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Abstract

The number of kernels in a convolutional neural network (CNN) can have a
significant impact on the performance of the CNN in the aspects of accuracy
and computation efficiency. However, existing approaches to determining the
number of convolution kernels are mainly conducted through a manual pro-
cess, which suffers from the problems of potential overfitting, instability and
inefficiency. In response to these problems, this paper presents a corner radi-
ation area adaptation (CRAA) based method to automatically determine the
number of convolution kernels. CRAA is evaluated in comparison with three
representative methods on multiple public data sets. Experimental results
show that CRAA is robust to the number of convolution kernels which is well
adapted to a specific data set and achieves a higher level of classification ac-
curacy by 3% when spending the same period of time in classification. More
importantly, CRAA reduces the computational time by 15% in comparison
with the three representative approaches when reaching the same level of
accuracy in classification.

Keywords: Convolutional kernel, convolutional neural network, feature
extraction, corner radiation area adaptation

1. Introduction

In recent years, deep learning has attracted a widespread interest from
all walks of life and promoted the rapid development of a series of applied
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research in the field of artificial intelligence. As an important branch of deep
learning, convolutional neural networks (CNNs) have a close connection with
the research of computer vision. Through many well-known CNN models
[1, 2, 3, 4, 5, 6], the field of computer vision has achieved a tremendous
development. The feature learning strategy of convolution neural networks
has been widely successful in a series of fields of computer vision, gradually
replacing the traditional research of artificial design features and becoming
a new research focus.

As one of the important hyperparameters in CNN, the number of convo-
lutional kernels determine the runtime of CNN, the storage cost, and accu-
racy when training the model. At present, selecting the convolution kernels’
quantity is mainly conducted manually. But it is challenging to determine a
suitable quantity manually to ensure a high level of accuracy. In many cases,
we can only choose suitable hyperparameters through experience, which is
an inefficient process. Therefore, it is a normal practice to set an excessive
number of convolution kernels to ensure a high level of accuracy. Some well
known convolution neural network models, such as Residual Net [1], VG-
GNet [2] and other neural network models [3, 4, 5, 6] all directly specify the
number of convolution kernels. However, setting a large number of convolu-
tion kernels may lead to the problem of overfitting in those CNN networks.
This makes feature maps with redundant weights, which greatly reduces the
training efficiency.

To solve these problems, there are mainly two approaches at present. One
is network pruning, the other is convolution kernel quantity adaptation. Net-
work pruning reduces overfitting by pruning the model structure and a great
deal of further developments [7, 8, 9, 10, 11] have been proposed. Convolution
kernel quantity adaptation adapts the number of convolution kernels through
the features of the data set itself to avoid overfitting. However, the existing
methods for convolution kernel quantity adaptation are limited by the size
of a convolution kernel, leading to poor stability and a high computation
overhead.

To address these challenges, this paper presents a robust convolution
kernel quantity determination solution based on corner radiation area adap-
tation (CRAA). CRAA builds on a denoising module, a corner detection
module and a corner radiation area (CRA). Here, the denoising module and
the corner detection module are used to extract the points with rich features
in an image and facilitate CRA extraction. CRA is a corner extension area
used to find auxiliary features.
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The major contributions of the paper are as follows:

• It presents CRAA to adaptively determine the number of convolution
kernels.

• Furthermore, CRAA is not limited by the size of a convolution kernel.
For different sizes, the output results are consistent and robust.

• The feature points obtained by CRAA have good stability in the train-
ing process of CNN.

• Compared with three representative methods on multiple public data
sets, CRAA increases the accuracy level by 3% when spending the same
period of time in classification, but reduces the computation cost by
15% when reaching the same level of accuracy.

The rest of the paper is organized as follows. Section 2 describes the
related work. Section 3 presents the CRAA and describes the steps of the
CRAA. Section 4 evaluates the performance of CRAA and analyzes the ex-
perimental results. Section 5 concludes the paper and points out some future
work.

2. Related Work

This section reviews some related work on the problem of overfitting in
convolutional neural networks, but it first discusses the role of convolution
kernels.

The work in [3] presents an improved convolutional neural network and
visualizes the convolution kernel. It is found that many convolution kernels
play a role in extracting image features which can be regarded as an feature
extractor. The work of [12] proposes a visualization technique. This tech-
nique deeply analyzes the function of the convolution layer and the operation
of the classifier. It is found that the convolution kernels learn the typical local
features of images. With an increasing number of layers, the learned features
become stabilized and some low level features are dropped out. The work
in [13] analyzes the internal structure of CNN, theoretically interprets the
powerful feature extraction capabilities of CNN and reveals the roles of the
convolution kernels. In addition, we also briefly introduce the existing esti-
mation methods against the noises. The work in [14, 15] propose two noise
estimation methods for complex networks and communication networks.
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We further introduce some related methods for overfitting issues. The
work of [7] proposes a three-stage method which works together to reduce the
storage requirements of neural networks by 35 to 49 times without affecting
their accuracy levels. The work in [8] proposes a CNN acceleration method
in which they cut out the filters that are considered to have little effect on the
output accuracy from the CNN. The work in [9] proposes a new formulation
for pruning convolution kernels in neural networks. It is based on greedy
standards for pruning and interweaving through back propagation fine-tuning
to maintain a good generalization in the pruning network. The work in [16]
proposes three convolution kernel quantity adaptation methods to extract
different types of edge features which are Log edge detection count(LEDC),
Canny edge detection count(CEDC) and Sobel edge detection count(SEDA).
Among them, the LEDC method uses laplacian of gaussian operator [17] to
segment an image set. CEDC uses the canny edge detection [18] operator to
segment the images. The Sobel operator [19] uses the gradient value of the
neighboring area to calculate the gradient of 1 pixel and selects it according to
the absolute value. CEDC, LEDC and SEDC can process the image data sets
according to the characteristics of their own operators. The three methods
all aim to automatically set the number of convolution kernels and each has
their own advantages and disadvantages in terms of computation time and
accuracy in classification.

Although CEDC, LEDC and SEDC have certain effects, there are still
some limitations that need to be addressed. Firstly, these methods are lim-
ited by the size of a convolution kernel. This is because CEDC, LEDC and
SEDC all use the detection methods that are affected by the size of a convo-
lution kernel. In CEDC, LEDC and SEDC, the number of kernels obtained
using a convolution kernel size of 3×3 is different from that of using a size
of 5×5. Furthermore, as the size of a convolution kernel becomes larger, the
quantity of adaptation becomes higher. Hence, when the quantity is high
enough, it also causes the problem of overfitting. Secondly, the features ob-
tained through these methods do not have a good stability. According to [12],
CNN learning is a gradual process. The initial layer is targeted at low level
features such as edge, color and brightness. As the number of layers deep-
ens, the learned features become more complex, and the low level features
are gradually eliminated. Therefore, when the number of layers gradually
increases, edge features will gradually lose, which incurs poor stability.
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3. Corner Radiation Area Adaptation(CRAA)

To address the limitations mentioned in Section 2, this section presents
the corner radiation area adaptation method.

3.1. The Adaptation Principle of CRAA

In CNN, a convolution kernel mainly performs the convolution operations.
As pointed out in [12, 13], a convolution kernel is usually initialized in the
form of a random matrix. It learns through Error Back Propagation (BP)
during the network training process. Following BP operations, a convolution
kernel constantly learns valuable features to increase its weight. For ease
of classification, CNN brings the weights of the superposition into the score
function. The larger the activation value is, the more a convolution kernel
meets the requirements and the easier it is to distinguish the target image
from other images.

A convolution kernel works like a filter which is used to extract the lo-
cal features of the image. When the convolution layer contains only one
convolution kernel, the model can only extract one feature. Obviously, the
features extracted by a single convolution kernel are not able to classify im-
ages. Therefore, more features can be learned by increasing the number of
convolution kernels. However, it is challenging in determining the number
of kernels with an aim to achieve a high level of accuracy in classification.
Setting a suitable number of convolution kernels not only enables the model
to learn enough local features, but also saves computation time.

In this work, we set the number of convolution kernels based on the
number of key features in an image, and those key features must always exist
during the CNN network training process. Obviously, the corner points meet
the above requirements. The corner points are considered to be the maximum
points of curvature on the edge curve of a 2D image, and determine the
local feature extraction when an image is used as input [20]. Corners have
three characteristics which are the intersections between the contours, the
features that are usually stable, the pixels in the area around the point have
large variations in both the gradient direction and their gradient magnitudes
[21]. Therefore, corners in an image are the key features that satisfy these
requirements, and we use corner detection to adapt the number of convolution
kernels.

In addition to the corner points, CRAA also requires a large number of
auxiliary features. CNN performs a black box operation when it operates,
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so it is hard to know in detail which specific features the convolution kernel
has learned. If only the number of corner points is adapted to the number
of convolution kernels, the features learned by the CNN through the Error
Back Propagation (BP) are not necessarily from the corner points that own
the most abundant feature values. This leads to the loss of corner points and
has some instability. In order to compensate for the deficiencies of the black
box learning process and increase the probability of CNN acquiring corner
features and improve network stability, it is necessary to increase the number
of convolution kernels to extract more valuable features.

In order to find pixels with attributes similar to the corner points, we
focus on the area around the corner points. A corner point is a point where
the gray level difference between the corner point and its surrounding area
is large. However, it probably has a small number of points with similar
gray values to the corner points, and these points are also likely to have the
same large pixel differences as the surrounding points. Hence, the core idea
of CRA is to detect the surrounding circular radiation area and find valuable
points by setting the CRA at the known corner points.

3.2. The Sufficient Conditions of CRAA

Before introducing the CRAA, we first analyzes the sufficient conditions
for CRAA.

If the number of adaptive convolution kernels is lower than the number of
corner points, there will be too few features learned in continuous training,
and some corner points with important features will not be extracted, which
will lead to a low level of accuracy. Therefore, in order to ensure that the
complete features of an image are extracted, the number of features extracted
in CNN must be at least equal to the number of corner points detected
by the corner detection module. Similarly, when CNN trains the data set,
the number of convolution kernels should be greater than or equal to the
maximum number of corner points when processing the entire data set. Its
specific definition is given below:

a > max(b1, b2 · · · bn) (1)

where a is the number of convolution kernels, max represents the maximum
value in the collection. n is the total number of images in the data set, and
b is the value of the number of corners in an image in the data set.
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After the CRAA method is completed, according to (1), the number of
convolution kernels should be greater than or equal to the larger number
between the number of CRAA operations and a, i.e.

d > max(a, k) (2)

where k is the number of CRAA operations for the image. d represents the
range of values that fit through CRAA.

3.3. The Description of CRAA

To implement CRAA, a total of three modules are required which are
the denoising module, corner detection module and CRA module. In this
framework, we mainly contribute to the denoising module and the corner
radiation area. Among them, the core contribution is the corner radiation
area. And the corner detection module belongs to the existing method, corner
detection is mentioned in this paper as a necessary tool for CRAA. Figure 1
shows the work flow of CRAA.

Figure 1: The workflow of CRAA.

Firstly, we perform the denoising operation. We define a sliding 3×3
window that allows the window to pass through an image. We set the distance
to move continuously and traverse the image. Then, we eliminate some noise
points which are meaningless. We take the value of the eight pixels around
the pixel p, and calculate the pixel difference between the point p and its
neighbors. When we complete the previous step, we set a threshold K and
give the following formula:
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Sp→x =

{
1 |Qp→x −Qp| > K
0 |Qp→x −Qp| ≤ K

(3)

where Sp→x represents the result of the value, Q represents the value of
the pixel, and Sp→x represents the pixel in eight directions around the p. A
point meets the condition of Sp→x=0 point which indicates that the difference
between the gray value of the point and the p point is small.

As shown in Figure 2, a black point means p, a grey point means the point
which Sp→x=0 and a white point means the point which Sp→x=1. When the
number of the points which meet the condition of Sp→x=0 is 1 to 4, the p
point may became a corner point. However, when the number of the points
which meet the condition of Sp→x=0 is equal to 5 and those five points are
continuous, the point p cannot be called a corner but an edge, we eliminate
the p points. When the points satisfying Sp→x=0 are greater than 5, it means
the degree of change around p is not large, then the point p can not be called
a corner point, we eliminate the p points.

Figure 2: Corner denoising principle.

We further perform the corner detection operations and we can get the
corner point through a corner detection method. In this work, we use the
corner detection method proposed in [20].

During the movement, when it encounters a flat area, there will be no
change in the gradient in all directions. When the edge is encountered,
there is no change in the direction of the edge. However, when a corner is
encountered, great changes will occur in all directions. By calculating the
gradient for each pixel, if the absolute gradient values in both directions are
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large, the pixel is treated as a corner point. The specific formula proposed
by the work in [20] is:

Ex,y =
∑
x,y

wu,v [Ix+u,y+v − Iu,v]2 (4)

where wu,v is window function, I is pixels value, [u, v] is the offset of the
window, (x, y) is the corresponding pixel coordinate position in the window.

In order to facilitate the identification of corner points, the work in [20]
performs Taylor formula expansion for formula (4):

E (u, v) ∼=
[
x y

]
M

[
x
y

]
(5)

where M is a matrix, its expression is:

M =
∑

x,yw(x, y)

[
I2x IxIy
IxIy I2y

]
(6)

Let λ1 and λ2 represent the eigenvalues of the matrix M. If the values of
λ1 and λ2 are both small, the image in the Gaussian window is nearly flat. If
one value is large, the other value is small, it means that the edge is detected.
If both λ1 and λ2 are large, then the corner point is detected. Finally, the
work in [20] provides another step change in order to make the results more
friendly:

R = detM − k (traceM)2 (7)

where detM =λ1λ2, traceM =λ1+λ2, R is threshold.
When a point satisfies the condition of R>0, it shows that the point is a

corner point. Then, we should accumulate the number of corner points and
get corner points’ location. Finally, CRAA will traverse the data set, and
get the total number and specific positions of the corner points that meet
the conditions in each image.

After extracting the corner points, the radiation area of a corner point is
defined as 16 pixels around the corner point as shown in Figure 3. With the
corner point a as the center, there are 16 edge pixels around it. Having the
set S represents 16 points on the corner point radiation area, the variable O is
used to represent the gray difference between two points, and a threshold t is
set. According to the work in [21], the corner point determination condition
is that the gray value of the corner point is greatly different from the gray
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value of most points around it. Therefore, the majority of points around a
corner point satisfying the condition of OS >t. From Figure 3, it can be seen
that the gray value of the triangle is greatly different from the surrounding
blank area, and the gray value of the triangle itself is not much different.

Figure 3: Corner radiation area.

Therefore, it is possible to determine the point in S where the gray differ-
ence value is smaller than the threshold t, and we extract these pixels which
meet the condition. Then we can determine whether or not the variation in
grayscale between these pixels and other points around them are huge. If
the variation in grayscale is huge, We think this point has value and extract
it. The specific description and formula of the method are as follows.

For a pixel point x of each corner radiation area, the pixel (represented
by a→ x) at the position relevant to the corner point a may have one of the
following two states:

Sa→x =

{
h
∣∣Ia→x − Ia

∣∣ > t
s
∣∣Ia→x − Ia

∣∣ < t
(8)

where Ia represents the gray value of the corner point a. Consider the pixel
on the circular window near the corner point. If there is a gray value in the
extended pixel of the radiation area higher than Ia+t or lower than Ia-t, then
the pixel point is excluded, the remaining pixel points are extracted.
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We consider the As set as a point that satisfies the condition Sa→x=s.
The gray value of the point in the point set As is similar to the gray value
of the corner point. If we take the point in the set As as the center of
the circle, it still contains a large number of points with huge differences in
gray values around the center point. As shown in Figure 3, the edge point
b has a similar gray value with the corner point a, and around the point
b still contains a large number of points that differ greatly from the gray
value of the point b. Therefore, points in the set As may have points with
more valuable features. In order to determine whether the points in the
set As contain sufficiently valuable features, we extract the As set, calculate
the number of conditions that the As set satisfies and record the number
of satisfied conditions as KC. For each point in the As collection, we set a
sliding window around this point, swipe eight directions around these points
and calculate the sum of the squared differences. The eight directions are
(1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1). Through this operation, we
can understand how these points change in gray when moving around. The
sliding formula is given below:

Fu,v(x, y) =
∑
∀a,b

(I(x+ a+ u, y + v + b)− I(x+ a, y + b))2 (9)

where a and b define the coordinates of the points in the sliding window
area, (x,y) are the coordinates of the pixel points in the As collection, I (x,y)
represents the pixel value of (x,y), (u,v) represents the specific direction and
distance of the window movement, and Fu,v(x, y) represents the sum of the
gray-scale squared differences in the eight directions near the corner point
(x,y) after the window has moved in the (u,v) direction.

Then we use formula (10) to traverse the eight directions near the corner
point (x,y):

G(x, y) =
∑8

i=1(Fu,v(x, y)) (10)

We extract the G(x,y) values for each point of the As set, then find the
expected value H :

H =

∑n
i=1G(x, y)

8n
(11)

For ease of classification, we set a classifier where the threshold is H.
Compare the Fu,v(x, y) values of each selected point in the As set in eight
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directions. The specific formula is give in (12):

S =

{
1 Fu,v(x, y) > H
0 Fu,v(x, y) < H

(12)

S is used to determine whether the points around the set As meet the
conditions. For a point z in the set As, if the number of points satisfying
condition S=1 among the eight points around point z is greater than or equal
to 4, the point is considered to have certain characteristics, then the values
satisfying the conditions are added and a new set ckc is formed, we count the
number in set ckc. Finally, we count the total number of the corner points and
the number of set ckc,then we record the number of outputs as KC. CRAA
is not designed to change the parameters related to a convolution kernel.
As a result, the number of convolution kernels is independent of the size of
a convolution kernel. The specific implementation of CRAA is detailed in
Algorithm 1.

4. Experimental Results

4.1. Experimental Model Setup and Parameters

In order to validate the performance of CRAA, experiments were carried
out using both the MNIST [22] and CIFAR-10 [23] data sets. The exper-
imental programming language used was based on Anaconda’s Python 3.6
development environment. The neural network model was built under the
framework of Tensorflow [24]. Also we employed the Compute Unified Device
Architecture (Cuda) acceleration service provided by Nvidia [25].

To ensure the fairness of the experiment, both CRAA and the existing
methods followed the same convolution neural network model architecture
and adopted the same number of training iterations. The CNN model con-
sisted of two convolution layers and two pooling layers, followed by two full-
connection layers and a softmax function. Since the MNIST data set is small,
it is easy to obtain high accuracy under the training of the CNN model, and
it does not require excessive iterations. So, for ease of comparison, the model
only performed 5000 epoch iterations on the MNIST data set. And we per-
formed 25000 epoch iterations on the CIFAR-10 data set. The specific model
structure is shown in Figure 4.
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Algorithm 1 : CRAA implementation.
Input:

Image Set J
Output:

Convolution Kernel Adaptation Number KC
1: Denoising the image according to the denoising module;
2: Calculate horizontal gradient Ix and vertical gradient Iy, initialize the

value of the covariance matrix cov where a=I2x, b=I2y and c=IxIy;
3: Calculate the eigenvalues λ1 and λ1 of the matrix M according to formula

(6), the R value of each pixel is found according to formula (7);
4: Traversal of corner point set to obtain the matrix coordinates and

grayscale value of corner points;
5: Get the corner radiation area extension point set and set the threshold

t, exclude the points of CRA that meet
∣∣Ia→x − Ia

∣∣ > t conditions and
obtain the As set;

6: Set the sliding window and calculate Fu,v(x, y) of As set based on formula
(9);

7: Find the sum G(x,y) according to equation (10);
8: Find the H value according to the formula (11), and determine by formula

(12). For a point z in the set As, if the number of points satisfying
condition S=1 among the eight points around point z is greater than or
equal to 4, the point is considered to have certain characteristics, then
the values satisfying the conditions are added and a new set ckc is formed;

9: We count the total number of the corner points and the number of set
ckc,then we record the number of outputs as KC;

4.2. Evaluation Criteria

The elements of the evaluations were the accuracy and running time of the
CNN for the two data sets, respectively. Among them, the test set accuracy
is defined as follows:

Accuracy = 1− E

S
× 100% (13)

where E represents the total number of classification errors and S represents
the total number of samples.

The computation efficiency formula is defined below:

13



Figure 4: Convolution neural network model

C =
t2 − t1
t2

× 100% (14)

where C stands for computation efficiency, t1 means the computation time
of method 1, t2 means the computation time of method 2.

4.3. CRAA Results

Table 1 shows the number of convolution kernels calculated by CRAA.
In order to ensure that the convolution layer can extract a sufficient number
of eigenvalues, the number of convolution kernels in each convolution layer
is set to the number calculated by CRAA.

Table 1: The adaptation results of CRAA.

Data Set Convolution Kernel Quantity

MNIST 35
CIFAR-10 78

Table 2 shows the accuracy levels of the CRAA that fits into the CNN
model for testing. Among them, CRAA achieves 98.57% of accuracy on the
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Table 2: The classification results of CRAA.

Data Set Accuracy

MNIST 98.57%
CIFAR-10 83.12%

MNIST data set using iterations of 5000 epochs. CRAA generates 83.12% of
accuracy on the CIFAR-10 data set after 25000 iterations of epochs.

We further compared CRAA with the three methods proposed in [16]:
SEDC, CEDC, and LEDC. Since LEDC, SEDC, and CEDC all set the energy
share,we evaluated the 80% and 95% cases whose energy share has good
performance. We followed the same convolution kernel size as proposed in [16]
with the first convolution kernel size being 3×3, and the second convolution
kernel size being 5×5. The values listed in Table 3 are based on the MNIST
data set. Conv1 and Conv2 represent convolution layer 1 and convolution
layer 2 in the CNN model, respectively.

Table 3: Parameter settings on the MNIST data set.

Method Conv1 Conv2

CEDC-80 11 32
SEDC-80 4 48
LEDC-80 5 14
CEDC-95 27 102
SEDC-95 9 204
LEDC-95 9 41

Table 4 lists the values obtained for LEDC, SEDC, and CEDC on the
CIAFR-10 data set.

Due to the excessive number of algorithms involved in the experiments,
the results of the comparison of the seven algorithms in one graph are too
confusing. The experiment divides the comparison images into two images.
One is a comparison of the CRAA method and the three algorithms with
80% energy share, and the other is a comparison between the CRAA method
and the three algorithms with 95% energy share. Specific data and analysis
are introduced in the following sections.
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Table 4: Parameter settings on the CIFAR-10 data set.

Method Conv1 Conv2

CEDC-80 18 59
SEDC-80 7 87
LEDC-80 6 16
CEDC-95 41 171
SEDC-95 19 283
LEDC-95 14 68

4.4. Performance of CRAA on the MNIST Data set.

Figure 5 shows a comparison of CRAA and the three algorithms with an
80% energy share on the MNIST data set. After 5000 iterations of epoch
training, it can be seen that CRAA has obvious advantages compared with
LEDC-80, SEDC-80 and CEDC-80 with 80% energy share.

Figure 5: CRAA performance on the MNIST data set (energy share 80%).

Table 5 shows the computation times consumed among the algorithms.
CRAA carried out 5000 trainings for 37s, while LEDC-80, SEDC-80, and
CEDC-80 each having 30s, 31s and 23s respectively.

From the above data, we can see that CRAA does not incur much high
overhead in computation but generates a higher level of accuracy.
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Table 5: Training times on the MNIST data set (energy share 80%).

Method Time

CRAA 37s
CEDC-80 30s
SEDC-80 31s
LEDC-80 23s

Figure 6 shows a comparison of CRAA with the three algorithms with
a 95% energy share under the MNIST data set. It can be clearly seen that
compared with CEDC-95, SEDC-95 and LEDC-95, CRAA has an accuracy
rate of 98.57%. The accuracy levels of CEDC-95, SEDC-95 and LEDC-95
are 98.55%, 98.51% and 98.25%- respectively.

Figure 6: The performance of CRAA on the MNIST data set (energy share 95%).

It is worth noting that CRAA has a clear advantage in training time as
shown in Table 6.

From Table 6, it can be seen that CRAA spends 37s for 5000 epochs.
whereas SEDC and CEDC spend 64s and 51s- respectively. CRAA reduces
the time by at least 27% compared with these two methods. But CRAA is
slightly slower than LEDC-95.
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Table 6: Training times on the MNIST data set (energy share 95%).

Method Time

CRAA 37s
CEDC-95 64s
SEDC-95 51s
LEDC-95 35s

4.5. Performance of CRAA on the CIFAR-10 Data Set

We further evaluated the performance of CRAA on the CIFAR-10 data
set in comparison with LEDC, SEDC and CEDC.

Figure 7 shows the comparison results of LEDC, SEDC, CEDC with 80%
energy in the CIFAR-10 data set space. After 25,000 iterations of epoch
training, the accuracy of CRAA on testing the CIFAR-10 data set reaches
83.12% which is better than CEDC-80 (80.52%), SEDC-80 (79.21%), and
LEDC-80 (66.42%).

Figure 7: Performance of CRAA on the CIFAR-10 data set (energy share 80%).

For training time, as shown in Table 7, CRAA is comparable to the three
algorithms.

It can be found that under the CIFAR-10 data set, CRAA has certain
advantages in accuracy compared to CEDC-80 and SEDC-80, and it is very
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Table 7: Training times on the CIFAR-10 data set (energy share 80%).

Method Time

CRAA 85min40s
CEDC-80 84min54s
SEDC-80 86min50s
LEDC-80 78min25s

similar in terms of training time. Compared with LEDC-80, CRAA has a
great advantage in accuracy.

Figure 8 shows a comparison of LEDC, SEDC, and CEDC with CRAA
with 95% energy share under the CIFAR-10 dataset. We can see that after
25,000 iterations of training, CRAA is slightly inferior to CEDC-95 in accu-
racy. The accuracy rates of CRAA and CEDC-95 are 83.12% and 83.79%,
respectively. Compared with SEDC-95 and LEDC-95, CRAA has certain
advantages in accuracy, among which SEDC-95 and LEDC-95 are 81.23%
and 78.12%, respectively.

Figure 8: Performance of CRAA on the CIFAR-10 dataset (95% energy share).

For the training time, as shown in Table 8, CRAA spends less time than
both CEDC-95 and SEDC-95, but is slightly slower than LEDC-95.
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Table 8: Training times on the CIAFR-10 data set (energy share 95%).

Method Time

CRAA 85min40s
CEDC-95 100min29s
SEDC-95 95min05s
LEDC-95 84min23s

4.6. The Major Advantages of CRAA

To sum up, in the case of the MNIST data set, CRAA’s disadvantage in
terms of training time is not so obvious compared to the three 80% energy
share methods. But CRAA has a better accuracy rate. Compared with the
three methods with a 95% energy share, CRAA has an advantage in training
time with a similar level of accuracy to CEDC-95. Compared with SEDC-95,
CRAA has advantages in both training time and accuracy. In comparison
with LEDC-95, CRAA accuracy has an advantage. Under the CIFAR-10
data set, CRAA has certain advantages in accuracy compared to CEDC-80
and SEDC-80, and it is very similar in terms of training time. Compared with
LEDC-80, CRAA has a great advantage in accuracy. CRAA is comparable
to CEDC-95 in accuracy, but has certain advantages in training time. CRAA
has certain advantages in both training time and accuracy compared with
SEDC-80 and LEDC-80.

Furthermore, CRAA is not limited by the size of a convolution kernel.
For different sizes, the output results are consistent and robust. Compared
with CRAA, the three methods of CEDC, LEDC and SEDC increase with
the size of convolution kernels. Therefore, the three compared methods have
certain limitations compared to CRAA.

Last but not least, the features that are adapted by the CRAA method
are more in line with the features obtained after the CNN training, and
the features that are adapted through the CRAA method are highly stable
features. With the increase in the number of CNN training layers, this feature
is not easy to lose, and The probability of being a core feature is even higher.

5. Conclusion

In this paper, we have presented CRAA for robust convolution kernel
quantity determination. Compared with three existing methods on both the
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MNIST and CIFAR-10 data sets, CRAA achieved a higher accuracy level
by 3% when spending the same amount of time in training. On the other
hand, CRAA reduced the training time by at least 15% when the same level
of accuracy was achieved.

A future work will investigate the techniques as proposed in [26, 27, 28,
29, 30] to approximate the corner radiation area to speed up the computation
of CRAA so that CRAA can adapt the number of convolution kernels more
quickly. At the same time, we are trying to combine network pruning with
CRAA to enable CNN to better address the problem of overfitting with
higher stability [31, 32] in convolution kernel quantity adaptation.
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