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Abstract 

Ground Source Heat Pump (GSHP) is a technology which can be utilized to offer low carbon 

emissions heating/cooling and hot water supply. However, improperly designed GSHPs can 

increase operational costs and often do not provide the expected reduction in emissions. 

Under the current design approach in the industry, each of the GSHP system components is 

designed separately. To optimize the trade-offs between the different system components and 

to account for the uncertainty in thermal behaviour of ground and ground heat exchanger 

(GHE), we need an integrated approach that can model the system as a whole. In this paper, 

an integrated model of GSHP systems is developed and tested through a case study of an 

existing GSHP system in UK. In this integrated model, the GHE is simulated by a 

computational intensive finite element model, which can quantitatively predict the changes of 

temperature in the ground heat exchanger and surrounding soil. The close match between the 

modelled results and the actual data demonstrates the ability of the integrated model to 

simulate thermal-pile systems with a reasonable level of accuracy. 
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Notation  

COP        Coefficient of Performance 

DAC        Dry Air Cooler 

FE          Finite Element 

GHE        Ground Heat Exchanger 

GSHP       Ground Source Heat Pump 

HP        Heat Pump 



 
 

HVAC      Heating Ventilation and Air Conditioning 

LSOFT     Load-Side-Outlet Flow Temperatures 
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1. Introduction 

According to DECC (2012a; 2012b; 2012c), the energy consumption for domestic heating 

accounts for 47% of the UK’s carbon dioxide emissions and 60% of average domestic energy 

bills. The most recent data shows that approximately 80% of this heating energy is produced 

using fossil fuels. As global energy demand is forecast to increase by around 40% between 

2007 and 2030, unless renewable technologies are implemented on a larger scale, the UK will 

be even more reliant on imported fossil fuels, and will be further exposed to global energy 

price fluctuations. Ground Source Heat Pump (GSHP) is a technology which offers an 

alternative energy solution that uses geothermal energy for space heating and cooling in a 

domestic and commercial market currently dominated by the use of fossil fuels. Generally, 

GSHP systems use soil, rock and ground water as a heat source or sink. The ground heat 

exchanger (GHE) of GSHPs is directly embedded in the ground, and is used to transfer heat 

into and out of the ground. In winter, the ground is used as a heat source to extract heat energy 

which can be used to heat buildings. In summer, a GSHP uses the ground as a heat sink to 

transfer the heat from buildings into the ground. However, this technology has only recently 

became more commonly used by the energy industry. This is partly due to the lack of reliable 

design tools, which can eliminate the design uncertainties which may affect the performance 

and efficiency of GSHP system. 

 

The key components which need to be considered when designing a GSHP system with 

substructure GHEs are: the heating and cooling demand, the capacity and efficiency of the 

heat pump, the distribution system (heat emitters), any auxiliary systems, and the GHE. The 

various components of a GSHP system and the links between them are shown in Figure 1. 

Each component of a GSHP system is associated with a set of constants and time dependent 

variables that determine the performance of the system. In a GSHP system, the various 

elements of the system interact dynamically and there are many degrees of freedom in to the 

system, such that a parameter change in one component can affect the efficiency of other 

components and of the system as a whole. To better understand the overall performance of a 
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complex GSHP system, it is therefore necessary to model the links and connections between 

its various elements.  

 

Most integrated models reported in the past use a simplified ground exchanger model 

implemented in a building physics model such as TRNSYS (Magnier and Haghighat, 2000) or 

EnergyPlus (Sankaranarayanan, 2005). For example, Shonder and Hughes (1998) and Shonder et 

al. (2000) developed a model that considers the interactions between buildings, HPs and GHEs. 

The performance of this model was tested at Fort Polk, Louisiana, where the space conditioning 

systems of over 4,000 homes were replaced with GSHP, and at a public school in Lincoln, 

Nebraska. Yavuzturk and Spitler (2000) investigated the advantages and disadvantages of various 

operating systems and control strategies in a hybrid GSHP application using an hourly system 

simulation model under different climatic conditions. Fisher and Rees (2005) used the EnergyPlus 

program to conduct a multi-year simulation of GSHP operation using Eskilson’s g-functions to 

model the response to time-varying heat fluxes, which they extended to include a computationally 

efficient variable time-step demand aggregation scheme. He and Lam (2006) evaluated a GSHP 

system with thermal piles that was recently built in China. In this study, simulations were carried 

out to study the failure of the system, using the TRNSYS simulation package. The TRNSYS 

platform was used by Zogou and Stamatelos (2007) to simulate the yearly performance of a 

residential building located in Greece, equipped with a conventional chiller and boiler system, 

compared to that of an alternative GSHP system. The comparative simulations demonstrated the 

expected transient and overall energy balance effects of the control settings, coefficient of 

performance (COP) characteristics, equipment sizes and other design parameters.  

 

Several studies have been also carried out on the development and verification of integrated 

models for GSHP systems. These studies have demonstrated the advantages of integrated models 

in terms of system performance, and a better understanding of the trade-offs between different 

system components. Michopoulos and Kyriakis (2009) developed a tool for the energy analysis of 

vertical GSHP systems, and the model was then verified using actual electricity consumption data 

collected in Greece. In Spain, work was done by Magraner et al. (2010) to compare standard 

GSHP design procedures to experimental results. In addition, a hybrid system design in China was 
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proposed by Fan et al. (2008). The system was tested using a mathematical model developed by 

the researchers, which is integrated with a water source HP and a building energy simulation 

program. In Japan, Miyata et al. (2007) developed a new simulation system by connecting an 

underground thermal model, which can simulate heat exchange between the ground and the pipes 

buried in the foundation piles, to models of the mechanical components in the air-conditioning 

system. Using the model, they were able to optimize the system performance. 

 

However, most commercially available programs and the integrated models described above 

can only model conventional configurations of horizontal and vertical GHE pipes buried in 

the soil, and do not consider the change in ground temperature and interaction between 

neighbouring GHE pipes. It is a common sense that the thermal performance of the ground is 

a key factor in the design of GSHP systems, due to the significant effects of ground properties 

(conductivity, heat capacity and temperature distribution) on the efficiency of heat transfer 

between the GHE and ground. Most of the commercial GSHP design tools do not have the 

ability to accurately simulate these factors, especially the variation in ground temperature 

during the operation of GSHP system. Furthermore, those commercial tools are only 

concerned with the efficiency of the GSHP system and the amount of heat that can be 

extracted from or dumped into the ground and are unable simulate and predict the impact of a 

GSHP on the surrounding ground. However, the understanding of the distribution of the soil 

temperature around the GHE is often an important environmental constrain in the design of 

GSHP systems. There is, therefore, a need for a design simulation tool for such systems which 

can solve these questions. One possible approach is to develop an integrated GSHP simulation 

programme using a finite element GHE model that allows for the modelling of complex 

geometry and boundary condition, and hence gives an accurate prediction of the change in 

ground temperature and heat transfer between ground and GHE. 

 

This paper presents an integrated GSHP model which incorporates a detailed GHE model. 

The main objective of this research is (i) to demonstrate the advantages of the integrated 

model and to highlight the complexity and interdependence of the various components of a 

GSHP system; (ii) to provide understanding of the importance of ground and GHE thermal 
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performance and the associated parameters to the overall system performance; (iii) to 

investigate the effects of pile spacing and change in ground temperature on the efficiency of 

GSHP; (iv) to investigate the long-term performance of GSHP system. 

 

2. Background on the GSHP System in this Study 

 In this paper, an integrated GSHP model is developed and evaluated at with a case study of 

an existing GSHP system installed at the One New Change Retail Centre in London. The One 

New Change Retail Centre consists of three basement levels and seven upper floors. It is 

located in a confined site with a total area of about 10,500 m2. As shown in Figure 2(a), it is 

located in the vicinity of several existing buildings. Thirteen (13) two stage reversible 130 kW 

capacity HPs are linked to GHE pipes incorporated into 124 foundation piles beneath the 

building footprint. The piles are 28 m long with a diameter of up to 2.5 m. In addition to the 

thermal piles, two open-loop wells are installed at a depth of 75 m into the chalk aquifer, as 

shown in Figure 2(b). The two open wells are linked via a heat exchanger to the 

HP-source-side-return, as shown in Figure 2(b). The maximum allowed extraction from the 

open wells, based on environmental regulations, is 15 L/s and 185,000 m
3
/year, with a 10°C 

maximum temperature differential between intake and discharge. The estimated annual 

building heating and cooling demands are 1.4 GWh and 1.8 GWh, respectively, and the GSHP 

system is predicted to provide 95% of these demands.  

 

The control system uses the thermal pile circuits as the primary ground loop conditioning. If 

the thermal pile circuits cannot maintain the temperature of the ground loop within the desired 

temperature range of 5–25°C, then the control system requests conditioning from either the 

Dry Air Coolers (DAC) or the open-loop circuit, as shown in Figure 3.  

 

3. The Integrated GSHP Model 

This section describes the integrated GSHP system model developed in this study to simulate 
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the GSHP system at One New Change. The model was developed using an in-house finite 

element code of the GHE, which is linked to a model of the other system components (heat 

pumps, auxiliary heaters/chillers and the control system), as shown in Figure 1. The combined 

model was implemented using the C++ programing language.  

3.1 Ground Heat Exchanger Model Using the Finite Element Method 

There are two important processes involved in the transfer of energy between the GHE and 

the ground. The first process is the heat and fluid coupling in GHE pipes. The second process 

is the heat transfer between the pipe flow, pile and ground. In this paper, the finite element 

method is used to solve the different partial differential equations for heat transfer. Figure 4 

shows a schematic of the thermal pile system with a pipe network installed in the structural 

piles of a building and a finite element model of the pile. The model can be divided into three 

components: soil, pile, and pipe (pipe flow). Heat conduction solid element is used to model 

the heat transfer in soil and the pile. A 1D heat convection model is used to model the pipe 

flow within the pipes. The geometry of pipe wall is neglected, but its effect on heat transfer 

between pipe flow and pile is simplified as a heat transfer coefficient in the finite element 

model. Additional details on the model are provided in the appendix. 

3.2 Integrated GSHP Model for One New Change Retail Centre 

Figure 5 shows the flow chart of the integrated GSHP system model for One New Change 

retail centre. The calculation process is divided into the following ten steps, corresponding to 

the numbers in Figure 5. 

 

(1) Read Heating and Cooling Demand Data 

In this study, the building heating and cooling demands were represented with and hourly and 

daily demand schedule, which was based on the data collected from the actual system. Figure 

6 shows the actual recorded monthly heating and cooling demands of the GSHP system at 

One New Change from April 2012 to July 2013. The actual hourly heating/cooling loads are 

used as input parameters in the integrated numerical model to simulate the short-term 
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operation of the whole GSHP system. The daily heating/cooling loads are used as input 

parameters for long-term analysis. 

 

(2) Determine the Number of Operational HP and the Operation Mode  

In this paper, thirteen two stage reversible HPs are simulated for GSHP system. Each 

two-stage heat pump has a compressor which is capable of changing of heating/cooling mode 

every half an hour. Hence, the HP is able to supply both heating and cooling in each hour, 

improving its ability with greater precision. The simulation time step in this model is one hour, 

hence the calculation of time-varying parameters, like heat pump capacity, power 

consumption and COPs are based on one hour time steps. Hence the maximum number of 

activated cooling/heating stages of the total 13 HPs is 26 in one hour. According to the COP 

of GSHP system and auxiliary components, the control system adjusts the fraction of the total 

heating/cooling load provided by GSHP and calculates the total number of activated heating 

stages Nheating and total number of activated cooling stages Ncooling. 

 

(3) Determine whether Auxiliary Heating or Cooling System is Required 

The system evaluated in this study, does not provide the entire heating/cooling demand, but 

acts as the first and primary source of heating and cooling. When additional heating/cooling is 

required, gas-fired boilers and vapour-compression chillers provide the difference. 

 

(4) Determine Heat Pump Capacity, Power Consumption and COP 

The heat pump model is based on user-supplied data file containing catalogue data for the 

normalized capacity and power draw, based on the entering load and source temperatures and 

the normalized source and load flow rates. Data provided by the manufactures for the specific 

heat pump model evaluated in this study was used. The GHE outlet temperature, Tgl,out, 

determined from the GHE model is used as an input for the heat pump model. 

 

The model uses bi-linear interpolation of the performance data to determine the following 

parameters: CAP2heating is heat output capacity of 2 stages of heating (in kWhr) CAP2heating; 

CAP2cooling is heat output capacity of 2 stages of cooling (in kWhr); Eelec,heating is power demand 
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for 2 stages of heating (in kWhr); Eelec,cooling is power demand for 2 stages of cooling (in 

kWhr); COPheating is Coefficient of performance of heating; COPcooling is Coefficient of 

performance of cooling.  

 

(5) Determine the Source Side Temperature of Flow Exiting the HP 

The temperature of the flow leaving the HPs towards the ground loop is influenced by the 

heating/cooling supply values. The ground loop temperature Tgl,in is calculated by the 

following equation: 

 

Qflow = (Nheating* CAP2heating + Ncooling * CAP2cooling)/3.5*11.4*60/1000;  

Tgl = Tgl,out - (Nheating *( CAP2heating - Eelec,heating) - Ncooling * (CAP2cooling + Eelec,cooling)) * 

3600/4.187/1000/ Qflow; 

where Qflow is the volumetric flow rate in the ground loop(𝑚3/hr); Tgl is the ground loop 

temperature; Nheating is total number of activated heating stages; Ncooling is total number of 

activated cooling stages. 

 

(6) Determine whether Open Loop or Dry Air Cooling Systems are Required 

The control system uses the thermal pile circuits as the primary ground loop conditioning. If 

the thermal pile circuits are unable to maintain the temperature of the ground loop Tgl within 

the desired temperature range of 5–25°C, then the control system requests additional 

conditioning from either the DAC system or the open-loop circuit, based on the availability 

and performance characteristics of the equipment. The maximum allowable extraction from 

the open-loop wells, based on environmental regulations, is 17 L/s and 185,000 m3/year, 

with a 10°C maximum temperature differential between intake and discharge. The finite 

element model calculates the heating/cooling capacity of the open wells based on these 

regulations. During periods of high rejection rates, the temperature at the extraction well 

remained largely unchanged. The extraction well therefore was represented in the model with 

a constant temperature of 14.5°C.  

 

(7) Determine the GHE Inlet Temperature 
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In this step, the GHE inlet temperature, Tgl,in, is calculated. The GHE inlet temperature is 

determined based on the flow-rate and the and flow-temperature exciting the HPs (which is 

determined in step 5) and any auxiliary energy rejected or extracted by the Open Loop or the 

DAC systems (determined in step 6).  

 

(8) GHE Simulation 

The finite element model is used to simulate the thermal piles. The inlet temperature Tgl,in is 

used for the initial nodal temperature of the closed loop thermal pile circuits to calculate the 

outlet temperature Tgl,out. A finite element mesh was generated to represent the geometry of 

the thermal piles, as shown in Figure 7. 

 

Figure 7(a) shows a plan view of the mesh generated for the FE model. The dimension of the 

soil block is 450×450 m and 150 m deep. Close to the building footprint the mesh is finer, 

and increases in size further away. There are a total of 192 foundation piles beneath the 

building footprint. The piles are 24–28 m long with a diameter of up to 2.5 m. As shown in 

Figure 7(b), the soil block is divided into four layers: Made Ground, London Clay, Lambeth 

Group and Chalk Group. Figure 7(c) shows the 1D heat convection model used to simulate 

the heat transfer and fluid flow in the pipes. The thermal parameters are listed in Table 1. The 

conductivity of the London Clay layer, which is the layer in which the thermal piles are 

installed (excluding the made ground layer, consisting mainly of imported fill with known 

thermal properties), was determined based on a thermal response test done on site (Garber, 

2014). The thermal properties of the other layer were assumed based on values available in 

the literature (Banks, 2009; Livingstone, 2010; Rollin, 1987). 

 

(9) Outputs of the GHE outlet temperature 

The primary outputs of the FE simulation is the GHE outlet temperature Tgl,out. This value is 

then used as an input for the HP model in the next time step (step 4).  

 

(10) Outputs of ground temperature 

The temperature distribution in the ground can also be outputted by the FE model, and the 
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results can be used to evaluate the environmental impacts of the operation of GSHP. 

 

4. Results and Discussion 

4.1 Model Validation 

The prediction of the integrated GSHP model were compared to the data collected over a 

period of 18 months from the GSHP system at One New Change. 

 

Figure 8 shows the model and actual GHE inlet flow temperatures for the same time period. 

The dotted line shows the monitored GHE inlet flow temperature, the solid line shows the 

modelled GHE inlet flow temperature, and the dotted dashed line shows the modelled GHE 

outlet temperature. As Figure 8 shows, the FEM model is able to provide a reasonably good 

match with the actual monitoring data for the 18 month period. 

 

As Figure 8 shows, over the period simulated in this study, the absolute difference between 

the inlet and outlet temperatures is about 1.0–2.5°C. During the two winters (January to April 

2012 and October to April 2013) the GHE outlet temperature is higher than the inlet 

temperature, which suggests that heat is absorbed by the fluid from the concrete/soil. During 

the two summers periods (May to September 2012 and May 2013 onwards), the GHE outlet 

temperature is lower than the inlet temperature, which indicates that heat is injected into the 

concrete/soil from the fluid.  

 

Figure 9 shows a comparison between the HP power demand predicted by the model and the 

actual monitored data between February 2012 and July 2013. Some deviation between the 

two curves are expected due to uncertainties in some of the model inputs, such as the thermal 

properties of the pile and the ground, and the HP performance data. Over the period the model 

predictions matched to within ±11% of the actual data.  

 

The temperature distribution in the ground is shown in Figure 10. During weeks 10-30, due to 
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the increase in cooling demand, heat is injected into the ground. The results clearly show that 

the temperature of the piles is higher than the temperature of the surrounding ground on week 

20 and it keeps further increasing up to week 30. As Figure 10 shows, the temperature 

propagates outwards from the piles, and hence the temperature of the ground impacted by the 

temperature change propagates outward with time.  

 

During weeks 50-70 of the system operation, heat is extracted from the ground due to the 

increase in heating demand during winter, and therefore the ground temperature around the 

boreholes is lower than that of the surrounding soil.  

 

As previously noted, the increase in ground temperature over time can be a potential 

environmental concern, and often needs to be controlled within a certain range. The 

modelling approach presented in this study, provides the ability to better understand the 

spatial distribution of the soil temperature around a GHE over time. 

 

The temperature distribution in the GHE pipes after 30 weeks of operation is shown in Figure 

11. The figure shows that the temperature of the pipe flow decreases from 30°C to 28.75°C 

along the direction of flow, which indicates that the pipe flow rejects heat to the pile and 

ground during this period of time.  

 

4.2 Effect of pile spacing 

 

There are a total of 124 thermal piles installed under the One New Change Retail Centre. The 

average distance between the piles is 9 m. The thermal interaction between adjacent piles 

potentially has effect on the performance of the whole GSHP system. To assess the effect of 

pile spacing on the performance of the system, a series of finite element model analysis was 

performed by scaling up/down the FE mesh and pile spacing in horizontal direction. Except 

for the pile spacing, other pile and soil properties remained the same as described in the 

previous sections. Three different pile spacing configuartions are evaluated, 6m, 9m and 12m. 
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Figure 12 shows the GHE-inlet temperatures for the different pile spacing. In general, the 

GHE-inlet temperature of all three cases increases during summer, and decreases in winter. 

With minimum pile distance (6m), the GHE-inlet temperature is higher than for the other two 

cases after the first 20 weeks of operation. The highest inlet temperature at week 30 is about 

37°C, 3°C higher than for the current system (pile spacing of 9m) and 5°C higher than for the 

12m pile spacing. The current GSHP system rejects more heat into the ground during the 

summer than it extracts in the winter, and therefore, with smaller pile spacing, the heat 

accumulates around the pile and the ground temperature increase more than for the other two 

cases, as shown in Figure 13. Hence, the GSHP system needs to increase GHE inlet 

temperature to meet the same cooling demand. The difference in both GHE inlet temperature 

and ground temperature close to the piles between the cases is larger during weeks 30 to 50 

(the cooling period). However, this difference decreases after the winter, due to the fact that 

the heat, which was stored in summer, is extracted to meet heating demand in winter.  

 

Figure 14 shows the electricity demand for different pile spacing. The inlet temperature of the 

case with pile spacing of 6m is higher than for the other two cases especially from week 20 to 

week 60. Hence, the GSHP system with smallest pile spacing has a lower cooling COP but a 

higher heating COP than the other two cases. In the first year summer season (weeks 20-30), 

due to the high cooling demand, the lower cooling COP results in a higher electricity demand. 

However, in the winter time (week 45-65), the sharp increase in heating demand results in a 

lower electricity demands due to the lower heating COP as compared to the other two cases. 

Hence, the influence of change in pile spacing on the overall efficiency of the system during 

one full year of operation is small. It can be concluded that pile spacing has a large effect on 

the performance of GSHP system with heating or cooling demand only, due to the 

accumulated  imbalance in ground temperature. But for the GSHP system with a 

well-balanced cooling and heating demand, the effect of pile spacing is less significant.  
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4.3 Evaluation of Future System Performance 

Once satisfactory results were achieved between the predictions of the integrated model and 

the data collected from the actual system, the FEM model was used to evaluate the system 

performance over a 30-year lifetime. The actual heating and cooling loads were used as inputs 

(the loads were assumed to be the same for every year) and it was assumed that the system 

control operated as designed.  

 

Figure 15 shows the predicted GHE inlet temperature for the 30-year period. The weekly 

average inlet temperature decreases in years 1–10 and then approaches a steady state, with a 

minimum GHE inlet temperature being around 10°C and the maximum around 32°C. The 

temperature is higher at the beginning of the system operation due to heat imbalance during 

the first several years, and there is an annual net heat rejection into the ground. 

 

Figure 16 shows the predicted annual heating and cooling energy supplied by the GSHP over 

the 30 years. From years 3 to 12, the cooling energy slightly increases while the heating 

energy decreases. From year 13 onwards, the heating energy supplied by the GSHP is about 

1.75 GWh and the cooling energy is about 1.3 GWh, and the difference between the energy 

extracted and rejected from the GHE approaches a steady state. 

 

Figure 17 shows the annual heating and cooling HP coefficients of performance. As the GHE 

inlet temperature decreases, the HP cooling coefficient of performance improves but the 

heating coefficient of performance is reduced. 

 

The operational costs, energy input and the associated CO2 emissions of the GSHP system 

over a 30-year life time period were compared to those of a conventional heating/cooling 

plant which meets the same annual heating and cooling loads. For the conventional plant it 

was assumed that the demand is met by a condensing gas-fired boiler (90% efficiency) and a 

vapour-compression chiller (COP of 4.0). The current average price of £0.145/kWh for 

electricity and £0.048/kWh for gas and a CO2 intensity of 0.420 kg/kWh for electricity and 
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0.194 kg/kWh (combusted) for gas was used (DECC 2013). Table 2 shows the total energy 

input, cost and CO2 emissions for the current system and the conventional system for a 

30-year lifetime. The table shows that the GSHP system provides more than 50% reduction in 

the energy demand. It therefore satisfies the current planning requirements in London, which 

aim to reduce the energy consumption of new developments. It is important to note that the 

savings shown are operational costs savings only, and the extra capital costs of the GSHP 

system are not taken into account. It is therefore possible that the net cost savings of the 

system are marginal.  

 

5. Conclusions 

Currently the various components of a GSHP system are sized independently by different 

designers. Commercial GSHP design software packages focus on the design of the GHE, and 

assume the inputs from other components (building demand, HP performance specifications, 

distribution temperature etc.) as parameters. This design approach often leads to oversized 

systems and limits the ability of designers to optimize operation strategies and thus improve 

overall system efficiency, due to the lack of information about the change in temperature 

distribution and thermal performance of the ground.  

 

The use of a GHE simulation model in an integrated modelling environment, presented in this 

paper, is a powerful tool in assessing the behaviour and dynamics of GSHP and hybrid GSHP 

systems. The integrated modelling approach allows implementation of sophisticated (based on 

small time intervals) operating and control strategies and incorporates a FE model which 

simulates the operation of GSHP system as well as predicts the changing temperature of the 

ground.  

 

The good match between the model results and the actual data demonstrates the ability of the 

FEM code to simulate thermal pile systems to a reasonable level of accuracy. The main 

advantages of the FEM code are its flexibility and its ability to model non-conventional 
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geometries for heat exchanger foundations or thermal piles distributed in a complex grid. The 

FEM model provides an insight into the behaviour of individual piles, local temperature 

propagation, and temperature variation in the soil, all of which may have large impact on the 

performance of GSHP system. In addition, the parametric study shows that pile spacing has a 

large effect on the performance of GSHP system with heating or cooling demand only, due to 

the accumulated imbalance in ground temperature. But for the GSHP system with a 

well-balanced cooling and heating demand, this effect becomes limited. 

  

The integrated modelling approach in this study was used to evaluate the system performance 

over a 30-year life time period. The long term analysis indicates that the system and the 

annual temperature fluctuations around the GHE approach a steady state after 12-13 years of 

operation. A comparison between the current system and a conventional heating and cooling 

system over a 30-year lifetime suggests that the GSHP system provides over 50% reduction in 

the energy demand. 

Appendix Finite element model for a GHE 

The pipe length is large enough that the flow inside can be considered to be fully developed. 

The flow behaviour can be simplified as a single tangential average velocity component along 

the edges, which avoids having to mesh the cross-section of the pipe. This means that the 

modelled variables are averaged across the pipe's cross-section and vary only along the length 

of the pipe. The mechanism of heat fluid can be derived from the conservation of heat energy, 

as shown in Figure A-1(a).  

 

Hence, the mathematical model for heat transfer in pipe fluid is expressed as: 

                 
∂T

∂x
cwVw + ktr(T − Ts) − D

∂2T

∂x2
+

dT

dt
cw = 0                  (A-1) 

Where T is the average temperature of the pipe flow, cw is the specific heat of the fluid, D 

is the heat conduction coefficient of the fluid, ktr is the heat transfer coefficient between the 

pipe fluid and the pile, and Ts is the temperature of the outer surface of the pipe wall 

(pile-pipe interface). 
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Figure A-1(b) shows the finite element model for the simulation of heat transfer in a liquid 

flowing through a pipe. The solid line in the middle is the 1D line element used for the 

simulation of heat transfer in a liquid flowing through a pipe, which is coupled with the solid 

elements (concrete/soil) through nodes. Nodes i, j, k, l, m, and n are duplicate nodes. Each set 

contains a fluid element node and a solid element node. They are different nodes which 

coincide.  
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Table 1. Values of thermal properties 

Table 2. 30-year total energy input, cost and CO2 emissions for conventional and 

current systems  

Figure 1. Diagram of the links between the various components of a typical hybrid 

GSHP 

Figure 2. Finite element model of the One New Change Retail Centre: (a) Plan view; 

(b) Side view 

Figure 3. Schematic diagram of the GSHP system (Garber, 2013) 

Figure 4. (a) Schematic cross-section of the energy pile; (b) FE model of the thermal 

pile: (i) Pile and ground; (ii) Pipe 

Figure 5. Flow chart of the integrated GSHP system model 

Figure 6. Actual cooling and heating demands 

Figure 7. Finite element model: (a) Plan view; (b) Cross-sectional view; (c) Pile 

model embedded in concrete piles (the red line indicates the pipe and the direction of 

the fluid flow) 

Figure 8. Inlet and outlet temperature of the thermal piles 

Figure 9. HP electricity demand: model predictions vs. actual data 

Figure 10. Temperature distribution in the ground for the first year 

Figure 11. Temperature distribution in the pipes (after 30 weeks) 

Figure 12. Changes in GHE inlet temperature with variation in pile distanceFigure 13. 

Temperature distribution in the ground with time and variation in pile distance 

Figure 14. Changes in electricity demand with variation in pile distance 
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Figure 15. Predicted 30-year GHE-inlet temperature 

Figure 16. Projected 30-year annual heating (grey) and cooling (black) demand 

supplied by the GSHP 

Figure 17. Projected 30-year annual heating (grey) and cooling (black) coefficients of 

performance 

Figure A-1. (a) Mechanism of heat transfer in fluid flowing in a pipe; (b) Finite 

element model for heat transfer between pipe flow and concrete/soil 
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Figure 1. Diagram of the links between the various components of a typical hybrid 

GSHP 

 

 

(a) 

 

(b) 

Figure 2. Finite element model of the One New Change Retail Centre: (a) Plan view; 

(b) Side view 
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Figure 3. Schematic diagram of the GSHP system (Garber, 2013) 

 
(a) 

 

 
(i)                                   (ii) 

(b) 

Figure 4: (a) Schematic cross-section of the energy pile; (b) FE model of the thermal 

pile: (i) Pile and ground; (ii) Pipe 
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Figure 5. Flow chart of the integrated GSHP system model 

 

  

Figure 6. Actual cooling and heating demands 
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(a) 

 
(b) 

 
(c) 

Figure 7. Finite element model: (a) Plan view; (b) Cross-sectional view; (c) Pile 

model embedded in concrete piles (the red line indicates the pipe and the direction of 

the fluid flow) 
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Figure 8. Inlet and outlet temperature of the thermal piles 

 

 

Figure 9. HP electricity demand: model predictions vs. actual data 
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Week 50                         Week 70 

 

Figure 10. Temperature distribution in the ground 
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Figure 11. Temperature distribution in the pipes (week 30) 
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Figure 12. Changes in GHE inlet temperature with variation in pile distance 
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Figure 13. Temperature distribution in the ground with time and variation in pile distance 
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Figure 14. Changes in electricity demand with variation in pile distance 

 

 

Figure 15. Predicted 30-year GHE-inlet temperature 
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Figure 16. Projected 30-year annual heating (grey) and cooling (black) demand 

supplied by the GSHP; 

 

 

Figure 17. Projected 30-year annual heating (grey) and cooling (black) coefficients of 

performance 
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 (a) 

 

(b) 

Figure A-1: (a) Mechanism of heat transfer in fluid flowing in a pipe; (b) Finite 

element model for heat transfer between pipe flow and concrete/soil 
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