corresponding to the peaks of the 634 

norms) in Fig.12 are approximately: 6.60, 3.00 and 1.90 hours, respectively. 635 

Moreover, it is observed that the homogeneous Dirichlet boundary conditions are able 636 

to provide reasonable predictions.  637 

 638 

Figure 11. Response of the Ross Ice Shelf model, measured in the potential energy 639 

norm 
E

  (blue line) and a maximum type norm (red line), as a function of the period 640 

of the incoming waves. The first twenty eigenperiods corresponding to homogeneous 641 

Dirichlet (thick, black vertical lines) and homogeneous Neumann (dashed, black 642 

vertical lines) conditions for the velocity potential are also plotted. 643 
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 644 

Figure 12. As in Fig. 11, but with constant cavity depth 660mb b m  . 645 

 646 

 647 

Figure 13. As in Fig.11, but with the Coriolis effects for an average latitude of 80deg 648 

South.   649 

 650 

Concluding this section, it is interesting to note that when the Coriolis acceleration is 651 

included, the present model is able to provide reasonable predictions above the cut-off 652 

frequency. Also, for large domains, the present FEM model supports the study of 653 

additional effects due to spatial variability of the Coriolis frequency and this is left to 654 

be presented in future work. 655 

 656 
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5.4 A model for the Larsen C Ice Shelf 657 

The response of an ice shelf with length 200L km  and thickness 300h m  will 658 

studied in this section. The uniform depth is set to 500b m . This particular set of 659 

values are chosen to represent, in the mean, the characteristics of the Larsen C Ice 660 

Shelf along the transect depicted in Fig 14(a), by the green line (Griggs and Bamber, 661 

2009). The ice shelf density for this case is 
3917 /i kg m   and the water density 662 

31027 /w kg m  . As before the value for Young’s modulus is set to 11E GPa .  663 

Figure 14(a) is a satellite image of the Larsen C Ice Shelf, where the cross-section 664 

considered is shown approximately with a solid green line. The geometric 665 

characteristics of the adopted model, namely average thickness and seabed 666 

topography are shown in Fig. 14(b). The response of the present model used for the 667 

simulation of Larsen C hydroelastic resonant behaviour without Coriolis effects is 668 

illustrated in Fig. 15. The potential energy norm and maximum type norm curves are 669 

quite similar to those corresponding to the ice shelf with length 150km  as the 670 

bathymetric and thickness profile are the same in both cases and the span is 671 

comparable. The first 3 characteristic periods identified by the maxima of the norms, 672 

defined by Eqs.(28) and (29),  are approximately 3.90, 1.51, 0.91 hours, respectively. 673 

The first DT  eigenperiods, using the zero velocity potential condition at the cavity 674 

below the ice shelf front are again found in very good match with the local maxima of 675 

the potential and maximum type norms of the cantilever response.  676 

The fundamental eigenperiod is now 1 4.61DT hours , while the second eigenperiod 677 

is calculated at 2 1.54DT hours . These values are slightly less than half of the 678 

respective values of the Ross Ice Shelf model. 679 

  

 

 

Figure 14. (a) The Larsen C Ice Shelf. (b) Approximation of the ice shelf and cavity 680 

seabed topography along a transect (see also Griggs and Bamber, 2009). 681 

 682 
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 683 

Figure 15. Response of the Larsen C Ice Shelf model, measured in the potential 684 

energy norm 
E

  (blue line) and a maximum type norm (red line), as a function of 685 

the period of the incoming waves. The first twenty eigenperiods corresponding to 686 

homogeneous Dirichlet (thick, black vertical lines) and homogeneous Neumann 687 

(dashed, black vertical lines) conditions for the velocity potential are also plotted. 688 

 689 

 690 

Figure 16. As in Fig.15, but with the Coriolis effects for an average latitude of 691 

67.5deg South. 692 

 693 

Finally, for the above model of the Larsen C Ice Shelf, the Coriolis effect on the 694 

characteristic periods is presented in Fig.16. We consider a mean value of Coriolis 695 

frequency which at a mean latitude 67.5deg South is estimated to be 696 
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41.344 10 / secrad  corresponding to approximately 13 hours in this case. The first 697 

three resonant periods which can be observed now by the present model are 698 

approximately: 3.60, 1.51, 0.91 hours, respectively. The changes are smaller than the 699 

ones observed in the case of the Ross ice shelve model, which is justified by the 700 

smaller value of latitude of the Larsen C ice shelve model. Similarly as before, the 701 

Dirichlet boundary conditions are able to provide quite reasonable predictions. 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 
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6 APPROXIMATE  PREDICTION OF EIGENPERIODS 724 

Simple formulas for the approximation of the hydroelastic eigenperiods can be 725 

derived in homogeneous environments if the cavity basin without the ice shelf is 726 

considered, or if the ice shelf is modelled as a simple cantilever Euler-Bernoulli beam 727 

vibrating in vacuum; see Fig.17. In fact, using Eqs. (7) and (8)  it is observed that for 728 

small   and small values of K , that are typical for ice shelves the above system 729 

reduces to shallow water equations. In the case of the cavity basin, an appropriate 730 

depth reduction can be applied to take into account the ice shelf draft as shown in Fig. 731 

14. On the other hand, for larger values of Ω and thus highly oscillatory responses, 732 

 xx xx
K  also becomes significant, and the above system reduces to the thin plate 733 

model. In both cases, the effects of the grounding line are assumed to be localised, in 734 

the sense that the hinge zone is considered very small compared to the length of the 735 

ice shelf, and can therefore be ignored. The same simplification has been applied to 736 

the hydroelastic model as well. 737 

 738 

Figure 17. Two models for the approximation of the hydroelastic eigenperiods. 739 

Considering the eigenanalysis of the cavity basin, a problem in the linearised shallow 740 

water theory occurs. The velocity at the grounding line and the velocity potential at 741 

the basin front are set to zero, resulting (in the nondimensional setting) in the formula 742 

 , 1/ 2a n n B M    ,     0,1,2,...n   ,                                (32) 743 

which by incorporating the Coriolis effect results in the form 2 2

c, ,n n F    , in 744 

conformity with Godin & Zabotin  (2016, Eq. 41). Hence, using the Dirichlet 745 

condition 0   at the ice-shelf cavity/ocean interface, the eigenperiods can be 746 

approximated as follows: 747 
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 748 

Figure 18. Prediction of resonant periods by means of approximate formula Eq. (33) 749 

and DT  values for the Ross ice-shelve model (first row) and Larsen C ice-shelve 750 

(second row). In the left column subplots the Coriolis effect is included. 751 

 752 

 Approximation using cavity basin eigenanalysis  753 

            
,

2 2 2

1

1800 1/ 2 1 ( / )( / ) /
n a

i w

L
hours

gbn h b f L gb 
 

  
.     (33) 754 

It is noted here that the above equation contains the effect of reduced water depth 755 

under the ice shelf, as it accounts for its draft. The latter, however, being dependent 756 

on the ice mass distribution, includes the inertia characteristics of the ice shelf. It will 757 

be demonstrated in the sequel that the above formula produces reasonably accurate 758 

results that are close to those of the full hydroelastic model, particularly for ice 759 

shelves of large length.  760 

The effectiveness of formula (33) is first assessed with respect to its capability to 761 

reproduce the characteristic periods occurring from the potential energy norm 762 



TO APPEAR IN OCEAN MODELLING 2018, https://doi.org/10.1016/j.ocemod.2018.10.008 

29 
 

maximisation, compared to the predictions DT . In particular, in Fig. 18, the 763 

characteristic periods of the Ross ice-shelf (first row) and the Larsen C ice-shelf 764 

(second row) are plotted against the eigenperiods obtained by Eq. (33) and those 765 

predicted using the Dirichlet condition on the wave potential 0  , namely DT .  The 766 

,n aT  eigenperiods are denoted by circles and the DT  eigenperiods using crosses. The 767 

results of the right column include the Coriolis effect. In all cases, the 15 first 768 

characteristic periods and eigenperiods are shown. If the eigenanalysis models were 769 

capable of exactly reproducing the characteristic frequencies, all the results would lie 770 

on the principal diagonal. This is the case for periods larger than the second 771 

characteristic one. The predictions of formula (33) are excellent for the second 772 

characteristic period as well. The accuracy deteriorates when the fundamental 773 

eigenperiod is considered. However, the accuracy of Eq. (33) is still comparable to 774 

that of the hydroelastic eigenperiods DT .      775 

Using now the eigenperiods of a cantilever beam, the following result is obtained: 776 

  Approximation using cantilever beam eigenanalysis  777 

22

, 2

12(1 )

1800β

i
n b

n

vL
hours

h E

 
  ,                           (34) 778 

where n  are the roots of the transcendental equation    1 cos β cosh β 0n n  . 779 

A comparison of formulae (33) and (34) with the hydroelastic eigenperiods DT , for 780 

the examples analysed in Section 5.1 and the Ross and Larsen C ice-shelves (without 781 

the Coriolis effect) is shown in Fig. 19. Both axes are in logarithmic scale. It is 782 

observed that the free basin approximation ,n aT  is very robust for the fundamental and 783 

lower modes. As the mode number increases, the quality of this approximation 784 

deteriorates. This is more evident in the case of smaller length ice shelves, while for 785 

very large ones, the free basin approximation is very good even for higher modes. A 786 

total of 100 modes are examined in Fig. 19. As the number of modes increases and the 787 

length of the ice shelf decreases, the hydroelastic eigenperiods are better 788 

approximated by those of the Euler-Bernoulli beam, namely ,n bT . Asymptotically, as 789 

n , it is , 1/n aT n  and 2

, 1/n bT n . Notably, for all examined ice shelf lengths, 790 

there was a set of modes for which neither model was proven accurate. This stresses 791 

the importance of employing hydroelastic eigenanalysis for the study of the resonant 792 

response of ice shelves. In all cases caution is needed to ensure that the assumptions 793 

of shallow water theory remain valid for the eigenstates corresponding to large mode 794 

numbers. 795 

 796 

 797 
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 798 

Figure 19. Approximation of the hydroelastic eigenperiods DT  using the eigenperiods 799 

of the cavity basin with no floating ice shelf ,n aT , with 0f   and using the 800 

eigenperiods of the ice shelf simulated by a cantilever beam in vacuum ,n bT  (for 801 

Coriolis acceleration 0f  ).  802 

Since the free basin approximation of the eigenperiods yields quite accurate results for 803 

the fundamental and lower order modes, it is worthwhile investigating this 804 

approximation further. Figure 20 shows the relative difference of the basin 805 

eigenperiods ,n aT  and the hydroelastic eigenperiods D nT T , as a function of the mode 806 

number, for different ice-shelf lengths and different thickness to depth ratios. The 807 

cases 25,50,150,300L km  are examined. The Coriolis effect is not included in this 808 

specific comparison. It is observed that the quality of the approximation deteriorates 809 

as the length of the ice-shelf decreases and the thickness to depth ratio /h b  increases. 810 
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 811 

Figure 20. Relative difference of the basin eigenperiods ,n aT  and the hydroelastic 812 

eigenperiods D nT T , as a function of the mode number, for different ice shelf lengths 813 

and different thickness to depth ratios (with Coriolis acceleration 0f  ). 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 
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CONCLUSIONS 831 

In the present work, the resonant hydroelastic vibrations of an ice-shelf/sub-ice-shelf 832 

cavity configuration are studied by employing shallow water theory, in conjunction 833 

with a thin plate model. The hydroelastic problem is formulated and solved as a wave 834 

Reflection-Transmission one, using higher-order FE that enable a fast and accurate 835 

computation of characteristic periods. The latter are considered as the forcing periods 836 

that maximise specific norms of the ice shelf response. The above numerical results 837 

are compared to solutions derived using specific homogeneous boundary conditions 838 

for eigenproblems of resonant ice shelf vibrations. We establish that appropriate 839 

homogeneous conditions on the wave potential, applied at the ice shelf front produce 840 

eigenfrequencies that, in general, agree well with the norm maximisation frequencies, 841 

also in the low frequency regime. Subsequently, the present methodology is applied to 842 

the prediction of characteristic periods of the Ross and Larsen C ice shelves providing 843 

eigenperiods in agreement with previously derived results by Godin and Zabotin 844 

(2016). The following key observations summarise the basic findings: 845 

(i) The resonant behaviour of ice shelves, when the interaction with the surrounding 846 

ocean wave field is taken into account, is dominated by characteristic periods that 847 

maximise specific norms of the ice shelf oscillatory response.  848 

(ii) A homogeneous Dirichlet condition for the wave potential at the ice shelf front 849 

was found to be the more accurate for hydroelastic eigenproblems. This result 850 

could be very significant when more elaborate 2D horizontal models for ice 851 

shelves of complex geophysical characteristics are considered. In this case, the 852 

Reflection-Transmission problem is very computationally demanding and the use 853 

of a homogeneous boundary condition at the ice shelf front significantly facilitates 854 

the numerical solution and analysis. 855 

(iii) Approximate formulas for the hydroelastic eigenproblem of either a basin without 856 

the ice cover or only the ice shelf, modelled as an elastic cantilever, work well at 857 

different frequency bands. At small frequencies, the basin approximation is better, 858 

especially when large ice shelves are considered. 859 

Of particular interest is the possibility to employ shallow-water models, already used 860 

for harbours and semi-enclosed basins, in the study of ice shelves by ignoring the ice 861 

cover as a first approximation. The present work suggests that this could be a 862 

reasonable approach for the estimation of the fundamental and lower-order modes, 863 

and will be exploited in future studies focusing on the eigenanalysis of realistic ice 864 

shelf configurations. Finally, the Coriolis acceleration could have important effects 865 

concerning the resonant modes of ice shelves in polar regions. In particular, the 866 

present model is shown to provide useful information for frequencies higher than the 867 

Coriolis frequency, and that the use of homogeneous Dirichlet boundary condition at 868 

the ice-shelf front is still able to provide good predictions. 869 

 870 
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