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Summary. Mixed probit models are widely applied in many fields where prediction of a binary
response is of interest. Typically, the random effects are assumed to be independent but this
is seldom so for many real applications. In the credit risk application that is considered in the
paper, random effects are present at the level of industrial sectors and they are expected to be
correlated because of interfirm credit links inducing dependences in the firms’ risk to default.
Unfortunately, existing inferential procedures for correlated mixed probit models are computa-
tionally very intensive already for a moderate number of effects. Borrowing from the literature on
large network inference, we propose an efficient expectation–maximization algorithm for uncon-
strained and penalized likelihood estimation and derive the asymptotic standard errors of the
estimates. An extensive simulation study shows that the approach proposed enjoys substantial
computational gains relative to standard Monte Carlo approaches, while still providing accu-
rate parameter estimates. Using data on nearly 64000 accounts for small and medium-sized
enterprises in the UK in 2013 across 13 industrial sectors, we find that accounting for network
effects via a correlated mixed probit model increases significantly the default prediction power
of the model compared with conventional default prediction models, making efficient inferential
procedures for these models particularly useful in this field.

Keywords: Credit risk modelling; Expectation–maximization algorithm; Graphical modelling;
Mixed probit

1. Introduction

Discrete choice models with correlated group-specific random effects have wide applicability
and practical importance in economics and the social sciences, as they can accommodate unob-
served heterogeneity, overdispersion and intracluster as well as intercluster correlation across
binary outcomes. In this paper, we consider the prediction of a firm’s risk to default, whereby
group random effects at the level of industrial sectors are to be expected, and, at the same
time, dependences between and within the industrial sectors are also to be expected because of
interfirm credit links.

Unfortunately, the presence of correlated random effects in mixed models poses substantial
computational challenges, with maximum likelihood (ML) estimation typically requiring the
evaluation of a high dimensional integral. To overcome these numerical difficulties, various
methods have been proposed in the literature that approximate the likelihood by Gauss–Hermite
quadrature or Monte Carlo integration and then maximize it by either Newton–Raphson or
expectation–maximization (EM) algorithms (Breslow and Clayton, 1993; Schilling and Bock,
2005). Despite achieving a computational gain, these methods can still be applied only in the
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presence of a limited number of groups because the number of evaluation points in the Gauss–
Hermite quadrature increases exponentially with the number of random effects. In addition,
these approximate (ML) estimates have been proved to be inconsistent under various conditions,
with an asymptotic bias that can be severe if the variance components are not small (Breslow
and Lin, 1995).

An alternative, widely used, approach for estimating mixed models for binary variables com-
bines Monte Carlo integration with various EM algorithms, leading to the so-called Monte
Carlo EM algorithm (see, among others, Ashford and Sowden (1970), Chib and Greenberg
(1998), McCulloch (1997) and Gueorguieva and Agresti (2001)). For the case of a mixed probit
model with independent random effects, McCulloch (1994) proposed Monte Carlo versions
of the EM algorithm for ML estimation based on Gibbs sampling. This approach has been
extended by McCulloch (1997) to the more general case of generalized linear mixed models, by
considering a Metropolis–Hastings algorithm at each E-step of the ML estimation. Similarly, for
the case of a mixed probit model with correlated random effects, Chan and Kuk (1997) proposed
an EM algorithm where the E-step is made feasible by Gibbs sampling. The approach proposed,
however, is computationally very intensive, as it requires sampling from a multivariate truncated
normal distribution. To deal with this problem, Tan et al. (2007) proposed a non-iterative im-
portance sampling approach to evaluate the first- and the second-order moments of a truncated
multivariate normal distribution associated with the Monte Carlo EM algorithm. An alter-
native, direct sampling-based, EM algorithm was advanced by An and Bentler (2012), who
proposed to draw random samples from the prior Gaussian distribution of random effects. This
is computationally easier than from the posterior distribution, but at the expense of a higher
Monte Carlo error. One limitation of the above Monte Carlo EM algorithms is that, by com-
bining Monte Carlo simulation with iterative procedures, they are still computationally very
expensive. The estimation that is involved in the E-step of the Monte Carlo EM algorithm can
require a prohibitively large amount of time for a large number of statistical units and already
a moderate number of random effects.

In this paper, motivated by a large credit risk application, we propose an EM algorithm for
estimation of a mixed probit model with correlated random effects that can be adopted for
estimation and prediction from very large data sets and a large number of random effects. The
algorithm relies on efficient approximations of conditional expectations that simplify the calcu-
lation of the moments of a truncated normal distribution and avoid computationally demanding
sampling methods. Similar approximations have been adopted in the context of graphical mod-
els for ordinal (Guo et al., 2015; Behrouzi and Wit, 2019) and censored (Augugliaro et al., 2018)
data but they have not been used in a regression context before. Similarly to those approaches,
we also propose a penalized version of the likelihood estimator, by applying the graphical lasso
approach (Friedman et al., 2008) within the proposed EM algorithm. Beyond pointwise estima-
tion, standard errors of ML estimates in the context of mixed effects models are also typically
obtained by time-consuming resampling approaches. In this paper we exploit the work of Louis
(1982) to derive the observed Fisher information matrix of our proposed mixed probit model
and thus to obtain the asymptotic standard errors of the estimates. In doing this, we adopt results
by Horrace (2015) to calculate the third and fourth moments of univariate truncated normal
distributions which appear in the observed Fisher information matrix. Our paper provides sev-
eral contributions to the existing literature. First, we propose an extension of the literature on
non-linear mixed models to the case of correlated random effects, offering an inferential proce-
dure that enables estimation of unknown parameters and associated standard errors also in the
presence of very large samples. In doing this, we investigate ways of overcoming serious com-
putational difficulties that often arise in regression models with correlated binary responses. We
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also show how penalized inferential procedures can be applied under this framework, enabling
us to cover the case where the number of random effects exceeds the number of observations.

An extensive simulation study assessing the properties and computational efficiency of our
inferential procedure shows good performance of the approach proposed compared with ex-
isting approaches. Using data on around 64000 accounts of unlisted small and medium-sized
enterprises (SMEs) based in the UK and observed in the year 2013, we find that incorporating
interfirm network dependences in the form of correlated random effects increases the default
prediction power of the credit risk model compared with conventional models. The remainder
of the paper is structured as follows. Section 2 describes the empirical application on credit
risk which motivates this study. Section 3 introduces our mixed graphical probit model and de-
scribes the EM algorithm for parameter estimation, with the proposed efficient approximations
of the conditional expectations, the inference under penalized likelihood and the derivation of
asymptotic standard errors. Section 4 carries out an extensive simulation study on the method,
and Section 5 describes the results of the proposed approach on real data. Finally, Section 6
provides some concluding remarks.

2. Motivating example: credit risk modelling of small and medium-sized
enterprises

There is nowadays interest in creating default prediction models for SMEs. Academic research
into failure prediction has focused almost exclusively on large companies, i.e. those which are
listed on, and priced by, the market, proposing a wide range of models and methods to assess
and quantify their risk of default. In contrast, there has been a relatively small number of prior
academic studies examining default prediction and credit scoring models with reference to small,
private, businesses, mostly because of the difficulty in obtaining sufficient and good quality data
in these contexts. These models are likely to be different from those used for large corporates.
For this reason, the recent Basel Accords are now directing the international credit system to
pay closer attention to measuring and managing credit risk of SMEs (Sabato, 2010).

When modelling credit risk for SMEs, an important feature to be considered is the fact that
companies are not simply independent agents competing for customers on markets. They are
linked by supply–customer relationships. Firms interact with each other because they exchange
items of value, such as information, goods, services and money. For example, the outputs of
some firms (subcontractors) are input for some other firms. In addition, some firms may extend
trade credit to other firms, thus creating some sort of interfirm credit links (Battiston et al.,
2007). Interdependence between firms’ default can also arise because they share part of the
management team and hence are subject to similar investment decisions, or because firms react
similarly to external shocks such as a rise in the interest rate (Andrews, 2005). Under this
framework, the failure of a firm is likely to increase the probability of failure of connected firms,
giving rise to clustered fluctuations in the number of failed firms.

Despite the importance of interfirm links in determining firms’ performances, only a few stud-
ies have looked at the role of interaction in determining firms’ default and clusters of default,
with the majority of these studies focusing on identifying the conditions under which local
failures can result in bankruptcies across the network (Delli Gatti et al., 2006), or exploring
whether firms that issue more trade credit are more likely to experience debtor failure (Jacobson
et al., 2013). Yet fewer studies have considered incorporating information on firms’ interdepen-
dences in a default prediction model. Among these, Barro and Basso (2010) have proposed a
model of contagion that associates the economic relationship of sectors of the economy and
the geographical proximity of each pair of firms in a network of firms, whereas Barreto and
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Artes (2013) have developed a measure of local risk of default using ordinary kriging from data
on 9 million Brazilian SMEs observed in 2010. After including this measure as an additional
explanatory variable in a logistic credit scoring model, they showed that the performance of the
model improved considerably.

It is well known that the financial performance of companies is in part driven by sector-
and area-specific attributes, linked for example to heterogeneity across industries in accounting
policies or local trends in demand (see, for example, Kukuk and Ronnberg (2013)). For this
reason, mixed discrete choice models have been widely adopted to predict firm financial distress
for large corporations (see, among others, Jones and Hensher (2004) and Kukuk and Ronnberg
(2013)), with few studies also specific to SMEs (see, for example Alfo’ et al. (2005)). Differently
from this literature and considering the importance of interfirm dependences discussed above, in
this paper, we allow group effects to be correlated by assigning them a non-diagonal covariance
matrix. Under this framework, the dependence relationship of the binary outcomes (default) is
induced by the underlying Gaussian graphical model on the random effects. In particular, we
assume that the risk of default for one company follows a probit regression specification with
correlated group random effects, where groups are given by all companies operating in the same
sector of economic activity and located in the same region.

We exploit a rich data set from a large financial institution covering around 64000 accounts
of unlisted firms based in the UK and observed in the year 2013. These are companies that
have no more than 250 employees, a turnover of smaller than £25.9 million and a balance sheet
total of no more than £12.9 million. In line with other studies, we define failure as entry into
liquidation, administration or receivership. The accounts analysed for failed companies are the
last set of accounts filed in the year before insolvency. The companies are spread over a total of
59 geographical areas, defined using the ‘nomenclature des unités territoriales statistiques’, level
3, classification, and across 13 broad sectors (divisions) of economic activity. In our model, the
sectors will appear as random effects, whereas the geographical areas as the sampling units.

The data set contains a set of financial variables extracted from the accounts of firms, as well
as non-financial information, that are often included in conventional default prediction mod-
els (see, among others, Altman and Sabato (2007), Altman et al. (2010), Carling et al. (2007),
Campbell et al. (2008) and Jacobson et al. (2013)). In terms of firm-specific financial variables,
we include a set of financial ratios that cover the areas of profitability, liquidity, leverage, cov-
erage and activity (Altman and Sabato, 2007). Profitability is the ability of the firm to generate
sufficient profits or returns, liquidity measures the ability of the firm to meet its short-term obli-
gations, leverage refers to the relative amount of debt and other obligations of the firm, coverage
is the risk that is inherent in lending to the business in the long term and activity is the level
of efficiency of a business. As for the non-financial indicators, we consider variables that are
linked to the age and size of the companies. We expect a higher risk of default for newly formed
companies that decreases with the age of the company, and that is particularly high in the years
immediately after an initial ‘honeymoon period’ of around 2 years. Finally, we have matched
information on the postal district of the trading address with data on latitude and longitude
and other geographical information extracted from the UK Office for National Statistics, to
calculate covariates at the aggregated level and to account for systematic risk. In particular, we
include the ‘nomenclature des unités territoriales statistiques’, level 3, gross domestic product,
as a proxy for the economic conditions of the area where the company operates. Table 1 lists
the financial ratios that are included in our analysis grouped according to the financial and the
non-financial indicators, including company characteristics and aggregate variables.

Table 2 provides a set of descriptive statistics for the variables that are included in our model,
for failed and non-failed companies. As expected, companies that failed have on average worse
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Table 1. Credit risk data: definition of financial ratios, non-financial indicators and
aggregate variables

Variable Accounting ratio category

Financial indicators
Total liabilities/total assets Leverage
Net worth/total liabilities Leverage
Cash/total assets Liquidity
Current liabilities/current assets Liquidity
Trade credit/total liabilities Liquidity
Trade debt/total assets Liquidity
Retained profits/total assets Profitability
Account receivable/total liabilities Activity

Non-financial characteristics
Size Total assets (logarithms)
Age (years) Age from the date of incorporation (logarithms)
Age risk 1 if 3 � age � 9 years
Local gross domestic product Gross domestic product in the nomenclature des

unités territoriales statistiques, level 3

Table 2. Credit risk data: descriptive statistics for non-failed and failed companies on the training
sample

Variable Results for non-failed companies Results for failed companies

Mean Standard error Mean Standard error

Total liabilities/total assets 0.817 1.243 1.278 1.851
Net worth/total liabilities 6.315 22.461 3.155 15.173
Cash/total assets 0.333 0.348 0.377 0.380
Current liabilities/current assets 1.826 5.283 2.386 5.806
Trade credit/total liabilities 0.197 0.302 0.225 0.350
Trade debt/total assets 0.155 0.231 0.162 0.263
Retained profits/total assets −0:030 0.594 −0:216 1.039
Account receivable/total liabilities 0.006 0.029 0.004 0.025
Size 12.311 2.899 10.489 2.484
Age (years) 2.382 0.927 1.757 0.873
Age risk 0.346 0.476 0.445 0.497
Local gross domestic product 10.229 0.447 10.213 0.433

leverage and liquidity indicators than firms that did not fail; they are smaller in size and younger
and more frequently fall in the age risk group. It is interesting to observe that both trade debt
and trade credit ratios have higher values for defaulted companies. This result is supported by
the literature on trade credit which shows evidence that financially distressed small companies
not only have higher levels of trade debt supplied to customers but also of trade credit obtained
from suppliers (Carbó-Valverde et al., 2016).

In the next section, we formalize the proposed mixed probit model with correlated random
effects and describe an inferential procedure that is computationally efficient for data such as
those described in this section, for which existing mixed probit models are prohibitively slow.
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3. Efficient mixed probit model with correlated random effects

3.1. The model
Consider a sample of Nr companies in region r, with r =1, 2, : : : , R. Let yir be the dichotomous
variable equal to 1 when company i in region r defaults. Let G be the number of industrial
sectors. Using the latent response model, we assume that yir is generated by thresholding the
latent variable yÅ

ir that follows the Gaussian mixed model:

yÅ
ir =β′xir + z′

irur + "ir,

yir =1 if yÅ
ir �0, 0 otherwise,

.3:1/

where xir is a K-dimensional vector of explanatory variables, β is a K-dimensional vector of
unknown parameters, ur = .u1r, u2r, : : : , uGr/

′ is a G-dimensional vector of Gaussian random
errors with zir being a G-dimensional vector of (known) loadings, with all entries equal to 0
except for a 1 for the entry corresponding to the sector that is associated with observation i, and
"ir are Gaussian random errors. We assume that ur and "ir satisfy the following conditions for
all r:

E."ir/=0, E."2
ir/=1, for i=1, 2, : : : , Nr,

E."ir "js/=0, for i �= j =1, 2, : : : , Nr, r, s=1, 2, : : : , R,

E.ur u′
r/=ΣG,

E.ur u′
s/=0, for r �= s,

E.ur "is/=0 for r, s=1, 2, : : : , R,

where ΣG is a positive definite matrix with σgh the (g, h) off-diagonal element and σ2
g the gth

diagonal element. In stacked form model (3.1) can be written as

yÅ
r =Xrβ+Zrur +εr,

where yÅ
r = .yÅ

1r, yÅ
2r, : : : , yÅ

Nr ,r/
′, Xr = .x1r, x2r, : : : , xNr ,r/

′, εr = ."1r, "2r, : : : , "Nr ,r/
′ and Zr is an

Nr ×G matrix. In addition, yÅ
r has covariance

Σr =ZrΣGZ′
r + INr : .3:2/

The model above allows for group effects that vary across R and G, although the dependences
are allowed only across the G-dimension.

3.2. Inference
The interest is in estimating the regression parameters β, as well as the dependence structure
among the G groups, given by the elements of the precision matrix ΦG =Σ−1

G . As also remarked
in the graphical modelling literature, estimating the elements of the precision matrix enables us
to assess whether any two units are conditionally independent given all other units (Lauritzen,
1996), thus providing a network of dependences at the level of random effects. Accordingly,
let ϑ = .β, vech.ΦG// be the vector of unknown parameters in the above model, and note
that the observed data y = .y′

1, y′
2, : : : , y′

R/′ are a function of the unobserved variables yÅ =
.yÅ′

1 , yÅ′
2 , : : : , yÅ′

R /′ and u = .u′
1, u′

2, : : : , u′
R/′. The log-likelihood of the observed data is given by

l.ϑ/= log
{∫

fy,yÅ,u.y, yÅ, u|ϑ/dyÅdu
}

: .3:3/
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The integral in equation (3.3) makes it difficult to maximize l.ϑ/ directly, but an EM algorithm
for computing ML estimates can be adopted, by maximizing the conditional expectation of the
log-likelihood function for the complete data given the observed data y. Treating y, yÅ and u as
the complete data, and y as the incomplete data, we have

l.ϑ/= log{fy,yÅ,u.y, yÅ, u|ϑ/}− log{fyÅ,u|y.yÅ, u|y, ϑ/}, .3:4/

where log{fy,yÅ,u.y, yÅ, u|ϑ/} is the log-likelihood function for the complete data, namely

log{fy,yÅ,u.y, yÅ, u|ϑ/}= log{f.u/f.yÅ, y|u/}

≈ R

2
ln |ΦG|− 1

2

R∑
r=1

u′
rΦGur

− 1
2

R∑
r=1

.yÅ
r −Xrβ−Zrur/

′.yÅ
r −Xrβ−Zrur/:

Taking conditional expectations given y on both sides of equation (3.4) yields

l.ϑ/=E[log{fy,yÅ,u.y, yÅ, u|ϑ/}|y]−E[log{fyÅ,u|y.yÅ, u|y, ϑ/}|y] .3:5/

=Q.ϑ/−H.ϑ/,

where

Q.ϑ/≈ R

2
ln |ΦG|− 1

2
tr

{
ΦG

1
R

R∑
r=1

E.uru′
r|yr/

}
.3:6/

− 1
2

R∑
r=1

E{.yÅ
r −Xrβ−Zrur/

′.yÅ
r −Xrβ−Zrur/|yr}:

The Q-function is the main ingredient of the EM algorithm. Let ϑ̂
.m/

denote the estimate of
Θ after the mth iteration. Then the E- and M-steps of the .m + 1/th iteration are respectively
given by

(a) compute Q.ϑ|ϑ̂.m/
/=E[log{fy,yÅ,u.y, yÅ, u|ϑ̂.m/

/}|y],
(b) compute ϑ̂

.m+1/ =arg max Q.ϑ|ϑ̂.m/
/.

These steps are iterated until convergence is achieved. Looking further at the optimization in
the M-step, the first-order conditions for β and ΦG are given by

β̂
.m+1/ =

(
R∑

r=1
X′

rXr

)−1 R∑
r=1

X′
r

{
E.yÅ

r |yr/−ZrE .ur|yr/
}
, .3:7/

Φ.m+1/
G =

{
1
R

R∑
r=1

E.uru′
r|yr/

}−1

: .3:8/

Hence, the M-step alternates between estimation of β by using equation (3.7) and estimation
of ΦG by using equation (3.8). At each step, the new estimate of ΦG uses the previous value of
β̂ and the new value of Φ̂G is used to update β̂. Meng and Rubin (1993) showed that iterating
between these two equations in the EM algorithm provides convergence to the ML estimates.
However, the above expressions depend on the unknown quantities E.ur|yr/ and E.uru′

r|yr/. In
what follows, we propose an approximation of conditional expectations E.ur|yr/ and E.uru′

r|yr/

and show how this can be adopted to simplify the EM algorithm.
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3.3. Approximating conditional expectations
Using the law of iterated expectations and the theorem on conditional normal distributions,
E.ur|yr/ and E.uru′

r|yr/ are typically calculated by

E.ur|yr/=ΣGZ′
rΣ

−1
r {E.yÅ

r |yr/−Xrβ}, .3:9/

E.uru′
r|yr/=ΣGZ′

rΣ
−1
r E{.yÅ

r −Xrβ/.yÅ
r −Xrβ/′|yr}Σ−1

r ZrΣG

+ΣG −ΣGZ′
rΣ

−1
r ZrΣG, .3:10/

following appendix B and Chan and Kuk (1997).
From these expressions it is clear that E.ur|yr/ and E.uru′

r|yr/ depend on the first two
moments of a multivariate truncated normal distribution, namely E.yÅ

r |yr/ and

E{.yÅ
r −Xrβ/.yÅ

r −Xrβ/′|yr}:

Some researchers have proposed algorithms for direct estimation or approximation of mo-
ments of multivariate truncated normal distributions (see, among others, Tallis (1961), Lee
(1979) and Leppard and Tallis (1989)). Others have proposed a Markov chain Monte Carlo
approach that consists of randomly generating a sequence of samples from the multivariate
truncated normal distribution and then approximating the first two moments by the empirical
conditional moments from these samples (Kotecha and Djuric, 1999; Chan and Kuk, 1997;
Chib and Greenberg, 1998; Abegaz and Wit, 2015). Although this method is faster than direct
estimation of the moments, it is still computationally very demanding for large-scale prob-
lems. A recent strand of literature has proposed approximating the first and second moments
of a multivariate truncated normal distribution through an iterative procedure within the M-
step (Guo et al., 2015; Behrouzi and Wit, 2019; Augugliaro et al., 2018), leading to a com-
putationally much faster approach than any previous methods. Exploiting this literature, we
consider a mean field approximation of the second moments, namely, for i �= j and for all
r =1, 2, : : : , R,

E{.yÅ
ir −β′xir/.y

Å
jr −β′xjr/|yr}≈E{.yÅ

ir −β′xir/|yr}E{.yÅ
jr −β′xjr/|yr}: .3:11/

Hence, once controlled for the observed values in yr and the regressors Xr, yÅ
ir and yÅ

jr be-
come decoupled. In Section 4 we shall show good properties of our proposed estimator with
that based on the slower Monte Carlo EM procedures, that do not make the above approx-
imation. Under approximation (3.11), to compute equations (3.9) and (3.10), we only need
to find E.yÅ

ir|yr/ and E.yÅ2
ir |yr/. For this, first write the first and second conditional moments

as

E.yÅ
ir|yr/=E{E.yÅ

ir|yÅ
−i,r, yir/|yr}, .3:12/

E.yÅ2
ir |yr/=E{E.yÅ2

ir |yÅ
−i,r, yir/|yr}, .3:13/

where yÅ−i,r = .yÅ
1r, yÅ

2r, : : : , yÅ
i−1,r, yÅ

i+1,r, : : : , yÅ
Nrr

/′. Noting that yÅ
r is a vector of jointly normal

variables with mean 0 and covariance Σr, and exploiting the theorem on conditional normal
distributions, we obtain that the conditional distribution of yÅ

ir given yÅ−i,r has mean and variance
respectively given by

μ̃ir =β′xir +Σr,i,−iΣ−1
r,−i,−i.y

Å
−i,r −X−i,rβ/,

σ̃2
ir =σ2

ir −Σr,i,−iΣ−1
r,−i,−iΣr,−i,i,

where σ2
ir is the (i, i)th element of Σr. Replacing these expressions in the equation for the

mean and second moment of truncated normal distributions (see Appendix A) we obtain the
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following expressions for the first conditional moment (3.12) and the second conditional
moment (3.13):

E.yÅ
ir −β′xir|yr/=Σr,i,−iΣ−1

r,−i,−iE.yÅ
−i,r −X−i,rβ|yr/+ρ1,irσ̃ir, .3:14/

E{.yÅ
ir −β′xir/

2|yr}=Σr,i,−iΣ−1
r,−i,−iE{.yÅ

−i,r −X−i,rβ/.yÅ
−i,r −X−i,rβ/′|yr}Σ−1

r,−i,−iΣr,i,−i

+ σ̃2
ir +2ρ1,irσ̃irΣr,i,−iΣ−1

r,−i,−iE.yÅ
−i,r −X−i,rβ|yr/+ρ2,irσ̃

2
ir

+ .β′xir/
2 −2β′xirE.yÅ

ir|yr/, (3.15)

where ρ1,ir and ρ2,ir are defined in Appendix A. These equations show that there is a recur-
sive relationship between the elements in E.yÅ

ir − β′xir|yr/ and E{.yÅ
r −Xrβ/.yÅ

r −Xrβ/′|yr}
and offer an iterative procedure for estimating these quantities. More specifically, let E.yÅ

jr −
β′xjr|yr/

.h/ and E{.yÅ
jr − β′xjr/

2|yr}.h/, for all j, be the estimates of E.yÅ
jr − β′xjr|yr/ and

E{.yÅ
jr −β′xjr/

2|yr} respectively, at the hth stage in the M-step. We plug these into the right-
hand side of equations (3.14) and (3.15) to compute new values of E.yÅ

ir − β′xir|yr/

and E{.yÅ
ir − β′xir/

2|yr} (inner iterations). After convergence has been reached, let E.yÅ
ir −

β′xir|yr/
.h/Å and E{.yÅ

ir − β′xir/
2|yr}.h/Å be the final estimates. We plug these into equation

(3.7) to obtain a new estimate of β and to compute equation (3.10) that enters equation (3.8)
for estimation of ΦG (outer iterations). With the new β and ΦG, we recompute E.yÅ

ir −β′xir|yr/

and E{.yÅ
ir −β′xir/

2|yr} ready for another round of inner iterations. Note, however, that con-
vergence for the inner iterations is not necessary; in fact, inner iterations can be reduced to a
single round of computation.

According to the iterative procedure just described, the matrix inverse Σ−1
r,−i,−i, for i = 1, 2,

: : : , Nr, needs to be computed at each iteration of the EM procedure. Although the matrix can
be rather large, given that it has size .Nr −1/× .Nr −1/, a simplified expression can be obtained
by noting that

Σr,−i,−i =Zr,−iΣGZ′
r,−i + INr−1,

and, using the matrix inversion lemma,

Σ−1
r,−i,−i = INr−1 −Zr,−i.Σ−1

G +Z′
r,−iZr,−i/

−1Z′
r,−i:

Hence, Σ−1
r,−i,−i involves computing only the inverse of G-dimensional matrices. This shows

the power of using a mixed model approach, whereby dependences are captured at the lower
dimensional space of the random effects.

In addition, when Nr is particularly large, such as in our real application, we found it compu-
tationally beneficial, and not detrimental to the resulting estimators, to replace the expectations
(3.9)–(3.10) with the group averages of expectations of the latent variables, i.e.

E.ugr|yr/≈ 1
mgr

∑
i∈g

{E.yÅ
ir|yr/−β′xir}, .3:16/

E.ugruhr|yr/≈ 1
mgrmhr

∑
i∈g;j∈h

E{.yÅ
ir −β′xir/.y

Å
jr −β′xjr/|yr}, .3:17/

where mgr is the number of units belonging to group g and located in region r and Σi∈g indicates
the sum over all units belonging to group g and located in region r. This estimator is widely
adopted to proxy random effects (Hsiao, 2003), also in the context of cross-sectionally dependent
panels (Moscone et al., 2017).
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Finally, further computational efficiency can be achieved by applying penalized ML, as de-
scribed in the next subsection.

3.4. Penalized maximum likelihood estimation
ML estimation of ΦG is feasible for R�G+K, though it can become unstable for R approaching
G+K. For R<G+K, ML estimation is not feasible and further computational challenges arise
in the high dimensional case of R�G. In addition, the network of dependences is often expected
to be sparse and the recovery of its structure is of interest. In our particular application, although
the primary objective is the prediction of default, it is also of interest, and possibly motivating
further decision making, to identify which sectors of the economy are mostly connected with
each other in their risk of default.

To address these challenges, we add an L1-norm penalty term to the log-likelihood of the
model and optimize the penalized likelihood:

l1.ϑ/= log
{∫

fy,yÅ,u.y, yÅ, u|ϑ/dyÅdu
}

−ρG ‖ΦG‖1,

where ρG is a tuning parameter controlling the degree of sparsity of the underlying network and
‘‖:‖1’ is the L1-norm on the off-diagonal entries of the precision matrix. When ρG is sufficiently
large, some coefficients in ΦG are shrunk to 0, resulting in the removal of the corresponding
links in the underlying network. Noting that the part of log{fy,yÅ,u.y, yÅ, u|ϑ/} that depends
on Σ−1

G is the log-likelihood of a multivariate normal distribution,

Q1.ϑ|ϑ̂.m/
/=−R

2
ln |ΣG|− 1

2
tr

{
Σ−1

G

1
R

R∑
r=1

E.uru′
r|yr/

}
,

and, following the same line of reasoning as in Section 3.2, we consider the penalized estimation
problem for ΦG within the M-step by optimizing

Q1,pen.ϑ|ϑ̂.m/
/= R

2
ln |ΦG|− 1

2
tr

{
ΦG

1
R

R∑
r=1

E.uru′
r|yr/

}
−ρG ‖ΦG‖1: .3:18/

Hence, we alternate between estimation of β by using equation (3.7) and estimation of ΦG by
using equation (3.18), for which efficient graphical lasso implementations can be used (Friedman
et al., 2008).

The regularization parameter ρG defines the level of sparsity of the associated network Φ̂G.
By tuning this parameter, we can explore the full path of solutions, from a disconnected net-
work (large ρG, corresponding to a mixed model with uncorrelated random effects) to a fully
connected network (ρG = 0, corresponding to the ML estimates). Various information criteria
are available in the penalized likelihood literature for the selection of this parameter. These
methods are based on the likelihood function of the observed data, which, for our model, is
given by equation (3.5). Ibrahim et al. (2008), however, suggested the use of only the Q-function
in approximation (3.6) for calculation of the likelihood. This is more efficient, as the Q-function
is a direct output of the EM algorithm, whereas the H-function would need to be calculated
separately. Augugliaro et al. (2018) showed how, for a similar model, this approximate informa-
tion criterion behaves well when compared with that based on the full likelihood. In contrast,
considering that prediction of default is a classification problem, other criteria can also be used
that are more in line with this objective of the study. In the real application, we shall explore
both with the selection of ρG that minimizes the extended Bayesian information criterion eBIC
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(Foygel and Drton, 2010) and with the ρG that maximizes the area under the receiver operating
characteristic (ROC) curve, AUC, on a test set.

3.5. Standard errors approximation
Calculating standard errors of estimates requires knowledge of the information matrix that is
associated with the log-likelihood function of the observed data,which is known as the observed
information matrix. However, this also involves computation of the H-function in equation
(3.5), which is not a direct output of the EM iterations. Following Louis (1982), it is possible
to compute the observed information matrix by exploiting the complete-data gradient and
curvature. In particular, let B.y|ϑ/ = @2l.ϑ/=@ϑi @ϑj be the partial second derivatives of the
observed data log-likelihood and

S.y, yÅ, u|ϑ/= @ log{fy,yÅ, u.y, yÅ, u|ϑ/}
@ϑ

and

B.y, yÅ, u|ϑ/= @2 log{fy,yÅ, u.y, yÅ, u|ϑ/}
@ϑi @ϑj

be the gradient and second derivative of the complete-data log-likelihood respectively. It is
possible to show that

B.y|ϑ/=E{B.y, yÅ, u|ϑ/|y}+E{S.y, yÅ, u|ϑ/S.y, yÅ, u|ϑ/′|y}
−E{S.y, yÅ, u|ϑ/|y}E{S.y, yÅ, u|ϑ/|y}′: .3:19/

Hence, by exploiting the law of iterated expectations as well as approximation (3.11), it is also
possible to compute efficiently all terms appearing on the right-hand side of expression (3.19).
In the on-line supplementary material, we provide finite expressions for the elements of B.y|ϑ/.

4. Simulation study

To assess the performance of our proposed approach, we consider a simulation study using the
following data-generating process:

yÅ
ir =βxir + z′

irur + "ir, i=1, 2, : : : , Nr, r =1, 2, : : : , R,

yir =1 if yÅ
ir �0; 0 otherwise,

where we set β =1, xr = .x1r, x1r, : : : , xNrr/∼N.0,ΣX/ and ur ∼N.0,ΣG/. To generate ΣG, we
start from ΘG =Σ−1

G and assume that θgh,G ∼Bin.1, 3=G/ for g=1, : : : , G and h=g, : : : , G. We
then let D be the Choleski decomposition of ΣG, namely ΣG =DD′, and we generate ur =Dεr,
where εr = .ε1r, ε2r, : : : , εGr/

′, with εir ∼ IDN.0, 1/. We finally obtain Σr by applying formula
(3.2). We generate ΣX by following the same procedure. In the next subsections, we test the
method under different scenarios and performance criteria.

4.1. Estimation of regression coefficients
In a first set of experiments, we assess the performance of our proposed method in estimating the
regression coefficients and their standard errors. For this, we replicate 50 times the simulation
that was described above and report the bias and root-mean-squared error (RMSE) of the slope
parameter β, given by .1=50/Σ50

s=1β̂s −β and
√{.1=50/Σ50

s=1.β̂s −β/2} respectively. We carry out
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a comparison of the estimator that is obtained from the approximate EM algorithm proposed
in this paper with that from the Monte Carlo EM estimator by Chan and Kuk (1997). Because
of the high computational cost of the Monte Carlo EM approach, we select small values of G

for the comparison (G�25). We set R=200 and conduct the comparison under ML estimation
(i.e. setting ρG =0) for varying values of Nr =N, the number of observations per regions. This
comparison is important because the Monte Carlo EM estimator by Chan and Kuk (1997) does
not rely on the conditional approximation (3.11). For the same combinations of N and R, we
also compare the properties and computational time of the mixed graphical probit estimator
using equations (3.9) and (3.10) with those of the same estimator based on their approximations
(3.16)–(3.17).

Table 3 reports the results. These show that the three mixed graphical estimators have a
small bias and RMSE, and that these decrease as N rises, whereas their performance slightly
deteriorates as the number of groups, G, increases. In all cases, the estimators from the mixed
graphical probit approaches are superior to a conventional probit model with no random effects
(columns (I)). Comparing the results in columns (II) and (III), the computational time of the
estimator based on equations (3.16) and (3.17) is significantly smaller than that of the estimator
based on equations (3.9) and (3.10), thus supporting the use of group averages of conditional
expectations to proxy random effects. The fact that the bias and RMSE of the estimators in
columns (II) and (III) are of comparable size with that in column (IV) indicates that approxi-
mation (3.11), adopted both in columns (II) and in columns (III), does not significantly affect
the properties of our estimators. This was found to be so also for the approximate standard
errors calculated by using expression (3.19), whose averages across the 50 replications were
found overall to be of comparable size with the RMSE, albeit with some discrepancy at small
N. Whereas Table 3 shows little difference between the estimators in terms of bias and RMSE,
the difference in computational time between the graphical mixed probit estimators in columns
(II) and (III) and the full Monte Carlo EM estimator in columns (IV) is striking, with the mixed
graphical probit carrying out one estimation in a few seconds across all experiments, against a
computational time that can be as long as a few minutes in the case of the Monte Carlo EM
algorithm.

4.2. Recovery of the network of dependences under L1-penalization
In a second set of experiments, we assess the performance of our proposed method in recovering
the underlying network of dependences. This network is constructed by drawing an edge in
correspondence to each non-zero element of the estimated precision matrix ΦG. For a range of
values of N, G and R, we construct the ROC curve across the path of regularization parameters
under L1-penalization, i.e. across different levels of sparsity. Denoting by Φ̂

ρ
G the estimate of

the precision matrix under the tuning parameter ρ, the curve plots the true positive rate, i.e.
the percentage of true edges (non-zeros in the true ΦG) correctly estimated as non-zeros in Φ̂

ρ
G,

against the false positive rate, i.e. the percentage of true missing edges (0s in ΦG) incorrectly
estimated as non-zeros in Φ̂

ρ
G.

Fig. 1 plots these curves across the path of regularization parameters and averaged over 100
replications, for different configurations of N, G and R. As in the previous simulation, the
performance of the mixed graphical probit estimator improves as N increases for fixed R and G

(Fig. 1(a)), whereas it deteriorates as G rises, holding N and R constant (Fig. 1(b)). This result
can be explained by looking at the main features of our model. In fact, as N increases there are
increasingly more observations to estimate the unknown parameters β and ΦG, whereas when
G increases there are increasingly more parameters to estimate.
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Fig. 1. Simulation study: averaged ROC curves of network recovery for varying N, G and R across the path
of regularization parameters ρG, under penalized likelihood estimation: (a) G D 25, R D 50 ( , N D 50;

, N D100; , N D250); (b) N D250, R D50 ( , G D5; , G D50; , G D125)

4.3. Prediction accuracy
In a final set of experiments, we assess the prediction accuracy of the proposed mixed graphical
probit as a classification model. For this, we generate a testing sample with the same Monte
Carlo design as above and employ the parameters that were estimated in the training sample to
calculate the predicted probabilities

P.Yir =1|xir/=Φ.β̂
′
xir + z′

irûr/,

with Φ the standard normal cumulative distribution function and with ûr the estimated group
random effects calculated by using equation (3.9) (or for larger problems its approximation
(3.16)).

We carry out two sets of experiments: one with R=200 (the case of large R), where we compute
the proposed ML estimator (ρG =0) and one with R=50 where we compute a penalized version
of the estimator. In this case, we select the regularization parameter ρG with the value that is
closest to the true sparsity level. This is possible only in a simulation setting and enables our
results not to depend on the specific choice of model selection criterion. Fig. 2 shows the average
ROC curves across 50 replications for varying configurations of N and G, under the large and
small sample size cases respectively. The curve plots the percentage of non-zero outcomes that
are correctly predicted as non-zero versus the percentage of 0s that are incorrectly predicted as
non-zeros, as the classification threshold on the predicted probabilities varies between 0 and 1.
Similarly to before, and as expected, we note an improvement in the performance of the mixed
graphical probit as N increases and G decreases. The comparison also shows how the use of
a densely estimated precision matrix (ρG = 0) under a setting of sparsity (P.θjk �= 0/ = 3=G)
does not hinder the performance of the classifier in terms of prediction accuracy. Indeed, the
estimation of the regression parameters β is found to be quite stable across different levels
of sparsity of the precision matrix, as noted also in the literature on correlated multivariate
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Fig. 2. Simulation study: average ROC curves on predicted outcomes on the test set for varying N, G and
R, with model parameters estimated on the training set under (a) ML (ρG D 0) and (b) penalized likelihood
(ρG set to the value closest to the true sparsity): (a) GD25, R D200 ( , N D50; , N D100; ,
N D250); (b) N D250, R D50 ( , G D5; , G D25; , G D125)

probit models (Chib and Greemberg, 1998). In contrast with this, in all cases considered, the
performance of the mixed graphical probit is far superior to that of a conventional probit model
with no random effects, as shown in Fig. 3 for two representative cases. In the next section, we
shall show how the mixed graphical model can be useful for credit risk prediction and we shall
discuss more closely the aspect of model selection (selection of ρG) within that context, where
recovering the underlying network of interfirm dependences is of particular interest.

5. Credit risk probit model with correlated effects

We employ the proposed approach to estimate a default prediction model for SMEs based
on the data that were described in Section 2. To assess the performance of the classifier, we
randomly split the sample into two groups: 40000 companies are used for estimation (the train-
ing sample) and the remaining accounts for testing the prediction accuracy of the model (the
hold-out sample). We use the mixed graphical probit model in equation (3.1) and include net-
work dependences at the level of the G = 13 industrial sectors, by exploiting the grouping of
the data into R = 59 geographical regions. Thus, the model contains 59 × 13 = 767 correlated
random effects from a total of 40000 observations in the training data. This means that ML
estimation is feasible, but it is prohibitively slow by using standard implementations of mixed
models; for example the R function glmer (Bates et al., 2015) with uncorrelated random ef-
fects failed to converge. Thanks to the efficient implementation that is proposed in this paper,
we can explore the full path of solutions from a fully connected network (ρG = 0; ML estima-
tion) to a disconnected network (large ρG, corresponding to a mixed model with uncorrelated
random effects with unequal variances). Fig. 4 shows two model selection criteria evaluated
across the full path of solutions. In Fig. 4(a), we plot AUC of classification prediction on the
test data for models fitted on the training data under various levels of sparsity. In Fig. 4(b),
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we plot eBIC of the models across the path of solutions. Both plots show an optimal point
somewhere in between a fully connected network (the rightmost value with 169 non-zeros in
the precision matrix) and a disconnected network (the leftmost value with 13 non-zeros in the
diagonal of the precision matrix). eBIC appears to favour a sparser model (ρG =0:005, 41 non-
zeros in the precision matrix), whereas AUC, although achieving a real maximum for the fully
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Fig. 3. Simulation study: average ROC curves on predicted outcomes on the test set, using the mixed
graphical probit ( ) under penalized estimation (with ρG set to the value closest to the true sparsity)
and a conventional probit model ( ) with no random effects: (a) N D 250, G D 25, R D 50; (b) N D 250,
G D125, R D50

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ●● ● ● ●

●

50 100 150

0.
75

2
0.

75
4

0.
75

6
0.

75
8

number of non−zeros in precision matrix
(a) (b)

AU
C

 o
n 

te
st

 d
at

a

●● ●
● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

50 100 150

35
00

0
35

20
0

35
40

0
35

60
0

number of non−zeros in precision matrix

eB
IC
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Fig. 5. Credit risk application: estimated network between sectors of economic activity by using L1-
penalization, choosing the ρ based on AUC on the test data (ρG D 0.0006): M, manufacturing; B, construction;
W, wholesale and retail trade, repair of motor vehicles and motorcycles; T, transportation and storage; IC,
information and communication; RE, real estate activities; P, professional, scientific and technical activities;
A, administrative and support service activities; ED, education; H, human health and social work activities;
ART, arts, entertainment and recreation; O, other service activities; HH, activities of households as employers

connected network, appears to decline significantly after fitting a model with a precision ma-
trix with 103 non-zeros (ρG = 0:0006). We take the latter as the optimal model for subsequent
analyses.

Firstly, we explore the estimated network, which gives an indication of the more connected
sectors in the economy. This is plotted in Fig. 5, where links between any two sectors appear
when there is a non-zero precision among them. It is interesting to see that the sectors that
are more central to the network are those from real estate, manufacturing industry and the
activities of households as employers, whereas we mostly find services activities sectors and, in
particular, the sectors ‘arts, entertainment and recreation’ and ‘transportation and storage’ not
highly connected.

Secondly, we consider the estimated regression coefficients from the fitted model. These are
reported in Table 4 (column (I)), together with their standard errors which have been calculated
by using the observed information matrix as described in Section 3.5 and further expanded on in
the on-line supplementary material. In the remaining columns, we compare the estimates with
those of a simpler mixed probit with uncorrelated random effects for sectors only (column (II),
fitted with glmer) and of a conventional probit model without random effects, that ignores
unobserved heterogeneity and that is often used in credit risk modelling (column (III)). Focusing
on the estimates from the mixed graphical model (column (I)), the coefficient that is attached to
cash over total assets is statistically significant with a negative sign, indicating that companies
with higher cash reserves relative to current assets are less likely to default. The results also show
a negative and statistically significant effect for the variable ‘retained profits on total assets’: the
higher the net profits with respect to the investments made, the lower the probability that the
firm will go bankrupt. The variable trade debt has a negative and significant coefficient, meaning
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Table 4. Regression coefficients and standard errors estimated on the training sample of the credit risk appli-
cation by using (I) the proposed credit risk mixed graphical model, (II) a mixed probit model with uncorrelated
random effects per sector and (III) a conventional credit risk probit model

Variable (I) Results for mixed (II) Results for mixed (III) Results for conven-
graphical probit probit (sectors) tional probit

Estimate Standard Estimate Standard Estimate Standard
error error error

Total liabilities/total assets 0.0201 0.0146 0.0218 0.0150 0.0360† 0.0146
Net worth/total liabilities 0.0005 0.0011 0.0001 0.0013 −0:0018 0.0013
Cash/total assets −0:1115† 0.0359 −0:1157† 0.0409 −0:1018† 0.0396
Current liabilities/current assets −0:0059 0.0088 −0:0063 0.0091 −0:0081 0.0089
Retained profits/total assets −0:1420† 0.0248 −0:1428† 0.0250 −0:1465† 0.0254
Account receivable/total liabilities −0:8015 1.3253 −0:7378 1.4844 −0:7570 1.4344
Trade credit/total liabilities 0.0132 0.0346 0.0354 0.0386 0.0437 0.0373
Trade debt/total assets −0:2149† 0.0508 −0:2084† 0.0553 −0:1362† 0.0545
Size −0:0855† 0.0039 −0:0807† 0.0053 −0:0616† 0.0050
Age −0:1912† 0.0116 −0:1966† 0.0144 −0:2538† 0.0136
Age risk 0.0459 0.0246 0.0485 0.0252 0.0702† 0.0249
Regional gross domestic product 0.0146 0.0101 0.0131 0.0242 −0:0080 0.0234

†Significance at the 5% level.

Table 5. Classification performance of the credit
risk models from Table 4 on the test sample

Model % correctly classified

Non-failed Failed

Mixed graphical probit 66.43 73.03
Mixed probit (sectors) 64.67 69.70
Conventional probit 62.99 66.54

that, the higher the money a company is expected to receive from other companies as a result
of trade, the less likely the company is to default. Looking at the non-financial variables, the
coefficients that are attached to size and age are significant and indicate that, as expected, larger
and older companies have lower probabilities of default. Comparing with the results that are
reported in columns (II) and (III), the inclusion of network effects in the probit model does
not seem to change significantly the estimated coefficients, although the standard errors are
slightly smaller for the method proposed. This has been observed also in related literature on
multivariate probit models (Chib and Greenberg, 1998).

Finally, we compare the classification performance of the mixed graphical model with the
same two models reported in Table 4. Table 5 reports the classification accuracy statistics on the
hold-out sample. When adopting the mixed graphical probit, the overall classification accuracy
is significantly improved. Given the high number of non-failed companies in the data, the mixed
graphical probit is particularly good at identifying correctly companies that did not fail. This is
confirmed also by the ROC curve in Fig. 6, where the ROC of the mixed graphical probit lies
always above the ROC of the simpler mixed probit and of the conventional probit.
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Fig. 6. ROC curves of predicted outcomes on the test sample: comparison between the mixed graphical
probit ( ), mixed probit ( ) and conventional probit ( ) on the credit risk application

6. Concluding remarks

In this paper we have proposed a computationally efficient EM algorithm for estimation of a
mixed probit model with correlated group-specific effects and have shown its use in a credit
risk application, for which existing approaches were prohibitively slow. We have proposed un-
constrained and penalized likelihood estimation approaches for inference and have derived the
observed information matrix and asymptotic standard errors of the estimates. The L1-penalized
approach is suitable for when the number of groups is large relative to the number of observa-
tions, for which ML fails, and/or when the recovery of the underlying network is of interest.
If network recovery is not of interest but high dimensionality is present, other regularization
methods can be used in the M-step of the EM algorithm proposed, such as by making use of a
ridge penalty (Schäfer and Strimmer, 2005).

An extensive simulation study showed that our estimator has good finite sample properties
and can be adopted for estimation and prediction using very large data sets, given its moderate
computational costs. A large-scale credit risk application on a unique data set on SMEs, a
setting in which credit risk modelling is currently underdeveloped, showed that accounting for
network effects makes a significant contribution to increasing the default prediction power of
risk models and therefore that efficient inferential procedures for these models are particularly
useful in this field.

The R code to fit the mixed graphical probit that is described in this paper is available on
GitHub (https://github.com/veronicavinciotti/correlatedmixedprobit).
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Appendix A: Moments of truncated normal distributions

We now provide the formulae for deriving the central and non-central moments of yÅ
ir given yÅ

−i,r, yir. By
the theorem on conditional normal distributions, yÅ

ir given yÅ
−i,r has a normal distribution with mean and

variance
μ̃ir =β′xir +Σr, i,−iΣ−1

r,−i,−i.y
Å
−i,r −X−i,rβ/,

σ̃2
ir =σ2

ir −Σr, i,−iΣ−1
r,−i,−iΣr,−i, i,

where σ2
ir is the (i, i)th element of Σr. It follows that the conditional distribution of yÅ

ir given yÅ
−i,r, yir is a

truncated normal distribution. Let ξir,1 = .t1 − μ̃ir/=σ̃ir, ξir,2 = .t2 − μ̃ir/=σ̃ir and

ρ1, ir = φ.ξir,1/−φ.ξir,2/

Φ.ξir,2/−Φ.ξir,1/
,

ρ2, ir = ξir,2φ.ξir,1/− ξir,1φ.ξir,2/

Φ.ξir,2/−Φ.ξir,1/

with

t1 =
{ 0, if yir =1,

−∞, if yir =0,

t2 =
{∞, if yir =1,

0, if yir =0,

and φ and Φ are the density and cumulative distribution function respectively of a standard normal
distribution. The first and second moments of yÅ

ir given yÅ
−i,r, yir are

λi,1 = μ̃ir +ρ1, irσ̃ir,
λi,2 = μ̃2

ir + σ̃2
ir +2ρ1, irσ̃irμ̃ir +ρ2, irσ̃

2
ir,

whereas the second, third and fourth central moments of yÅ
ir given yÅ

−i,r, yir are (see Horrace (2015))

λc
i,2 = σ̃2

ir − σ̃irρ1, irλi,1,
λc

i,3 = σ̃irρ1, ir.λ
2
i,1 −λc

i,2/,
λc

i,4 =2σ̃4
ir −3.σ̃irρ1, irλ

c
i,1/

2 − σ̃−1
ir ρ1, irλ

c
i,3 + μ̃2

irλ
c
i,2:

Appendix B: Conditional expectations

Using the law of iterated expectations we know that

E.ur|yr/=E
{

E.ur|yÅ
r /|yr

}
,

E.uru′
r|yr/=E{E.uru′

r|yÅ
r /|yr}:

Noting that
( ur

yÅ
r

)
∼N

( 0 ΣG ΣGZ′
r

Xrβ ZrΣG Σr

)
,

we can use the theorem on conditional normal distributions to obtain

E.ur|yÅ
r /=ΣGZ′

rΣ
−1
r .yÅ

r −Xrβ/,

so that equation (3.9) holds. Similarly, focusing on E.uru′
r|yr/ and using again the theorem on conditional

normal distributions we obtain equation (3.10).
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