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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Predicting the electricity demand of new supermarkets will help with design, planning, and future energy management. Instead of 
creating complex site-specific thermal engineering models, simplified statistical energy prediction models as we propose can be 
useful to energy managers. We have designed and implemented a data-driven method to predict the ’electricity daily load profile’ 
(EDLP) for new stores. Our preliminary work exploits a data-set of hourly electricity meter readings for 196 UK supermarkets 
from 2012 to 2015. Our method combines the most similar stores on a feature space (floor area split by usage such as general 
merchandise, food retail and offices and geographical location) to obtain a prediction of the EDLP of a new store. Computational 
experiments were performed separately for subsets of supermarkets that consume only electricity, both electricity and gas, and by 
season. The best results were obtained when predicting Summer EDLPs with stores using electricity only. In this case, the average 
Manhattan difference and the percentage difference are 234 kWh and 16%, respectively. We aim to develop an application tool for 
supermarket energy managers to automatically generate EDLP for potential new stores. 
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Nomenclature 
 
ED  Euclidean distance  
EDLP  electricity daily load profile 
GM  general merchandising 
HVAC heating, ventilations and air conditioning 
kNNR  k-Nearest Neighbours Regression Algorithm 
MD  Manhattan distance 
NP  normalised percentage difference with respect to the original EDLP 
SE  stores just with electricity 
SEG  stores with electricity and gas 
 
d  number of store features 
ei  electricity consumed (kWh) between the hour i-1 and i
fi i-th store feature 
k number of clusters 
n number of stores 
F set of store features 
Ls  EDLP of store s 
S set of stores 

 

1. Introduction  

The United Kingdom has the target to reduce the greenhouse gas emissions by at least 80%, compared to 1990 
levels, by 2050 [1]. The food retail sector accounts for between 3% and 5% of total electricity consumption in UK 
and 1% of the global CO2 emissions [2]. Food retail stores are responsible for a significant part of these emissions (it 
is estimated to be 3-4 % of the electricity production in industrialised economies [3]) as they are energy intensive 
buildings. In fact, they have the highest energy yearly consumption by area among all type of commercial buildings 
in the USA [4]. 

The reasons for this high energy density values are that they include refrigeration, lighting, heating, ventilation and 
air conditioning (HVAC) of commercial areas which make up the vast magnitude of the total building floor area. In 
addition, some of them have other utilities such as bakery and catering area. 

Analysing and understanding the patterns of energy demand of buildings can help to create measures to reduce this 
high consumption [5]. In this context, one of the problems that supermarket chains face is that they do not know what 
is the expected electricity consumption of a new store and if this consumption of the newly opened store is normal 
compared with similar ones. For this reason, predicting the consumption of the new supermarket can help the company 
energy manager to plan the energy needs (it is common to create energy consumption budgets significantly in 
advance). It can also help to detect an anomalous behaviour in terms of consumption of the new store that thus require 
specific investigation by the energy manager. 

There are extensive reviews of methods to predict and benchmark energy use in buildings [6, 7, 8]. However, most 
of the reviewed works are to predict the electricity for domestic buildings. Works that perform energy performance 
over non-domestic buildings is the specific topic of [9], but they include over all institutional or public buildings, not 
commercial buildings. Independently of the type of building, the methodologies that measure and model the energy 
use of buildings can be classified in two categories: model-driven approaches and data-driven approaches. In model-
driven approaches, a high-resolution engineering model of the building that simulates its energy and thermal behaviour 
is defined. In data-driven approaches, the analysis between the energy performance of the building and the dependent 
factors are directly modelled with numeric methods such as regression models. They are top-down methodologies as 
specific building consumption is estimated from large data-sets of several buildings or long series of the aggregated 
consumption of a specific building. Meanwhile, model-driven approaches can be more accurate than data-driven 
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approaches as they require very detailed level of description of the features of building that is complicated to obtain. 
For this reason model-driven studies compute their results over just few buildings and data-driven are more easy to 
test over large set of buildings. 

Model driven simulation tool-kits that are currently in use for food retail stores are Supersim [10], EnergyPlus [11] 
and CyberMart [12]. Energy use measuring and modelling of one frozen food supermarket in London (UK) was 
proposed by [13]. The model proposed is a calibration of the EnergyPlus tool-kit [12] that coupled refrigeration, 
HVAC and building systems. They evaluated their results with the energy data available for two years and sp 
monitoring (CO2, temperature, lighting level) for one year. There exist more than 100 software tools that simulate 
and/or model energy consumption in buildings, a directory with most of them can be found in [14]. 

One of the pioneering works that uses a data-driven approach over smart meter data in supermarket is [15]. The 
hourly and daily energy of one grocery store in Texas is predicted using 15-min electricity readings during one year. 
A more recent study that predict the electricity and gas consumption of one supermarket in the UK given the 
temperature and humidity values is [16]. In this case they predict the weekly consumption (they summed the hourly 
readings) that is expected from period 2030-2059 considering climate change. A larger data-set of 215 UK 
hypermarkets were used to estimate the energy consumption with regression models [17]. A model to disaggregate 
store level energy into weather-dependent and weather-independent components are proposed in [18]. They performed 
experiments over 94 stores from supermarket chain in World locations with cold winters. 

We propose a data-driven model to predict the ’electricity daily load profile’ (EDLP) of a new supermarket. Our 
approach combines EDLPs of similar stores that are from the same supermarket chain whose consumption we aim to 
predict. Experiments are performed over EDLPs that are obtained from electricity readings for 196 UK supermarkets 
from 2012 to 2015. The parameters used to predict this consumption are floor area split by usage and geographically 
location. 

The paper is structured in the following way. The proposed method to predict the EDLPs is explained in Section 
2. Then we describe the data-set of supermarkets that we use to perform experiments in Section 3. The results of the 
computational experiments are in Section 4. In the final section we draw some conclusions and propose some lines of 
future works. 

2. Data-driven method to predict the electricity profile 

We use EDLPs that are obtained from smart-meter electricity readings with one hour resolution. Each EDLP is the 
24-h electricity curve computed when averaging the readings during a specific time period (e.g. all days in Winters, 
weekdays of a whole year). We will have n EDLPs, each one for a particular supermarket that can be analytically seen 
as a 24 dimensional vector: L =  e1, . . . , e24  where ei is the electricity consumed (kWh) between the hour i 1 and i. 
Our method to predict the EDLP is a modification of the k-Nearest Neighbours Regression Algorithm (kNNR) [19]. 

This method is considered as a simple Machine Learning (ML) algorithm that works efficiently when the predicted 
value can be locally approximated [20]. This local principle (similar ’recipes’ yield similar outcomes) seems 
intuitively correct for the problem that we want to solve. Our hypothesis is that similar supermarkets should show 
similar patterns of electricity consumption as they have similar business model. Evaluation of the quality of the results 
and robustness of the algorithm will give us an objective measure. The method produces an easy and fast way to 
predict the complete load profile. Other ML methods need to be re-adapted to be able to cope with daily profiles. 

The proposed algorithm combines the k stores that are most similar to the new one based on a set of building 
features F = { f1, . . . , fd} and has the following steps: 

1. Select k and a set of features F. 
2. Compute the distance measure from the new supermarket to all the known supermarket using the store features 
F. 
3. Order the known supermarkets by increasing distance and select the k nearest ones. 
4. Calculate the value of the new object combining the profiles of the k-nearest neighbours (supermarkets). 
5. Compute the error between the real and predicted EDLPs. 
6. Repeat the experiment for each new store using leaving-one-out experiments and compute the average error 

over all the new stores. 
7. Repeat the experiment for each combination of (k, F) to find the best combination (kˆ, Fˆ). 
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The search of the best combination of (k, F) can formally expressed by the following equation: 
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where S is the set of stores,  Ls is the real EDLP of store  s,  L,
s(k, F) is the predicted energy profile when using    (k, 

F) and Ev(Ls, L,
s(k, F)) is the evaluator that measure the error between the predicted and real profile (step 5 of the 

algorithm). We can use three different evaluators (Ev) to compare the real profile Ls = {e1, . . . , e24} and the predicted 
L,

s = {e,
1, . . . , e,

24}: 

Euclidean distance (ED): this is the most common way to compare distances between vectors. Discrepancies 
between the EDLPs values are accumulated not cancelling between positive and negative values. The distance unit 
is kWh. 
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Manhattan distance (MD): similar as before but it is easier to understand as it is just the addition of differences 
in absolute value. The distance unit is again kWh. As it is used absolute value, both positive and negative errors 
accumulated. 
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Normalised percentage difference with respect to the original EDLP (NP): same as MD but normalising with 

the total consumption of the original EDLP. This relative distance considers the proportion of the error with respect 
to the total consumption of the original profile, i.e. is not the same to have 100 kWh of error when the original profile 
uses a total of 1000 kWh or 10000 kWh. A value of 100% will indicate that the additions of errors is the same that the 
total real energy consumed. 
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Independently of the evaluator, there should be a way to extend it to summarize the predicted error over all the new 

stores in the data-set (step 6 of the algorithm). We compute the mean over all the predicted EDLPs for the three 
distances previously described. 

From the steps of previous algorithm, one of the main concepts that needs to be properly defined is how to describe 
the similarity between stores in the store features domain F, i.e. how to compute the distance measure between two 
stores based on F (step 2 of the algorithm). These features F include the floor area split by usage and the geographical 
location of the store (detailed description is given in Section 3) and the distance is the Euclidean distance over all 
these features. The step 3 of the algorithm needs also to be clarified, we need to predict the ELDP L, of the new store 
using the ELDPs of the k closest supermarkets. We just compute the mean over the EDLPs of these supermarkets i.e.
the mean over the k vectors L dimension by dimension. 
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over all the new stores. 
7. Repeat the experiment for each combination of (k, F) to find the best combination (kˆ, Fˆ). 
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The search of the best combination of (k, F) can formally expressed by the following equation: 
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where S is the set of stores,  Ls is the real EDLP of store  s,  L,
s(k, F) is the predicted energy profile when using    (k, 

F) and Ev(Ls, L,
s(k, F)) is the evaluator that measure the error between the predicted and real profile (step 5 of the 

algorithm). We can use three different evaluators (Ev) to compare the real profile Ls = {e1, . . . , e24} and the predicted 
L,

s = {e,
1, . . . , e,

24}: 

Euclidean distance (ED): this is the most common way to compare distances between vectors. Discrepancies 
between the EDLPs values are accumulated not cancelling between positive and negative values. The distance unit 
is kWh. 
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Manhattan distance (MD): similar as before but it is easier to understand as it is just the addition of differences 
in absolute value. The distance unit is again kWh. As it is used absolute value, both positive and negative errors 
accumulated. 
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  (3) 

 
Normalised percentage difference with respect to the original EDLP (NP): same as MD but normalising with 

the total consumption of the original EDLP. This relative distance considers the proportion of the error with respect 
to the total consumption of the original profile, i.e. is not the same to have 100 kWh of error when the original profile 
uses a total of 1000 kWh or 10000 kWh. A value of 100% will indicate that the additions of errors is the same that the 
total real energy consumed. 
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Independently of the evaluator, there should be a way to extend it to summarize the predicted error over all the new 

stores in the data-set (step 6 of the algorithm). We compute the mean over all the predicted EDLPs for the three 
distances previously described. 

From the steps of previous algorithm, one of the main concepts that needs to be properly defined is how to describe 
the similarity between stores in the store features domain F, i.e. how to compute the distance measure between two 
stores based on F (step 2 of the algorithm). These features F include the floor area split by usage and the geographical 
location of the store (detailed description is given in Section 3) and the distance is the Euclidean distance over all 
these features. The step 3 of the algorithm needs also to be clarified, we need to predict the ELDP L, of the new store 
using the ELDPs of the k closest supermarkets. We just compute the mean over the EDLPs of these supermarkets i.e.
the mean over the k vectors L dimension by dimension. 
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In our algorithm there are two parameters that need to be estimated: the number of nearest neighbours k and the 
final configuration of features F. As for each store s with real EDLP Ls, we have previously described how to compute 
the predicted energy profile L,s combining the k-NN profiles of the stores based on features F, we have just to find 
the combination of k and F that minimizes the total prediction error over the evaluators (Equation 1). For each possible 
combinations of parameters (k, F), we perform all the experiments and compare the predicted EDLPs with the real 
EDLPs and select the parameters that minimises the ED evaluator. This brute-force search to find (kˆ, Fˆ) is performed 
using n − 1 stores. This leaving-one-out technique is a common ML experimental set-up [20] in which all the data 
points except the one being estimated are used as predictors. Then the same experiment are repeated n times selecting 
each time a different point to predict. In our case this can be seen as assuming that each time a different supermarket 
of our data-set is the new one whose EDLP needs to be predicted using the EDLPs of the n 1 other supermarkets. The 
search space for k goes from 1 to 50 and F comprises all the different feature combinations but not the empty one: 2d

− 1 different combinations. In our case as we use seven features, we have 127 combinations. 

3. Data-set of energy readings of supermarkets 

The data-set used in this work is formed by electricity readings of 196 supermarkets of the same retailer distributed 
geographically across the UK. Hourly resolution readings are able from January 2012 to December 2015, however 
not all the stores have all values as some opened later than January 2012, closed before December 2015 or have 
missing/erroneous values. Readings are considered valid if they have a value greater than zero and lower than 400 
kWh (1.47% of the readings were removed). After this filter, EDLPs are computed with all the available valid readings 
for each store for Monday-Saturdays (Sundays have a different profile as store opening hours are characteristically 
different). 

As meta-data we have the following features: floor area divided by usage (see Table 1), geographical coordinates 
and if they use gas or not. This last feature is used to create two separated subsets based on the energy they use: stores 
just with electricity (SE) and stores with electricity and gas (SEG). Electricity consumption values and patterns are 
affected if the store uses gas for heating and other services. As an example of this difference we show the Winter 
EDLPs normalised by sales area of the stores of the subsets SE and SEG in Figure 1. We displayed normalised 
consumption by area since stores can have very different size as the min, max and SD values of Table 1 indicate. 
There are 86 (43.9%) supermarkets that use just electricity and and 110 (56.1%) supermarkets that use electricity and 
gas. The rest of features (six floor area features in Table 1) and geographical location are used to find the closest 
supermarkets in our algorithm (feature F in Equation 1). 

 
Table 1. Floor features and values over the supermarkets. Sales area is the addition of GM, Food and Cafeteria areas. 

 

Area Min (m2) Max (m2) Avg (m2) SD (m2) 
General merchandising (GM) 0.0 648.2 54.0 92.7 

Food 159.3 1590.3 644.0 224.6 
Cafeteria 0.0 269.4 41.9 59.6 

Sales 164.0 1925.7 739.9 292.3 
Office 0.0 540.7 160.0 91.3 
Total 183.5 2305.8 899.8 358.2 

 

4. Results 
 
Computational experiments are performed separately on the two subsets of supermarkets (SE and SEG). For each 

of the supermarkets of these two subsets, three seasonal EDLPs are independently computed over all of the available 
readings: Winter (December, January and February), Summer (June, July and August) and Spring/Autumn (March, 
April, May, September, October, November). With this season separation, we partially take into account the different 
patterns of consumptions due to the external meteorological conditions. Code that computes the method and performs 
all the computational experiments was implemented in C++. 
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The results for the three prediction evaluators over all the experiments are in Table 4. Each row of this table are the 
results obtained with the best combination of features and number of clusters (k̂, F̂). For instance when predicting Winter 
profiles of SE the best configuration is k̂ = 6 and F̂ ={GM area, Food area, Cafeteria area}.  By average, ND 
for Winter profiles of stores just with electricity is 18%. However, there are several stores whose EDLP were better 
predicted. The ND for the best feature combination for these stores is displayed in Figure 2. The 50% of the store has 
a ND lower than 15.6% of error. There is 10% of the stores whose NDs are greater than 30%. These outliers with 
so large error are stores whose features are not similar to most of the other stores. The GM area of these stores is 
unusually large (more than 500 m2) when the average is 54 m2 and just seven stores have more than 300 m2. 

 
 

 
Fig. 1. Average of all the Winter electricity by sales area profiles of the two subsets of supermarkets (SE are supermarkets just with electricity 
and SEG are stores with electricity and gas). 

 
Stores using only electricity have lower error than stores with electricity and gas. In addition Winter errors are 

higher than Summer and Spring/Autumn errors. These two facts may imply that heating is increasing the prediction 
error and need to be better considered. Stores just with gas should be using gas heating systems, however it is possible 
that some of them use also electricity heating. In general, we can think that electricity consumption used by the heating 
system may be quite different from one store to another, making the predictions in Winter more difficult than during 
the other seasons. This is almost certain because of distinct building techniques, materials and standards for different 
ages of buildings. 

As examples of the predicted and real EDLPs we display the EDLPs of the stores whose ND are in the median for 
Winter and Summer in Figure 3. These profiles are examples of what may be considered average errors in the 
predictions. The ED, MD and ND for the Winter profile of store one are 63.1 kWh, 280.3 kWh and 15.6% respectively. 
The ED, MD and ND for the Summer profile of store two are 32.8 kWh, 134.2 kWh and 12.1% respectively. Summer 
profiles are obtained with kˆ = 5 and Fˆ = {Food area, Cafeteria area, Sales area, Office area ,Total area} 

Table 2. Average evaluators when predicting the EDLPs. ED is Euclidean distance, MD is the Manhattan distance and ND is the normalised 
percentage difference with respect to the original EDLP  

Stores just with electricity  Stores with electricity and gas Season
 ED (kWh) MD (kWh) ND (%) ED(kWh) MD (kWh) ND 
(%) 
Winter 72 295 18 121 491 22 
Summer 54 234 16 64 262 15 
Spring/Autumn 59 241 16 86 347 17 
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Fig. 2. Normalised percentage difference with respect to the original EDLP when predicting Winter EDLP of stores just with electricity. 
 
 

Fig. 3. Predicted and real profiles of the stores with the median error when predicting Winter and Summer EDLP of stores just with 
electricity. 

 

5. Conclusion and future work 
 
We have presented a generic method to predict the EDLPs of new stores that can be used on any data-set when both 

electricity readings and store features are available. Prediction experiments over a data-set of 196 UK supermarkets 
were performed showing that our method can predict the profile on new stores with average error of between 15% 
and 22% depending on the season and fuel consumed by the stores. Generally, EDLPs of stores with building features 
similar to existing ones are better estimated than those with abnormal features such as very large general merchandise 
sales areas. 

There are several research lines that follow from this work. We can use more complex methods to combine the 
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EDLPs of the k nearest neighbours to compute the predicted profile. Currently, we gave the same weight to all neigh- 
bours. There are other options in which smaller weight is assigned for points farther from the predicted point, existing 
different ways to compute them: a weighted average [19] or a kernel function [21]. Another interesting option is the 
the use of confidence intervals when predicting the profile instead of giving an exact value. 

Potentially, temperature (meteorological) information can be incorporated using heating and cooling degree days 
[22]. Furthermore, we will examine how features such as age, construction standards, and materials can be used to 
reduce errors. 
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electricity. 
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